JP2015039987A - Non-pneumatic tire - Google Patents

Non-pneumatic tire Download PDF

Info

Publication number
JP2015039987A
JP2015039987A JP2013172696A JP2013172696A JP2015039987A JP 2015039987 A JP2015039987 A JP 2015039987A JP 2013172696 A JP2013172696 A JP 2013172696A JP 2013172696 A JP2013172696 A JP 2013172696A JP 2015039987 A JP2015039987 A JP 2015039987A
Authority
JP
Japan
Prior art keywords
tire
annular portion
connecting portion
pneumatic tire
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013172696A
Other languages
Japanese (ja)
Other versions
JP6092046B2 (en
Inventor
健史 宮本
Kenji Miyamoto
健史 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2013172696A priority Critical patent/JP6092046B2/en
Publication of JP2015039987A publication Critical patent/JP2015039987A/en
Application granted granted Critical
Publication of JP6092046B2 publication Critical patent/JP6092046B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-pneumatic tire that is improved in durability and cornering performance.SOLUTION: A non-pneumatic tire T comprises a support structure SS supporting a load from a vehicle. The support structure SS comprises: an inner annular part 1; an outer annular part 2 formed in a concentric circle outside the inner annular part 1; and a plurality of connection parts 3 that connect the inner annular part 1 to the outer annular part 2 and are formed independently from each other in a tire circumference direction CD. The plurality of connection parts 3 are constituted of a first connection part 31 that is extended from one side WD1 in a tire width direction of the inner annular part 1 toward the other side WD2 in the tire width direction of the outer annular part 2 and a second connection part 32 that is extended from the other side WD2 in the tire width direction of the inner annular part 1 toward the one side WD1 in the tire width direction of the outer annular part 2, which are arranged alternately along a tire circumference direction. The first connection part 31 and the second connection part 32, which are smaller in plate thickness than in plate width and whose direction of the plate thickness are matched to the tire circumference direction, are long plate-shaped and have different rigidity.

Description

本発明は、タイヤ構造部材として、車両からの荷重を支持する支持構造体を備える非空気圧タイヤ(non−pneumatic tire)に関するものであり、好ましくは空気入りタイヤの代わりとして使用することができる非空気圧タイヤに関するものである。   The present invention relates to a non-pneumatic tire provided with a support structure that supports a load from a vehicle as a tire structural member, and preferably a non-pneumatic tire that can be used as a substitute for a pneumatic tire. It relates to tires.

空気入りタイヤは、荷重の支持機能、接地面からの衝撃吸収能、および動力等の伝達能(加速、停止、方向転換)を有し、このため、多くの車両、特に自転車、オートバイ、自動車、トラックに採用されている。   The pneumatic tire has a load supporting function, a shock absorbing ability from the ground contact surface, and a transmission ability (acceleration, stop, change of direction) such as power. For this reason, many vehicles, particularly bicycles, motorcycles, automobiles, It is used in trucks.

特に、これらの能力は自動車、その他のモーター車両の発展に大きく貢献した。更に、空気入りタイヤの衝撃吸収能力は、医療機器や電子機器の運搬用カート、その他の用途でも有用である。   In particular, these capabilities greatly contributed to the development of automobiles and other motor vehicles. Furthermore, the impact absorbing ability of pneumatic tires is useful for medical equipment and electronic equipment transport carts and other applications.

従来の非空気圧タイヤとしては、例えばソリッドタイヤ、スプリングタイヤ、クッションタイヤ等が存在するが、空気入りタイヤの優れた性能を有していない。例えば、ソリッドタイヤおよびクッションタイヤは、接地部分の圧縮によって荷重を支持するが、この種のタイヤは重くて、堅く、空気入りタイヤのような良好な乗り心地や操縦安定性を確保することが困難であった。   Conventional non-pneumatic tires include, for example, solid tires, spring tires, cushion tires, and the like, but do not have the superior performance of pneumatic tires. For example, solid tires and cushion tires support the load by compressing the ground contact part, but this type of tire is heavy and stiff, and it is difficult to ensure good riding comfort and handling stability like pneumatic tires Met.

下記特許文献1には、耐久性能を改善しながら、乗り心地、ノイズ性能等を向上させる目的で、内側環状部と、その外側の中間環状部と、更にその外側の外側環状部と、内側環状部と中間環状部とを連結する複数の内側連結部と、外側環状部と中間環状部とを連結する複数の外側連結部とを備える非空気圧タイヤが記載されている。この非空気圧タイヤは、内側連結部及び外側連結部がタイヤ幅方向に連続する板状であるため、横剛性が高いが、ショルダー部の剛性も高いため、コーナリング時にショルダー部の接地面積が小さく、コーナリング性能が十分ではない。   In Patent Document 1 below, for the purpose of improving riding performance, noise performance, etc. while improving durability performance, an inner annular portion, an outer intermediate annular portion, an outer outer annular portion, and an inner annular portion. A non-pneumatic tire is described that includes a plurality of inner connecting portions that connect a portion and an intermediate annular portion, and a plurality of outer connecting portions that connect the outer annular portion and the intermediate annular portion. This non-pneumatic tire has a plate shape in which the inner connecting portion and the outer connecting portion are continuous in the tire width direction, so the lateral rigidity is high, but since the shoulder portion has high rigidity, the ground contact area of the shoulder portion is small during cornering, Cornering performance is not enough.

また、下記特許文献2には、乗り心地を向上させる目的で、車軸に取り付けられる取り付け体と、その外側に設けられるリング状体と、前記取り付け体と前記リング状体との間にタイヤ周方向に沿って複数配設された連結部材とが備えられた非空気圧タイヤが記載されている。この非空気圧タイヤは、連結部材がタイヤ幅方向に連続する板状であるため、特許文献1の非空気圧タイヤと同様、横剛性が高いが、ショルダー部の剛性も高いため、コーナリング時にショルダー部の接地面積が小さく、コーナリング性能が十分ではない。   Further, in Patent Document 2 below, for the purpose of improving riding comfort, a tire attached in the tire circumferential direction between an attachment body attached to an axle, a ring-like body provided on the outside thereof, and the attachment body and the ring-like body. A non-pneumatic tire provided with a plurality of connecting members arranged along the line is described. Since this non-pneumatic tire has a plate shape in which the connecting member is continuous in the tire width direction, as in the non-pneumatic tire of Patent Document 1, the lateral stiffness is high, but the shoulder portion also has high rigidity. The ground contact area is small and the cornering performance is not sufficient.

さらに、特許文献1の外側連結部又は特許文献2の連結部材のようなスポークをタイヤ周方向に間隔をあけて配設すると、タイヤ転動時の接地圧分散が大きくなる傾向にある。このようなタイヤ転動時の接地圧分散が大きくなるのを抑制するために、タイヤ周方向におけるスポークの厚みを小さくし、かつスポーク同士の間隔を狭くすることが考えられる。しかし、厚みを小さくするとスポークの剛性が低下するため、突起乗り越し等の局所的な衝撃に弱くなり、耐久性が悪化するおそれがある。   Furthermore, if spokes such as the outer connecting part of Patent Document 1 or the connecting member of Patent Document 2 are arranged at intervals in the tire circumferential direction, the contact pressure distribution during tire rolling tends to increase. In order to suppress such an increase in contact pressure dispersion during rolling of the tire, it is conceivable to reduce the thickness of the spokes in the tire circumferential direction and reduce the distance between the spokes. However, if the thickness is reduced, the spoke rigidity is reduced, so that it becomes weak against local impacts such as overcoming a protrusion and the durability may deteriorate.

特開2010−126070号公報JP 2010-126700 A 特開2011−156905号公報JP 2011-156905 A

そこで、本発明の目的は、耐久性とコーナリング性能を向上させた非空気圧タイヤを提供することにある。   Accordingly, an object of the present invention is to provide a non-pneumatic tire having improved durability and cornering performance.

上記目的は、下記の如き本発明により達成できる。
即ち、本発明の非空気圧タイヤは、車両からの荷重を支持する支持構造体を備える非空気圧タイヤにおいて、前記支持構造体は、内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、前記内側環状部と前記外側環状部とを連結し、タイヤ周方向に各々独立して設けられた複数の連結部とを備え、前記複数の連結部は、前記内側環状部のタイヤ幅方向一方側から前記外側環状部のタイヤ幅方向他方側へ向かって延設される第1連結部と、前記内側環状部の前記タイヤ幅方向他方側から前記外側環状部の前記タイヤ幅方向一方側へ向かって延設される第2連結部とが、タイヤ周方向に沿って交互に配列されて構成されており、前記第1連結部と前記第2連結部は、板厚が板幅よりも小さく、板厚方向がタイヤ周方向を向いた長尺板状であって、かつ互いに剛性が異なることを特徴とする。
The above object can be achieved by the present invention as described below.
That is, the non-pneumatic tire of the present invention is a non-pneumatic tire provided with a support structure that supports a load from a vehicle, and the support structure is provided concentrically on the inner annular portion and on the outer side of the inner annular portion. The outer annular portion, the inner annular portion and the outer annular portion, and a plurality of connecting portions provided independently in the tire circumferential direction, wherein the plurality of connecting portions are the inner annular portion. A first connecting portion extending from one side in the tire width direction toward the other side in the tire width direction of the outer annular portion, and the tire width of the outer annular portion from the other side in the tire width direction of the inner annular portion. Second connecting portions extending toward one side of the direction are arranged alternately along the tire circumferential direction, and the first connecting portion and the second connecting portion have a plate thickness. It is smaller than the width, and the thickness direction faces the tire circumferential direction. A long plate shape, and wherein the stiffness different from each other.

