JP6045401B2 - Non-pneumatic tire - Google Patents

Non-pneumatic tire Download PDF

Info

Publication number
JP6045401B2
JP6045401B2 JP2013043438A JP2013043438A JP6045401B2 JP 6045401 B2 JP6045401 B2 JP 6045401B2 JP 2013043438 A JP2013043438 A JP 2013043438A JP 2013043438 A JP2013043438 A JP 2013043438A JP 6045401 B2 JP6045401 B2 JP 6045401B2
Authority
JP
Japan
Prior art keywords
tire
end region
region
annular portion
circumferential direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013043438A
Other languages
Japanese (ja)
Other versions
JP2014172404A (en
Inventor
尚史 高橋
尚史 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2013043438A priority Critical patent/JP6045401B2/en
Publication of JP2014172404A publication Critical patent/JP2014172404A/en
Application granted granted Critical
Publication of JP6045401B2 publication Critical patent/JP6045401B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は、タイヤ構造部材として、車両からの荷重を支持する支持構造体を備える非空気圧タイヤ(non−pneumatic tire)に関するものであり、好ましくは空気入りタイヤの代わりとして使用することができる非空気圧タイヤに関するものである。   The present invention relates to a non-pneumatic tire provided with a support structure that supports a load from a vehicle as a tire structural member, and preferably a non-pneumatic tire that can be used as a substitute for a pneumatic tire. It relates to tires.

空気入りタイヤは、荷重の支持機能、接地面からの衝撃吸収能、および動力等の伝達能(加速、停止、方向転換)を有し、このため、多くの車両、特に自転車、オートバイ、自動車、トラックに採用されている。   The pneumatic tire has a load supporting function, a shock absorbing ability from the ground contact surface, and a transmission ability (acceleration, stop, change of direction) such as power. For this reason, many vehicles, particularly bicycles, motorcycles, automobiles, It is used in trucks.

特に、これらの能力は自動車、その他のモーター車両の発展に大きく貢献した。更に、空気入りタイヤの衝撃吸収能は、医療機器や電子機器の運搬用カート、その他の用途でも有用である。   In particular, these capabilities greatly contributed to the development of automobiles and other motor vehicles. Furthermore, the impact absorbing ability of pneumatic tires is useful for medical equipment and electronic equipment transport carts and other applications.

従来の非空気圧タイヤとしては、例えばソリッドタイヤ、スプリングタイヤ、クッションタイヤ等が存在するが、空気入りタイヤの優れた性能を有していない。例えば、中実ゴム構造のソリッドタイヤおよびクッションタイヤは、接地部分の圧縮によって荷重を支持するが、この種のタイヤは重くて、堅く、空気入りタイヤのような衝撃吸収能はない。そのため、ソリッドタイヤおよびクッションタイヤは、乗り心地性能が重視される乗用車用には採用されていなかった。   Conventional non-pneumatic tires include, for example, solid tires, spring tires, cushion tires, and the like, but do not have the superior performance of pneumatic tires. For example, solid tires and cushion tires having a solid rubber structure support the load by compressing the contact portion, but this type of tire is heavy and stiff, and does not have a shock absorbing ability like a pneumatic tire. Therefore, solid tires and cushion tires have not been adopted for passenger cars where ride comfort performance is important.

下記特許文献1には、衝撃吸収能や操縦安定性を向上させる目的で、円筒形の外側部材と、円筒形の内側部材と、前記内側及び外側部材に結合されて軸線方向に延在する複数個のリブ部材とを持つ弾性材料の環状本体を有する非空気圧タイヤが記載されている。この非空気圧タイヤでは、リブ部材が、軸線方向に略一定の厚みで延在する板状なので、剛性がタイヤ幅方向で略一定となっており、タイヤ幅方向中央部の最大接地圧が高くなる。   In the following Patent Document 1, a cylindrical outer member, a cylindrical inner member, and a plurality of axial members coupled to the inner and outer members and extending in the axial direction for the purpose of improving shock absorption capability and steering stability. Non-pneumatic tires having an annular body of elastic material with a number of rib members are described. In this non-pneumatic tire, since the rib member is a plate shape extending in the axial direction with a substantially constant thickness, the rigidity is substantially constant in the tire width direction, and the maximum contact pressure at the center in the tire width direction is increased. .

下記特許文献2には、接地圧分布を均一化する目的で、同心円状に配置された外周輪と内周輪との間を弾性材料のウェブで連結し、さらにこのウェブの側面に、この側面に連結すると共に外周輪と内周輪にも連結して側方に延びる弾性材料のリブをタイヤ周方向に間隔を置いて複数枚設けた非空気圧タイヤが記載されている。この非空気圧タイヤは、タイヤ周方向に連続するウェブがタイヤ幅方向の中央部に配置されているため、タイヤ幅方向中央部の接地圧が特に高くなる。   In Patent Document 2 below, for the purpose of uniforming the contact pressure distribution, an outer peripheral ring and an inner peripheral ring arranged concentrically are connected by a web of elastic material, and the side surface of the web is connected to the side surface. A non-pneumatic tire is described in which a plurality of ribs of elastic material that are connected to the outer peripheral ring and the inner peripheral ring and extend laterally are provided at intervals in the tire circumferential direction. In this non-pneumatic tire, since the web continuous in the tire circumferential direction is disposed at the center in the tire width direction, the contact pressure at the center in the tire width direction is particularly high.

ところで、接地圧が不均一の場合、接地圧の高い部分が路面を叩くときに発生する打撃音が騒音の原因となり得る。上記のように、特許文献1及び特許文献2の非空気圧タイヤでは、タイヤ幅方向中央部の接地圧が高くなっており、騒音が大きくなりやすい。   By the way, when the contact pressure is not uniform, a hitting sound generated when a portion with a high contact pressure hits the road surface can cause noise. As described above, in the non-pneumatic tires of Patent Document 1 and Patent Document 2, the contact pressure at the center in the tire width direction is high, and noise is likely to increase.

特開昭60−236803号公報JP-A-60-236803 特開平2−179503号公報Japanese Patent Laid-Open No. 2-179503

そこで、本発明の目的は、接地圧を均一化して騒音を低減できる非空気圧タイヤを提供することにある。   Accordingly, an object of the present invention is to provide a non-pneumatic tire that can reduce the noise by making the contact pressure uniform.

上記目的は、下記の如き本発明により達成できる。
即ち、本発明の非空気圧タイヤは、内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、前記内側環状部から前記外側環状部まで延び、タイヤ周方向に各々独立して設けられた複数の連結部とを備える支持構造体を有する非空気圧タイヤにおいて、
前記連結部をタイヤ幅方向に3つの領域に区分けしたときに、中央に位置する領域を中央領域とし、前記中央領域の両側に位置する領域をそれぞれ第1端部領域及び第2端部領域とすると、
延在方向に直交する断面における連結部の各断面形状は、前記中央領域でのタイヤ周方向の平均厚みが、前記第1端部領域と前記第2端部領域を合わせた領域でのタイヤ周方向の平均厚みより小さく、かつ、前記複数の連結部のうちタイヤ周方向に連続する2〜6個の連結部を1ユニットとした場合に、各ユニット内の連結部の前記中央領域での平均厚みの合計が、前記第1端部領域での平均厚みの合計及び前記第2端部領域での平均厚みの合計よりも小さくなるように構成されていることを特徴とする。
The above object can be achieved by the present invention as described below.
That is, the non-pneumatic tire of the present invention includes an inner annular portion, an outer annular portion provided concentrically outside the inner annular portion, and extends from the inner annular portion to the outer annular portion, respectively in the tire circumferential direction. In a non-pneumatic tire having a support structure including a plurality of independently provided connecting portions,
When the connecting portion is divided into three regions in the tire width direction, a region located in the center is defined as a central region, and regions located on both sides of the central region are defined as a first end region and a second end region, respectively. Then
Each cross-sectional shape of the connecting portion in a cross section orthogonal to the extending direction is such that the average thickness in the tire circumferential direction in the central region is a tire circumference in a region where the first end region and the second end region are combined. When the two to six connecting portions that are smaller than the average thickness in the direction and are continuous in the tire circumferential direction among the plurality of connecting portions are taken as one unit, the average of the connecting portions in each unit in the central region The total thickness is configured to be smaller than the total average thickness in the first end region and the total average thickness in the second end region.

