JP6076704B2 - Non-pneumatic tire - Google Patents

Non-pneumatic tire Download PDF

Info

Publication number
JP6076704B2
JP6076704B2 JP2012252306A JP2012252306A JP6076704B2 JP 6076704 B2 JP6076704 B2 JP 6076704B2 JP 2012252306 A JP2012252306 A JP 2012252306A JP 2012252306 A JP2012252306 A JP 2012252306A JP 6076704 B2 JP6076704 B2 JP 6076704B2
Authority
JP
Japan
Prior art keywords
tire
annular portion
connecting portion
pneumatic tire
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012252306A
Other languages
Japanese (ja)
Other versions
JP2014100932A (en
Inventor
健史 宮本
健史 宮本
政弘 瀬川
政弘 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2012252306A priority Critical patent/JP6076704B2/en
Publication of JP2014100932A publication Critical patent/JP2014100932A/en
Application granted granted Critical
Publication of JP6076704B2 publication Critical patent/JP6076704B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、タイヤ構造部材として、車両からの荷重を支持する支持構造体を備える非空気圧タイヤ(non−pneumatic tire)に関するものであり、好ましくは空気入りタイヤの代わりとして使用することができる非空気圧タイヤに関するものである。   The present invention relates to a non-pneumatic tire provided with a support structure that supports a load from a vehicle as a tire structural member, and preferably a non-pneumatic tire that can be used as a substitute for a pneumatic tire. It relates to tires.

空気入りタイヤは、荷重の支持機能、接地面からの衝撃吸収能、および動力等の伝達能(加速、停止、方向転換)を有し、このため、多くの車両、特に自転車、オートバイ、自動車、トラックに採用されている。   The pneumatic tire has a load supporting function, a shock absorbing ability from the ground contact surface, and a transmission ability (acceleration, stop, change of direction) such as power. For this reason, many vehicles, particularly bicycles, motorcycles, automobiles, It is used in trucks.

特に、これらの能力は自動車、その他のモーター車両の発展に大きく貢献した。更に、空気入りタイヤの衝撃吸収能力は、医療機器や電子機器の運搬用カート、その他の用途でも有用である。   In particular, these capabilities greatly contributed to the development of automobiles and other motor vehicles. Furthermore, the impact absorbing ability of pneumatic tires is useful for medical equipment and electronic equipment transport carts and other applications.

従来の非空気圧タイヤとしては、例えばソリッドタイヤ、スプリングタイヤ、クッションタイヤ等が存在するが、空気入りタイヤの優れた性能を有していない。例えば、ソリッドタイヤおよびクッションタイヤは、接地部分の圧縮によって荷重を支持するが、この種のタイヤは重くて、堅く、空気入りタイヤのような良好な乗り心地や操縦安定性を確保することが困難であった。   Conventional non-pneumatic tires include, for example, solid tires, spring tires, cushion tires, and the like, but do not have the superior performance of pneumatic tires. For example, solid tires and cushion tires support the load by compressing the ground contact part, but this type of tire is heavy and stiff, and it is difficult to ensure good riding comfort and handling stability like pneumatic tires Met.

そこで、下記の特許文献1には、空気入りタイヤと同様な動作特性を有する非空気圧タイヤを開発する目的で、タイヤに加わる荷重を支持する補強された環状バンドと、この補強された環状バンドとホイールとの間で張力によって荷重力を伝達する複数のウェブスポークとを有する非空気圧タイヤが提案されている。   Therefore, in Patent Document 1 below, for the purpose of developing a non-pneumatic tire having the same operating characteristics as a pneumatic tire, a reinforced annular band that supports a load applied to the tire, and the reinforced annular band, Non-pneumatic tires have been proposed that have a plurality of web spokes that transmit load forces to and from the wheel by tension.

特許文献1の非空気圧タイヤにおいて、ウェブスポークは、ホイールと環状バンドとの間で張力によって荷重を支持する機能を有する。荷重を支持する力は、環状バンドの地面接触部分に結合していないウェブスポーク内の張力によって生じる。このように、ウェブスポークに適切に張力を生じさせるためには、環状バンドの剛性を高めて変形を抑制する必要がある。しかし、環状バンドの剛性を高めると、タイヤ周方向の接地長が短くなって接地面積が小さくなるため、操縦安定性の悪化及び転がり抵抗の増大に繋がるという問題があった。   In the non-pneumatic tire of Patent Document 1, the web spoke has a function of supporting a load by tension between the wheel and the annular band. The load bearing force is generated by the tension in the web spokes that are not bonded to the ground contact portion of the annular band. As described above, in order to appropriately generate tension in the web spoke, it is necessary to increase the rigidity of the annular band and suppress deformation. However, when the rigidity of the annular band is increased, the ground contact length in the tire circumferential direction is shortened and the ground contact area is reduced, which leads to deterioration in steering stability and an increase in rolling resistance.

一方、下記特許文献2には、転がり抵抗の低減及び乗り心地性や操縦安定性の向上を図る目的で、リンク機構によってトレッドをリング状部材に対してタイヤ径方向、タイヤ幅方向に相対変位可能としたリンク式の非空気圧タイヤが記載されている。   On the other hand, in Patent Document 2 below, the tread can be relatively displaced in the tire radial direction and the tire width direction with respect to the ring-shaped member by a link mechanism for the purpose of reducing rolling resistance and improving riding comfort and steering stability. A link type non-pneumatic tire is described.

下記特許文献3には、複数の支持要素と、各支持要素を周方向で相互に連結する連結構造体とで構成された荷重支持構造体を有する非空気圧タイヤが記載されている。また、支持要素と連結構造体は、可撓性継手を介して連結されている。この非空気圧タイヤでは、支持要素と可撓性継手が撓むことで荷重を支持している。   Patent Document 3 listed below describes a non-pneumatic tire having a load support structure including a plurality of support elements and a connection structure that connects the support elements to each other in the circumferential direction. Further, the support element and the connection structure are connected via a flexible joint. In this non-pneumatic tire, the support element and the flexible joint are bent to support the load.

しかしながら、特許文献2の非空気圧タイヤは、リンク機構を構成するための部品点数が非常に多く、製造工程に負担がかかる。この非空気圧タイヤは、一般的なソリッドタイヤに比べると軽量であるが、リンク機構には多くの金属部品が使用されるため、空気入りタイヤに比べるとタイヤ全体の重量が大きくなる傾向がある。さらに、リンク機構が複雑なため、耐久性も悪化する可能性がある。特許文献3の非空気圧タイヤも、荷重支持構造体が複雑な構成となっており、製造が難しく、コストもかかる。さらに、タイヤ内面は空洞となっているため、十分な横剛性が得られず、良好な操縦安定性を得られない。   However, the non-pneumatic tire of Patent Document 2 has a very large number of parts for configuring the link mechanism, and a burden is imposed on the manufacturing process. This non-pneumatic tire is lighter than a general solid tire, but since many metal parts are used for the link mechanism, the weight of the entire tire tends to be larger than that of a pneumatic tire. Furthermore, since the link mechanism is complicated, durability may deteriorate. The non-pneumatic tire of Patent Document 3 also has a complicated structure for the load support structure, is difficult to manufacture, and costs high. Furthermore, since the tire inner surface is hollow, sufficient lateral rigidity cannot be obtained, and good steering stability cannot be obtained.

特表2005−500932号公報Special Table 2005-500932 Publication 特開2010−100244号公報JP 2010-100284 A 特開2003−320808号公報JP 2003-320808 A

そこで、本発明の目的は、耐久性を維持しつつ、操縦安定性の悪化と転がり抵抗の増大を抑制できる非空気圧タイヤを提供することにある。   Therefore, an object of the present invention is to provide a non-pneumatic tire capable of suppressing deterioration in steering stability and increase in rolling resistance while maintaining durability.