本発明の非空気圧タイヤは、内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、内側環状部と外側環状部とを連結する複数の連結部とを備えている。複数の連結部は、複数の第1連結部と第2連結部とがタイヤ周方向に沿って交互に配列されて構成されている。第1連結部は、内側環状部のタイヤ幅方向一方側から外側環状部のタイヤ幅方向他方側へ向かって延設され、第2連結部は、内側環状部のタイヤ幅方向他方側から外側環状部のタイヤ幅方向一方側へ向かって延設されている。第1連結部と第2連結部は、板厚が板幅よりも小さく、その板厚方向がタイヤ周方向を向いた長尺板状をしている。これにより、仮に板厚を薄くしても、板幅を広く設定することで、連結部は所望の剛性を得ることができるため、耐久性を向上できる。   The non-pneumatic tire of the present invention includes an inner annular portion, an outer annular portion provided concentrically outside the inner annular portion, and a plurality of connecting portions that connect the inner annular portion and the outer annular portion. Yes. The plurality of connecting portions are configured by alternately arranging a plurality of first connecting portions and second connecting portions along the tire circumferential direction. The first connecting portion extends from one side in the tire width direction of the inner annular portion toward the other side in the tire width direction of the outer annular portion, and the second connecting portion has an outer annular shape from the other side in the tire width direction of the inner annular portion. It is extended toward the tire width direction one side of the part. The first connecting portion and the second connecting portion have a long plate shape in which the plate thickness is smaller than the plate width and the plate thickness direction faces the tire circumferential direction. Thereby, even if the plate thickness is reduced, the connecting portion can obtain a desired rigidity by setting the plate width wide, so that the durability can be improved.

本発明では、第1連結部と第2連結部の剛性を互いに異ならせている。ここで、剛性は、タイヤに規定の質量を与えた時、単位長さを撓ませるのに必要な縦方向の力である。図2Aに本発明の非空気圧タイヤをタイヤ幅方向に切断してタイヤ周方向から見た模式図を示す。1は内側環状部、2は外側環状部、31は第1連結部、32は第2連結部を示している。例えば、図2Aに示すように、タイヤ幅方向一方側WD1を車両内側として非空気圧タイヤTを車両に装着した場合、第1連結部31の剛性を第2連結部32の剛性よりも高くすることで、車両外側のショルダー部の剛性が高くなり、コーナリング時のグリップ力が向上する。さらに、第2連結部32が第1連結部31よりも変形しやすいため、タイヤの車両外側が接地しやすくなり、接地面積が広がる。その結果、第1連結部31の剛性を第2連結部32の剛性よりも高くすることで、コーナリング性能を向上できる。   In the present invention, the first connecting portion and the second connecting portion have different rigidity. Here, the rigidity is a longitudinal force necessary to bend the unit length when a prescribed mass is given to the tire. FIG. 2A shows a schematic view of the non-pneumatic tire of the present invention cut in the tire width direction and viewed from the tire circumferential direction. Reference numeral 1 denotes an inner annular portion, 2 denotes an outer annular portion, 31 denotes a first connecting portion, and 32 denotes a second connecting portion. For example, as shown in FIG. 2A, when the non-pneumatic tire T is mounted on the vehicle with the tire width direction one side WD1 as the vehicle inner side, the rigidity of the first connecting part 31 is made higher than the rigidity of the second connecting part 32. Thus, the rigidity of the shoulder portion on the outside of the vehicle is increased, and the gripping power at the time of cornering is improved. Furthermore, since the 2nd connection part 32 deform | transforms more easily than the 1st connection part 31, it becomes easy to contact the vehicle outer side of a tire, and a contact area spreads. As a result, the cornering performance can be improved by making the rigidity of the first connecting part 31 higher than the rigidity of the second connecting part 32.

一方、第2連結部32の剛性を第1連結部31の剛性よりも高くすることで、レーンチェンジやカーブでの横力によるGを第1連結部31が吸収するため、振動を抑制し乗り心地を向上できる。特に、キャンバー角が0°、及びネガティブキャンバーの場合には、接地面積の広い車両内側のショルダー部の剛性が高いため、乗り心地に加えてコーナリング性能も向上できる。その結果、第2連結部32の剛性を第1連結部31の剛性よりも高くすることで、乗り心地又はコーナリング性能を向上できる。   On the other hand, by making the rigidity of the second connecting part 32 higher than the rigidity of the first connecting part 31, the first connecting part 31 absorbs G due to lateral force at a lane change or a curve. You can improve your comfort. In particular, in the case of a camber angle of 0 ° and a negative camber, since the rigidity of the shoulder portion inside the vehicle having a large ground contact area is high, cornering performance can be improved in addition to riding comfort. As a result, the ride comfort or cornering performance can be improved by making the rigidity of the second connecting part 32 higher than the rigidity of the first connecting part 31.

本発明にかかる非空気圧タイヤにおいて、前記第1連結部又は前記第2連結部は、補強材により補強されていることが好ましい。補強材により補強することで、第1連結部又は第2連結部の剛性を高めることができるため、第1連結部と第2連結部の剛性を互いに異ならせることができる。   In the non-pneumatic tire according to the present invention, it is preferable that the first connecting part or the second connecting part is reinforced by a reinforcing material. Since the rigidity of the first connecting part or the second connecting part can be increased by reinforcing with the reinforcing material, the rigidity of the first connecting part and the second connecting part can be made different from each other.

本発明にかかる非空気圧タイヤにおいて、前記第1連結部又は前記第2連結部は、前記外側環状部側のみが補強されていることが好ましい。接地面側である外側環状部側の連結部には応力が集中しやすいため、第1連結部又は第2連結部の外側環状部側のみを補強材により補強することで、重量の増加を抑えつつ耐久性を向上できる。   In the non-pneumatic tire according to the present invention, it is preferable that only the outer annular portion side of the first connecting portion or the second connecting portion is reinforced. Since stress tends to concentrate on the connecting part on the outer annular part side that is the ground plane side, the increase in weight is suppressed by reinforcing only the outer annular part side of the first connecting part or the second connecting part with the reinforcing material. Durability can be improved.

本発明にかかる非空気圧タイヤにおいて、前記第1連結部と前記第2連結部は、前記補強材が配置される範囲が互いに異なることが好ましい。補強材を配置する範囲を互いに異ならせることにより、第1連結部と第2連結部の剛性を容易に異ならせることができる。   In the non-pneumatic tire according to the present invention, it is preferable that the first connecting portion and the second connecting portion have different ranges in which the reinforcing material is disposed. By making the ranges in which the reinforcing members are arranged different from each other, the rigidity of the first connecting portion and the second connecting portion can be easily made different.

本発明にかかる非空気圧タイヤにおいて、前記第1連結部と前記第2連結部は、前記補強材の引張モジュラスが互いに異なることが好ましい。補強材の引張モジュラスを互いに異ならせることにより、第1連結部と第2連結部の剛性を容易に異ならせることができる。   In the non-pneumatic tire according to the present invention, it is preferable that the first connecting portion and the second connecting portion have different tensile moduli of the reinforcing material. By making the tensile modulus of the reinforcing material different from each other, the rigidity of the first connecting portion and the second connecting portion can be easily made different.

本発明の非空気圧タイヤの一例を示す正面図Front view showing an example of the non-pneumatic tire of the present invention 図1の非空気圧タイヤのA−A断面図AA sectional view of the non-pneumatic tire of FIG. 図1の非空気圧タイヤの一部を示す斜視図The perspective view which shows a part of non-pneumatic tire of FIG. 図1の非空気圧タイヤの部分拡大図Partial enlarged view of the non-pneumatic tire of FIG. 他の実施形態に係る非空気圧タイヤのタイヤ子午線断面図Tire meridian cross-sectional view of a non-pneumatic tire according to another embodiment 他の実施形態に係る非空気圧タイヤのタイヤ子午線断面図Tire meridian cross-sectional view of a non-pneumatic tire according to another embodiment 他の実施形態に係る非空気圧タイヤのタイヤ子午線断面図Tire meridian cross-sectional view of a non-pneumatic tire according to another embodiment 他の実施形態に係る非空気圧タイヤのタイヤ子午線断面図Tire meridian cross-sectional view of a non-pneumatic tire according to another embodiment 他の実施形態に係る非空気圧タイヤを示す正面図Front view showing a non-pneumatic tire according to another embodiment 他の実施形態に係る非空気圧タイヤを示す正面図Front view showing a non-pneumatic tire according to another embodiment 他の実施形態に係る連結部を示す斜視図The perspective view which shows the connection part which concerns on other embodiment. 他の実施形態に係る連結部を示す斜視図The perspective view which shows the connection part which concerns on other embodiment. 他の実施形態に係る連結部を示す斜視図The perspective view which shows the connection part which concerns on other embodiment. 他の実施形態に係る連結部を示す斜視図The perspective view which shows the connection part which concerns on other embodiment. 比較例1の非空気圧タイヤを示す正面図Front view showing a non-pneumatic tire of Comparative Example 1

以下、本発明の実施の形態について、図面を参照しながら説明する。初めに、本発明の非空気圧タイヤTの構成を説明する。図1は、非空気圧タイヤTの一例を示す正面図である。図2Aは、図1のA−A断面図であり、図2Bは、非空気圧タイヤの一部を示す斜視図である。図3は、図1の一部を拡大して示す図である。ここで、Oは軸芯を、Hはタイヤ断面高さを、それぞれ示している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, the configuration of the non-pneumatic tire T of the present invention will be described. FIG. 1 is a front view showing an example of a non-pneumatic tire T. FIG. 2A is a cross-sectional view taken along the line AA in FIG. 1, and FIG. 2B is a perspective view showing a part of the non-pneumatic tire. FIG. 3 is an enlarged view of a part of FIG. Here, O indicates the shaft core, and H indicates the tire cross-sectional height.

非空気圧タイヤTは、車両からの荷重を支持する支持構造体SSを備えるものである。本発明の非空気圧タイヤTは、このような支持構造体SSを備えるものであればよく、その支持構造体SSの外側(外周側)や内側(内周側)に、トレッドに相当する部材、補強層、車軸やリムとの適合用部材などを備えていてもよい。   The non-pneumatic tire T includes a support structure SS that supports a load from the vehicle. The non-pneumatic tire T of the present invention only needs to be provided with such a support structure SS, and a member corresponding to a tread on the outer side (outer peripheral side) or inner side (inner peripheral side) of the support structure SS, A reinforcing layer, a member for fitting with an axle or a rim, and the like may be provided.

