JP2013018462A - Non-pneumatic tire - Google Patents

Non-pneumatic tire Download PDF

Info

Publication number
JP2013018462A
JP2013018462A JP2011155813A JP2011155813A JP2013018462A JP 2013018462 A JP2013018462 A JP 2013018462A JP 2011155813 A JP2011155813 A JP 2011155813A JP 2011155813 A JP2011155813 A JP 2011155813A JP 2013018462 A JP2013018462 A JP 2013018462A
Authority
JP
Japan
Prior art keywords
tire
annular portion
pneumatic tire
width direction
tire width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011155813A
Other languages
Japanese (ja)
Inventor
Ishiki Yokota
石樹 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2011155813A priority Critical patent/JP2013018462A/en
Publication of JP2013018462A publication Critical patent/JP2013018462A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a non-pneumatic tire which is used for a vehicle performing cornering with a camber angle, and which has improved durability by mitigating stress concentration of spokes.SOLUTION: The non-pneumatic tire T includes: an inner circular part 1; an outer circular part 3 having a tread face 6 which is provided in a concentric circle shape outside the inner circular part 1 and which has such a curvature that outer diameters decrease gradually from a center to both sides in the tire width direction; and a plurality of connection parts 4 and 5 for connecting the inner circular part 1 and the outer circular part 3. In a tire meridian cross part, an inner circumferential surface 7 of the outer circular part 3 is formed in a convex shape in which a center portion 7a in the tire width direction projects to inside in the tire diameter direction more than both side portions 7b.

Description

本発明は、内側環状部と、その内側環状部の外側に同心円状に設けられ、かつタイヤ幅方向の中央部から両側部へ向かって外径が徐々に小さくなるような曲率を有するトレッド面を備える外側環状部と、前記内側環状部と前記外側環状部とを連結する複数の連結部とを備える非空気圧タイヤ(non−pneumatic tire)に関する。   The present invention includes an inner annular portion and a tread surface that is provided concentrically on the outer side of the inner annular portion and has a curvature such that the outer diameter gradually decreases from the center portion in the tire width direction toward both side portions. The present invention relates to a non-pneumatic tire including an outer annular portion that is provided and a plurality of connecting portions that connect the inner annular portion and the outer annular portion.

空気入りタイヤは、荷重の支持機能、接地面からの衝撃吸収能、および動力等の伝達能(加速、停止、方向転換)を有し、このため、多くの車両、特に自転車、オートバイ、自動車、トラックに採用されている。   The pneumatic tire has a load supporting function, a shock absorbing ability from the ground contact surface, and a transmission ability (acceleration, stop, change of direction) such as power. For this reason, many vehicles, particularly bicycles, motorcycles, automobiles, It is used in trucks.

特に、これらの能力は自動車、その他のモーター車両の発展に大きく貢献した。更に、空気入りタイヤの衝撃吸収能力は、医療機器や電子機器の運搬用カート、その他の用途でも有用である。   In particular, these capabilities greatly contributed to the development of automobiles and other motor vehicles. Furthermore, the impact absorbing ability of pneumatic tires is useful for medical equipment and electronic equipment transport carts and other applications.

従来の非空気圧タイヤとしては、例えばソリッドタイヤ、スプリングタイヤ、クッションタイヤ等が存在するが、空気入りタイヤの優れた性能を有していない。例えば、ソリッドタイヤおよびクッションタイヤは、接地部分の圧縮によって荷重を支持するが、この種のタイヤは重くて、堅く、空気入りタイヤのような衝撃吸収能力はない。また、非空気圧タイヤでは、弾性を高めてクッション性を改善することも可能であるが、空気入りタイヤが有するような荷重支持能または耐久性が悪くなるという問題がある。   Conventional non-pneumatic tires include, for example, solid tires, spring tires, cushion tires, and the like, but do not have the superior performance of pneumatic tires. For example, solid tires and cushion tires support the load by compressing the contact portion, but this type of tire is heavy and stiff, and does not have the ability to absorb shock like a pneumatic tire. Further, in the non-pneumatic tire, it is possible to improve the cushioning property by increasing the elasticity, but there is a problem that the load supporting ability or the durability as the pneumatic tire has is deteriorated.

そこで、下記の特許文献1には、空気入りタイヤと同様な動作特性を有する非空気圧タイヤを開発する目的で、タイヤに加わる荷重を支持する補強された環状バンドと、この補強された環状バンドとホイールまたはハブとの間で張力によって荷重力を伝達する複数のスポークとを有する非空気圧タイヤが提案されている。特許文献1の非空気圧タイヤは、空気入りタイヤのような空気漏れの心配はなく、また、ソリッドタイヤなどのような重量の問題もない。   Therefore, in Patent Document 1 below, for the purpose of developing a non-pneumatic tire having the same operating characteristics as a pneumatic tire, a reinforced annular band that supports a load applied to the tire, and the reinforced annular band, Non-pneumatic tires have been proposed that have a plurality of spokes that transmit load forces by tension with a wheel or hub. The non-pneumatic tire of Patent Document 1 has no fear of air leakage like a pneumatic tire, and there is no weight problem like a solid tire.