本発明の非空気圧タイヤは、内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、内側環状部から外側環状部まで延び、タイヤ周方向に各々独立して設けられた複数の連結部とを備える支持構造体を有している。連結部をタイヤ幅方向に第1端部領域、中央領域、及び第2端部領域の3つに区分けしたときに、連結部の各断面形状は、中央領域でのタイヤ周方向の平均厚みが、第1端部領域と第2端部領域を合わせた領域でのタイヤ周方向の平均厚みより小さくなるように構成されている。さらに、連結部の各断面形状は、複数の連結部のうちタイヤ周方向に連続する2〜6個の連結部を1ユニットとした場合に、各ユニット内の連結部の中央領域での平均厚みの合計が、第1端部領域での平均厚みの合計及び第2端部領域での平均厚みの合計よりも小さくなるように構成されている。この構成によれば、各ユニット内に存在する2〜6個の連結部の中央領域でのトータルの剛性を、第1端部領域でのトータルの剛性及び第2端部領域でのトータルの剛性よりも小さくすることができる。その結果、各ユニット内の2〜6個の連結部が接地する接地面内において、タイヤ幅方向中央領域の最大接地圧が低下して端部領域の最大接地圧に近付くため、接地圧を均一化して騒音を低減することができる。   The non-pneumatic tire of the present invention includes an inner annular portion, an outer annular portion concentrically provided outside the inner annular portion, and extends from the inner annular portion to the outer annular portion, and is provided independently in the tire circumferential direction. A support structure including a plurality of connecting portions. When the connecting portion is divided into the first end region, the central region, and the second end region in the tire width direction, each cross-sectional shape of the connecting portion has an average thickness in the tire circumferential direction in the central region. The first end region and the second end region are configured to be smaller than the average thickness in the tire circumferential direction. Furthermore, each cross-sectional shape of a connection part is the average thickness in the center area | region of the connection part in each unit, when 2-6 connection parts which continue in a tire peripheral direction are made into one unit among several connection parts. Is configured to be smaller than the sum of the average thickness in the first end region and the sum of the average thickness in the second end region. According to this configuration, the total rigidity in the central region of the two to six connecting portions existing in each unit is equal to the total rigidity in the first end region and the total rigidity in the second end region. Can be made smaller. As a result, in the ground contact surface where 2 to 6 connecting parts in each unit are grounded, the maximum ground pressure in the center region in the tire width direction decreases and approaches the maximum ground pressure in the end region, so the ground pressure is uniform. Noise can be reduced.

本発明にかかる非空気圧タイヤにおいて、前記連結部は、前記第1端部領域、前記中央領域、及び第2端部領域の各領域内で、タイヤ周方向の厚みがタイヤ幅方向で徐々に変化していることが好ましい。   In the non-pneumatic tire according to the present invention, the connecting portion gradually changes in the tire circumferential direction thickness in the tire width direction in each of the first end region, the central region, and the second end region. It is preferable.

この構成によれば、各領域内でタイヤ周方向の厚みの急激な変化がないため、連結部は、歪が発生しにくく、故障しづらくなる。   According to this configuration, since there is no sudden change in the thickness in the tire circumferential direction within each region, the connecting portion is less likely to be distorted and is less likely to fail.

本発明にかかる非空気圧タイヤにおいて、前記連結部は、タイヤ周方向の厚みがタイヤ幅方向全体に亘って徐々に変化していることが好ましい。   In the non-pneumatic tire according to the present invention, it is preferable that the thickness of the connecting portion in the tire circumferential direction is gradually changed over the entire tire width direction.

この構成によれば、タイヤ幅方向全体に亘ってタイヤ周方向の厚みの急激な変化がないため、連結部は、歪が発生しにくく、故障しづらくなる。   According to this configuration, since there is no sudden change in the thickness in the tire circumferential direction over the entire tire width direction, the connecting portion is less likely to be distorted and is less likely to fail.

本発明にかかる非空気圧タイヤにおいて、前記連結部は、タイヤ幅方向の一方のタイヤ端から他方のタイヤ端まで連続して形成されていることが好ましい。   In the non-pneumatic tire according to the present invention, it is preferable that the connecting portion is formed continuously from one tire end in the tire width direction to the other tire end.

この構成によれば、連結部は、タイヤ幅方向に連続して形成されているため、耐久性が高い。   According to this structure, since the connection part is continuously formed in the tire width direction, durability is high.

本発明にかかる非空気圧タイヤにおいて、各ユニット内の連結部は、タイヤ幅方向の第1位置における厚みの合計が、前記第1位置とタイヤ赤道面に対して対称となる第2位置における厚みの合計と同じとなるように設けられていることが好ましい。   In the non-pneumatic tire according to the present invention, the connecting portion in each unit has a thickness at the second position where the total thickness at the first position in the tire width direction is symmetric with respect to the first position and the tire equatorial plane. It is preferable to be provided so as to be the same as the total.

この構成によれば、各ユニットで見ると、タイヤの剛性がタイヤ赤道面に対して左右対称となり、バランスが良好となる。   According to this configuration, when viewed by each unit, the rigidity of the tire is symmetrical with respect to the tire equatorial plane, and the balance is good.

本発明にかかる非空気圧タイヤにおいて、前記複数の連結部は、タイヤ赤道面に対して対称な形状を有する2つの連結部がタイヤ周方向に交互に配設されて構成されていることが好ましい。   In the non-pneumatic tire according to the present invention, it is preferable that the plurality of connecting portions are configured such that two connecting portions having a symmetrical shape with respect to the tire equatorial plane are alternately arranged in the tire circumferential direction.

この構成によれば、タイヤ全体で見ると、タイヤの剛性がタイヤ赤道面に対して左右対称となり、バランスが良好となる。また、構造が簡素となるため、非空気圧タイヤを製造しやすくなる。   According to this configuration, when viewed as a whole tire, the rigidity of the tire is symmetrical with respect to the tire equatorial plane, and the balance is good. Further, since the structure is simple, it is easy to manufacture a non-pneumatic tire.

本発明の非空気圧タイヤの一例を示す正面図Front view showing an example of the non-pneumatic tire of the present invention 非空気圧タイヤを右側面から見た図Non-pneumatic tire viewed from the right side 延在方向に直交する断面における連結部の断面図Sectional drawing of the connection part in the cross section orthogonal to the extending direction 他の実施形態に係る連結部の断面図Sectional drawing of the connection part which concerns on other embodiment. 他の実施形態に係る非空気圧タイヤを示す側面図Side view showing a non-pneumatic tire according to another embodiment

以下、本発明の実施の形態について、図面を参照しながら説明する。図1は、非空気圧タイヤの一例を示す正面図である。ここで、Oはタイヤ軸を、Hはタイヤ断面高さを、それぞれ示している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a front view showing an example of a non-pneumatic tire. Here, O indicates a tire shaft, and H indicates a tire cross-sectional height.