上記目的は、下記の如き本発明により達成できる。
即ち、本発明の非空気圧タイヤは、車両からの荷重を支持する支持構造体を備える非空気圧タイヤにおいて、
前記支持構造体は、内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、前記内側環状部と前記外側環状部とを連結する連結部とを備え、
前記連結部は、タイヤ幅方向断面において、前記内側環状部のタイヤ幅方向一方側から前記外側環状部のタイヤ幅方向他方側へ向かって延設される第1連結部と、前記第1連結部と交差するように前記内側環状部の前記タイヤ幅方向他方側から前記外側環状部の前記タイヤ幅方向一方側へ向かって延設される第2連結部とで構成されていることを特徴とする。
The above object can be achieved by the present invention as described below.
That is, the non-pneumatic tire of the present invention is a non-pneumatic tire including a support structure that supports a load from a vehicle.
The support structure includes an inner annular portion, an outer annular portion provided concentrically on the outer side of the inner annular portion, and a connecting portion that connects the inner annular portion and the outer annular portion,
In the cross section in the tire width direction, the connecting portion includes a first connecting portion extending from one side in the tire width direction of the inner annular portion toward the other side in the tire width direction of the outer annular portion, and the first connecting portion. And a second connecting portion extending from the other side in the tire width direction of the inner annular portion toward one side in the tire width direction of the outer annular portion. .

本発明の非空気圧タイヤは、内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、内側環状部と外側環状部とを連結する連結部とを備えている。連結部は、タイヤ幅方向断面において、内側環状部のタイヤ幅方向一方側から外側環状部のタイヤ幅方向他方側へ向かって延設される第1連結部と、第1連結部と交差するように内側環状部のタイヤ幅方向他方側から外側環状部のタイヤ幅方向一方側へ向かって延設される第2連結部とで構成されている。すなわち、連結部は、タイヤ幅方向断面において、第1連結部と第2連結部が交差して略X字状の形態をしている。この構成によれば、タイヤに垂直荷重が負荷された際、連結部は、タイヤ径方向に圧縮され、タイヤ幅方向へ広がるような変形を起こして荷重を支持する。これにより、第1連結部と第2連結部には、タイヤ幅方向に沿った張力を発生させることができるため、座屈を防ぎ、耐久性を維持できる。また、本発明の非空気圧タイヤは、外側環状部の地面接触部分に結合していない連結部の張力によって荷重を支持する構成でないため、外側環状部の剛性を高める必要はなく、タイヤ周方向の接地長を確保できる。これにより、接地面積の減少を抑えることができるため、操縦安定性の悪化を抑制でき、また、広い接地面内に接地圧を分散できるため、転がり抵抗の増大を抑制できる。   The non-pneumatic tire of the present invention includes an inner annular portion, an outer annular portion provided concentrically outside the inner annular portion, and a connecting portion that connects the inner annular portion and the outer annular portion. The connecting portion crosses the first connecting portion and the first connecting portion extending from one side in the tire width direction of the inner annular portion toward the other side in the tire width direction of the outer annular portion in the cross section in the tire width direction. And a second connecting portion extending from the other side in the tire width direction of the inner annular portion toward one side in the tire width direction of the outer annular portion. That is, the connecting portion has a substantially X-shaped configuration in which the first connecting portion and the second connecting portion intersect in the cross section in the tire width direction. According to this configuration, when a vertical load is applied to the tire, the connecting portion is compressed in the tire radial direction and deforms so as to spread in the tire width direction to support the load. Thereby, since the tension along the tire width direction can be generated in the first connecting portion and the second connecting portion, buckling can be prevented and durability can be maintained. In addition, the non-pneumatic tire of the present invention is not configured to support the load by the tension of the connecting portion that is not coupled to the ground contact portion of the outer annular portion, so there is no need to increase the rigidity of the outer annular portion, and the tire circumferential direction The contact length can be secured. Thereby, since the reduction of the contact area can be suppressed, the deterioration of the steering stability can be suppressed, and since the contact pressure can be dispersed in a wide contact surface, the increase in rolling resistance can be suppressed.

本発明にかかる非空気圧タイヤにおいて、前記連結部は、タイヤ周方向に複数に分割されていることが好ましい。連結部がタイヤ周方向に複数に分割されていることで、外側環状部の柔軟性が向上し、タイヤ周方向の接地長が伸びるため、接地面積が広がる。これにより、操縦安定性の向上と転がり抵抗の低減を図ることができる。   In the non-pneumatic tire according to the present invention, it is preferable that the connecting portion is divided into a plurality of portions in the tire circumferential direction. Since the connecting portion is divided into a plurality in the tire circumferential direction, the flexibility of the outer annular portion is improved and the contact length in the tire circumferential direction is extended, so that the contact area is increased. Thereby, improvement of steering stability and reduction of rolling resistance can be aimed at.

本発明にかかる非空気圧タイヤにおいて、タイヤ周方向に分割された複数の前記連結部は、隣り合う連結部同士の間隔が0〜5mmであることが好ましい。連結部同士の間隔が広いと、接地圧が不均一となり、ノイズが増大する要因となり得る。連結部同士の間隔がこの範囲であれば、接地圧が不均一とならず、ノイズの増大を抑制しつつ、接地面積を広げることができる。   In the non-pneumatic tire according to the present invention, it is preferable that the plurality of connecting portions divided in the tire circumferential direction have an interval between adjacent connecting portions of 0 to 5 mm. If the interval between the connecting portions is wide, the contact pressure becomes non-uniform and noise may increase. When the distance between the connecting portions is within this range, the ground pressure does not become uneven, and the ground contact area can be expanded while suppressing an increase in noise.

本発明の非空気圧タイヤの一例を示す正面図Front view showing an example of the non-pneumatic tire of the present invention 図1の非空気圧タイヤの一部を示す斜視図The perspective view which shows a part of non-pneumatic tire of FIG. 非空気圧タイヤのタイヤ子午線断面図Tire meridian cross section of non-pneumatic tire 他の実施形態に係る非空気圧タイヤを示す正面図Front view showing a non-pneumatic tire according to another embodiment 他の実施形態に係る連結部を示す斜視図The perspective view which shows the connection part which concerns on other embodiment. 他の実施形態に係る連結部を示す斜視図The perspective view which shows the connection part which concerns on other embodiment. 他の実施形態に係る連結部を示す斜視図The perspective view which shows the connection part which concerns on other embodiment. 他の実施形態に係る連結部を示す斜視図The perspective view which shows the connection part which concerns on other embodiment. 他の実施形態に係る連結部を示す斜視図The perspective view which shows the connection part which concerns on other embodiment. 他の実施形態に係る非空気圧タイヤを示す正面図Front view showing a non-pneumatic tire according to another embodiment 他の実施形態に係る非空気圧タイヤを示す正面図Front view showing a non-pneumatic tire according to another embodiment 比較例1の非空気圧タイヤを示す正面図Front view showing a non-pneumatic tire of Comparative Example 1

以下、本発明の実施の形態について、図面を参照しながら説明する。初めに、本発明の非空気圧タイヤTの構成を説明する。図1は、非空気圧タイヤTの一例を示す正面図である。図2は、図1の非空気圧タイヤの一部を示す斜視図である。図3は非空気圧タイヤのタイヤ子午線断面図であり、図1のA−A断面図である。ここで、Oは軸芯を、Hはタイヤ断面高さを、それぞれ示している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, the configuration of the non-pneumatic tire T of the present invention will be described. FIG. 1 is a front view showing an example of a non-pneumatic tire T. FIG. FIG. 2 is a perspective view showing a part of the non-pneumatic tire of FIG. 3 is a tire meridian cross-sectional view of a non-pneumatic tire, and is a cross-sectional view taken along the line AA of FIG. Here, O indicates the shaft core, and H indicates the tire cross-sectional height.

非空気圧タイヤTは、車両からの荷重を支持する支持構造体SSを備えるものである。本発明の非空気圧タイヤTは、このような支持構造体SSを備えるものであればよく、その支持構造体SSの外側(外周側)や内側(内周側)に、トレッドに相当する部材、補強層、車軸やリムとの適合用部材などを備えていてもよい。   The non-pneumatic tire T includes a support structure SS that supports a load from the vehicle. The non-pneumatic tire T of the present invention only needs to be provided with such a support structure SS, and a member corresponding to a tread on the outer side (outer peripheral side) or inner side (inner peripheral side) of the support structure SS, A reinforcing layer, a member for fitting with an axle or a rim, and the like may be provided.