しかしながら、特許文献1に記載された非空気圧タイヤは、接地するトレッド面がほぼ平坦になっており、キャンバーを付けてコーナリングする車両には不向きである。すなわち、トレッド面が平坦な非空気圧タイヤでは、キャンバーが付いた状態の接地面積は限りなくゼロに近付き、グリップ力が大幅に低下して滑りを起こす。   However, the non-pneumatic tire described in Patent Document 1 has a substantially flat tread surface to be grounded, and is not suitable for a vehicle that is cornered with a camber. That is, in a non-pneumatic tire with a flat tread surface, the ground contact area with the camber attached approaches as much as zero, and the gripping force is greatly reduced to cause slipping.

そこで、キャンバーを付けてコーナリングする車両用として、タイヤ幅方向の中央部から両側部へ向かって外径が徐々に小さくなるような曲率を有するトレッド面を備える非空気圧タイヤが開発されている。しかし、本発明者が研究を重ねたところ、トレッド面が曲率を有する場合、スポークのタイヤ径方向及び幅方向の中央部に応力が集中し、この応力集中部を起点として早期にタイヤの破損に至り耐久性が低下することが判明した。   In view of this, a non-pneumatic tire having a tread surface having a curvature that gradually decreases in outer diameter from a central portion in the tire width direction toward both side portions has been developed for a vehicle that is cornered with a camber. However, as a result of repeated research by the present inventor, when the tread surface has a curvature, stress is concentrated in the central portion of the spoke in the radial direction and the width direction of the spoke, and the tire is quickly damaged by using the stress concentrated portion as a starting point. It was found that the durability was lowered.

特表2005−500932号公報Special Table 2005-500932 Publication

そこで、本発明の目的は、キャンバーを付けてコーナリングする車両用であって、スポークの応力集中を緩和して耐久性を向上させた非空気圧タイヤを提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a non-pneumatic tire that is used for a vehicle that is cornered with a camber and has improved durability by relaxing stress concentration of spokes.

上記目的は、下記の如き本発明により達成できる。
即ち、本発明の非空気圧タイヤは、内側環状部と、その内側環状部の外側に同心円状に設けられ、タイヤ幅方向の中央部から両側部へ向かって外径が徐々に小さくなるような曲率を有するトレッド面を備える外側環状部と、前記内側環状部と前記外側環状部とを連結する複数の連結部とを備える非空気圧タイヤであって、タイヤ子午線断面において、前記外側環状部の内周面は、タイヤ幅方向の中央部が両側部よりもタイヤ径方向内側に突出した凸形状に形成されていることを特徴とする。
The above object can be achieved by the present invention as described below.
That is, the non-pneumatic tire of the present invention is provided with a concentric circular shape on the inner annular portion and on the outer side of the inner annular portion so that the outer diameter gradually decreases from the center portion in the tire width direction toward both side portions. A non-pneumatic tire comprising an outer annular portion having a tread surface having a plurality of connecting portions that connect the inner annular portion and the outer annular portion, and in the tire meridian cross section, the inner circumference of the outer annular portion The surface is formed in a convex shape in which a central portion in the tire width direction protrudes inward in the tire radial direction from both side portions.

タイヤ幅方向の中央部から両側部へ向かって外径が徐々に小さくなるような曲率を有するトレッド面の場合、連結部(スポーク)のタイヤ径方向及び幅方向の中央部に応力が集中する。本発明によれば、連結部のタイヤ径方向長さは、タイヤ幅方向の中央部が両側部よりも短くなるので、連結部のタイヤ径方向及び幅方向の中央部の応力集中を緩和することができる。これにより、応力集中部を基点とした早期のタイヤ破損を防止し、非空気圧タイヤの耐久性を向上させることができる。   In the case of a tread surface having a curvature such that the outer diameter gradually decreases from the center portion in the tire width direction toward both side portions, stress concentrates on the tire radial direction and the width direction center portion of the connecting portion (spoke). According to the present invention, the tire radial direction length of the connecting portion is such that the central portion in the tire width direction is shorter than the both side portions, so that stress concentration in the tire radial direction and the central portion in the width direction of the connecting portion is alleviated. Can do. Thereby, the early tire breakage based on the stress concentration portion can be prevented, and the durability of the non-pneumatic tire can be improved.