本発明の非空気圧タイヤTは、車両からの荷重を支持する支持構造体SSを有するものである。本発明の非空気圧タイヤTは、このような支持構造体SSを備えるものであればよく、その支持構造体SSの外側(外周側)や内側(内周側)に、トレッドに相当する部材、補強層、車軸やリムとの適合用部材などを備えていてもよい。   The non-pneumatic tire T of the present invention has a support structure SS that supports a load from a vehicle. The non-pneumatic tire T of the present invention only needs to be provided with such a support structure SS, and a member corresponding to a tread on the outer side (outer peripheral side) or inner side (inner peripheral side) of the support structure SS, A reinforcing layer, a member for fitting with an axle or a rim, and the like may be provided.

本実施形態の非空気圧タイヤTは、図1の正面図に示すように、支持構造体SSが、内側環状部1と、その外側に同心円状に設けられた外側環状部2と、内側環状部1から外側環状部2まで延び、タイヤ周方向CDに各々独立して設けられた複数の連結部3とを備えている。   As shown in the front view of FIG. 1, the non-pneumatic tire T of the present embodiment includes an inner annular portion 1, an outer annular portion 2 provided concentrically on the outer side, and an inner annular portion. 1 to the outer annular portion 2 and a plurality of connecting portions 3 provided independently in the tire circumferential direction CD.

内側環状部1は、ユニフォミティを向上させる観点から、厚みが一定の円筒形状であることが好ましい。また、内側環状部1の内周面には、車軸やリムとの装着のために、嵌合性を保持するための凹凸等を設けるのが好ましい。   The inner annular portion 1 is preferably a cylindrical shape having a constant thickness from the viewpoint of improving uniformity. Moreover, it is preferable to provide the inner peripheral surface of the inner annular portion 1 with irregularities or the like for maintaining fitting properties for mounting with an axle or a rim.

内側環状部1の厚みは、連結部3に力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さHの1〜20%が好ましく、2〜10%がより好ましい。   The thickness of the inner annular portion 1 is preferably 1 to 20% of the tire cross-section height H and more preferably 2 to 10% from the viewpoint of reducing weight and improving durability while sufficiently transmitting force to the connecting portion 3. preferable.

内側環状部1の内径は、非空気圧タイヤTを装着するリムや車軸の寸法などに併せて適宜決定される。ただし、一般の空気入りタイヤの代替を想定した場合、250〜500mmが好ましく、330〜440mmがより好ましい。   The inner diameter of the inner annular portion 1 is appropriately determined in accordance with the rim on which the non-pneumatic tire T is mounted and the dimensions of the axle. However, when an alternative to a general pneumatic tire is assumed, 250 to 500 mm is preferable, and 330 to 440 mm is more preferable.

内側環状部1のタイヤ軸方向の幅は、用途、車軸の長さ等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   The width of the inner annular portion 1 in the tire axial direction is appropriately determined according to the application, the length of the axle, and the like. However, when an alternative to a general pneumatic tire is assumed, 100 to 300 mm is preferable, and 130 to 250 mm is preferable. More preferred.

内側環状部1の引張モジュラスは、連結部3に力を十分伝達しつつ、軽量化や耐久性の向上、装着性を図る観点から、5〜180000MPaが好ましく、7〜50000MPaがより好ましい。なお、本発明における引張モジュラスは、JIS K7312に準じて引張試験を行い、10%伸び時の引張応力から算出した値である。   The tensile modulus of the inner annular portion 1 is preferably 5 to 180000 MPa, more preferably 7 to 50000 MPa, from the viewpoint of reducing weight, improving durability, and wearing properties while sufficiently transmitting force to the connecting portion 3. The tensile modulus in the present invention is a value calculated from a tensile stress at 10% elongation by conducting a tensile test according to JIS K7312.

本発明における支持構造体SSは、弾性材料で成形されるが、支持構造体SSを製造する際に、一体成形が可能となる観点から、内側環状部1、外側環状部2、及び連結部3は、補強構造を除いて基本的に同じ材質とすることが好ましい。   The support structure SS in the present invention is formed of an elastic material. However, the inner ring portion 1, the outer ring portion 2, and the connection portion 3 are used from the viewpoint of enabling integral molding when the support structure SS is manufactured. Are preferably basically the same material except for the reinforcing structure.

本発明における弾性材料とは、JIS K7312に準じて引張試験を行い、10%伸び時の引張応力から算出した引張モジュラスが、100MPa以下のものを指す。本発明の弾性材料としては、十分な耐久性を得ながら、適度な剛性を付与する観点から、好ましくは引張モジュラスが5〜100MPaであり、より好ましくは7〜50MPaである。母材として用いられる弾性材料としては、熱可塑性エラストマー、架橋ゴム、その他の樹脂が挙げられる。   The elastic material in the present invention refers to a material having a tensile modulus calculated from a tensile stress at 10% elongation by a tensile test according to JIS K7312 and 100 MPa or less. The elastic material of the present invention preferably has a tensile modulus of 5 to 100 MPa, more preferably 7 to 50 MPa from the viewpoint of imparting adequate rigidity while obtaining sufficient durability. Examples of the elastic material used as the base material include thermoplastic elastomers, crosslinked rubbers, and other resins.

熱可塑性エラストマーとしては、ポリエステルエラストマー、ポリオレフィンエラストマー、ポリアミドエラストマー、ポリスチレンエラストマー、ポリ塩化ビニルエラストマー、ポリウレタンエラストマー等が例示される。架橋ゴム材料を構成するゴム材料としては、天然ゴムの他、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IIR)、ニトリルゴム(NBR)、水素添加ニトリルゴム(水添NBR)、クロロプレンゴム(CR)、エチレンプロピレンゴム(EPDM)、フッ素ゴム、シリコンゴム、アクリルゴム、ウレタンゴム等の合成ゴムが例示される。これらのゴム材料は必要に応じて2種以上を併用してもよい。   Examples of the thermoplastic elastomer include polyester elastomer, polyolefin elastomer, polyamide elastomer, polystyrene elastomer, polyvinyl chloride elastomer, polyurethane elastomer and the like. Rubber materials constituting the crosslinked rubber material include natural rubber, styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IIR), nitrile rubber (NBR), hydrogenated nitrile rubber (hydrogenated NBR). And synthetic rubbers such as chloroprene rubber (CR), ethylene propylene rubber (EPDM), fluorine rubber, silicon rubber, acrylic rubber, and urethane rubber. These rubber materials may be used in combination of two or more as required.

その他の樹脂としては、熱可塑性樹脂、又は熱硬化性樹脂が挙げられる。熱可塑性樹脂としては、ポリエチレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂などが挙げられ、熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ポリウレタン樹脂、シリコン樹脂、ポリイミド樹脂、メラミン樹脂などが挙げられる。   Examples of other resins include thermoplastic resins and thermosetting resins. Examples of the thermoplastic resin include polyethylene resin, polystyrene resin, and polyvinyl chloride resin, and examples of the thermosetting resin include epoxy resin, phenol resin, polyurethane resin, silicon resin, polyimide resin, and melamine resin.

上記の弾性材料のうち、成形・加工性やコストの観点から、好ましくは、ポリウレタン樹脂が用いられる。なお、弾性材料としては、発泡材料を使用してもよく、上記の熱可塑性エラストマー、架橋ゴム、その他の樹脂を発泡させたもの使用可能である。   Of the above elastic materials, a polyurethane resin is preferably used from the viewpoint of moldability / workability and cost. In addition, as an elastic material, you may use a foaming material, and what used said thermoplastic elastomer, crosslinked rubber, and other resin foamed can be used.

弾性材料で一体成形された支持構造体SSは、内側環状部1、外側環状部2、及び連結部3が、補強繊維により補強されていることが好ましい。   In the support structure SS integrally formed of an elastic material, the inner annular portion 1, the outer annular portion 2, and the connecting portion 3 are preferably reinforced by reinforcing fibers.