本実施形態の非空気圧タイヤTは、図1の正面図に示すように、支持構造体SSが、内側環状部1と、その外側に同心円状に設けられた外側環状部2と、内側環状部1と外側環状部2とを連結する連結部3とを備えている。   As shown in the front view of FIG. 1, the non-pneumatic tire T of the present embodiment includes an inner annular portion 1, an outer annular portion 2 provided concentrically on the outer side, and an inner annular portion. 1 and a connecting portion 3 for connecting the outer annular portion 2 to each other.

内側環状部1は、ユニフォミティを向上させる観点から、厚みが一定の円筒形状であることが好ましい。また、内側環状部1の内周面には、車軸やリムとの装着のために、嵌合性を保持するための凹凸等を設けるのが好ましい。   The inner annular portion 1 is preferably a cylindrical shape having a constant thickness from the viewpoint of improving uniformity. Moreover, it is preferable to provide the inner peripheral surface of the inner annular portion 1 with irregularities or the like for maintaining fitting properties for mounting with an axle or a rim.

内側環状部1の厚みは、連結部3に力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さHの2〜7%が好ましく、3〜6%がより好ましい。   The thickness of the inner annular portion 1 is preferably 2 to 7% of the tire cross-section height H and more preferably 3 to 6% from the viewpoint of reducing weight and improving durability while sufficiently transmitting force to the connecting portion 3. preferable.

内側環状部1の内径は、非空気圧タイヤTを装着するリムや車軸の寸法などに併せて適宜決定される。ただし、一般の空気入りタイヤの代替を想定した場合、250〜500mmが好ましく、330〜440mmがより好ましい。   The inner diameter of the inner annular portion 1 is appropriately determined in accordance with the rim on which the non-pneumatic tire T is mounted and the dimensions of the axle. However, when an alternative to a general pneumatic tire is assumed, 250 to 500 mm is preferable, and 330 to 440 mm is more preferable.

内側環状部1のタイヤ幅方向の幅は、用途、車軸の長さ等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   The width in the tire width direction of the inner annular portion 1 is appropriately determined according to the use, the length of the axle, and the like. However, when an alternative to a general pneumatic tire is assumed, 100 to 300 mm is preferable, and 130 to 250 mm is preferable. More preferred.

内側環状部1の引張モジュラスは、連結部3に力を十分伝達しつつ、軽量化や耐久性の向上、装着性を図る観点から、5〜180000MPaが好ましく、7〜50000MPaがより好ましい。なお、本発明における引張モジュラスは、JIS K7312に準じて引張試験を行い、10%伸び時の引張応力から算出した値である。   The tensile modulus of the inner annular portion 1 is preferably 5 to 180000 MPa, more preferably 7 to 50000 MPa, from the viewpoint of reducing weight, improving durability, and wearing properties while sufficiently transmitting force to the connecting portion 3. The tensile modulus in the present invention is a value calculated from a tensile stress at 10% elongation by conducting a tensile test according to JIS K7312.

本発明における支持構造体SSは、弾性材料で成形されるが、支持構造体SSを製造する際に、一体成形が可能となる観点から、内側環状部1、外側環状部2、及び連結部3は、補強構造を除いて基本的に同じ材質とすることが好ましい。   The support structure SS in the present invention is formed of an elastic material. However, the inner ring portion 1, the outer ring portion 2, and the connection portion 3 are used from the viewpoint of enabling integral molding when the support structure SS is manufactured. Are preferably basically the same material except for the reinforcing structure.

本発明における弾性材料とは、JIS K7312に準じて引張試験を行い、10%伸び時の引張応力から算出した引張モジュラスが、100MPa以下のものを指す。本発明の弾性材料としては、十分な耐久性を得ながら、適度な剛性を付与する観点から、好ましくは引張モジュラスが5〜100MPaであり、より好ましくは7〜50MPaである。母材として用いられる弾性材料としては、熱可塑性エラストマー、架橋ゴム、その他の樹脂が挙げられる。   The elastic material in the present invention refers to a material having a tensile modulus calculated from a tensile stress at 10% elongation by a tensile test according to JIS K7312 and 100 MPa or less. The elastic material of the present invention preferably has a tensile modulus of 5 to 100 MPa, more preferably 7 to 50 MPa from the viewpoint of imparting adequate rigidity while obtaining sufficient durability. Examples of the elastic material used as the base material include thermoplastic elastomers, crosslinked rubbers, and other resins.

熱可塑性エラストマーとしては、ポリエステルエラストマー、ポリオレフィンエラストマー、ポリアミドエラストマー、ポリスチレンエラストマー、ポリ塩化ビニルエラストマー、ポリウレタンエラストマー等が例示される。架橋ゴム材料を構成するゴム材料としては、天然ゴムの他、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IIR)、ニトリルゴム(NBR)、水素添加ニトリルゴム(水添NBR)、クロロプレンゴム(CR)、エチレンプロピレンゴム(EPDM)、フッ素ゴム、シリコンゴム、アクリルゴム、ウレタンゴム等の合成ゴムが例示される。これらのゴム材料は必要に応じて2種以上を併用してもよい。   Examples of the thermoplastic elastomer include polyester elastomer, polyolefin elastomer, polyamide elastomer, polystyrene elastomer, polyvinyl chloride elastomer, polyurethane elastomer and the like. Rubber materials constituting the crosslinked rubber material include natural rubber, styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IIR), nitrile rubber (NBR), hydrogenated nitrile rubber (hydrogenated NBR). And synthetic rubbers such as chloroprene rubber (CR), ethylene propylene rubber (EPDM), fluorine rubber, silicon rubber, acrylic rubber, and urethane rubber. These rubber materials may be used in combination of two or more as required.

その他の樹脂としては、熱可塑性樹脂、又は熱硬化性樹脂が挙げられる。熱可塑性樹脂としては、ポリエチレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂などが挙げられ、熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ポリウレタン樹脂、シリコン樹脂、ポリイミド樹脂、メラミン樹脂などが挙げられる。   Examples of other resins include thermoplastic resins and thermosetting resins. Examples of the thermoplastic resin include polyethylene resin, polystyrene resin, and polyvinyl chloride resin, and examples of the thermosetting resin include epoxy resin, phenol resin, polyurethane resin, silicon resin, polyimide resin, and melamine resin.

上記の弾性材料のうち、成形・加工性やコストの観点から、好ましくは、ポリウレタン樹脂が用いられる。なお、弾性材料としては、発泡材料を使用してもよく、上記の熱可塑性エラストマー、架橋ゴム、その他の樹脂を発泡させたもの使用可能である。   Of the above elastic materials, a polyurethane resin is preferably used from the viewpoint of moldability / workability and cost. In addition, as an elastic material, you may use a foaming material, and what used said thermoplastic elastomer, crosslinked rubber, and other resin foamed can be used.

弾性材料で一体成形された支持構造体SSは、内側環状部1、外側環状部2、及び連結部3が、補強繊維により補強されていることが好ましい。   In the support structure SS integrally formed of an elastic material, the inner annular portion 1, the outer annular portion 2, and the connecting portion 3 are preferably reinforced by reinforcing fibers.

補強繊維としては、長繊維、短繊維、織布、不織布などの補強繊維が挙げられるが、長繊維を使用する形態として、タイヤ幅方向に配列される繊維とタイヤ周方向に配列される繊維とから構成されるネット状繊維集合体を使用するのが好ましい。   Reinforcing fibers include reinforcing fibers such as long fibers, short fibers, woven fabrics, and non-woven fabrics, but as a form using long fibers, fibers arranged in the tire width direction and fibers arranged in the tire circumferential direction It is preferable to use a net-like fiber assembly composed of:

補強繊維の種類としては、例えば、レーヨンコード、ナイロン−6,6等のポリアミドコード、ポリエチレンテレフタレート等のポリエステルコード、アラミドコード、ガラス繊維コード、カーボンファイバー、スチールコード等が挙げられる。   Examples of the types of reinforcing fibers include rayon cords, polyamide cords such as nylon-6,6, polyester cords such as polyethylene terephthalate, aramid cords, glass fiber cords, carbon fibers, and steel cords.