本発明にかかる非空気圧タイヤにおいて、前記外側環状部の内周面は、円弧状の凸形状に形成されていることが好ましい。外側環状部の内周面を円弧状の凸形状とすることで、外側環状部と連結部の連結界面が滑らかとなり両者の接着性がよく、非空気圧タイヤの耐久性をさらに向上させることができる。   In the non-pneumatic tire according to the present invention, the inner peripheral surface of the outer annular portion is preferably formed in an arcuate convex shape. By making the inner peripheral surface of the outer annular part an arc-shaped convex shape, the connection interface between the outer annular part and the connecting part becomes smooth, the adhesiveness between them is good, and the durability of the non-pneumatic tire can be further improved. .

本発明にかかる非空気圧タイヤにおいて、前記外側環状部の内周面は、前記両側部を基準とした前記中央部の突出高さがタイヤ幅の5〜20%となるように形成されていることが好ましい。中央部の突出高さがこの範囲であれば、連結部の応力集中を緩和する効果を奏しつつ、連結部のタイヤ径方向長さが短くなることによる乗り心地の悪化や外側環状部の重量増加による燃費性能の悪化を抑制できる。   In the non-pneumatic tire according to the present invention, the inner peripheral surface of the outer annular portion is formed such that the protruding height of the central portion with respect to the both side portions is 5 to 20% of the tire width. Is preferred. If the projecting height of the central portion is within this range, while reducing the stress concentration at the connecting portion, the tire radial direction length of the connecting portion is shortened and the ride comfort is deteriorated and the weight of the outer annular portion is increased. Deterioration of fuel consumption performance due to can be suppressed.

本発明の非空気圧タイヤの一例を示す正面図Front view showing an example of the non-pneumatic tire of the present invention 本発明の非空気圧タイヤの一例を示すタイヤ子午線断面図Tire meridian cross-sectional view showing an example of the non-pneumatic tire of the present invention 別実施形態に係る非空気圧タイヤを示すタイヤ子午線断面図Tire meridian cross-sectional view showing a non-pneumatic tire according to another embodiment 別実施形態に係る非空気圧タイヤを示すタイヤ子午線断面図Tire meridian cross-sectional view showing a non-pneumatic tire according to another embodiment 評価試験方法を説明するための模式図Schematic diagram for explaining the evaluation test method 比較例1の非空気圧タイヤを示すタイヤ子午線断面図Tire meridian cross-sectional view showing a non-pneumatic tire of Comparative Example 1 比較例2〜6の非空気圧タイヤを示すタイヤ子午線断面図Tire meridian cross-sectional view showing non-pneumatic tires of Comparative Examples 2 to 6 実施例1〜5の非空気圧タイヤを示すタイヤ子午線断面図Tire meridian cross-sectional view showing non-pneumatic tires of Examples 1 to 5

以下、本発明の実施の形態について、図面を参照しながら説明する。図1は本発明の非空気圧タイヤの一例を示す正面図である。図2は、本発明の非空気圧タイヤの一例を示すタイヤ子午線断面図であって、図1のI−I断面図である。ここで、Oは軸芯を、Wはタイヤ幅を、Hはタイヤ断面高さを、それぞれ示している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a front view showing an example of a non-pneumatic tire of the present invention. 2 is a tire meridian cross-sectional view showing an example of the non-pneumatic tire of the present invention, and is a cross-sectional view taken along the line II of FIG. Here, O indicates the shaft core, W indicates the tire width, and H indicates the tire cross-sectional height.