補強繊維としては、長繊維、短繊維、織布、不織布などの補強繊維が挙げられるが、長繊維を使用する形態として、タイヤ軸方向に配列される繊維とタイヤ周方向に配列される繊維とから構成されるネット状繊維集合体を使用するのが好ましい。   Examples of the reinforcing fibers include reinforcing fibers such as long fibers, short fibers, woven fabrics, and non-woven fabrics. As a form using long fibers, fibers arranged in the tire axial direction and fibers arranged in the tire circumferential direction It is preferable to use a net-like fiber assembly composed of:

補強繊維の種類としては、例えば、レーヨンコード、ナイロン−6,6等のポリアミドコード、ポリエチレンテレフタレート等のポリエステルコード、アラミドコード、ガラス繊維コード、カーボンファイバー、スチールコード等が挙げられる。   Examples of the types of reinforcing fibers include rayon cords, polyamide cords such as nylon-6,6, polyester cords such as polyethylene terephthalate, aramid cords, glass fiber cords, carbon fibers, and steel cords.

本発明では、補強繊維を用いる補強の他、粒状フィラーによる補強や、金属リング等による補強を行うことが可能である。粒状フィラーとしては、カーボンブラック、シリカ、アルミナ等のセラミックス、その他の無機フィラーなどが挙げられる。   In the present invention, in addition to reinforcement using reinforcing fibers, it is possible to perform reinforcement with a granular filler or reinforcement with a metal ring or the like. Examples of the particulate filler include ceramics such as carbon black, silica, and alumina, and other inorganic fillers.

外側環状部2の形状は、ユニフォミティを向上させる観点から、厚みが一定の円筒形状であることが好ましい。外側環状部2の厚みは、連結部3からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さHの1〜20%が好ましく、2〜10%がより好ましい。   The shape of the outer annular portion 2 is preferably a cylindrical shape with a constant thickness from the viewpoint of improving uniformity. The thickness of the outer annular portion 2 is preferably 1 to 20% of the tire cross-section height H, and preferably 2 to 10% from the viewpoint of reducing weight and improving durability while sufficiently transmitting the force from the connecting portion 3. More preferred.

外側環状部2の内径は、その用途等応じて適宜決定される。ただし、一般の空気入りタイヤの代替を想定した場合、420〜750mmが好ましく、480〜680mmがより好ましい。   The inner diameter of the outer annular portion 2 is appropriately determined according to its use. However, when an alternative to a general pneumatic tire is assumed, 420 to 750 mm is preferable, and 480 to 680 mm is more preferable.

外側環状部2のタイヤ軸方向の幅は、用途等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   Although the width | variety of the tire axial direction of the outer side annular part 2 is suitably determined according to a use etc., when substitution of a general pneumatic tire is assumed, 100-300 mm is preferable and 130-250 mm is more preferable.

外側環状部2の引張モジュラスは、図1に示すように外側環状部2の外周に補強層4が設けられている場合には、内側環状部1と同程度に設定できる。このような補強層4を設けない場合には、連結部3からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、5〜180000MPaが好ましく、7〜50000MPaがより好ましい。   The tensile modulus of the outer annular portion 2 can be set to the same level as that of the inner annular portion 1 when the reinforcing layer 4 is provided on the outer periphery of the outer annular portion 2 as shown in FIG. When such a reinforcing layer 4 is not provided, 5 to 180000 MPa is preferable, and 7 to 50000 MPa is more preferable from the viewpoint of reducing weight and improving durability while sufficiently transmitting the force from the connecting portion 3.

外側環状部2の引張モジュラスを高める場合、弾性材料を繊維等で補強した繊維補強材料が好ましい。外側環状部2を補強繊維により補強することで、外側環状部2とベルト層などとの接着も十分となる。   When the tensile modulus of the outer annular portion 2 is increased, a fiber reinforced material obtained by reinforcing an elastic material with fibers or the like is preferable. By reinforcing the outer annular portion 2 with the reinforcing fiber, adhesion between the outer annular portion 2 and the belt layer becomes sufficient.

連結部3は、内側環状部1と外側環状部2とを連結するものであり、両者の間に適当な間隔を置いて、タイヤ周方向CDに各々が独立するように複数設けられる。   The connecting portion 3 connects the inner annular portion 1 and the outer annular portion 2, and a plurality of connecting portions 3 are provided so as to be independent from each other in the tire circumferential direction CD with an appropriate interval therebetween.

図2は、図1の非空気圧タイヤTを右側面から見た図であり、外側環状部2を平面上に伸ばした展開図である。外側環状部2を通して見た連結部3を実線で示している。   FIG. 2 is a view of the non-pneumatic tire T of FIG. 1 as viewed from the right side, and is a development view in which the outer annular portion 2 is extended on a plane. The connecting portion 3 viewed through the outer annular portion 2 is shown by a solid line.

連結部3は、内側環状部1から外側環状部2までタイヤ径方向に延びる板状をしている。また、連結部3は、タイヤ幅方向WDに延びている。本実施形態の連結部3は、タイヤ幅方向WDの一方のタイヤ端から他方のタイヤ端まで連続して形成されている。   The connecting portion 3 has a plate shape extending from the inner annular portion 1 to the outer annular portion 2 in the tire radial direction. Moreover, the connection part 3 is extended in the tire width direction WD. The connection part 3 of this embodiment is formed continuously from one tire end in the tire width direction WD to the other tire end.

連結部3をタイヤ幅方向WDに3つの領域に区分けしたときに、中央に位置する領域を中央領域Bとし、中央領域Bの両側に位置する領域をそれぞれ第1端部領域A及び第2端部領域Cとする。本実施形態では、中央領域Bのタイヤ幅方向WDの幅は連結部3の全幅の1/3とし、中央領域Bの中心はタイヤ赤道面Pと一致するようにしている。すなわち、第1端部領域A、中央領域B、第2端部領域Cは、連結部3の全幅のそれぞれ1/3ずつとなっている。   When the connecting portion 3 is divided into three regions in the tire width direction WD, the region located in the center is defined as the center region B, and the regions located on both sides of the center region B are defined as the first end region A and the second end, respectively. A partial area C is assumed. In the present embodiment, the width of the central region B in the tire width direction WD is set to 1/3 of the entire width of the connecting portion 3 so that the center of the central region B coincides with the tire equatorial plane P. That is, the first end region A, the central region B, and the second end region C are each 1/3 of the entire width of the connecting portion 3.

本実施形態において、複数の連結部3は、タイヤ赤道面Pに対して対称な形状を有する2つの連結部31,32がタイヤ周方向CDに交互に配設されて構成されている。   In the present embodiment, the plurality of connecting portions 3 are configured by alternately arranging two connecting portions 31 and 32 having a symmetrical shape with respect to the tire equatorial plane P in the tire circumferential direction CD.

図3は、連結部31の延在方向(本発明ではタイヤ径方向)に直交する断面における断面形状を示している。前述のように、連結部31と連結部32は、タイヤ赤道面Pに対して対称な形状を有しているため、図3では連結部31についてのみ示している。   FIG. 3 shows a cross-sectional shape in a cross section orthogonal to the extending direction of the connecting portion 31 (the tire radial direction in the present invention). As described above, since the connecting portion 31 and the connecting portion 32 have a symmetrical shape with respect to the tire equatorial plane P, only the connecting portion 31 is shown in FIG.