本実施形態の非空気圧タイヤTは、図1の正面図に示すように、支持構造体SSが、内側環状部1と、その外側に同心円状に設けられた外側環状部2と、内側環状部1と外側環状部2とを連結し、タイヤ周方向CDに各々独立して設けられた複数の連結部3とを備えている。   As shown in the front view of FIG. 1, the non-pneumatic tire T of the present embodiment includes an inner annular portion 1, an outer annular portion 2 provided concentrically on the outer side, and an inner annular portion. 1 and the outer annular portion 2 are connected, and a plurality of connecting portions 3 provided independently in the tire circumferential direction CD are provided.

内側環状部1は、ユニフォミティを向上させる観点から、厚みが一定の円筒形状であることが好ましい。また、内側環状部1の内周面には、車軸やリムとの装着のために、嵌合性を保持するための凹凸等を設けるのが好ましい。   The inner annular portion 1 is preferably a cylindrical shape having a constant thickness from the viewpoint of improving uniformity. Moreover, it is preferable to provide the inner peripheral surface of the inner annular portion 1 with irregularities or the like for maintaining fitting properties for mounting with an axle or a rim.

内側環状部1の厚みは、連結部3に力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さHの2〜7%が好ましく、3〜6%がより好ましい。   The thickness of the inner annular portion 1 is preferably 2 to 7% of the tire cross-section height H and more preferably 3 to 6% from the viewpoint of reducing weight and improving durability while sufficiently transmitting force to the connecting portion 3. preferable.

内側環状部1の内径は、非空気圧タイヤTを装着するリムや車軸の寸法などに併せて適宜決定される。ただし、一般の空気入りタイヤの代替を想定した場合、250〜500mmが好ましく、330〜440mmがより好ましい。   The inner diameter of the inner annular portion 1 is appropriately determined in accordance with the rim on which the non-pneumatic tire T is mounted and the dimensions of the axle. However, when an alternative to a general pneumatic tire is assumed, 250 to 500 mm is preferable, and 330 to 440 mm is more preferable.

内側環状部1のタイヤ幅方向の幅は、用途、車軸の長さ等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   The width in the tire width direction of the inner annular portion 1 is appropriately determined according to the use, the length of the axle, and the like. However, when an alternative to a general pneumatic tire is assumed, 100 to 300 mm is preferable, and 130 to 250 mm is preferable. More preferred.

内側環状部1の引張モジュラスは、連結部3に力を十分伝達しつつ、軽量化や耐久性の向上、装着性を図る観点から、5〜180000MPaが好ましく、7〜50000MPaがより好ましい。なお、本発明における引張モジュラスは、JIS K7312に準じて引張試験を行い、10%伸び時の引張応力から算出した値である。   The tensile modulus of the inner annular portion 1 is preferably 5 to 180000 MPa, more preferably 7 to 50000 MPa, from the viewpoint of reducing weight, improving durability, and wearing properties while sufficiently transmitting force to the connecting portion 3. The tensile modulus in the present invention is a value calculated from a tensile stress at 10% elongation by conducting a tensile test according to JIS K7312.

本発明における支持構造体SSは、弾性材料で成形されるが、支持構造体SSを製造する際に、一体成形が可能となる観点から、内側環状部1、外側環状部2、及び連結部3は、補強構造を除いて基本的に同じ材質とすることが好ましい。   The support structure SS in the present invention is formed of an elastic material. However, the inner ring portion 1, the outer ring portion 2, and the connection portion 3 are used from the viewpoint of enabling integral molding when the support structure SS is manufactured. Are preferably basically the same material except for the reinforcing structure.

本発明における弾性材料とは、JIS K7312に準じて引張試験を行い、10%伸び時の引張応力から算出した引張モジュラスが、100MPa以下のものを指す。本発明の弾性材料としては、十分な耐久性を得ながら、適度な剛性を付与する観点から、好ましくは引張モジュラスが5〜100MPaであり、より好ましくは7〜50MPaである。母材として用いられる弾性材料としては、熱可塑性エラストマー、架橋ゴム、その他の樹脂が挙げられる。   The elastic material in the present invention refers to a material having a tensile modulus calculated from a tensile stress at 10% elongation by a tensile test according to JIS K7312 and 100 MPa or less. The elastic material of the present invention preferably has a tensile modulus of 5 to 100 MPa, more preferably 7 to 50 MPa from the viewpoint of imparting adequate rigidity while obtaining sufficient durability. Examples of the elastic material used as the base material include thermoplastic elastomers, crosslinked rubbers, and other resins.

熱可塑性エラストマーとしては、ポリエステルエラストマー、ポリオレフィンエラストマー、ポリアミドエラストマー、ポリスチレンエラストマー、ポリ塩化ビニルエラストマー、ポリウレタンエラストマー等が例示される。架橋ゴム材料を構成するゴム材料としては、天然ゴムの他、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IIR)、ニトリルゴム(NBR)、水素添加ニトリルゴム(水添NBR)、クロロプレンゴム(CR)、エチレンプロピレンゴム(EPDM)、フッ素ゴム、シリコンゴム、アクリルゴム、ウレタンゴム等の合成ゴムが例示される。これらのゴム材料は必要に応じて2種以上を併用してもよい。   Examples of the thermoplastic elastomer include polyester elastomer, polyolefin elastomer, polyamide elastomer, polystyrene elastomer, polyvinyl chloride elastomer, polyurethane elastomer and the like. Rubber materials constituting the crosslinked rubber material include natural rubber, styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IIR), nitrile rubber (NBR), hydrogenated nitrile rubber (hydrogenated NBR). And synthetic rubbers such as chloroprene rubber (CR), ethylene propylene rubber (EPDM), fluorine rubber, silicon rubber, acrylic rubber, and urethane rubber. These rubber materials may be used in combination of two or more as required.

その他の樹脂としては、熱可塑性樹脂、又は熱硬化性樹脂が挙げられる。熱可塑性樹脂としては、ポリエチレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂などが挙げられ、熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ポリウレタン樹脂、シリコン樹脂、ポリイミド樹脂、メラミン樹脂などが挙げられる。   Examples of other resins include thermoplastic resins and thermosetting resins. Examples of the thermoplastic resin include polyethylene resin, polystyrene resin, and polyvinyl chloride resin, and examples of the thermosetting resin include epoxy resin, phenol resin, polyurethane resin, silicon resin, polyimide resin, and melamine resin.

上記の弾性材料のうち、成形・加工性やコストの観点から、好ましくは、ポリウレタン樹脂が用いられる。なお、弾性材料としては、発泡材料を使用してもよく、上記の熱可塑性エラストマー、架橋ゴム、その他の樹脂を発泡させたもの使用可能である。   Of the above elastic materials, a polyurethane resin is preferably used from the viewpoint of moldability / workability and cost. In addition, as an elastic material, you may use a foaming material, and what used said thermoplastic elastomer, crosslinked rubber, and other resin foamed can be used.

弾性材料で一体成形された支持構造体SSは、内側環状部1、外側環状部2、及び連結部3が、補強繊維により補強されていることが好ましい。   In the support structure SS integrally formed of an elastic material, the inner annular portion 1, the outer annular portion 2, and the connecting portion 3 are preferably reinforced by reinforcing fibers.

補強繊維としては、長繊維、短繊維、織布、不織布などの補強繊維が挙げられるが、長繊維を使用する形態として、タイヤ幅方向に配列される繊維とタイヤ周方向に配列される繊維とから構成されるネット状繊維集合体を使用するのが好ましい。   Reinforcing fibers include reinforcing fibers such as long fibers, short fibers, woven fabrics, and non-woven fabrics, but as a form using long fibers, fibers arranged in the tire width direction and fibers arranged in the tire circumferential direction It is preferable to use a net-like fiber assembly composed of:

補強繊維の種類としては、例えば、レーヨンコード、ナイロン−6,6等のポリアミドコード、ポリエチレンテレフタレート等のポリエステルコード、アラミドコード、ガラス繊維コード、カーボンファイバー、スチールコード等が挙げられる。   Examples of the types of reinforcing fibers include rayon cords, polyamide cords such as nylon-6,6, polyester cords such as polyethylene terephthalate, aramid cords, glass fiber cords, carbon fibers, and steel cords.

本発明では、補強繊維を用いる補強の他、粒状フィラーによる補強や、金属製リング等による補強を行うことが可能である。粒状フィラーとしては、カーボンブラック、シリカ、アルミナ等のセラミックス、その他の無機フィラーなどが挙げられる。   In the present invention, in addition to reinforcement using reinforcing fibers, it is possible to perform reinforcement with a granular filler or reinforcement with a metal ring or the like. Examples of the particulate filler include ceramics such as carbon black, silica, and alumina, and other inorganic fillers.

外側環状部2の形状は、ユニフォミティを向上させる観点から、厚みが一定の円筒形状であることが好ましい。外側環状部2の厚みは、連結部3からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さHの2〜7%が好ましく、2〜5%がより好ましい。   The shape of the outer annular portion 2 is preferably a cylindrical shape with a constant thickness from the viewpoint of improving uniformity. The thickness of the outer annular portion 2 is preferably 2 to 7% and 2 to 5% of the tire cross-section height H from the viewpoint of reducing weight and improving durability while sufficiently transmitting the force from the connecting portion 3. More preferred.

外側環状部2の内径は、その用途等応じて適宜決定される。ただし、一般の空気入りタイヤの代替を想定した場合、420〜750mmが好ましく、480〜680mmがより好ましい。   The inner diameter of the outer annular portion 2 is appropriately determined according to its use. However, when an alternative to a general pneumatic tire is assumed, 420 to 750 mm is preferable, and 480 to 680 mm is more preferable.