本発明の非空気圧タイヤTは、キャンバーを付けてコーナリングする車両に用いられるのが好ましい。本実施形態の非空気圧タイヤTは、内側環状部1と、その外側に同心円状に設けられた中間環状部2と、その外側に同心円状に設けられ、タイヤ幅方向の中央部から両側部へ向かって外径が徐々に小さくなるような曲率を有するトレッド面6を備える外側環状部3と、内側環状部1と中間環状部2とを連結する複数の内側連結部4と、外側環状部3と中間環状部2とを連結する複数の外側連結部5とを備えている。本実施形態の非空気圧タイヤTは中間環状部2を備えているが、中間環状部2は必ずしも必要ではなく、中間環状部2を設けず、内側連結部4と外側連結部5とが連続して1本の連結部を構成してもよい。この場合、非空気圧タイヤTは、内側環状部1と、その内側環状部1の外側に同心円状に設けられ、かつタイヤ幅方向の中央部から両側部へ向かって外径が徐々に小さくなるような曲率を有するトレッド面6を備える外側環状部3と、内側環状部1と外側環状部3とを連結する複数の連結部とを備える構成となる。   The non-pneumatic tire T of the present invention is preferably used in a vehicle that is cornered with a camber. The non-pneumatic tire T according to the present embodiment includes an inner annular portion 1, an intermediate annular portion 2 provided concentrically on the outer side thereof, and a concentric outer shape provided on the outer side thereof, from the central portion in the tire width direction to both side portions. An outer annular portion 3 having a tread surface 6 having a curvature such that the outer diameter gradually decreases, a plurality of inner coupling portions 4 that couple the inner annular portion 1 and the intermediate annular portion 2, and the outer annular portion 3. And a plurality of outer connecting portions 5 that connect the intermediate annular portion 2 to each other. Although the non-pneumatic tire T of the present embodiment includes the intermediate annular portion 2, the intermediate annular portion 2 is not always necessary, the intermediate annular portion 2 is not provided, and the inner connecting portion 4 and the outer connecting portion 5 are continuous. One connecting portion may be configured. In this case, the non-pneumatic tire T is provided concentrically on the inner annular portion 1 and on the outer side of the inner annular portion 1, and the outer diameter gradually decreases from the center portion in the tire width direction toward both side portions. It becomes the structure provided with the outer side annular part 3 provided with the tread surface 6 which has a certain curvature, and the some connection part which connects the inner side annular part 1 and the outer side annular part 3. As shown in FIG.

内側環状部1は、ユニフォミティを向上させる観点から、厚みが一定の円筒形状であることが好ましい。また、内側環状部1の内周面には、車軸やリムとの装着のために、嵌合性を保持するための凹凸等を設けるのが好ましい。   The inner annular portion 1 is preferably a cylindrical shape having a constant thickness from the viewpoint of improving uniformity. Moreover, it is preferable to provide the inner peripheral surface of the inner annular portion 1 with irregularities or the like for maintaining fitting properties for mounting with an axle or a rim.

内側環状部1の厚みは、内側連結部4に力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さHの6〜30%が好ましく、10〜20%がより好ましい。   The thickness of the inner annular portion 1 is preferably 6 to 30%, and 10 to 20% of the tire cross-section height H from the viewpoint of reducing weight and improving durability while sufficiently transmitting force to the inner connecting portion 4. More preferred.

内側環状部1の内径は、非空気圧タイヤTを装着するリムや車軸の寸法などに併せて適宜決定されるが、本実施形態では中間環状部2を備えるために、内側環状部1の内径をより小さくすることが可能である。内側環状部1の内径は、50〜560mmが好ましく、80〜200mmがより好ましい。   An inner diameter of the inner annular portion 1 is appropriately determined in accordance with a rim on which the non-pneumatic tire T is mounted, a size of an axle, and the like. However, in the present embodiment, the inner annular portion 1 is provided with an inner diameter of the inner annular portion 1. It is possible to make it smaller. The inner annular portion 1 has an inner diameter of preferably 50 to 560 mm, and more preferably 80 to 200 mm.

内側環状部1のタイヤ幅方向の幅は、用途、車軸の長さ等に応じて適宜決定されるが、30〜100mmが好ましく、40〜80mmがより好ましい。   The width in the tire width direction of the inner annular portion 1 is appropriately determined according to the use, the length of the axle, and the like, but is preferably 30 to 100 mm, and more preferably 40 to 80 mm.

内側環状部1の引張モジュラスは、内側連結部4に力を十分伝達しつつ、軽量化や耐久性の向上、装着性を図る観点から、1〜180000MPaが好ましく、1〜50000MPaがより好ましい。なお、本発明における引張モジュラスは、JIS K7312に準じて引張試験を行い、10%伸び時の引張応力の値である。   The tensile modulus of the inner annular portion 1 is preferably from 1 to 180000 MPa, more preferably from 1 to 50000 MPa, from the viewpoint of reducing weight, improving durability, and wearing properties while sufficiently transmitting force to the inner connecting portion 4. In addition, the tensile modulus in this invention is a value of the tensile stress at the time of 10% elongation when a tensile test is performed according to JIS K7312.

中間環状部2は、ユニフォミティを向上させる観点から、厚みが一定の円筒形状であることが好ましいが、多角形筒状などでもよい。   The intermediate annular portion 2 is preferably a cylindrical shape with a constant thickness from the viewpoint of improving uniformity, but may be a polygonal cylindrical shape or the like.

中間環状部2の厚みは、内側連結部4と外側連結部5とを十分補強しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さHの3〜10%が好ましく、4〜9%がより好ましい。   The thickness of the intermediate annular portion 2 is preferably 3 to 10% of the tire cross-section height H from the viewpoint of reducing the weight and improving the durability while sufficiently reinforcing the inner connecting portion 4 and the outer connecting portion 5. -9% is more preferable.