本発明では、補強繊維を用いる補強の他、粒状フィラーによる補強や、金属リング等による補強を行うことが可能である。粒状フィラーとしては、カーボンブラック、シリカ、アルミナ等のセラミックス、その他の無機フィラーなどが挙げられる。   In the present invention, in addition to reinforcement using reinforcing fibers, it is possible to perform reinforcement with a granular filler or reinforcement with a metal ring or the like. Examples of the particulate filler include ceramics such as carbon black, silica, and alumina, and other inorganic fillers.

外側環状部2の形状は、ユニフォミティを向上させる観点から、厚みが一定の円筒形状であることが好ましい。外側環状部2の厚みは、連結部3からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さHの2〜7%が好ましく、2〜5%がより好ましい。   The shape of the outer annular portion 2 is preferably a cylindrical shape with a constant thickness from the viewpoint of improving uniformity. The thickness of the outer annular portion 2 is preferably 2 to 7% and 2 to 5% of the tire cross-section height H from the viewpoint of reducing weight and improving durability while sufficiently transmitting the force from the connecting portion 3. More preferred.

外側環状部2の内径は、その用途等応じて適宜決定される。ただし、一般の空気入りタイヤの代替を想定した場合、420〜750mmが好ましく、480〜680mmがより好ましい。   The inner diameter of the outer annular portion 2 is appropriately determined according to its use. However, when an alternative to a general pneumatic tire is assumed, 420 to 750 mm is preferable, and 480 to 680 mm is more preferable.

外側環状部2のタイヤ幅方向の幅は、用途等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   The width of the outer annular portion 2 in the tire width direction is appropriately determined depending on the application and the like, but is preferably 100 to 300 mm, and more preferably 130 to 250 mm when an alternative to a general pneumatic tire is assumed.

外側環状部2の引張モジュラスは、図1に示すように外側環状部2の外周に補強層7が設けられている場合には、内側環状部1と同程度に設定できる。このような補強層7を設けない場合には、連結部3からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、5〜180000MPaが好ましく、7〜50000MPaがより好ましい。   The tensile modulus of the outer annular portion 2 can be set to the same level as that of the inner annular portion 1 when the reinforcing layer 7 is provided on the outer periphery of the outer annular portion 2 as shown in FIG. In the case where such a reinforcing layer 7 is not provided, 5 to 180000 MPa is preferable, and 7 to 50000 MPa is more preferable from the viewpoint of reducing weight and improving durability while sufficiently transmitting the force from the connecting portion 3.

外側環状部2の引張モジュラスを高める場合、弾性材料を繊維等で補強した繊維補強材料が好ましい。外側環状部2を補強繊維により補強することで、外側環状部2とベルト層などとの接着も十分となる。   When the tensile modulus of the outer annular portion 2 is increased, a fiber reinforced material obtained by reinforcing an elastic material with fibers or the like is preferable. By reinforcing the outer annular portion 2 with the reinforcing fiber, adhesion between the outer annular portion 2 and the belt layer becomes sufficient.

連結部3は、内側環状部1と外側環状部2とを連結するものであり、タイヤの全周に亘って設けられる。連結部3は、タイヤ周方向CDに連続する連続体として構成してもよいが、本実施形態では、連結部3が、タイヤ周方向CDに複数に分割されている例を示す。   The connecting portion 3 connects the inner annular portion 1 and the outer annular portion 2 and is provided over the entire circumference of the tire. Although the connection part 3 may be comprised as a continuous body continuous in the tire circumferential direction CD, in the present embodiment, an example in which the connection part 3 is divided into a plurality in the tire circumferential direction CD is shown.

連結部3は、図3に示すように、タイヤ幅方向断面において、内側環状部1のタイヤ幅方向一方側WD1から外側環状部2のタイヤ幅方向他方側WD2へ向かって延設される第1連結部31と、第1連結部31と交差するように内側環状部1のタイヤ幅方向他方側WD2から外側環状部2のタイヤ幅方向一方側WD1へ向かって延設される第2連結部32とで構成されている。すなわち、連結部3は、タイヤ幅方向断面において、第1連結部31と第2連結部32が交差して略X字状の形態をしている。   As shown in FIG. 3, the connecting portion 3 extends in the tire width direction cross section from the tire width direction one side WD1 of the inner annular portion 1 toward the tire width direction other side WD2 of the outer annular portion 2. The second connecting part 32 extending from the other side WD2 in the tire width direction of the inner annular part 1 toward the one side WD1 in the tire width direction of the outer annular part 2 so as to intersect with the first connecting part 31. It consists of and. That is, the connection part 3 has a substantially X-shaped configuration in which the first connection part 31 and the second connection part 32 intersect each other in the tire width direction cross section.

本発明によれば、非空気圧タイヤTに垂直荷重が負荷された際、連結部3は、タイヤ径方向RDに圧縮され、タイヤ幅方向WDへ広がるような変形を起こして荷重を支持する。これにより、第1連結部31と第2連結部32には、タイヤ幅方向WDに沿った張力(図3に矢印で示す)を発生させることができるため、座屈を防ぎ、耐久性を維持できる。また、本発明の非空気圧タイヤTは、外側環状部2の地面接触部分に結合していない連結部3の張力によって荷重を支持する構成でないため、外側環状部2の剛性を高める必要はなく、タイヤ周方向CDの接地長を確保できる。これにより、接地面積の減少を抑えることができるため、操縦安定性の悪化を抑制でき、また、広い接地面内に接地圧を分散できるため、転がり抵抗の増大を抑制できる。   According to the present invention, when a vertical load is applied to the non-pneumatic tire T, the connecting portion 3 is compressed in the tire radial direction RD and deforms so as to spread in the tire width direction WD to support the load. Thereby, since tension (indicated by an arrow in FIG. 3) along the tire width direction WD can be generated in the first connecting portion 31 and the second connecting portion 32, buckling is prevented and durability is maintained. it can. Moreover, since the non-pneumatic tire T of the present invention is not configured to support a load by the tension of the connecting portion 3 that is not coupled to the ground contact portion of the outer annular portion 2, it is not necessary to increase the rigidity of the outer annular portion 2. The ground contact length in the tire circumferential direction CD can be secured. Thereby, since the reduction of the contact area can be suppressed, the deterioration of the steering stability can be suppressed, and since the contact pressure can be dispersed in a wide contact surface, the increase in rolling resistance can be suppressed.

なお、本実施形態では、第1連結部31及び第2連結部32は、内側環状部1と外側環状部2をタイヤ幅方向WDの両端でそれぞれ連結しているが、これに限定されない。第1連結部31及び第2連結部32は、内側環状部1と外側環状部2をタイヤ幅方向WDの両端よりも内側部でそれぞれ連結するようにしてもよい。   In the present embodiment, the first connecting portion 31 and the second connecting portion 32 connect the inner annular portion 1 and the outer annular portion 2 at both ends in the tire width direction WD, respectively, but are not limited thereto. The 1st connection part 31 and the 2nd connection part 32 may each be made to connect the inner side annular part 1 and the outer side annular part 2 in an inner part rather than the both ends of the tire width direction WD.