外側環状部2のタイヤ幅方向の幅は、用途等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   The width of the outer annular portion 2 in the tire width direction is appropriately determined depending on the application and the like, but is preferably 100 to 300 mm, and more preferably 130 to 250 mm when an alternative to a general pneumatic tire is assumed.

外側環状部2の引張モジュラスは、図1に示すように外側環状部2の外周に補強層7が設けられている場合には、内側環状部1と同程度に設定できる。このような補強層7を設けない場合には、連結部3からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、5〜180000MPaが好ましく、7〜50000MPaがより好ましい。   The tensile modulus of the outer annular portion 2 can be set to the same level as that of the inner annular portion 1 when the reinforcing layer 7 is provided on the outer periphery of the outer annular portion 2 as shown in FIG. In the case where such a reinforcing layer 7 is not provided, 5 to 180000 MPa is preferable, and 7 to 50000 MPa is more preferable from the viewpoint of reducing weight and improving durability while sufficiently transmitting the force from the connecting portion 3.

外側環状部2の引張モジュラスを高める場合、弾性材料を繊維等で補強した繊維補強材料が好ましい。外側環状部2を補強繊維により補強することで、外側環状部2とベルト層などとの接着も十分となる。   When the tensile modulus of the outer annular portion 2 is increased, a fiber reinforced material obtained by reinforcing an elastic material with fibers or the like is preferable. By reinforcing the outer annular portion 2 with the reinforcing fiber, adhesion between the outer annular portion 2 and the belt layer becomes sufficient.

連結部3は、内側環状部1と外側環状部2とを連結するものであり、両者の間に適当な間隔を設けるなどして、タイヤ周方向CDに各々が独立するように複数設けられる。   The connecting portion 3 connects the inner annular portion 1 and the outer annular portion 2, and a plurality of connecting portions 3 are provided so that each is independent in the tire circumferential direction CD by providing an appropriate interval between them.

複数の連結部3は、第1連結部31と第2連結部32とがタイヤ周方向CDに沿って配列されて構成されている。この際、第1連結部31と第2連結部32は、タイヤ周方向CDに沿って交互に配列されていることが好ましい。これにより、タイヤ転動時の接地圧分散をより小さくできる。   The plurality of connecting portions 3 are configured by arranging the first connecting portion 31 and the second connecting portion 32 along the tire circumferential direction CD. At this time, it is preferable that the first connecting portions 31 and the second connecting portions 32 are alternately arranged along the tire circumferential direction CD. Thereby, contact pressure dispersion at the time of tire rolling can be further reduced.

また、第1連結部31と第2連結部32との間のタイヤ周方向CDのピッチpは、ユニフォミティを向上させる観点から、一定とするのが好ましい。ピッチpは、0〜10mmが好ましく、0〜5mmがより好ましい。ピッチpが10mmよりも大きいと、接地圧が不均一となり、ノイズが増大する要因となり得る。   In addition, the pitch p in the tire circumferential direction CD between the first connecting portion 31 and the second connecting portion 32 is preferably constant from the viewpoint of improving uniformity. The pitch p is preferably 0 to 10 mm, and more preferably 0 to 5 mm. If the pitch p is larger than 10 mm, the contact pressure becomes non-uniform and noise may increase.

第1連結部31は、内側環状部1のタイヤ幅方向一方側WD1から外側環状部2のタイヤ幅方向他方側WD2へ向かって延設されている。一方、第2連結部32は、内側環状部1のタイヤ幅方向他方側WD2から外側環状部2のタイヤ幅方向一方側WD1へ向かって延設されている。すなわち、隣り合う第1連結部31と第2連結部32は、タイヤ周方向CDから見ると、略X字状に配置されている。   The first connecting portion 31 is extended from the tire width direction one side WD1 of the inner annular portion 1 toward the tire width direction other side WD2 of the outer annular portion 2. On the other hand, the second connecting portion 32 extends from the other side WD2 in the tire width direction of the inner annular portion 1 toward one side WD1 in the tire width direction of the outer annular portion 2. That is, the adjacent first connecting part 31 and second connecting part 32 are arranged in an approximately X shape when viewed from the tire circumferential direction CD.

本実施形態において、タイヤ周方向CDから見た第1連結部31と第2連結部32は、図2Aに示すように、補強構造を除き、タイヤ赤道面Cに対して対称な形状である。そのため、以下では、主として第1連結部31について説明する。   In this embodiment, the 1st connection part 31 and the 2nd connection part 32 seen from tire circumferential direction CD are symmetrical shapes with respect to the tire equatorial plane C except for a reinforcement structure, as shown to FIG. 2A. Therefore, below, the 1st connection part 31 is mainly demonstrated.

第1連結部31は、内側環状部1から外側環状部2へと延びる長尺板状をしている。第1連結部31は、板厚tが板幅wよりも小さく、板厚方向PTがタイヤ周方向CDを向いている。すなわち、第1連結部31は、タイヤ径方向及びタイヤ幅方向に延びる板状である。第1連結部31及び第2連結部32をこのような長尺板状とすることにより、仮に板厚tを薄くしても、板幅wを広く設定することで、第1連結部31及び第2連結部32は所望の剛性を得ることができるため、耐久性を向上できる。また、板厚tを薄くしつつ第1連結部31及び第2連結部32の数を増やすことで、タイヤ全体の剛性を維持しつつ、タイヤ周方向CDに隣り合う連結部同士の隙間を小さくすることができるため、タイヤ転動時の接地圧分散を小さくできる。   The first connecting portion 31 has a long plate shape extending from the inner annular portion 1 to the outer annular portion 2. The first connecting portion 31 has a plate thickness t smaller than the plate width w, and the plate thickness direction PT faces the tire circumferential direction CD. That is, the 1st connection part 31 is plate shape extended in a tire radial direction and a tire width direction. By making the first connecting portion 31 and the second connecting portion 32 into such a long plate shape, even if the plate thickness t is reduced, the first connecting portion 31 and Since the 2nd connection part 32 can obtain desired rigidity, durability can be improved. Further, by increasing the number of the first connecting portions 31 and the second connecting portions 32 while reducing the plate thickness t, the clearance between the connecting portions adjacent to each other in the tire circumferential direction CD is reduced while maintaining the rigidity of the entire tire. Therefore, the contact pressure dispersion during rolling of the tire can be reduced.

第1連結部31の板厚tは、長手方向PLに沿って一定としてもよいが、図3のように、第1連結部31の板厚tは、内側環状部1から外側環状部2へ向かって漸増していることが好ましい。この場合、第1連結部31のタイヤ径方向外側端31aでの板厚tが板幅wよりも小さくなるように設定される。   The plate thickness t of the first connecting portion 31 may be constant along the longitudinal direction PL, but the plate thickness t of the first connecting portion 31 is from the inner annular portion 1 to the outer annular portion 2 as shown in FIG. It is preferable that it is increasing gradually. In this case, the plate thickness t at the tire radial direction outer end 31a of the first connecting portion 31 is set to be smaller than the plate width w.

板厚tは、内側環状部1および外側環状部2からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、8〜30mmが好ましく、10〜20mmがより好ましい。   The plate thickness t is preferably 8 to 30 mm, more preferably 10 to 20 mm, from the viewpoint of reducing the weight and improving the durability while sufficiently transmitting the force from the inner annular portion 1 and the outer annular portion 2.

図2Aでは、板幅wは、第1連結部31の中央部において、長手方向PLに沿って一定となっているが、これに限定されない。図4Aや図4Bに示すように、板幅wは、長手方向PLに沿って変化させてもよい。この場合、第1連結部31のタイヤ径方向高さをhとすると、第1連結部31のタイヤ径方向高さ中心31cからタイヤ径方向へ向かってhの±25%を範囲とし、その範囲内で最も狭い部分での板幅wが板厚tよりも大きくなるように設定される。なお、タイヤ径方向内側を+側、タイヤ径方向外側を−側とする。また、第1連結部31の板幅wは、幅方向両側端の間の最短距離で測定される。   In FIG. 2A, the plate width w is constant along the longitudinal direction PL in the central portion of the first connecting portion 31, but is not limited to this. As shown in FIGS. 4A and 4B, the plate width w may be changed along the longitudinal direction PL. In this case, assuming that the height in the tire radial direction of the first connecting portion 31 is h, the range is ± 25% of h from the tire radial direction height center 31c of the first connecting portion 31 toward the tire radial direction. The plate width w at the narrowest portion is set to be larger than the plate thickness t. The inner side in the tire radial direction is the + side and the outer side in the tire radial direction is the-side. Further, the plate width w of the first connecting portion 31 is measured by the shortest distance between both ends in the width direction.

板幅wは、内側環状部1および外側環状部2からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、5〜25mmが好ましく、10〜20mmがより好ましい。また、板幅wは、耐久性を向上させつつ接地圧分散を小さくする観点から、板厚tの110%以上が好ましく、115%以上がより好ましい。   The plate width w is preferably 5 to 25 mm, more preferably 10 to 20 mm, from the viewpoint of reducing the weight and improving the durability while sufficiently transmitting the force from the inner annular portion 1 and the outer annular portion 2. In addition, the plate width w is preferably 110% or more, more preferably 115% or more of the plate thickness t from the viewpoint of reducing the contact pressure dispersion while improving durability.

第1連結部31は、内側環状部1との結合部付近及び外側環状部2との結合部付近において、内側環状部1又は外側環状部2へ向かって徐々に板幅を大きくした補強部311を有することが好ましい。これにより、第1連結部31の耐久性をさらに向上させることができる。補強部311を設ける範囲は、第1連結部31のタイヤ径方向高さ中心31cからhの±25%の範囲外とするのが好ましい。   The first connecting portion 31 includes a reinforcing portion 311 having a gradually increasing plate width toward the inner annular portion 1 or the outer annular portion 2 in the vicinity of the coupling portion with the inner annular portion 1 and in the vicinity of the coupling portion with the outer annular portion 2. It is preferable to have. Thereby, durability of the 1st connection part 31 can further be improved. The range in which the reinforcing portion 311 is provided is preferably outside the range of ± 25% of h from the tire radial direction height center 31c of the first connecting portion 31.