中間環状部2の内径は、内側環状部1の内径を超えて、外側環状部3の内径未満となる。但し、中間環状部2の内径としては、内側連結部4と外側連結部5との補強効果を向上させる観点から、外側環状部3の内径から内側環状部1の内径を差し引いた値の20〜80%の値を、内側環状部1の内径に加えた内径とすることが好ましく、30〜60%の値を、内側環状部1の内径に加えた内径とすることがより好ましい。   The inner annular portion 2 has an inner diameter that exceeds the inner diameter of the inner annular portion 1 and less than the inner diameter of the outer annular portion 3. However, the inner ring portion 2 has an inner diameter of 20 to a value obtained by subtracting the inner ring portion 1 from the inner ring portion 3 from the viewpoint of improving the reinforcing effect of the inner connecting portion 4 and the outer connecting portion 5. The value of 80% is preferably the inner diameter added to the inner diameter of the inner annular portion 1, and the value of 30 to 60% is more preferably the inner diameter added to the inner diameter of the inner annular portion 1.

中間環状部2のタイヤ幅方向の幅は、用途等に応じて適宜決定されるが、30〜100mmが好ましく、40〜80mmがより好ましい。   The width in the tire width direction of the intermediate annular portion 2 is appropriately determined according to the use and the like, but is preferably 30 to 100 mm, and more preferably 40 to 80 mm.

中間環状部2の引張モジュラスは、1〜180000MPaが好ましく、1〜50000MPaがより好ましい。   The tensile modulus of the intermediate annular portion 2 is preferably 1 to 180000 MPa, and more preferably 1 to 50000 MPa.

外側環状部3は、タイヤ幅方向に厚みが変化する円筒形状である。外側環状部3の外周面はトレッド面6となっている。トレッド面6は、図2に示されるように、タイヤ子午線断面において、タイヤ幅方向の中央部から両側部へ向かって外径が徐々に小さくなるような曲率を有する円弧状となっている。トレッド面6が、曲率を有することで、キャンバーを付けてコーナリングする際にも接地面積が小さくなりすぎず、直進走行時とコーナリング時との間の接地面積の変動が少なくなる。トレッド面6の曲率半径Rは、40〜100mmが好ましく、40〜65mmがより好ましい。曲率半径Rが40mmより小さい場合、キャンバー時の接地面積が過大となり、グリップ性能が急激に増加するため、急停止に近い状況となってしまう。また、曲率半径Rが100mmよりも大きい場合、キャンバー時の接地面積が過小となり、グリップ性能が急激に低下するため、滑りが発生してしまう。トレッド面6には、トレッドパターンとして、従来の空気入りタイヤと同様のパターンを設けることが可能である。   The outer annular portion 3 has a cylindrical shape whose thickness changes in the tire width direction. The outer peripheral surface of the outer annular portion 3 is a tread surface 6. As shown in FIG. 2, the tread surface 6 has an arc shape having a curvature such that the outer diameter gradually decreases from the center in the tire width direction toward both sides in the tire meridian cross section. Since the tread surface 6 has a curvature, the ground contact area does not become too small even when cornering with a camber, and the variation of the ground contact area between straight traveling and cornering is reduced. The radius of curvature R of the tread surface 6 is preferably 40 to 100 mm, and more preferably 40 to 65 mm. When the curvature radius R is smaller than 40 mm, the ground contact area at the time of camber becomes excessive, and the grip performance increases rapidly, resulting in a situation close to a sudden stop. Moreover, when the curvature radius R is larger than 100 mm, the ground contact area at the time of camber becomes too small, and the grip performance is drastically lowered, so that slip occurs. The tread surface 6 can be provided with the same pattern as a conventional pneumatic tire as a tread pattern.

外側環状部3の内周面7は、タイヤ子午線断面において、タイヤ幅方向の中央部7aが両側部7bよりもタイヤ径方向内側に突出した円弧状の凸形状に形成されている。内周面7は、両側部7bを基準とした中央部7aの突出高さhがタイヤ幅Wの5〜20%となるように形成されていることが好ましく、5〜10%となるように形成されていることがより好ましい。突出高さhがタイヤ幅Wの5%以下の場合、外側連結部5の応力集中を緩和する効果が得られにくい。また、突出高さhがタイヤ幅Wの20%以上の場合、外側環状部3の重量が増加して燃費性能の悪化に繋がったり、外側連結部5が短くなって変形しにくくなり乗り心地が悪化したりする。   In the tire meridian cross section, the inner peripheral surface 7 of the outer annular portion 3 is formed in an arcuate convex shape in which a central portion 7a in the tire width direction protrudes inward in the tire radial direction from both side portions 7b. The inner peripheral surface 7 is preferably formed such that the protruding height h of the central portion 7a with respect to both side portions 7b is 5 to 20% of the tire width W, so that it becomes 5 to 10%. More preferably, it is formed. When the protrusion height h is 5% or less of the tire width W, it is difficult to obtain the effect of relaxing the stress concentration of the outer connecting portion 5. In addition, when the protruding height h is 20% or more of the tire width W, the weight of the outer annular portion 3 increases, leading to deterioration of fuel consumption performance, or the outer connecting portion 5 is shortened and is not easily deformed. It gets worse.