タイヤ周方向CDから見た第1連結部31と第2連結部32は、タイヤ赤道面Cに対して対称な形状であることが好ましい。本実施形態では、図3に示すように、第1連結部31のタイヤ幅方向断面における断面形状と、第2連結部32のタイヤ幅方向断面における断面形状が、タイヤ赤道面Cに対して対称となるようにしている。そのため、以下に第1連結部31について説明するが、第2連結部32についても同様である。   It is preferable that the 1st connection part 31 and the 2nd connection part 32 which were seen from tire circumferential direction CD are symmetrical shapes with respect to the tire equatorial plane C. In the present embodiment, as shown in FIG. 3, the cross-sectional shape of the first connecting portion 31 in the tire width direction cross section and the cross-sectional shape of the second connecting portion 32 in the tire width direction cross section are symmetrical with respect to the tire equatorial plane C. It is trying to become. Therefore, although the 1st connection part 31 is demonstrated below, the 2nd connection part 32 is also the same.

第1連結部31は、図2の斜視図のように、板状部材で形成されている。第1連結部31は、略矩形の板状をしており、板幅方向PWがタイヤ周方向CDに一致している。第1連結部31の延設方向PLは、タイヤ幅方向WDに対して傾斜する方向であり、タイヤ幅方向WDに対する傾斜角度は、15〜50°が好ましい。   The 1st connection part 31 is formed with the plate-shaped member like the perspective view of FIG. The first connecting portion 31 has a substantially rectangular plate shape, and the plate width direction PW coincides with the tire circumferential direction CD. The extending direction PL of the first connecting portion 31 is a direction inclined with respect to the tire width direction WD, and the inclination angle with respect to the tire width direction WD is preferably 15 to 50 °.

タイヤ周方向CDから見た第1連結部31は、タイヤ径方向RDに湾曲する湾曲部31aが少なくとも1つ形成されていることが好ましく、タイヤ径方向RDに湾曲する湾曲部31aが延設方向PLに沿って複数形成されていることがより好ましい。湾曲部31aが複数形成される場合、タイヤ径方向内側へ凸となる湾曲部31aとタイヤ径方向外側へ凸となる湾曲部31aが交互に形成される。湾曲部31aの数は、1〜15個が好ましく、3〜10個がより好ましい。湾曲部31aは、第1連結部31のうち応力が高くなるトレッド側に少なくとも1つ形成されることで、第1連結部31の応力を効果的に分散することができる。本実施形態では、湾曲部31aを2個設けた例を示す。湾曲部31aの曲率半径Rは、5〜200mmが好ましく、20〜150mmがより好ましい。   The first connecting portion 31 viewed from the tire circumferential direction CD is preferably formed with at least one curved portion 31a curved in the tire radial direction RD, and the curved portion 31a curved in the tire radial direction RD extends in the extending direction. More preferably, a plurality are formed along the PL. When a plurality of curved portions 31a are formed, the curved portions 31a that are convex inward in the tire radial direction and the curved portions 31a that are convex outward in the tire radial direction are alternately formed. The number of the curved portions 31a is preferably 1-15, and more preferably 3-10. By forming at least one bending portion 31a on the tread side of the first connecting portion 31 where the stress is increased, the stress of the first connecting portion 31 can be effectively dispersed. In the present embodiment, an example in which two bending portions 31a are provided is shown. The curvature radius R of the curved portion 31a is preferably 5 to 200 mm, and more preferably 20 to 150 mm.

第1連結部31と第2連結部32で構成される連結部3の数としては、車両からの荷重を十分支持しつつ、軽量化、動力伝達の向上、耐久性の向上を図る観点から、20〜200個が好ましく、30〜100個がより好ましい。図1には、連結部3を40個設けた例を示す。   As the number of connection parts 3 constituted by the first connection part 31 and the second connection part 32, while sufficiently supporting the load from the vehicle, from the viewpoint of reducing weight, improving power transmission, and improving durability, 20-200 are preferable and 30-100 are more preferable. FIG. 1 shows an example in which 40 connecting portions 3 are provided.

タイヤ周方向CDに分割された複数の連結部3は、隣り合う連結部3同士の間隔pが0〜5mmであることが好ましい。間隔pが5mmよりも大きいと、接地圧が不均一となり、ノイズが増大する要因となり得る。また、ユニフォミティを向上させる観点から、間隔pは一定とするのが好ましい。   As for the some connection part 3 divided | segmented into tire circumferential direction CD, it is preferable that the space | interval p of adjacent connection parts 3 is 0-5 mm. When the distance p is larger than 5 mm, the ground pressure becomes non-uniform, which may increase noise. Further, from the viewpoint of improving uniformity, the interval p is preferably constant.

第1連結部31のタイヤ径方向RDの厚みtは、内側環状部1および外側環状部2からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、1〜10mmが好ましく、3〜7mmがより好ましい。また、第1連結部31のタイヤ径方向RDの厚みtは、第1連結部31の板幅よりも小さい。なお、第1連結部31の厚みtは、延設方向PLに沿って一定である必要はない。   The thickness t of the first connecting portion 31 in the tire radial direction RD is preferably 1 to 10 mm from the viewpoint of reducing the weight and improving the durability while sufficiently transmitting the force from the inner annular portion 1 and the outer annular portion 2. 3 to 7 mm is more preferable. Further, the thickness t of the first connecting portion 31 in the tire radial direction RD is smaller than the plate width of the first connecting portion 31. Note that the thickness t of the first connecting portion 31 does not have to be constant along the extending direction PL.

第1連結部31の引張モジュラスは、内側環状部1および外側環状部2からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、5〜180000MPaが好ましく、7〜50000MPaがより好ましい。第1連結部31の引張モジュラスを高める場合、弾性材料を繊維等で補強した繊維補強材料が好ましい。   The tensile modulus of the first connecting portion 31 is preferably 5 to 180,000 MPa from the viewpoint of reducing weight, improving durability, and improving lateral rigidity while sufficiently transmitting the force from the inner annular portion 1 and the outer annular portion 2. 7 to 50000 MPa is more preferable. When raising the tensile modulus of the 1st connection part 31, the fiber reinforcement material which reinforced the elastic material with the fiber etc. is preferable.

本実施形態では、図1に示すように、支持構造体SSの外側環状部2の外側に、その外側環状部2の曲げ変形を補強する補強層7が設けられている例を示す。また、本実施形態では、図1に示すように、補強層7の更に外側にトレッド層8が設けられている例を示す。補強層7は、上記の補強繊維を用いることができる。また、トレッド層8は、従来の空気入りタイヤと同様にゴムで成形してもよいが、上記の弾性材料で成形してもよい。また、トレッドパターンとして、従来の空気入りタイヤと同様のパターンを設けることが可能である。   In this embodiment, as shown in FIG. 1, an example is shown in which a reinforcing layer 7 that reinforces bending deformation of the outer annular portion 2 is provided outside the outer annular portion 2 of the support structure SS. Moreover, in this embodiment, as shown in FIG. 1, the example in which the tread layer 8 is provided in the further outer side of the reinforcement layer 7 is shown. The reinforcing layer 7 can use the above-described reinforcing fibers. Further, the tread layer 8 may be formed of rubber similarly to the conventional pneumatic tire, but may be formed of the above elastic material. Moreover, it is possible to provide the same pattern as a conventional pneumatic tire as a tread pattern.