延在方向に直交する断面における連結部31の断面形状は、タイヤ周方向CDの厚みが一方のタイヤ端から他方のタイヤ端へ向かって徐々に増大又は減少している。連結部31のタイヤ周方向CDの両端縁は、連結部31の中心へ向かって凸となった曲線となっている。これにより、連結部31は、タイヤ周方向CDの厚みがタイヤ幅方向全体に亘って徐々に変化している。なお、本発明では、各連結部3は、タイヤ赤道面Pに対して非対称な形状を有することが好ましい。これにより、タイヤ転動時、連結部3のタイヤ径方向外側の外側環状部2が接地する際、連結部3がタイヤ幅方向全体で同時に接地することがないため、連結部3による打撃が緩やかに入力される。   In the cross-sectional shape of the connecting portion 31 in the cross section orthogonal to the extending direction, the thickness in the tire circumferential direction CD gradually increases or decreases from one tire end toward the other tire end. Both end edges in the tire circumferential direction CD of the connecting portion 31 are curves that are convex toward the center of the connecting portion 31. Thereby, as for the connection part 31, the thickness of tire circumferential direction CD is changing gradually over the whole tire width direction. In the present invention, each connecting portion 3 preferably has an asymmetric shape with respect to the tire equatorial plane P. Thereby, when the outer annular portion 2 on the outer side in the tire radial direction of the connecting portion 3 contacts the ground during rolling of the tire, the connecting portion 3 does not contact with the entire tire width direction at the same time. Is input.

本発明の連結部3の各断面形状は、中央領域Bでのタイヤ周方向CDの平均厚みtbが、第1端部領域Aと第2端部領域Cを合わせた領域でのタイヤ周方向CDの平均厚みtacより小さくなるように構成されている。本実施形態では第1端部領域Aと第2端部領域Cが同じ幅なので、平均厚みtacは、第1端部領域Aでのタイヤ周方向CDの平均厚みtaと第2端部領域Cでのタイヤ周方向CDの平均厚みtcとの平均値(ta+tc)/2なる。中央領域Bでの平均厚みtbは、第1端部領域Aと第2端部領域Cを合わせた領域での平均厚みtacの15%〜95%とすることが好ましく、25%〜95%とすることがより好ましい。15%より小さいと、中央領域Bに歪が生じやすくなり、耐久性が悪化するおそれがある。95%より大きいと、中央領域Bでの接地圧が低減しにくくなる。   Each cross-sectional shape of the connecting portion 3 of the present invention is such that the tire circumferential direction CD in the region where the average thickness tb in the tire circumferential direction CD in the central region B is the sum of the first end region A and the second end region C. It is configured to be smaller than the average thickness tac. In the present embodiment, since the first end region A and the second end region C have the same width, the average thickness tac is the average thickness ta in the tire circumferential direction CD in the first end region A and the second end region C. The average value (ta + tc) / 2 with the average thickness tc in the tire circumferential direction CD. The average thickness tb in the central region B is preferably 15% to 95% of the average thickness tac in the combined region of the first end region A and the second end region C, and is 25% to 95%. More preferably. If it is less than 15%, the central region B tends to be distorted and the durability may be deteriorated. If it is larger than 95%, it is difficult to reduce the contact pressure in the central region B.

複数の連結部3のうちタイヤ周方向CDに連続する2〜6本の連結部3を1ユニットとする。1ユニットのタイヤ周方向CDの長さLは、タイヤの接地長により定めることができる。ここで、接地長とは、同一タイヤサイズの空気入りタイヤに対応してJATMAが規定する最大負荷能力の0.7倍の荷重における接地面のタイヤ周方向長さを言う。接地長内の連結部3の個数は、タイヤ全体の連結部3の個数、連結部3同士の間隔等により定まるが、2〜6個が好ましい。本実施形態では、6個の連結部3を1ユニットとしている。   Two to six connecting portions 3 that are continuous in the tire circumferential direction CD among the plurality of connecting portions 3 are defined as one unit. The length L in the tire circumferential direction CD of one unit can be determined by the tire contact length. Here, the contact length refers to the tire circumferential direction length of the contact surface at a load 0.7 times the maximum load capacity defined by JATMA corresponding to pneumatic tires of the same tire size. The number of connecting portions 3 within the ground contact length is determined by the number of connecting portions 3 in the entire tire, the interval between the connecting portions 3, etc., but 2 to 6 is preferable. In the present embodiment, the six connecting portions 3 are one unit.

連結部3の各断面形状は、複数の連結部3のうちタイヤ周方向CDに連続する2〜6個の連結部3を1ユニットとした場合に、各ユニット内の連結部3の中央領域Bでの平均厚みの合計Tbが、第1端部領域Aでの平均厚みの合計Ta及び第2端部領域Cでの平均厚みの合計Tcよりも小さくなるように構成されている。6個の連結部3の中央領域Bでの平均厚みをそれぞれtb1,tb2,tb3,tb4,tb5,tb6とすると、Tb=tb1+tb2+tb3+tb4+tb5+tb6である。同様に、6個の連結部3の第1端部領域Aでの平均厚みをそれぞれta1,ta2,ta3,ta4,ta5,ta6とすると、Ta=ta1+ta2+ta3+ta4+ta5+ta6、6個の連結部3の第2端部領域Cでの平均厚みをそれぞれtc1,tc2,tc3,tc4,tc5,tc6とすると、Tc=tc1+tc2+tc3+tc4+tc5+tc6である。中央領域Bでの平均厚みの合計Tbは、第1端部領域Aでの平均厚みの合計Ta及び第2端部領域Cでの平均厚みの合計Tcの15%〜95%とすることが好ましく、25%〜95%とすることがより好ましい。15%より小さいと、中央領域Bに歪が生じやすくなり、耐久性が悪化するおそれがある。95%より大きいと、中央領域Bでの接地圧が低減しにくくなる。   Each cross-sectional shape of the connecting portion 3 is a central region B of the connecting portion 3 in each unit when 2 to 6 connecting portions 3 continuous in the tire circumferential direction CD among the plurality of connecting portions 3 are taken as one unit. The total average thickness Tb of the first end region A is configured to be smaller than the total average thickness Ta of the first end region A and the average thickness Tc of the second end region C. Tb = tb1 + tb2 + tb3 + tb4 + tb5 + tb6, where tb1, tb2, tb3, tb4, tb5, and tb6 are the average thicknesses in the central region B of the six connecting portions 3, respectively. Similarly, Ta = ta1 + ta2 + ta3 + ta4 + ta5 + ta6, and the second ends of the six connecting portions 3 when the average thicknesses in the first end region A of the six connecting portions 3 are ta1, ta2, ta3, ta4, ta5 and ta6, respectively. Assuming that the average thickness in the partial region C is tc1, tc2, tc3, tc4, tc5, and tc6, respectively, Tc = tc1 + tc2 + tc3 + tc4 + tc5 + tc6. The total average thickness Tb in the central region B is preferably 15% to 95% of the total average thickness Ta in the first end region A and the total average thickness Tc in the second end region C. 25% to 95% is more preferable. If it is less than 15%, the central region B tends to be distorted and the durability may be deteriorated. If it is larger than 95%, it is difficult to reduce the contact pressure in the central region B.

これらの構成によれば、各ユニット内に存在する6個の連結部3の中央領域Bでのトータルの剛性を、第1端部領域Aでのトータルの剛性及び第2端部領域Cでのトータルの剛性よりも小さくすることができる。その結果、各ユニット内の6個の連結部3が接地する接地面内において、タイヤ幅方向中央領域の最大接地圧が低下して端部領域の最大接地圧に近付くため、接地圧を均一化して騒音を低減することができる。   According to these configurations, the total rigidity in the central region B of the six connecting portions 3 existing in each unit is equal to the total rigidity in the first end region A and the second end region C. It can be made smaller than the total rigidity. As a result, the maximum contact pressure in the center region in the tire width direction decreases and approaches the maximum contact pressure in the end region within the contact surface where the six connecting portions 3 in each unit contact, so that the contact pressure is made uniform. Noise can be reduced.