外側環状部3の内径は、その用途等に応じて適宜決定されるが、例えば、100〜600mmが好ましく、120〜300mmがより好ましい。   Although the internal diameter of the outer side annular part 3 is suitably determined according to the use etc., for example, 100-600 mm is preferable and 120-300 mm is more preferable.

外側環状部3のタイヤ幅方向の幅は、用途等に応じて適宜決定されるが、30〜100mmが好ましく、40〜80mmがより好ましい。   The width of the outer annular portion 3 in the tire width direction is appropriately determined according to the application and the like, but is preferably 30 to 100 mm, and more preferably 40 to 80 mm.

外側環状部3の引張モジュラスは、1〜180000MPaが好ましく、1〜50000MPaがより好ましい。   The tensile modulus of the outer annular portion 3 is preferably 1 to 180000 MPa, and more preferably 1 to 50000 MPa.

内側連結部4は、内側環状部1と中間環状部2とを連結するものであり、両者の間に適当な間隔を開けるなどして、タイヤ周方向に各々が独立するように複数設けられる。内側連結部4は、ユニフォミティを向上させる観点から、タイヤ周方向に規則的に設けることが好ましい。   The inner connecting portion 4 connects the inner annular portion 1 and the intermediate annular portion 2, and a plurality of inner connecting portions 4 are provided so as to be independent from each other in the tire circumferential direction, for example, by providing an appropriate interval therebetween. The inner connecting portion 4 is preferably provided regularly in the tire circumferential direction from the viewpoint of improving uniformity.

内側連結部4を全周に渡って設ける際の数(軸方向に複数設ける場合は1個として数える)としては、車両からの荷重を十分支持しつつ、軽量化、動力伝達の向上、耐久性の向上を図る観点から、20〜60個が好ましく、20〜50個がより好ましい。図1には、内側連結部4を30個設けた例を示す。   As for the number of inner connection parts 4 provided over the entire circumference (when a plurality of inner connection parts 4 are provided in the axial direction, it is counted as one), while supporting the load from the vehicle sufficiently, weight reduction, improvement of power transmission, durability From the viewpoint of improving the quality, 20 to 60 are preferable, and 20 to 50 are more preferable. FIG. 1 shows an example in which 30 inner connecting portions 4 are provided.

個々の内側連結部4の形状としては、板状体、柱状体などが挙げられるが、本実施形態では板状体の例を示す。これらの内側連結部4は、正面視断面において、タイヤ径方向又はタイヤ径方向から傾斜した方向に延びている。本発明では、ブレークポイントを高くして剛性変動を生じにくくすると共に、耐久性を向上させる観点から、正面視断面において、内側連結部4の延設方向が、タイヤ径方向±30°以内が好ましく、タイヤ径方向±15°以内がより好ましい。図1では、内側連結部4が、タイヤ径方向に延設されている例を示す。   Examples of the shape of each inner connecting portion 4 include a plate-like body and a columnar body. In this embodiment, an example of a plate-like body is shown. These inner connection parts 4 are extended in the tire radial direction or the direction inclined from the tire radial direction in the front sectional view. In the present invention, from the viewpoint of improving the durability by increasing the break point and making it difficult to change the rigidity, the extending direction of the inner connecting portion 4 is preferably within ± 30 ° in the tire radial direction in the front sectional view. The tire radial direction is more preferably within ± 15 °. FIG. 1 shows an example in which the inner connecting portion 4 is extended in the tire radial direction.

内側連結部4の厚みは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、タイヤ断面高さHの3〜12%が好ましく、4〜10%がより好ましい。   The thickness of the inner connecting portion 4 is preferably 3 to 12% of the tire cross-sectional height H from the viewpoint of reducing the weight, improving the durability, and improving the lateral rigidity while sufficiently transmitting the force from the inner annular portion 1. 4 to 10% is more preferable.

内側連結部4の引張モジュラスは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、1〜50MPaが好ましく、1〜30MPaがより好ましい。   The tensile modulus of the inner connecting portion 4 is preferably 1 to 50 MPa, more preferably 1 to 30 MPa from the viewpoint of reducing weight, improving durability, and improving lateral rigidity while sufficiently transmitting the force from the inner annular portion 1. preferable.