[他の実施形態]
(1)本発明の他の実施形態として、図4に示すような、車両からの荷重を支持する支持構造体SSを備える非空気圧タイヤTにおいて、支持構造体SSは、内側環状部1と、その内側環状部1の外側に同心円状に設けられた中間環状部4と、その中間環状部4の外側に同心円状に設けられた外側環状部2と、内側環状部1と中間環状部4とを連結し、タイヤ周方向CDに各々独立して設けられた複数の内側連結部5と、外側環状部2と中間環状部4とを連結する外側連結部6とを備え、外側連結部6は、タイヤ幅方向断面において、中間環状部4のタイヤ幅方向一方側WD1から外側環状部2のタイヤ幅方向他方側WD2へ向かって延設される第1外側連結部61と、第1外側連結部61と交差するように中間環状部4のタイヤ幅方向他方側WD2から外側環状部2のタイヤ幅方向一方側WD1へ向かって延設される第2外側連結部62とで構成されているものでもよい。このとき、内側連結部5の形状は特に限定されず、例えば、内側連結部5は、タイヤ幅方向WDに連続する板状体、すなわち板幅方向がタイヤ幅方向WDに一致するような板状体でもよい。
[Other Embodiments]
(1) As another embodiment of the present invention, as shown in FIG. 4, in a non-pneumatic tire T including a support structure SS that supports a load from a vehicle, the support structure SS includes an inner annular portion 1, An intermediate annular portion 4 provided concentrically outside the inner annular portion 1, an outer annular portion 2 provided concentrically outside the intermediate annular portion 4, an inner annular portion 1 and an intermediate annular portion 4, , And a plurality of inner connecting portions 5 provided independently in the tire circumferential direction CD, and an outer connecting portion 6 that connects the outer annular portion 2 and the intermediate annular portion 4. In the cross section in the tire width direction, a first outer connecting portion 61 extending from the tire width direction one side WD1 of the intermediate annular portion 4 toward the tire width direction other side WD2 of the outer annular portion 2, and a first outer connecting portion 61 in the tire width direction of the intermediate annular portion 4 so as to intersect with 61 Or one that is composed of a second outer coupling portion 62 which extends toward the outer annular portion 2 of the tire on one widthwise side WD1 from WD2. At this time, the shape of the inner connecting portion 5 is not particularly limited. For example, the inner connecting portion 5 is a plate-like body continuous in the tire width direction WD, that is, a plate shape in which the plate width direction matches the tire width direction WD. It may be the body.

中間環状部4の形状は、ユニフォミティを向上させる観点から、厚みが一定の円筒形状であることが好ましい。ただし、中間環状部4の形状は、円筒形状に限られず、多角形筒状などでもよい。   The shape of the intermediate annular portion 4 is preferably a cylindrical shape with a constant thickness from the viewpoint of improving uniformity. However, the shape of the intermediate annular portion 4 is not limited to a cylindrical shape, and may be a polygonal cylindrical shape.

中間環状部4の厚みは、内側連結部5と外側連結部6とを十分補強しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さHの3〜10%が好ましく、4〜9%がより好ましい。   The thickness of the intermediate annular portion 4 is preferably 3 to 10% of the tire cross-section height H from the viewpoint of reducing the weight and improving the durability while sufficiently reinforcing the inner connecting portion 5 and the outer connecting portion 6. -9% is more preferable.

中間環状部4の引張モジュラスは、内側連結部5と外側連結部6とを十分補強して、耐久性の向上、負荷能力の向上を図る観点から、8000〜180000MPaが好ましく、10000〜50000MPaがより好ましい。   The tensile modulus of the intermediate annular portion 4 is preferably 8000 to 18000 MPa, more preferably 10,000 to 50000 MPa, from the viewpoint of sufficiently reinforcing the inner connecting portion 5 and the outer connecting portion 6 to improve durability and load capacity. preferable.

中間環状部4の引張モジュラスは、内側環状部1のそれより高いことが好ましいため、熱可塑性エラストマー、架橋ゴム、その他の樹脂を繊維等で補強した繊維補強材料が好ましい。   Since the tensile modulus of the intermediate annular portion 4 is preferably higher than that of the inner annular portion 1, a fiber reinforced material in which a thermoplastic elastomer, a crosslinked rubber, or other resin is reinforced with fibers or the like is preferable.

(2)第1連結部31と第2連結部32(又は第1外側連結部61と第2外側連結部62)は、剛性を異ならせ、両者に剛性差を与えるようにしてもよい。本発明の剛性は、タイヤに規定の質量(N)を与えた時、単位長さ(mm)を撓ませるのに必要な縦方向の力で表すことができる。剛性差を与える方法としては、例えば、以下のようなものがある。   (2) The first connecting portion 31 and the second connecting portion 32 (or the first outer connecting portion 61 and the second outer connecting portion 62) may have different rigidity and give a difference in rigidity between them. The rigidity of the present invention can be expressed by a longitudinal force necessary to bend a unit length (mm) when a prescribed mass (N) is applied to the tire. As a method for giving the rigidity difference, for example, there are the following methods.

図5A〜図5Eは、他の実施形態に係る連結部の斜視図である。なお、図5では、説明の便宜のため、内側環状部1は省略されている。図5Aは、第1連結部31と第2連結部32の一方のみに穴を設けている。図5Bは、第1連結部31と第2連結部32の一方のみにスリットを設けている。図5Cは、第1連結部31と第2連結部32の一方に補強リブを設けている。図5Dは、第1連結部31と第2連結部32の板幅を異ならせている。図5Eは、第1連結部31と第2連結部32のタイヤ径方向の厚みを異ならせている。図5A〜図5Eの例では、いずれも第1連結部31の剛性が、第2連結部32の剛性よりも高くなっている。   5A to 5E are perspective views of a connecting portion according to another embodiment. In FIG. 5, the inner annular portion 1 is omitted for convenience of explanation. In FIG. 5A, a hole is provided only in one of the first connecting portion 31 and the second connecting portion 32. In FIG. 5B, only one of the first connecting part 31 and the second connecting part 32 is provided with a slit. In FIG. 5C, a reinforcing rib is provided on one of the first connecting portion 31 and the second connecting portion 32. In FIG. 5D, the first connecting portion 31 and the second connecting portion 32 have different plate widths. In FIG. 5E, the thicknesses of the first connecting portion 31 and the second connecting portion 32 in the tire radial direction are different. In the examples of FIGS. 5A to 5E, the rigidity of the first connecting part 31 is higher than the rigidity of the second connecting part 32.

例えば、仮にタイヤ幅方向一方側WD1を車両内側として非空気圧タイヤTを車両に装着した場合、第1連結部31の剛性を第2連結部32の剛性よりも高くすることで、車両外側のショルダー剛性が高くなり、コーナリング時のグリップ力が向上する。さらに、第2連結部32が第1連結部31よりも変形しやすいため、タイヤの車両外側が接地しやすくなり、接地面積が広がる。その結果、第1連結部31の剛性を第2連結部32の剛性よりも高くすることで、コーナリング性能を向上できる。第1連結部31の剛性は、第2連結部32の剛性の1.2倍以上に設定するのが好ましく、第2連結部32の剛性の3倍以下が好ましい。第1連結部31の剛性が第2連結部32の剛性の3倍より大きくなると、第1連結部31と第2連結部32の剛性バランスが悪くなりユニフォミティが悪化する恐れがある。   For example, if the non-pneumatic tire T is mounted on the vehicle with the tire width direction one side WD1 as the vehicle inner side, the rigidity of the first connection portion 31 is made higher than the rigidity of the second connection portion 32, so Increases rigidity and improves gripping power when cornering. Furthermore, since the 2nd connection part 32 deform | transforms more easily than the 1st connection part 31, it becomes easy to contact the vehicle outer side of a tire, and a contact area spreads. As a result, the cornering performance can be improved by making the rigidity of the first connecting part 31 higher than the rigidity of the second connecting part 32. The rigidity of the first connection part 31 is preferably set to 1.2 times or more of the rigidity of the second connection part 32, and preferably 3 times or less of the rigidity of the second connection part 32. If the rigidity of the first connecting part 31 is greater than three times the rigidity of the second connecting part 32, the rigidity balance between the first connecting part 31 and the second connecting part 32 is deteriorated, and the uniformity may be deteriorated.

一方、仮にタイヤ幅方向一方側WD1を車両内側として非空気圧タイヤTを車両に装着した場合、第2連結部32の剛性を第1連結部31の剛性よりも高くすることで、レーンチェンジやカーブでの横力によるGを第1連結部31が吸収するため、振動を抑制し乗り心地を向上できる。さらに、キャンバー角が0°、及びネガティブキャンバーの場合には、接地面積の広い車両内側のショルダー剛性が高いため、乗り心地に加えてコーナリング性能も向上できる。   On the other hand, if the non-pneumatic tire T is attached to the vehicle with the tire width direction one side WD1 as the vehicle inner side, the rigidity of the second connecting portion 32 is made higher than the rigidity of the first connecting portion 31, thereby allowing lane changes and curves. Since the 1st connection part 31 absorbs G by lateral force in this, a vibration can be suppressed and riding comfort can be improved. Furthermore, in the case of a camber angle of 0 ° and a negative camber, the shoulder rigidity inside the vehicle with a large ground contact area is high, so that cornering performance can be improved in addition to ride comfort.