タイヤ全体の連結部3の数としては、車両からの荷重を十分支持しつつ、軽量化、動力伝達の向上、耐久性の向上を図る観点から、10〜80個が好ましく、40〜60個がより好ましい。   The number of connecting portions 3 of the entire tire is preferably 10 to 80, and 40 to 60 from the viewpoint of reducing weight, improving power transmission, and improving durability while sufficiently supporting the load from the vehicle. More preferred.

連結部3のタイヤ周方向CDの厚みは、内側環状部1および外側環状部2からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さHの1〜30%が好ましく、1〜20%がより好ましい。また、連結部3のタイヤ周方向CDの厚みは、耐久性を確保するため、2mm以上が好ましい。   The thickness of the connecting portion 3 in the tire circumferential direction CD is 1 to 1 of the tire cross-section height H from the viewpoint of reducing the weight and improving the durability while sufficiently transmitting the force from the inner annular portion 1 and the outer annular portion 2. 30% is preferable, and 1 to 20% is more preferable. In addition, the thickness of the connecting portion 3 in the tire circumferential direction CD is preferably 2 mm or more in order to ensure durability.

連結部3のタイヤ軸方向の幅は、用途等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   The width of the connecting portion 3 in the tire axial direction is appropriately determined according to the use and the like, but is preferably 100 to 300 mm, and more preferably 130 to 250 mm when an alternative to a general pneumatic tire is assumed.

連結部3の引張モジュラスは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、5〜50MPaが好ましく、7〜20MPaがより好ましい。   The tensile modulus of the connecting portion 3 is preferably 5 to 50 MPa, more preferably 7 to 20 MPa from the viewpoint of reducing weight, improving durability, and improving lateral rigidity while sufficiently transmitting the force from the inner annular portion 1. .

本実施形態では、図1に示すように、支持構造体SSの外側環状部2の外側に、その外側環状部2の曲げ変形を補強する補強層4が設けられている例を示す。また、本実施形態では、図1に示すように、補強層4の更に外側にトレッドゴム5が設けられている例を示す。補強層4、トレッドゴム5としては、従来の空気入りタイヤのベルト層と同様のものを設けることが可能である。また、トレッドパターンとして、従来の空気入りタイヤと同様のパターンを設けることが可能である。   In the present embodiment, as shown in FIG. 1, an example is shown in which a reinforcing layer 4 that reinforces bending deformation of the outer annular portion 2 is provided outside the outer annular portion 2 of the support structure SS. Moreover, in this embodiment, as shown in FIG. 1, the example in which the tread rubber 5 is provided in the further outer side of the reinforcement layer 4 is shown. As the reinforcing layer 4 and the tread rubber 5, the same belt layer as that of a conventional pneumatic tire can be provided. Moreover, it is possible to provide the same pattern as a conventional pneumatic tire as a tread pattern.

[他の実施形態]
(1)複数の連結部3の各断面形状は、図2に示すものの他、種々の形状を採用することができる。他の連結部3の断面形状の例を図4に示す。図4(a)は、中央領域Bの厚みが第1端部領域A及び第2端部領域Cよりも小さい例を示す。図4(b)は、中央領域Bの厚みが第1端部領域A及び第2端部領域Cよりも小さく、かつ全体がタイヤ赤道面に対して対称な例を示す。図4(c)は、図4(b)の中央領域Bの厚みを一定とした例を示す。図4(d)は、図4(b)の第1端部領域A及び第2端部領域Cの厚みをタイヤ幅方向に一定の割合で変化させた例を示す。図4(e)は、第1端部領域A、中央領域B、第2端部領域Cの厚みをそれぞれ一定とした例を示す。図4(f)は、第1端部領域A、中央領域B、第2端部領域Cの厚みをタイヤ幅方向にそれぞれ一定の割合で変化させた例を示す。図4(g)及び図4(h)は、タイヤ幅方向WDに対して非対称な例を示す。
[Other Embodiments]
(1) Various cross-sectional shapes of the plurality of connecting portions 3 can be employed in addition to those shown in FIG. An example of the cross-sectional shape of another connecting portion 3 is shown in FIG. FIG. 4A shows an example in which the thickness of the central region B is smaller than that of the first end region A and the second end region C. FIG. 4B shows an example in which the thickness of the central region B is smaller than that of the first end region A and the second end region C, and the whole is symmetrical with respect to the tire equatorial plane. FIG. 4C shows an example in which the thickness of the central region B in FIG. FIG. 4D shows an example in which the thicknesses of the first end region A and the second end region C of FIG. 4B are changed at a constant rate in the tire width direction. FIG. 4E shows an example in which the thicknesses of the first end region A, the central region B, and the second end region C are constant. FIG. 4F shows an example in which the thicknesses of the first end region A, the central region B, and the second end region C are changed at a constant rate in the tire width direction. FIG. 4G and FIG. 4H show an asymmetric example with respect to the tire width direction WD.

図4に示すように、連結部3の断面形状は、種々の形状を採用することができるが、連結部3は、第1端部領域A、中央領域B、及び第2端部領域Cの各領域内で、タイヤ周方向の厚みがタイヤ幅方向WDで徐々に変化していることが好ましい。具体的には、図4(a),(b),(d),(f),(g),(h)のような断面形状が好ましい。   As shown in FIG. 4, various shapes can be adopted for the cross-sectional shape of the connecting portion 3, but the connecting portion 3 has the first end region A, the central region B, and the second end region C. Within each region, it is preferable that the thickness in the tire circumferential direction gradually changes in the tire width direction WD. Specifically, the cross-sectional shapes as shown in FIGS. 4 (a), 4 (b), 4 (d), (f), (g) and (h) are preferable.

さらに、連結部3は、タイヤ周方向CDの厚みがタイヤ幅方向全体に亘って徐々に変化していることが好ましい。具体的には、図4(a),(b),(d),(g),(h)のような断面形状が好ましい。言い換えると、図4(e),(f)のように隣り合う領域同士の境界で段差があると、歪が発生して故障の原因となり得る。   Furthermore, it is preferable that the connection part 3 has the thickness of the tire circumferential direction CD changed gradually over the whole tire width direction. Specifically, the cross-sectional shapes as shown in FIGS. 4 (a), (b), (d), (g), and (h) are preferable. In other words, if there is a step at the boundary between adjacent regions as shown in FIGS. 4E and 4F, distortion may occur and cause a failure.

(2)前述の実施形態では、複数の連結部3が、2つの連結部31,32がタイヤ周方向CDに交互に配設されて構成されている例を示したが、これに限定されない。例えば、図5のように、連結部31と連結部32とを3個ずつまとめて交互に配設して、1ユニット内の6個の連結部3を構成してもよい。   (2) In the above-described embodiment, the example in which the plurality of connecting portions 3 are configured by alternately arranging the two connecting portions 31 and 32 in the tire circumferential direction CD is not limited to this. For example, as shown in FIG. 5, six connecting portions 3 and three connecting portions 32 may be arranged together and alternately arranged to constitute six connecting portions 3 in one unit.

各ユニット内の連結部3は、タイヤ赤道面に対して対称な2種類の連結部31,32で構成されている例を示したが、3種類以上の連結部で構成されてもよい。ただし、各ユニット内の連結部3は、タイヤ幅方向WDの第1位置におけるタイヤ周方向CDの厚みの合計が、第1位置とタイヤ赤道面Pに対して対称となる第2位置におけるタイヤ周方向CDの厚みの合計と同じとなるように設けられていることが好ましい。これにより、各ユニットで見ると、タイヤの剛性がタイヤ赤道面Pに対して左右対称となり、バランスが良好となる。   Although the connection part 3 in each unit showed the example comprised by two types of connection parts 31 and 32 symmetrical with respect to the tire equator surface, you may be comprised by three or more types of connection parts. However, the connecting portion 3 in each unit has a tire circumference at the second position where the total thickness in the tire circumferential direction CD at the first position in the tire width direction WD is symmetric with respect to the first position and the tire equatorial plane P. It is preferable to be provided so as to be the same as the total thickness in the direction CD. Thereby, when viewed in each unit, the rigidity of the tire is symmetrical with respect to the tire equatorial plane P, and the balance is good.