外側連結部5は、外側環状部3と中間環状部2とを連結するものであり、両者の間に適当な間隔を開けるなどして、タイヤ周方向に各々が独立するように複数設けられる。外側連結部5は、ユニフォミティを向上させる観点から、タイヤ周方向に規則的に設けることが好ましい。   The outer connecting portion 5 connects the outer annular portion 3 and the intermediate annular portion 2, and a plurality of outer connecting portions 5 are provided so that each is independent in the tire circumferential direction, for example, by providing an appropriate interval therebetween. The outer connecting portion 5 is preferably provided regularly in the tire circumferential direction from the viewpoint of improving uniformity.

なお、外側連結部5と内側連結部4とは全周の同じ位置に設けてもよく、異なる位置に設けてもよい。すなわち、外側連結部5と内側連結部4は、必ずしも図1のように同じ方向に連続するように延設する必要はない。   In addition, the outer side connection part 5 and the inner side connection part 4 may be provided in the same position of a perimeter, and may be provided in a different position. That is, the outer connecting portion 5 and the inner connecting portion 4 do not necessarily extend so as to be continuous in the same direction as shown in FIG.

外側連結部5を全周に渡って設ける際の数(軸方向に複数設ける場合は1個として数える)としては、車両からの荷重を十分支持しつつ、軽量化、動力伝達の向上、耐久性の向上を図る観点から、20〜60個が好ましく、20〜50個がより好ましい。図1には、外側連結部5を内側連結部4と同じく30個設けた例を示す。なお、外側連結部5の数と内側連結部4の数は、必ずしも同じとする必要はなく、外側連結部5を内側連結部4よりも多く設けてもよい。   As for the number of outer connecting parts 5 provided over the entire circumference (when a plurality of outer connecting parts 5 are provided in the axial direction, they are counted as one), while supporting the load from the vehicle sufficiently, weight reduction, improvement of power transmission, durability From the viewpoint of improving the quality, 20 to 60 are preferable, and 20 to 50 are more preferable. FIG. 1 shows an example in which 30 outer connecting parts 5 are provided in the same manner as the inner connecting part 4. In addition, the number of the outer side connection parts 5 and the number of the inner side connection parts 4 do not necessarily need to be the same, and you may provide more outer side connection parts 5 than the inner side connection parts 4. FIG.

個々の外側連結部5の形状としては、板状体、柱状体などが挙げられるが、本実施形態では板状体の例を示す。これらの外側連結部5は、正面視断面において、タイヤ径方向又はタイヤ径方向から傾斜した方向に延びている。本発明では、ブレークポイントを高くして剛性変動を生じにくくすると共に、耐久性を向上させる観点から、正面視断面において、外側連結部5の延設方向が、タイヤ径方向±30°以内が好ましく、タイヤ径方向±15°以内がより好ましい。図1では、外側連結部5が、タイヤ径方向に延設されている例を示す。   Examples of the shape of each outer connecting portion 5 include a plate-like body and a columnar body. In this embodiment, an example of a plate-like body is shown. These outer connecting portions 5 extend in a tire radial direction or a direction inclined from the tire radial direction in a front sectional view. In the present invention, from the viewpoint of improving the durability by increasing the break point and making it difficult to change the rigidity, the extending direction of the outer connecting portion 5 is preferably within ± 30 ° in the tire radial direction in the front sectional view. The tire radial direction is more preferably within ± 15 °. FIG. 1 shows an example in which the outer connecting portion 5 is extended in the tire radial direction.

外側連結部5の厚みは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、タイヤ断面高さHの3〜12%が好ましく、4〜10%がより好ましい。   The thickness of the outer connecting portion 5 is preferably 3 to 12% of the tire cross-section height H from the viewpoint of reducing weight, improving durability, and improving lateral rigidity while sufficiently transmitting the force from the inner annular portion 1. 4 to 10% is more preferable.

外側連結部5の引張モジュラスは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、1〜50MPaが好ましく、1〜30MPaがより好ましい。   The tensile modulus of the outer connecting portion 5 is preferably 1 to 50 MPa, more preferably 1 to 30 MPa from the viewpoint of reducing weight, improving durability, and improving lateral rigidity while sufficiently transmitting the force from the inner annular portion 1. preferable.