タイヤ周方向CDから見た第1連結部31は、タイヤ径方向に湾曲する湾曲部が少なくとも1つ形成されていることが好ましく、タイヤ径方向に湾曲する湾曲部が長手方向PLに沿って複数形成されていることがより好ましい。湾曲部が複数形成される場合、タイヤ径方向内側へ凸となる湾曲部とタイヤ径方向外側へ凸となる湾曲部が交互に形成される。湾曲部の数は、1〜15個が好ましく、3〜10個がより好ましい。湾曲部は、第1連結部31のうち応力が高くなるトレッド側に少なくとも1つ形成されることで、第1連結部31の応力を効果的に分散することができる。湾曲部の曲率半径は、5〜200mmが好ましく、20〜150mmがより好ましい。   The first connecting portion 31 viewed from the tire circumferential direction CD is preferably formed with at least one curved portion that is curved in the tire radial direction, and a plurality of curved portions that are curved in the tire radial direction are provided along the longitudinal direction PL. More preferably, it is formed. When a plurality of curved portions are formed, curved portions that are convex inward in the tire radial direction and curved portions that are convex outward in the tire radial direction are alternately formed. 1-15 are preferable and, as for the number of a curved part, 3-10 are more preferable. By forming at least one bending portion on the tread side of the first connecting portion 31 where the stress is increased, the stress of the first connecting portion 31 can be effectively dispersed. 5-200 mm is preferable and, as for the curvature radius of a curved part, 20-150 mm is more preferable.

連結部3の数としては、車両からの荷重を十分支持しつつ、軽量化、動力伝達の向上、耐久性の向上を図る観点から、80〜300個が好ましく、100〜200個がより好ましい。図1には、第1連結部31を50個、第2連結部32を50個設けた例を示す。   The number of connecting portions 3 is preferably 80 to 300, more preferably 100 to 200, from the viewpoint of reducing weight, improving power transmission, and improving durability while sufficiently supporting a load from the vehicle. FIG. 1 shows an example in which 50 first connecting portions 31 and 50 second connecting portions 32 are provided.

第1連結部31及び第2連結部32の引張モジュラスは、内側環状部1および外側環状部2からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、5〜180000MPaが好ましく、7〜50000MPaがより好ましい。連結部3の引張モジュラスを高める場合、弾性材料を繊維等で補強した繊維補強材料が好ましい。   The tensile modulus of the first connecting portion 31 and the second connecting portion 32 is from the viewpoint of reducing weight, improving durability, and improving lateral rigidity while sufficiently transmitting the forces from the inner annular portion 1 and the outer annular portion 2. 5 to 180,000 MPa is preferable, and 7 to 50000 MPa is more preferable. In order to increase the tensile modulus of the connecting portion 3, a fiber reinforced material obtained by reinforcing an elastic material with fibers or the like is preferable.

本発明の第1連結部31と第2連結部32は、互いに剛性が異なるようにしている。本発明における剛性は、タイヤに規定の質量(N)を与えた時、単位長さ(mm)を撓ませるのに必要な縦方向の力で表すことができる。第1連結部31及び第2連結部32は、一方の剛性を他方の剛性の1.2倍以上に設定するのが特に好ましい。一方の剛性が他方の剛性の1.2倍より小さくなると、第1連結部31と第2連結部32の剛性差が小さくなり、耐久性とコーナリング性能の向上効果が得られない。また、第1連結部31及び第2連結部32は、一方の剛性を他方の剛性の3倍以下に設定するのが好ましい。一方の剛性が他方の剛性の3倍より大きくなると、第1連結部31と第2連結部32の剛性バランスが悪くなりユニフォミティが悪化する恐れがある。   The first connecting part 31 and the second connecting part 32 according to the present invention have different rigidity. The rigidity in the present invention can be expressed by a longitudinal force necessary to bend the unit length (mm) when a prescribed mass (N) is given to the tire. As for the 1st connection part 31 and the 2nd connection part 32, it is especially preferable to set one rigidity to 1.2 times or more of the other rigidity. If one rigidity is smaller than 1.2 times the other rigidity, the difference in rigidity between the first connecting portion 31 and the second connecting portion 32 becomes small, and the effect of improving durability and cornering performance cannot be obtained. Moreover, it is preferable that the 1st connection part 31 and the 2nd connection part 32 set one rigidity to 3 times or less of the other rigidity. If one rigidity is larger than three times the other rigidity, the rigidity balance between the first connecting part 31 and the second connecting part 32 is deteriorated, and the uniformity may be deteriorated.

本実施形態の第1連結部31は、補強材33により補強されている。第1連結部31のみを補強材33により補強することで、第1連結部31の剛性を高め、第1連結部31と第2連結部32の剛性を異ならせることができる。補強材33としては、ポリエステル、ナイロン、アラミドなどの有機繊維、ガラス繊維、炭素繊維などの無機繊維、鉄板やスチールコードなどの金属、CFRPやGFRPなどの繊維強化プラスチックを使用することができる。この実施形態において、引張モジュラスとは、有機繊維の場合はJISL1017に準じ、金属コードの場合はJISG3510に準じ、CFRPやGFRP等の繊維強化プラスチックの場合はJISK7127に準じて引張試験を行い、1.5%伸び時の引張応力から算出した値である。補強材33は、耐久性を向上する観点から、第1連結部31の内部に埋設されるのが好ましい。本実施形態では、複数の補強コードを長手方向PLに沿って配列させた補強材33の例を示す。   The first connecting portion 31 of this embodiment is reinforced by a reinforcing material 33. By reinforcing only the first connecting part 31 with the reinforcing member 33, the rigidity of the first connecting part 31 can be increased, and the rigidity of the first connecting part 31 and the second connecting part 32 can be made different. As the reinforcing material 33, organic fibers such as polyester, nylon and aramid, inorganic fibers such as glass fibers and carbon fibers, metals such as iron plates and steel cords, and fiber reinforced plastics such as CFRP and GFRP can be used. In this embodiment, the tensile modulus is a tensile test according to JISL1017 for organic fibers, JISG3510 for metal cords, and JISK7127 for fiber reinforced plastics such as CFRP and GFRP. It is a value calculated from the tensile stress at 5% elongation. The reinforcing member 33 is preferably embedded in the first connecting portion 31 from the viewpoint of improving durability. In the present embodiment, an example of the reinforcing member 33 in which a plurality of reinforcing cords are arranged along the longitudinal direction PL is shown.

第1連結部31又は第2連結部32は、外側環状部2側のみが補強材により補強されていることが好ましい。特に、第1連結部31又は第2連結部32は、外側環状部2側からタイヤ径方向高さhの50%の範囲が少なくとも補強されていることが好ましい。接地面側である外側環状部2側の第1連結部31及び第2連結部32には応力が集中しやすいため、第1連結部31又は第2連結部32の外側環状部2側のみを補強材により補強することで、重量の増加を抑えつつ耐久性を向上できる。   As for the 1st connection part 31 or the 2nd connection part 32, it is preferable that only the outer side annular part 2 side is reinforced with the reinforcing material. In particular, the first connecting portion 31 or the second connecting portion 32 is preferably reinforced at least in the range of 50% of the tire radial height h from the outer annular portion 2 side. Since stress tends to concentrate on the first connecting portion 31 and the second connecting portion 32 on the outer annular portion 2 side that is the ground plane side, only the outer annular portion 2 side of the first connecting portion 31 or the second connecting portion 32 is provided. By reinforcing with a reinforcing material, durability can be improved while suppressing an increase in weight.

なお、第1連結部31と第2連結部32のうち一方のみを補強してもよく、両方を補強してもよい。第1連結部31と第2連結部32の両方を補強する場合、補強材を配置する範囲を互いに異ならせることにより、第1連結部31と第2連結部32の剛性を互いに異ならせることができる。例えば、図5のように、第1連結部31の全体に補強材33を配置し、第2連結部32の外側環状部2側のみに補強材34を配置してもよい。   Note that only one of the first connecting part 31 and the second connecting part 32 may be reinforced, or both may be reinforced. When both the 1st connection part 31 and the 2nd connection part 32 are reinforced, the rigidity of the 1st connection part 31 and the 2nd connection part 32 can mutually differ by making the range which arrange | positions a reinforcing material mutually differ. it can. For example, as shown in FIG. 5, the reinforcing member 33 may be disposed on the entire first connecting portion 31, and the reinforcing member 34 may be disposed only on the outer annular portion 2 side of the second connecting portion 32.

また、第1連結部31と第2連結部32の両方を補強する場合、補強材の引張モジュラスを互いに異ならせることにより、第1連結部31と第2連結部32の剛性を互いに異ならせることができる。例えば、図6のように、第1連結部31及び第2連結部32の全体に補強材を配置しつつ、第1連結部31の補強材33の引張モジュラスが、第2連結部32の補強材34の引張モジュラスよりも大きくなるようにしてもよい。   Further, when both the first connecting part 31 and the second connecting part 32 are reinforced, the rigidity of the first connecting part 31 and the second connecting part 32 is made different from each other by making the tensile modulus of the reinforcing material different from each other. Can do. For example, as shown in FIG. 6, the tensile modulus of the reinforcing member 33 of the first connecting portion 31 is used to reinforce the second connecting portion 32 while the reinforcing member is disposed on the entire first connecting portion 31 and the second connecting portion 32. The tensile modulus of the material 34 may be larger.