(3)前述の実施形態では、連結部3がタイヤ幅方向WDに対して平行に延びている例を示したが、これに限定されない。ただし、連結部3は、中心軸がタイヤ幅方向WDに対して0±15°となるように配置することが好ましい。連結部3の中心軸をタイヤ幅方向WDに対して0±15°とすることで、タイヤ幅方向WDからの力によるバックリングを抑制できる。   (3) In the above-described embodiment, the example in which the connecting portion 3 extends in parallel to the tire width direction WD is shown, but the present invention is not limited to this. However, the connecting portion 3 is preferably arranged so that the central axis is 0 ± 15 ° with respect to the tire width direction WD. By setting the central axis of the connecting portion 3 to 0 ± 15 ° with respect to the tire width direction WD, buckling due to a force from the tire width direction WD can be suppressed.

(4)本発明の他の実施形態として、内側環状部1と、その内側環状部1の外側に同心円状に設けられた中間環状部と、その中間環状部の外側に同心円状に設けられた外側環状部2と、内側環状部1から中間環状部まで延び、タイヤ周方向CDに各々独立して設けられた複数の内側連結部と、中間環状部から外側環状部2まで延び、タイヤ周方向CDに各々独立して設けられた複数の外側連結部とを備える支持構造体を有する非空気圧タイヤにおいて、前記外側連結部をタイヤ幅方向に3つの領域に区分けしたときに、中央に位置する領域を中央領域とし、前記中央領域の両側に位置する領域をそれぞれ第1端部領域及び第2端部領域とすると、延在方向に直交する断面における外側連結部の各断面形状は、前記中央領域でのタイヤ周方向の平均厚みが、前記第1端部領域と前記第2端部領域を合わせた領域でのタイヤ周方向の平均厚みより小さく、かつ、前記複数の外側連結部のうちタイヤ周方向に連続する2〜6個の外側連結部を1ユニットとした場合に、各ユニット内の外側連結部の前記中央領域での平均厚みの合計が、前記第1端部領域での平均厚みの合計及び前記第2端部領域での平均厚みの合計よりも小さくなるように構成されているものでもよい。本発明では、複数の外側連結部の各断面形状を上記のように設定すればよく、複数の内側連結部については、形状、個数、配置等は特に限定されない。   (4) As another embodiment of the present invention, the inner annular portion 1, the intermediate annular portion provided concentrically outside the inner annular portion 1, and the outer annular portion provided concentrically. An outer annular portion 2, a plurality of inner connecting portions that extend from the inner annular portion 1 to the intermediate annular portion and are provided independently in the tire circumferential direction CD, and extend from the intermediate annular portion to the outer annular portion 2, in the tire circumferential direction In a non-pneumatic tire having a support structure including a plurality of outer connecting portions provided independently on a CD, a region located in the center when the outer connecting portion is divided into three regions in the tire width direction. Is a central region, and regions located on both sides of the central region are a first end region and a second end region, respectively, each cross-sectional shape of the outer connecting portion in a cross section orthogonal to the extending direction is the central region In the tire circumferential direction The average thickness is smaller than the average thickness in the tire circumferential direction in the region where the first end region and the second end region are combined, and is continuous in the tire circumferential direction among the plurality of outer connecting portions. In the case where the six outer connecting portions are one unit, the sum of the average thicknesses in the central region of the outer connecting portions in each unit is the sum of the average thicknesses in the first end region and the second end. What is comprised so that it may become smaller than the sum total of the average thickness in a partial area | region. In the present invention, the cross-sectional shapes of the plurality of outer coupling portions may be set as described above, and the shape, number, arrangement, etc. of the plurality of inner coupling portions are not particularly limited.

以下、本発明の構成と効果を具体的に示す実施例等について説明する。なお、実施例等における評価項目は下記のようにして測定を行った。   Examples and the like specifically showing the configuration and effects of the present invention will be described below. In addition, the evaluation item in an Example etc. measured as follows.

(1)ノイズ性能
非空気圧タイヤを装着した車両に、2名乗車でノイズ測定用コースを60km/hの速度で走行し、運転席窓より耳元の音圧を測定した。性能評価は、その音圧を周波数分析したとき、比較例1で騒音が発生する周波数領域に着目し、騒音の最大レベルを調査した。比較例1でのノイズを100としたときの指数で示し、この値が小さい方が優れる。
(1) Noise performance A vehicle equipped with a non-pneumatic tire was run on a noise measurement course at a speed of 60 km / h with two passengers, and the sound pressure at the ears was measured from the driver's seat window. In the performance evaluation, when the sound pressure was subjected to frequency analysis, attention was paid to the frequency region where noise is generated in Comparative Example 1, and the maximum noise level was investigated. This is indicated by an index when the noise in Comparative Example 1 is 100, and the smaller this value, the better.

(2)耐久性能
直径1.7mmのドラムを備えた室内ドラム試験機を使用し、試験速度を80km/hとし、タイヤ負荷荷重をJIS規定の85%から始め、規定時間ごとに荷重を上げていき、最終的に140%で走行させた。故障が生じるまでの走行距離を測定し、比較例1を100としたときの指数で示し、この値が大きいほど耐久性能が優れる。
(2) Durability Performance Use an indoor drum testing machine equipped with a drum with a diameter of 1.7 mm, set the test speed to 80 km / h, start the tire load from 85% of the JIS standard, and increase the load every specified time. I finally made it run at 140%. The distance traveled until the failure occurred was measured and shown as an index when Comparative Example 1 was set to 100. The larger this value, the better the durability performance.

実施例1
表1に示す寸法および物性等にて、内側リング(内側環状部に相当)、外側リング(外側環状部に相当)、スポーク(連結部に相当)を備える支持構造体、その外周に設けられた3層の補強層、並びにトレッドゴムを備える非空気圧タイヤを作製し、上記性能を評価した。スポークの断面形状は図3に示す形状とした。複数のスポークは図2に示すような配置とした。タイヤ幅は、140mmとした。評価結果を表1に併せて示す。
Example 1
A support structure including an inner ring (corresponding to the inner annular portion), an outer ring (corresponding to the outer annular portion), and a spoke (corresponding to the connecting portion), provided on the outer periphery, with the dimensions and physical properties shown in Table 1. A non-pneumatic tire including three reinforcing layers and tread rubber was produced, and the above performance was evaluated. The cross-sectional shape of the spoke was the shape shown in FIG. The plurality of spokes were arranged as shown in FIG. The tire width was 140 mm. The evaluation results are also shown in Table 1.

実施例2〜7
スポークの厚みを変更したこと以外は、実施例1と同じとした。評価結果を表1に併せて示す。
Examples 2-7
The same as Example 1 except that the thickness of the spoke was changed. The evaluation results are also shown in Table 1.

比較例1
スポークの厚みをタイヤ幅方向に一定としたこと以外は、実施例1と同じとした。評価結果を表1に併せて示す。
Comparative Example 1
Example 1 was the same as Example 1 except that the spoke thickness was constant in the tire width direction. The evaluation results are also shown in Table 1.