(3)前述の実施形態では、連結部3は、タイヤ周方向CDに複数に分割されている例を示したが、図6Aに示すように、タイヤ全周に亘って同一の略X字断面形状を有し、タイヤ周方向CDに連続する連続体としてもよい。また、図6Bに示すように、中間環状部4を備える場合の外側連結部6についても同様である。   (3) In the above-mentioned embodiment, although the connection part 3 showed the example divided | segmented into plurality in tire circumferential direction CD, as shown to FIG. 6A, the same substantially X-shaped cross section over a tire circumference. It is good also as a continuous body which has a shape and continues in tire circumferential direction CD. Moreover, as shown to FIG. 6B, it is the same also about the outer side connection part 6 in the case of providing the intermediate | middle annular part 4. FIG.

(4)前述の実施形態では、タイヤ周方向CDから見た第1連結部31及び第2連結部32に湾曲部が形成されている例を示したが、第1連結部31及び第2連結部32は湾曲部が形成されていない平板状でもよい。   (4) In the above-described embodiment, an example in which curved portions are formed in the first connecting portion 31 and the second connecting portion 32 viewed from the tire circumferential direction CD has been described. However, the first connecting portion 31 and the second connecting portion are illustrated. The portion 32 may have a flat plate shape on which no curved portion is formed.

以下、本発明の構成と効果を具体的に示す実施例等について説明する。なお、実施例等における評価項目は下記のようにして測定を行った。   Examples and the like specifically showing the configuration and effects of the present invention will be described below. In addition, the evaluation item in an Example etc. measured as follows.

(1)転がり抵抗
ドラム走行試験にて、ISO28580に準じて転がり抵抗を測定した。比較例1の結果を100として指数で評価し、当該指数が大きいほど転がり抵抗が小さいことを示す。
(1) Rolling resistance In the drum running test, rolling resistance was measured according to ISO28580. The result of Comparative Example 1 is evaluated as an index with the value of 100, and the larger the index, the lower the rolling resistance.

(2)操縦安定性能
車両にテストタイヤを装着して、4名のパネラーがテストコースにおいて発進、旋回、制動につき総合的に官能試験を行った。比較例1の結果を100として指数で評価し、当該指数が大きいほど操縦安定性能に優れていることを示す。
(2) Steering stability performance A test tire was mounted on the vehicle, and four panelists conducted a comprehensive sensory test on starting, turning and braking on the test course. The result of Comparative Example 1 is evaluated as an index with the value of 100, and the larger the index, the better the steering stability performance.

(3)耐久性能
直径1.7mmのドラムを備えた室内ドラム試験機を使用し、空気圧を0kPa、試験速度を80km/hとし、タイヤ負荷荷重をJIS規定の85%から始め、規定時間ごとに荷重を上げていき、最終的に140%で走行させ、走行試験を行った。15000km走行後に故障が生じなかった場合を「○」とした。
(3) Durability Performance Using an indoor drum testing machine equipped with a drum with a diameter of 1.7 mm, the air pressure is 0 kPa, the test speed is 80 km / h, and the tire load is started from 85% of the JIS standard at every specified time. The load was increased and the vehicle was finally run at 140%, and a running test was conducted. The case where no failure occurred after traveling 15000 km was marked as “◯”.

比較例1
表1に示す寸法および物性等にて、図7に示すような、内側環状部1、中間環状部4、外側環状部2、内側スポーク(内側連結部5に相当)、外側スポーク(外側連結部6に相当)を備える支持構造体、その外周に設けられた3層の補強層7、並びにトレッド層8を備える非空気圧タイヤを作製し、上記性能を評価した。内側連結部5及び外側連結部6は、タイヤ幅方向に連続する板状体とした。転がり抵抗、操縦安定性能、耐久性能の結果を表1に併せて示す。
Comparative Example 1
With the dimensions and physical properties shown in Table 1, as shown in FIG. 7, the inner annular portion 1, the intermediate annular portion 4, the outer annular portion 2, the inner spoke (corresponding to the inner connecting portion 5), the outer spoke (the outer connecting portion). 6), a non-pneumatic tire including a three-layer reinforcing layer 7 provided on the outer periphery thereof, and a tread layer 8 was manufactured, and the above performance was evaluated. The inner connecting part 5 and the outer connecting part 6 are plate-like bodies that are continuous in the tire width direction. Table 1 also shows the results of rolling resistance, steering stability performance, and durability performance.

実施例1
表1に示す寸法および物性等にて、図6Aに示すような、内側環状部1、外側環状部2、外側スポーク(連結部3に相当)を備える支持構造体、その外周に設けられた3層の補強層7、並びにトレッド層8を備える非空気圧タイヤを作製し、上記性能を評価した。転がり抵抗、操縦安定性能、耐久性能の結果を表1に併せて示す。
Example 1
A support structure including an inner annular portion 1, an outer annular portion 2, and outer spokes (corresponding to the connecting portion 3) as shown in FIG. A non-pneumatic tire including the reinforcing layer 7 of the layer and the tread layer 8 was produced, and the performance was evaluated. Table 1 also shows the results of rolling resistance, steering stability performance, and durability performance.

実施例2
表1に示す寸法および物性等にて、図6Bに示すような、内側環状部1、中間環状部4、外側環状部2、内側スポーク(内側連結部5)、外側スポーク(外側連結部6に相当)を備える支持構造体、その外周に設けられた3層の補強層7、並びにトレッド層8を備える非空気圧タイヤを作製し、上記性能を評価した。内側連結部5は、比較例1と同様、タイヤ幅方向に連続する板状体とした。転がり抵抗、操縦安定性能、耐久性能の結果を表1に併せて示す。
Example 2
With the dimensions and physical properties shown in Table 1, as shown in FIG. 6B, the inner annular portion 1, the intermediate annular portion 4, the outer annular portion 2, the inner spoke (inner connecting portion 5), the outer spoke (in the outer connecting portion 6). A non-pneumatic tire provided with a support structure provided with a corresponding structure), three reinforcing layers 7 provided on the outer periphery of the support structure, and a tread layer 8 was evaluated. As in Comparative Example 1, the inner connecting portion 5 was a plate-like body that was continuous in the tire width direction. Table 1 also shows the results of rolling resistance, steering stability performance, and durability performance.

実施例3
表1に示す寸法および物性等にて、図1に示すような、内側環状部1、外側環状部2、外側スポーク(連結部3に相当)を備える支持構造体、その外周に設けられた3層の補強層7、並びにトレッド層8を備える非空気圧タイヤを作製し、上記性能を評価した。転がり抵抗、操縦安定性能、耐久性能の結果を表1に併せて示す。
Example 3
With the dimensions and physical properties shown in Table 1, as shown in FIG. 1, a support structure including an inner annular portion 1, an outer annular portion 2, and outer spokes (corresponding to connecting portions 3), 3 provided on the outer periphery thereof. A non-pneumatic tire including the reinforcing layer 7 of the layer and the tread layer 8 was produced, and the performance was evaluated. Table 1 also shows the results of rolling resistance, steering stability performance, and durability performance.

実施例4
隣り合う外側スポーク(連結部3に相当)同士の間隔を異ならせた以外は実施例4と同じとした非空気圧タイヤを作製し、上記性能を評価した。転がり抵抗、操縦安定性能、耐久性能の結果を表1に併せて示す。
Example 4
A non-pneumatic tire was produced in the same manner as in Example 4 except that the distance between adjacent outer spokes (corresponding to the connecting portion 3) was different, and the performance was evaluated. Table 1 also shows the results of rolling resistance, steering stability performance, and durability performance.