本実施形態では、図1に示すように、支持構造体SSの外側環状部2の外側に、その外側環状部2の曲げ変形を補強する補強層7が設けられている例を示す。また、本実施形態では、図1に示すように、補強層7の更に外側にトレッド8が設けられている例を示す。補強層7、トレッド8としては、従来の空気入りタイヤのベルト層と同様のものを設けることが可能である。なお、トレッド8は、樹脂で形成してもよい。また、トレッドパターンとして、従来の空気入りタイヤと同様のパターンを設けることが可能である。   In this embodiment, as shown in FIG. 1, an example is shown in which a reinforcing layer 7 that reinforces bending deformation of the outer annular portion 2 is provided outside the outer annular portion 2 of the support structure SS. Moreover, in this embodiment, as shown in FIG. 1, the example in which the tread 8 is provided in the further outer side of the reinforcement layer 7 is shown. As the reinforcing layer 7 and the tread 8, it is possible to provide the same as the belt layer of the conventional pneumatic tire. In addition, you may form the tread 8 with resin. Moreover, it is possible to provide the same pattern as a conventional pneumatic tire as a tread pattern.

本発明において、連結部3のタイヤ径方向外側端とトレッド8の間には、タイヤ幅方向の剛性を高める幅方向補強層をさらに配置することが好ましい。これにより、外側環状部2のタイヤ幅方向中央部での座屈を抑制して、連結部3の耐久性をさらに向上できる。幅方向補強層は、外側環状部2に埋設されるか、もしくは外側環状部2の外側に配置される。幅方向補強層としては、スチールコードやCFRP、GFRP等の繊維強化プラスチック製のコードをタイヤ幅方向に対して略平行に配列したもの、円筒状の金属製リングや高モジュラス樹脂製リングなどが例示される。   In the present invention, it is preferable that a width direction reinforcing layer for increasing rigidity in the tire width direction is further disposed between the outer end in the tire radial direction of the connecting portion 3 and the tread 8. Thereby, buckling in the tire width direction center part of the outer side annular part 2 is suppressed, and durability of the connection part 3 can further be improved. The width direction reinforcing layer is embedded in the outer annular portion 2 or disposed outside the outer annular portion 2. Examples of the reinforcing layer in the width direction include steel cords, cords made of fiber reinforced plastic such as CFRP, GFRP, etc. arranged substantially parallel to the tire width direction, cylindrical metal rings, high modulus resin rings, etc. Is done.

[他の実施形態]
(1)本発明の他の実施形態として、図7に示すような、車両からの荷重を支持する支持構造体SSを備える非空気圧タイヤTにおいて、支持構造体SSは、内側環状部1と、その内側環状部1の外側に同心円状に設けられた中間環状部4と、その中間環状部4の外側に同心円状に設けられた外側環状部2と、内側環状部1と中間環状部4とを連結し、タイヤ周方向CDに各々独立して設けられた複数の内側連結部5と、外側環状部2と中間環状部4とを連結し、タイヤ周方向CDに各々独立して設けられた複数の外側連結部6とを備え、複数の外側連結部6は、中間環状部4のタイヤ幅方向一方側WD1から外側環状部2のタイヤ幅方向他方側WD2へ向かって延設される第1外側連結部61と、中間環状部4のタイヤ幅方向他方側WD2から外側環状部2のタイヤ幅方向一方側WD1へ向かって延設される第2外側連結部62とが、タイヤ周方向CDに沿って交互に配列されて構成されており、第1外側連結部61と第2外側連結部62は、板厚が板幅よりも小さく、板厚方向がタイヤ周方向CDを向いた長尺板状であって、かつ互いに剛性が異なるものでもよい。このとき、内側連結部5の形状は特に限定されず、例えば、内側連結部5は、タイヤ幅方向WDに連続する板状体、すなわち板幅方向がタイヤ幅方向WDに一致するような板状体でもよい。
[Other Embodiments]
(1) As other embodiment of this invention, as shown in FIG. 7, in the non-pneumatic tire T provided with the support structure SS which supports the load from a vehicle, the support structure SS is the inner annular part 1, An intermediate annular portion 4 provided concentrically outside the inner annular portion 1, an outer annular portion 2 provided concentrically outside the intermediate annular portion 4, an inner annular portion 1 and an intermediate annular portion 4, And a plurality of inner connecting portions 5 provided independently in the tire circumferential direction CD, an outer annular portion 2 and an intermediate annular portion 4 are connected, and are provided independently in the tire circumferential direction CD. A plurality of outer connecting portions 6, and the plurality of outer connecting portions 6 extend from the tire width direction one side WD 1 of the intermediate annular portion 4 toward the tire width direction other side WD 2 of the outer annular portion 2. The outer connecting portion 61 and the other side WD2 in the tire width direction of the intermediate annular portion 4 Second outer connecting portions 62 extending toward the tire width direction one side WD1 of the outer annular portion 2 are alternately arranged along the tire circumferential direction CD. 61 and the 2nd outer side connection part 62 may be board | plates whose plate | board thickness is smaller than board | plate width, the board | plate thickness direction turned to tire circumferential direction CD, and mutually differed in rigidity. At this time, the shape of the inner connecting portion 5 is not particularly limited. For example, the inner connecting portion 5 is a plate-like body continuous in the tire width direction WD, that is, a plate shape in which the plate width direction matches the tire width direction WD. It may be the body.

中間環状部4の形状は、ユニフォミティを向上させる観点から、厚みが一定の円筒形状であることが好ましい。ただし、中間環状部4の形状は、円筒形状に限られず、多角形筒状などでもよい。   The shape of the intermediate annular portion 4 is preferably a cylindrical shape with a constant thickness from the viewpoint of improving uniformity. However, the shape of the intermediate annular portion 4 is not limited to a cylindrical shape, and may be a polygonal cylindrical shape.

中間環状部4の厚みは、内側連結部5と外側連結部6とを十分補強しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さHの3〜10%が好ましく、4〜9%がより好ましい。   The thickness of the intermediate annular portion 4 is preferably 3 to 10% of the tire cross-section height H from the viewpoint of reducing the weight and improving the durability while sufficiently reinforcing the inner connecting portion 5 and the outer connecting portion 6. -9% is more preferable.

中間環状部4の引張モジュラスは、内側連結部5と外側連結部6とを十分補強して、耐久性の向上、負荷能力の向上を図る観点から、8000〜180000MPaが好ましく、10000〜50000MPaがより好ましい。   The tensile modulus of the intermediate annular portion 4 is preferably 8000 to 18000 MPa, more preferably 10,000 to 50000 MPa, from the viewpoint of sufficiently reinforcing the inner connecting portion 5 and the outer connecting portion 6 to improve durability and load capacity. preferable.

中間環状部4の引張モジュラスは、内側環状部1のそれより高いことが好ましいため、熱可塑性エラストマー、架橋ゴム、その他の樹脂を繊維等で補強した繊維補強材料が好ましい。   Since the tensile modulus of the intermediate annular portion 4 is preferably higher than that of the inner annular portion 1, a fiber reinforced material in which a thermoplastic elastomer, a crosslinked rubber, or other resin is reinforced with fibers or the like is preferable.

(2)さらに、上記の複数の内側連結部5は、図8に示すような、内側環状部1のタイヤ幅方向一方側WD1から中間環状部4のタイヤ幅方向他方側WD2へ向かって延設される第1内側連結部51と、内側環状部1のタイヤ幅方向他方側WD2から中間環状部4のタイヤ幅方向一方側WD1へ向かって延設される第2内側連結部52とが、タイヤ周方向CDに沿って交互に配列されて構成されており、第1内側連結部51と第2内側連結部52は、板厚が板幅よりも小さく、板厚方向がタイヤ周方向CDを向いた長尺板状であって、かつ互いに剛性が異なるものでもよい。   (2) Further, the plurality of inner connecting portions 5 extend from the tire width direction one side WD1 of the inner annular portion 1 toward the tire width direction other side WD2 of the intermediate annular portion 4 as shown in FIG. A first inner connecting portion 51 and a second inner connecting portion 52 extending from the other side WD2 of the inner annular portion 1 toward the one side WD1 of the intermediate annular portion 4 in the tire width direction. The first inner connecting portion 51 and the second inner connecting portion 52 are configured to be alternately arranged along the circumferential direction CD. The plate thickness direction is smaller than the plate width, and the plate thickness direction faces the tire circumferential direction CD. It may be a long plate shape having different rigidity.

(3)前述の実施形態では、第1連結部31と第2連結部32の剛性を互いに異ならせる方法として、第1連結部31又は第2連結部32に補強材を配置するする例を示したが、これに限定されない。図9A〜図9Dは、他の実施形態に係る連結部3の斜視図である。なお、図9A〜図9Dでは、説明の便宜のため、内側環状部1は省略されている。図9Aは、第1連結部31及び第2連結部32の板幅を互いに異ならせている。この例では、第2連結部32の板幅を内側環状部1に向かって徐々に狭くしている。図9Bは、第1連結部31及び第2連結部32の板厚を互いに異ならせている。この例では、第1連結部31及び第2連結部32の板厚を内側環状部1に向かって徐々に薄くしているが、第2連結部32のタイヤ径方向内側端での板厚を第1連結部31のタイヤ径方向内側端での板厚よりも薄くしている。図9Cは、第1連結部31と第2連結部32の一方のみに穴を設けている。具体的には、第2連結部32の長手方向に沿って複数の貫通孔321を設けることで、第2連結部32の剛性を低下させている。図9Dは、第1連結部31と第2連結部32の一方のみにスリットを設けている。具体的には、第2連結部32の長手方向に沿ってスリット322を設けることで、第2連結部32の剛性を低下させている。なお、穴やスリットは、第1連結部31又は第2連結部32の内側環状部1側に形成されるのが好ましい。図9A〜図9Dの例では、いずれも第1連結部31の剛性が、第2連結部32の剛性よりも高くなっている。   (3) In above-mentioned embodiment, the example which arrange | positions a reinforcing material to the 1st connection part 31 or the 2nd connection part 32 as a method of making the rigidity of the 1st connection part 31 and the 2nd connection part 32 mutually differ is shown. However, it is not limited to this. 9A to 9D are perspective views of the connecting portion 3 according to another embodiment. 9A to 9D, the inner annular portion 1 is omitted for convenience of explanation. 9A, the plate widths of the first connecting portion 31 and the second connecting portion 32 are different from each other. In this example, the plate width of the second connecting portion 32 is gradually narrowed toward the inner annular portion 1. In FIG. 9B, the plate thicknesses of the first connecting portion 31 and the second connecting portion 32 are different from each other. In this example, the plate thickness of the first connecting portion 31 and the second connecting portion 32 is gradually reduced toward the inner annular portion 1, but the plate thickness at the tire radial direction inner end of the second connecting portion 32 is reduced. It is made thinner than the plate | board thickness in the tire radial direction inner end of the 1st connection part 31. FIG. In FIG. 9C, a hole is provided only in one of the first connecting part 31 and the second connecting part 32. Specifically, by providing a plurality of through holes 321 along the longitudinal direction of the second connecting portion 32, the rigidity of the second connecting portion 32 is reduced. In FIG. 9D, a slit is provided only in one of the first connecting portion 31 and the second connecting portion 32. Specifically, by providing the slit 322 along the longitudinal direction of the second connecting portion 32, the rigidity of the second connecting portion 32 is reduced. In addition, it is preferable that a hole and a slit are formed in the inner side annular part 1 side of the 1st connection part 31 or the 2nd connection part 32. FIG. In the examples of FIGS. 9A to 9D, the rigidity of the first connecting part 31 is higher than the rigidity of the second connecting part 32.