Figure 0006045401
Figure 0006045401

表1の結果から以下のことが分かる。実施例1〜7の非空気圧タイヤは、比較例1と比較して、騒音の最大レベルが小さくなり、騒音が低減した。また、実施例6,7は、平均厚みが1.5mmの領域で、最小厚みが2mmより小さい部分があったため、耐久性が悪化した。   From the results in Table 1, the following can be understood. In the non-pneumatic tires of Examples 1 to 7, the maximum level of noise was smaller than that of Comparative Example 1, and the noise was reduced. Moreover, since Examples 6 and 7 had an area where the average thickness was 1.5 mm and the minimum thickness was less than 2 mm, the durability deteriorated.

1 内側環状部
2 外側環状部
3 連結部
31 連結部
32 連結部
SS 支持構造体
T 非空気圧タイヤ
DESCRIPTION OF SYMBOLS 1 Inner ring part 2 Outer ring part 3 Connection part 31 Connection part 32 Connection part SS Support structure T Non-pneumatic tire

Claims (5)

内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、前記内側環状部から前記外側環状部まで延び、タイヤ周方向に各々独立して設けられた複数の連結部とを備える支持構造体を有する非空気圧タイヤにおいて、
前記連結部をタイヤ幅方向に3つの領域に区分けしたときに、中央に位置する領域を中央領域とし、前記中央領域の両側に位置する領域をそれぞれ第1端部領域及び第2端部領域とすると、
延在方向に直交する断面における連結部の各断面形状は、前記中央領域でのタイヤ周方向の平均厚みが、前記第1端部領域と前記第2端部領域を合わせた領域でのタイヤ周方向の平均厚みより小さく、かつ、前記複数の連結部のうちタイヤ周方向に連続する2〜6個の連結部を1ユニットとした場合に、各ユニット内の連結部の前記中央領域での平均厚みの合計が、前記第1端部領域での平均厚みの合計及び前記第2端部領域での平均厚みの合計よりも小さくなるように構成されており、
前記連結部は、タイヤ幅方向の一方のタイヤ端から他方のタイヤ端まで連続して形成されていることを特徴とする非空気圧タイヤ。
An inner annular portion, an outer annular portion concentrically provided outside the inner annular portion, and a plurality of connecting portions that extend from the inner annular portion to the outer annular portion and are independently provided in the tire circumferential direction. In a non-pneumatic tire having a support structure comprising:
When the connecting portion is divided into three regions in the tire width direction, a region located in the center is defined as a central region, and regions located on both sides of the central region are defined as a first end region and a second end region, respectively. Then
Each cross-sectional shape of the connecting portion in a cross section orthogonal to the extending direction is such that the average thickness in the tire circumferential direction in the central region is a tire circumference in a region where the first end region and the second end region are combined. When the two to six connecting portions that are smaller than the average thickness in the direction and are continuous in the tire circumferential direction among the plurality of connecting portions are taken as one unit, the average of the connecting portions in each unit in the central region The total thickness is configured to be smaller than the total average thickness in the first end region and the total average thickness in the second end region ,
The non-pneumatic tire is characterized in that the connecting portion is formed continuously from one tire end in the tire width direction to the other tire end .
前記連結部は、前記第1端部領域、前記中央領域、及び第2端部領域の各領域内で、タイヤ周方向の厚みがタイヤ幅方向で徐々に変化していることを特徴とする請求項1に記載の非空気圧タイヤ。   The thickness of the tire circumferential direction gradually changes in the tire width direction in each of the first end region, the central region, and the second end region. Item 2. The non-pneumatic tire according to Item 1. 前記連結部は、タイヤ周方向の厚みがタイヤ幅方向全体に亘って徐々に変化していることを特徴とする請求項1又は2に記載の非空気圧タイヤ。   The non-pneumatic tire according to claim 1 or 2, wherein a thickness of the connecting portion in the tire circumferential direction is gradually changed over the entire tire width direction. 各ユニット内の連結部は、タイヤ幅方向の第1位置における厚みの合計が、前記第1位置とタイヤ赤道面に対して対称となる第2位置における厚みの合計と同じとなるように設けられていることを特徴とする請求項1〜の何れか1項に記載の非空気圧タイヤ。 The connecting portion in each unit is provided such that the total thickness at the first position in the tire width direction is the same as the total thickness at the second position that is symmetric with respect to the first position and the tire equatorial plane. The non-pneumatic tire according to any one of claims 1 to 3 , wherein the non-pneumatic tire is provided. 前記複数の連結部は、タイヤ赤道面に対して対称な形状を有する2つの連結部がタイヤ周方向に交互に配設されて構成されていることを特徴とする請求項1〜の何れか1項に記載の非空気圧タイヤ。 Wherein the plurality of connecting portions, one of claims 1-4, characterized in that two connecting portions having a symmetrical shape with respect to the tire equatorial plane is constructed are disposed alternately in the tire circumferential direction The non-pneumatic tire according to item 1.
JP2013043438A 2013-03-05 2013-03-05 Non-pneumatic tire Active JP6045401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013043438A JP6045401B2 (en) 2013-03-05 2013-03-05 Non-pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013043438A JP6045401B2 (en) 2013-03-05 2013-03-05 Non-pneumatic tire

Publications (2)

Publication Number Publication Date
JP2014172404A JP2014172404A (en) 2014-09-22
JP6045401B2 true JP6045401B2 (en) 2016-12-14

Family

ID=51694132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013043438A Active JP6045401B2 (en) 2013-03-05 2013-03-05 Non-pneumatic tire

Country Status (1)

Country Link
JP (1) JP6045401B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2708139C1 (en) * 2016-12-09 2019-12-04 Дзе Йокогама Раббер Ко., Лтд. Pneumatic tire

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6964470B2 (en) * 2017-09-07 2021-11-10 Toyo Tire株式会社 Non-pneumatic tire
JP7180427B2 (en) * 2019-02-06 2022-11-30 住友ゴム工業株式会社 airless tire

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4945962A (en) * 1989-06-09 1990-08-07 The Uniroyal Goodrich Tire Company Honeycomb non-pneumatic tire with a single web on one side
JP3966895B1 (en) * 2006-08-29 2007-08-29 横浜ゴム株式会社 Non-pneumatic tire
JP2013018427A (en) * 2011-07-13 2013-01-31 Toyo Tire & Rubber Co Ltd Non-pneumatic tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2708139C1 (en) * 2016-12-09 2019-12-04 Дзе Йокогама Раббер Ко., Лтд. Pneumatic tire

Also Published As

Publication number Publication date
JP2014172404A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
JP5221306B2 (en) Non-pneumatic tire
JP6099519B2 (en) Non-pneumatic tire
JP4530231B2 (en) Non-pneumatic tire
JP6092046B2 (en) Non-pneumatic tire
JP5436365B2 (en) Non-pneumatic tire
JP5808048B2 (en) Non-pneumatic tire
JP6159234B2 (en) Non-pneumatic tire
JP5461303B2 (en) Non-pneumatic tire
JP5972149B2 (en) Non-pneumatic tire
JP5921364B2 (en) Non-pneumatic tire
JP2011183894A (en) Non-pneumatic tire
JP6226734B2 (en) Non-pneumatic tire
JP5774905B2 (en) Non-pneumatic tire
JP6076704B2 (en) Non-pneumatic tire
JP6529834B2 (en) Non pneumatic tire
JP6377515B2 (en) Non-pneumatic tire
JP6180313B2 (en) Non-pneumatic tire
JP2013018462A (en) Non-pneumatic tire
JP5543846B2 (en) Non-pneumatic tire
JP6182452B2 (en) Non-pneumatic tire
JP6045401B2 (en) Non-pneumatic tire
JP6092045B2 (en) Non-pneumatic tire
JP6025498B2 (en) Non-pneumatic tire
JP6351109B2 (en) Non-pneumatic tire
JP6143660B2 (en) Non-pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161115

R150 Certificate of patent or registration of utility model

Ref document number: 6045401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250