なお、何れの非空気圧タイヤも、タイヤの外径を535mm、タイヤ幅を140mm、リム径を14インチとした。   In each non-pneumatic tire, the outer diameter of the tire was 535 mm, the tire width was 140 mm, and the rim diameter was 14 inches.

Figure 0006076704
Figure 0006076704

表1の結果から以下のことが分かる。実施例1〜4の非空気圧タイヤは、比較例1と比較して、耐久性能を維持しつつ、操縦安定性の悪化と転がり抵抗の増大を抑制できている。実施例2は、実施例1と比較して、内側スポークが配置されていることで、剛性が向上し、操縦安定性能は良くなるが、接地面積が減少し転がり抵抗は大きくなっている。実施例3は、実施例1と比較して、スポークが分割されていることで、接地面積が広がるため、操縦安定性能は良くなり、転がり抵抗は小さくなっている。実施例4は、実施例3と比較して、スポークの周方向間隔が広くなっていることで、若干剛性が低下して、接地面積が広がるため、操縦安定性能は下がるが、転がり抵抗は小さくなっている。   From the results in Table 1, the following can be understood. Compared with Comparative Example 1, the non-pneumatic tires of Examples 1 to 4 can suppress deterioration in steering stability and increase in rolling resistance while maintaining durability performance. In the second embodiment, compared to the first embodiment, since the inner spokes are arranged, the rigidity is improved and the steering stability performance is improved, but the ground contact area is reduced and the rolling resistance is increased. In the third embodiment, compared to the first embodiment, since the spokes are divided, the ground contact area is widened, the steering stability performance is improved, and the rolling resistance is reduced. Compared with Example 3, Example 4 has a slightly wider circumferential distance between the spokes, so that the rigidity is slightly lowered and the ground contact area is widened, so that the steering stability performance is lowered, but the rolling resistance is small. It has become.

1 内側環状部
2 外側環状部
3 連結部
4 中間環状部
5 内側連結部
6 外側連結部
31 第1連結部
32 第2連結部
61 第1外側連結部
62 第2外側連結部
SS 支持構造体
T 非空気圧タイヤ
CD タイヤ周方向
WD タイヤ幅方向
WD1 タイヤ幅方向一方側
WD2 タイヤ幅方向他方側
DESCRIPTION OF SYMBOLS 1 Inner annular part 2 Outer annular part 3 Connection part 4 Middle annular part 5 Inner connection part 6 Outer connection part 31 1st connection part 32 2nd connection part 61 1st outer connection part 62 2nd outer connection part SS Support structure T Non-pneumatic tire CD Tire circumferential direction WD Tire width direction WD1 Tire width direction one side WD2 Tire width direction other side

Claims (3)

車両からの荷重を支持する支持構造体を備える非空気圧タイヤにおいて、
前記支持構造体は、内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、前記内側環状部と前記外側環状部とを連結する連結部とを備え、
前記連結部は、タイヤ幅方向断面において、前記内側環状部のタイヤ幅方向一方側から前記外側環状部のタイヤ幅方向他方側へ向かって延設される第1連結部と、前記第1連結部と交差するように前記内側環状部の前記タイヤ幅方向他方側から前記外側環状部の前記タイヤ幅方向一方側へ向かって延設される第2連結部とで構成されており、
タイヤ周方向から見た前記第1連結部及び前記第2連結部には、タイヤ径方向に湾曲する湾曲部が少なくとも1つ形成されていることを特徴とする非空気圧タイヤ。
In a non-pneumatic tire including a support structure that supports a load from a vehicle,
The support structure includes an inner annular portion, an outer annular portion provided concentrically on the outer side of the inner annular portion, and a connecting portion that connects the inner annular portion and the outer annular portion,
In the cross section in the tire width direction, the connecting portion includes a first connecting portion extending from one side in the tire width direction of the inner annular portion toward the other side in the tire width direction of the outer annular portion, and the first connecting portion. A second connecting portion extending from the other side of the tire annular direction of the inner annular portion toward the one side of the outer annular portion of the outer annular portion ,
A non-pneumatic tire characterized in that at least one curved portion that is curved in the tire radial direction is formed in the first coupling portion and the second coupling portion as seen from the tire circumferential direction .
前記連結部は、タイヤ周方向に複数に分割されていることを特徴とする請求項1に記載の非空気圧タイヤ。   The non-pneumatic tire according to claim 1, wherein the connecting portion is divided into a plurality of portions in the tire circumferential direction. タイヤ周方向に分割された複数の前記連結部は、隣り合う連結部同士の間隔が0〜5mmであることを特徴とする請求項2に記載の非空気圧タイヤ。   The non-pneumatic tire according to claim 2, wherein the plurality of connecting portions divided in the tire circumferential direction have an interval between adjacent connecting portions of 0 to 5 mm.
JP2012252306A 2012-11-16 2012-11-16 Non-pneumatic tire Active JP6076704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012252306A JP6076704B2 (en) 2012-11-16 2012-11-16 Non-pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012252306A JP6076704B2 (en) 2012-11-16 2012-11-16 Non-pneumatic tire

Publications (2)

Publication Number Publication Date
JP2014100932A JP2014100932A (en) 2014-06-05
JP6076704B2 true JP6076704B2 (en) 2017-02-08

Family

ID=51023888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012252306A Active JP6076704B2 (en) 2012-11-16 2012-11-16 Non-pneumatic tire

Country Status (1)

Country Link
JP (1) JP6076704B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101796231B1 (en) 2016-07-29 2017-12-01 금호타이어 주식회사 Non pneumatic tire
EP3727884B1 (en) * 2017-12-21 2023-06-21 Compagnie Generale Des Etablissements Michelin Reinforced resilient support for a non-pneumatic tire
CN110758020B (en) * 2019-10-18 2021-05-11 南京航空航天大学 Non-pneumatic tire capable of reducing rolling resistance and recovering energy
US20220194129A1 (en) * 2020-12-21 2022-06-23 The Goodyear Tire & Rubber Company Non-pneumatic tire and wheel assembly with reinforced spoke structure
CN113199909A (en) * 2021-05-31 2021-08-03 中科院长春应化所黄埔先进材料研究院 Non-pneumatic tire

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1239854A (en) * 1984-04-16 1988-08-02 Uniroyal, Inc. Non-pneumatic tire with supporting and cushioning members
JPH02179503A (en) * 1988-12-29 1990-07-12 Yokohama Rubber Co Ltd:The Non-pneumatic tire
US20090173421A1 (en) * 2008-01-08 2009-07-09 Freudenberg-Nok General Partnership Flatless Hybrid Isolated Tire

Also Published As

Publication number Publication date
JP2014100932A (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP6092046B2 (en) Non-pneumatic tire
JP6099519B2 (en) Non-pneumatic tire
JP4530231B2 (en) Non-pneumatic tire
JP5972149B2 (en) Non-pneumatic tire
JP6378625B2 (en) Non-pneumatic tire
JP5314621B2 (en) Non-pneumatic tire
JP6013899B2 (en) Non-pneumatic tire
JP5808048B2 (en) Non-pneumatic tire
JP6159234B2 (en) Non-pneumatic tire
JP6445238B2 (en) Non-pneumatic tire
JP5921364B2 (en) Non-pneumatic tire
JP6215082B2 (en) Non-pneumatic tire
JP2011246051A (en) Non-pneumatic tire
JP6076704B2 (en) Non-pneumatic tire
JP6226734B2 (en) Non-pneumatic tire
JP6529834B2 (en) Non pneumatic tire
JP6377515B2 (en) Non-pneumatic tire
JP6092045B2 (en) Non-pneumatic tire
JP5543846B2 (en) Non-pneumatic tire
JP6025498B2 (en) Non-pneumatic tire
JP6182452B2 (en) Non-pneumatic tire
JP2013018462A (en) Non-pneumatic tire
JP6351109B2 (en) Non-pneumatic tire
JP6143660B2 (en) Non-pneumatic tire
JP6045401B2 (en) Non-pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170111

R150 Certificate of patent or registration of utility model

Ref document number: 6076704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250