以下、本発明の構成と効果を具体的に示す実施例等について説明する。なお、実施例等における評価項目は下記のようにして測定を行った。   Examples and the like specifically showing the configuration and effects of the present invention will be described below. In addition, the evaluation item in an Example etc. measured as follows.

(1)コーナリングパワー
いわゆるフラットベルト式コーナリング試験機において、内圧を0kPa、荷重を2500N、速度を80km/h、スリップアングルを1°として、コーナリングパワーの測定を行った。比較例1でのコーナリングパワーを100としたときの指数で示し、この値が大きい方がコーナリングパワーが大きく、コーナリング性能に優れる。
(1) Cornering power In a so-called flat belt type cornering tester, cornering power was measured with an internal pressure of 0 kPa, a load of 2500 N, a speed of 80 km / h, and a slip angle of 1 °. The cornering power in Comparative Example 1 is shown as an index, and the larger the value, the larger the cornering power and the better the cornering performance.

(2)突起乗り越し耐久性能
突起を配置したドラムに、荷重2.45kNで非空気圧タイヤを接地させ、速度80km/hで走行させたときの壊れるまでの走行距離を測定した。突起は、タイヤ幅方向に延びる突条であり、回転方向の幅を25mm、高さを12.5mmとした。比較例1での走行距離を100としたときの指数で示し、この値が大きい方が優れる。
(2) Endurance performance over bumps A non-pneumatic tire was grounded with a load of 2.45 kN on a drum provided with protrusions, and the travel distance until breakage was measured when running at a speed of 80 km / h. The protrusions are protrusions extending in the tire width direction, the width in the rotation direction is 25 mm, and the height is 12.5 mm. It shows with the index | exponent when the driving distance in the comparative example 1 is set to 100, and the one where this value is large is excellent.

比較例1
表1に示す寸法および物性等にて、図10に示すような、内側環状部1、中間環状部4、外側環状部2、内側スポーク(内側連結部5に相当)、外側スポーク1,2(外側連結部6に相当)を備える支持構造体、その外周に設けられた3層の補強層7、並びにトレッドゴム(トレッド8に相当)を備える非空気圧タイヤを作製し、上記性能を評価した。内側連結部5及び外側連結部6は、タイヤ幅方向に連続する板状体とした。コーナリングパワー、突起乗り越し耐久性能の結果を表1に併せて示す。
Comparative Example 1
With the dimensions and physical properties shown in Table 1, as shown in FIG. 10, the inner annular portion 1, the intermediate annular portion 4, the outer annular portion 2, the inner spoke (corresponding to the inner connecting portion 5), the outer spokes 1 and 2 ( A non-pneumatic tire including a support structure including the outer connecting portion 6), three reinforcing layers 7 provided on the outer periphery thereof, and tread rubber (corresponding to the tread 8) was manufactured, and the performance was evaluated. The inner connecting part 5 and the outer connecting part 6 are plate-like bodies that are continuous in the tire width direction. Table 1 also shows the results of cornering power and bumping durability performance.

実施例1
表1に示す寸法および物性等にて、図1に示すような、内側環状部1、外側環状部2、外側スポーク1,2(第1及び第2連結部31,32に相当)を備える支持構造体、その外周に設けられた3層の補強層7、並びにトレッドゴム(トレッド8に相当)を備える非空気圧タイヤを作製し、上記性能を評価した。外側スポーク1は、全体が補強コードにより補強されており、外側スポーク1の剛性が外側スポーク2の剛性よりも高くなっている。コーナリングパワー、突起乗り越し耐久性能の結果を表1に併せて示す。
Example 1
A support having an inner annular portion 1, an outer annular portion 2, and outer spokes 1 and 2 (corresponding to the first and second connecting portions 31, 32) as shown in FIG. A non-pneumatic tire provided with the structure, the three reinforcing layers 7 provided on the outer periphery thereof, and a tread rubber (corresponding to the tread 8) was produced, and the performance was evaluated. The outer spoke 1 is entirely reinforced by a reinforcing cord, and the rigidity of the outer spoke 1 is higher than the rigidity of the outer spoke 2. Table 1 also shows the results of cornering power and bumping durability performance.

実施例2
実施例1に対し、タイヤ幅方向に配列したコードからなる幅方向補強層を外側環状部2に埋設した。コーナリングパワー、突起乗り越し耐久性能の結果を表1に併せて示す。
Example 2
In contrast to Example 1, a width direction reinforcing layer made of cords arranged in the tire width direction was embedded in the outer annular portion 2. Table 1 also shows the results of cornering power and bumping durability performance.

なお、何れの非空気圧タイヤも、タイヤの外径を535mm、タイヤ幅を140mm、リム径を14インチとした。また、何れの実施例等の非空気圧タイヤも、図2に示す向きに車両に取り付けた。   In each non-pneumatic tire, the outer diameter of the tire was 535 mm, the tire width was 140 mm, and the rim diameter was 14 inches. Further, the non-pneumatic tires of any of the examples and the like were attached to the vehicle in the direction shown in FIG.

Figure 2015039987
Figure 2015039987

表1の結果から以下のことが分かる。実施例1の非空気圧タイヤは、比較例1と比べて、コーナリングパワーが大きくなってコーナリング性能が向上し、突起乗り越し耐久性能も向上した。また、実施例2の非空気圧タイヤは、実施例1に比べて、コーナリング性能と突起乗り越し耐久性能がさらに向上した。   From the results in Table 1, the following can be understood. Compared with Comparative Example 1, the non-pneumatic tire of Example 1 has a large cornering power, improved cornering performance, and improved overriding durability. Further, the non-pneumatic tire of Example 2 was further improved in cornering performance and overriding durability performance compared to Example 1.

1 内側環状部
2 外側環状部
3 連結部
4 中間環状部
5 内側連結部
6 外側連結部
31 第1連結部
32 第2連結部
61 第1外側連結部
62 第2外側連結部
SS 支持構造体
T 非空気圧タイヤ
CD タイヤ周方向
WD タイヤ幅方向
WD1 タイヤ幅方向一方側
WD2 タイヤ幅方向他方側
t 板厚
w 板幅
DESCRIPTION OF SYMBOLS 1 Inner annular part 2 Outer annular part 3 Connection part 4 Middle annular part 5 Inner connection part 6 Outer connection part 31 1st connection part 32 2nd connection part 61 1st outer connection part 62 2nd outer connection part SS Support structure T Non-pneumatic tire CD Tire circumferential direction WD Tire width direction WD1 Tire width direction one side WD2 Tire width direction other side t Plate thickness w Plate width

Claims (5)

車両からの荷重を支持する支持構造体を備える非空気圧タイヤにおいて、
前記支持構造体は、内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、前記内側環状部と前記外側環状部とを連結し、タイヤ周方向に各々独立して設けられた複数の連結部とを備え、
前記複数の連結部は、前記内側環状部のタイヤ幅方向一方側から前記外側環状部のタイヤ幅方向他方側へ向かって延設される第1連結部と、前記内側環状部の前記タイヤ幅方向他方側から前記外側環状部の前記タイヤ幅方向一方側へ向かって延設される第2連結部とが、タイヤ周方向に沿って交互に配列されて構成されており、
前記第1連結部と前記第2連結部は、板厚が板幅よりも小さく、板厚方向がタイヤ周方向を向いた長尺板状であって、かつ互いに剛性が異なることを特徴とする非空気圧タイヤ。
In a non-pneumatic tire including a support structure that supports a load from a vehicle,
The support structure connects an inner annular portion, an outer annular portion concentrically provided outside the inner annular portion, the inner annular portion and the outer annular portion, and is independent of each other in the tire circumferential direction. A plurality of connecting portions provided,
The plurality of connecting portions include a first connecting portion extending from one side in the tire width direction of the inner annular portion toward the other side in the tire width direction of the outer annular portion, and the tire width direction of the inner annular portion. The second connecting portion extending from the other side toward the tire width direction one side of the outer annular portion is arranged alternately along the tire circumferential direction,
The first connecting portion and the second connecting portion are each a long plate having a plate thickness smaller than a plate width, a plate thickness direction facing a tire circumferential direction, and different in rigidity. Non-pneumatic tire.
前記第1連結部又は前記第2連結部は、補強材により補強されていることを特徴とする請求項1に記載の非空気圧タイヤ。   The non-pneumatic tire according to claim 1, wherein the first connecting part or the second connecting part is reinforced by a reinforcing material. 前記第1連結部又は前記第2連結部は、前記外側環状部側のみが補強されていることを特徴とする請求項2に記載の非空気圧タイヤ。   The non-pneumatic tire according to claim 2, wherein the first connecting portion or the second connecting portion is reinforced only on the outer annular portion side. 前記第1連結部と前記第2連結部は、前記補強材が配置される範囲が互いに異なることを特徴とする請求項2に記載の非空気圧タイヤ。   The non-pneumatic tire according to claim 2, wherein the first connecting portion and the second connecting portion have different ranges in which the reinforcing material is disposed. 前記第1連結部と前記第2連結部は、前記補強材の引張モジュラスが互いに異なることを特徴する請求項2に記載の非空気圧タイヤ。   The non-pneumatic tire according to claim 2, wherein the first connecting portion and the second connecting portion have different tensile moduli of the reinforcing material.
JP2013172696A 2013-08-22 2013-08-22 Non-pneumatic tire Active JP6092046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013172696A JP6092046B2 (en) 2013-08-22 2013-08-22 Non-pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013172696A JP6092046B2 (en) 2013-08-22 2013-08-22 Non-pneumatic tire

Publications (2)

Publication Number Publication Date
JP2015039987A true JP2015039987A (en) 2015-03-02
JP6092046B2 JP6092046B2 (en) 2017-03-08

Family

ID=52694381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013172696A Active JP6092046B2 (en) 2013-08-22 2013-08-22 Non-pneumatic tire

Country Status (1)

Country Link
JP (1) JP6092046B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017007360A (en) * 2015-06-16 2017-01-12 東洋ゴム工業株式会社 Non-pneumatic tire
JP2017007363A (en) * 2015-06-16 2017-01-12 東洋ゴム工業株式会社 Non-pneumatic tire
WO2017117605A1 (en) * 2015-12-31 2017-07-06 Compagnie Generale Des Etablissements Michelin Non-pneumatic wheel and method of construction
WO2017117599A1 (en) * 2015-12-31 2017-07-06 Compagnie Generale Des Etablissements Michelin Non-pneumatic wheel and method of construction
JP2018103851A (en) * 2016-12-27 2018-07-05 東洋ゴム工業株式会社 Non-pressure tire and production method thereof
WO2019048912A1 (en) * 2017-09-08 2019-03-14 Compagnie Generale Des Etablissements Michelin Spoke and non-pneumatic wheel
JP2019043505A (en) * 2017-09-07 2019-03-22 Toyo Tire株式会社 Non-pneumatic tire
JP2019104438A (en) * 2017-12-14 2019-06-27 Toyo Tire株式会社 Non-pneumatic tire
CN109996684A (en) * 2016-10-03 2019-07-09 米其林集团总公司 Enhancing rubber spoke for tire
WO2020121604A1 (en) * 2018-12-10 2020-06-18 茂樹 多田 Vehicular shock-absorbing device using wheel deformation mechanism
JP2020125086A (en) * 2019-02-06 2020-08-20 住友ゴム工業株式会社 Airless tire
JP2021501226A (en) * 2017-11-08 2021-01-14 錦湖タイヤ株式会社Kumho Tire Co., Inc. Composition for non-pneumatic tire spokes
US11021015B2 (en) * 2017-09-07 2021-06-01 Toyo Tire Corporation Non-pneumatic tire
US20220032688A1 (en) * 2018-12-28 2022-02-03 Bridgestone Americas Tire Operations, Llc Non-pneumatic tire having reinforced support structure
JP2022516536A (en) * 2019-01-04 2022-02-28 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー Tire tread band with shim layer
JP2022517547A (en) * 2019-01-04 2022-03-09 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー Tire tread with band layer
US20220203766A1 (en) * 2020-12-28 2022-06-30 Toyo Tire Corporation Non-pneumatic tire
EP4197808A1 (en) * 2021-12-17 2023-06-21 The Goodyear Tire & Rubber Company Non-pneumatic tire with reinforced sheet-like spokes
EP4253084A1 (en) * 2022-03-30 2023-10-04 The Goodyear Tire & Rubber Company Non-pneumatic tire or wheel with reinforced rubber spokes
JP7504289B2 (en) 2020-09-28 2024-06-21 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー Rubber Composition for Non-Pneumatic Support Components

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179503A (en) * 1988-12-29 1990-07-12 Yokohama Rubber Co Ltd:The Non-pneumatic tire
US20110272254A1 (en) * 2005-06-13 2011-11-10 Millenworks, Inc. Variable Compliance Wheel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179503A (en) * 1988-12-29 1990-07-12 Yokohama Rubber Co Ltd:The Non-pneumatic tire
US20110272254A1 (en) * 2005-06-13 2011-11-10 Millenworks, Inc. Variable Compliance Wheel

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017007363A (en) * 2015-06-16 2017-01-12 東洋ゴム工業株式会社 Non-pneumatic tire
JP2017007360A (en) * 2015-06-16 2017-01-12 東洋ゴム工業株式会社 Non-pneumatic tire
WO2017117605A1 (en) * 2015-12-31 2017-07-06 Compagnie Generale Des Etablissements Michelin Non-pneumatic wheel and method of construction
WO2017117599A1 (en) * 2015-12-31 2017-07-06 Compagnie Generale Des Etablissements Michelin Non-pneumatic wheel and method of construction
CN108883658A (en) * 2015-12-31 2018-11-23 米其林集团总公司 Non-inflatable wheel and building method
CN109996684A (en) * 2016-10-03 2019-07-09 米其林集团总公司 Enhancing rubber spoke for tire
JP2018103851A (en) * 2016-12-27 2018-07-05 東洋ゴム工業株式会社 Non-pressure tire and production method thereof
US11021015B2 (en) * 2017-09-07 2021-06-01 Toyo Tire Corporation Non-pneumatic tire
JP2019043505A (en) * 2017-09-07 2019-03-22 Toyo Tire株式会社 Non-pneumatic tire
WO2019048912A1 (en) * 2017-09-08 2019-03-14 Compagnie Generale Des Etablissements Michelin Spoke and non-pneumatic wheel
CN111212743A (en) * 2017-09-08 2020-05-29 米其林集团总公司 Spoke and non-pneumatic wheel
US11590801B2 (en) 2017-11-08 2023-02-28 Kumho Tire Co., Inc. Composition for non-pneumatic tire spoke
JP2021501226A (en) * 2017-11-08 2021-01-14 錦湖タイヤ株式会社Kumho Tire Co., Inc. Composition for non-pneumatic tire spokes
JP2019104438A (en) * 2017-12-14 2019-06-27 Toyo Tire株式会社 Non-pneumatic tire
US11235619B2 (en) * 2017-12-14 2022-02-01 Toyo Tire Corporation Non-pneumatic tire
JP7004562B2 (en) 2017-12-14 2022-02-10 Toyo Tire株式会社 Non-pneumatic tires
WO2020121604A1 (en) * 2018-12-10 2020-06-18 茂樹 多田 Vehicular shock-absorbing device using wheel deformation mechanism
US11912084B2 (en) 2018-12-10 2024-02-27 Shigeki Tada Vehicular shock-absorbing device using wheel deformation mechanism
US20220032688A1 (en) * 2018-12-28 2022-02-03 Bridgestone Americas Tire Operations, Llc Non-pneumatic tire having reinforced support structure
US11958322B2 (en) * 2018-12-28 2024-04-16 Bridgestone Americas Tire Operations, Llc Non-pneumatic tire having reinforced support structure
JP2022516536A (en) * 2019-01-04 2022-02-28 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー Tire tread band with shim layer
JP7187102B2 (en) 2019-01-04 2022-12-12 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー Tire tread with band layer
JP2022517547A (en) * 2019-01-04 2022-03-09 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー Tire tread with band layer
JP7307176B2 (en) 2019-01-04 2023-07-11 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー Tire tread band with shim layer
JP2020125086A (en) * 2019-02-06 2020-08-20 住友ゴム工業株式会社 Airless tire
JP7504289B2 (en) 2020-09-28 2024-06-21 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー Rubber Composition for Non-Pneumatic Support Components
US20220203766A1 (en) * 2020-12-28 2022-06-30 Toyo Tire Corporation Non-pneumatic tire
CN114683771A (en) * 2020-12-28 2022-07-01 通伊欧轮胎株式会社 Non-inflatable tyre
EP4197808A1 (en) * 2021-12-17 2023-06-21 The Goodyear Tire & Rubber Company Non-pneumatic tire with reinforced sheet-like spokes
EP4253084A1 (en) * 2022-03-30 2023-10-04 The Goodyear Tire & Rubber Company Non-pneumatic tire or wheel with reinforced rubber spokes

Also Published As

Publication number Publication date
JP6092046B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
JP6092046B2 (en) Non-pneumatic tire
JP6099519B2 (en) Non-pneumatic tire
JP6159234B2 (en) Non-pneumatic tire
JP4530231B2 (en) Non-pneumatic tire
JP5972149B2 (en) Non-pneumatic tire
JP6013899B2 (en) Non-pneumatic tire
JP5436365B2 (en) Non-pneumatic tire
JP5461303B2 (en) Non-pneumatic tire
JP6445238B2 (en) Non-pneumatic tire
JP5921364B2 (en) Non-pneumatic tire
JP6076704B2 (en) Non-pneumatic tire
JP6226734B2 (en) Non-pneumatic tire
JP6180313B2 (en) Non-pneumatic tire
JP6529834B2 (en) Non pneumatic tire
JP2014008952A (en) Non-pneumatic tire
JP6092045B2 (en) Non-pneumatic tire
JP2013018462A (en) Non-pneumatic tire
JP6025498B2 (en) Non-pneumatic tire
JP5543846B2 (en) Non-pneumatic tire
JP6182452B2 (en) Non-pneumatic tire
JP6143660B2 (en) Non-pneumatic tire
JP6045401B2 (en) Non-pneumatic tire
JP2017007363A (en) Non-pneumatic tire
JP6553420B2 (en) Non pneumatic tire
JP6335773B2 (en) Non-pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170208

R150 Certificate of patent or registration of utility model

Ref document number: 6092046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250