非空気圧タイヤTは、弾性材料で成形される。本発明における弾性材料とは、JIS K7312に準じて引張試験を行い、10%伸び時の引張応力から算出した引張モジュラスが、100MPa以下のものを指す。本発明の弾性材料としては、十分な耐久性を得ながら、適度な剛性を付与する観点から、好ましくは引張モジュラスが0.1〜100MPaであり、より好ましくは0.1〜50MPaである。母材として用いられる弾性材料としては、熱可塑性エラストマー、架橋ゴム、その他の樹脂が挙げられる。   The non-pneumatic tire T is formed of an elastic material. The elastic material in the present invention refers to a material having a tensile modulus calculated from a tensile stress at 10% elongation by a tensile test according to JIS K7312 and 100 MPa or less. The elastic material of the present invention preferably has a tensile modulus of 0.1 to 100 MPa, more preferably 0.1 to 50 MPa, from the viewpoint of imparting adequate rigidity while obtaining sufficient durability. Examples of the elastic material used as the base material include thermoplastic elastomers, crosslinked rubbers, and other resins.

熱可塑性エラストマーとしては、ポリエステルエラストマー、ポリオレフィンエラストマー、ポリアミドエラストマー、ポリスチレンエラストマー、ポリ塩化ビニルエラストマー、ポリウレタンエラストマー等が例示される。架橋ゴム材料を構成するゴム材料としては、天然ゴムの他、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IIR)、ニトリルゴム(NBR)、水素添加ニトリルゴム(水添NBR)、クロロプレンゴム(CR)、エチレンプロピレンゴム(EPDM)、フッ素ゴム、シリコンゴム、アクリルゴム、ウレタンゴム等の合成ゴムが例示される。これらのゴム材料は必要に応じて2種以上を併用してもよい。   Examples of the thermoplastic elastomer include polyester elastomer, polyolefin elastomer, polyamide elastomer, polystyrene elastomer, polyvinyl chloride elastomer, polyurethane elastomer and the like. Rubber materials constituting the crosslinked rubber material include natural rubber, styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IIR), nitrile rubber (NBR), hydrogenated nitrile rubber (hydrogenated NBR). And synthetic rubbers such as chloroprene rubber (CR), ethylene propylene rubber (EPDM), fluorine rubber, silicon rubber, acrylic rubber, and urethane rubber. These rubber materials may be used in combination of two or more as required.

その他の樹脂としては、熱可塑性樹脂、又は熱硬化性樹脂が挙げられる。熱可塑性樹脂としては、ポリエチレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂などが挙げられ、熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ポリウレタン樹脂、シリコン樹脂、ポリイミド樹脂、メラミン樹脂などが挙げられる。   Examples of other resins include thermoplastic resins and thermosetting resins. Examples of the thermoplastic resin include polyethylene resin, polystyrene resin, and polyvinyl chloride resin, and examples of the thermosetting resin include epoxy resin, phenol resin, polyurethane resin, silicon resin, polyimide resin, and melamine resin.

上記の弾性材料のうち、成形・加工性やコストの観点から、好ましくは、ポリウレタン樹脂が用いられる。なお、弾性材料としては、発泡材料を使用してもよく、上記の熱可塑性エラストマー、架橋ゴム、その他の樹脂を発泡させたもの使用可能である。   Of the above elastic materials, a polyurethane resin is preferably used from the viewpoint of moldability / workability and cost. In addition, as an elastic material, you may use a foaming material, and what used said thermoplastic elastomer, crosslinked rubber, and other resin foamed can be used.

弾性材料で成形された内側環状部1、中間環状部2、外側環状部3、内側連結部4、及び外側連結部5は、補強繊維により補強されていることが好ましい。   The inner annular portion 1, the intermediate annular portion 2, the outer annular portion 3, the inner connecting portion 4, and the outer connecting portion 5 formed of an elastic material are preferably reinforced by reinforcing fibers.

補強繊維としては、長繊維、短繊維、織布、不織布などの補強繊維が挙げられるが、長繊維を使用する形態として、タイヤ軸方向に配列される繊維とタイヤ周方向に配列される繊維とから構成されるネット状繊維集合体を使用するのが好ましい。   Examples of the reinforcing fibers include reinforcing fibers such as long fibers, short fibers, woven fabrics, and non-woven fabrics. As a form using long fibers, fibers arranged in the tire axial direction and fibers arranged in the tire circumferential direction It is preferable to use a net-like fiber assembly composed of:

補強繊維の種類としては、例えば、レーヨンコード、ナイロン−6,6等のポリアミドコード、ポリエチレンテレフタレート等のポリエステルコード、アラミドコード、ガラス繊維コード、カーボンファイバー、スチールコード等が挙げられる。   Examples of the types of reinforcing fibers include rayon cords, polyamide cords such as nylon-6,6, polyester cords such as polyethylene terephthalate, aramid cords, glass fiber cords, carbon fibers, and steel cords.

本発明では、補強繊維を用いる補強の他、粒状フィラーによる補強や、金属リング等による補強を行うことが可能である。粒状フィラーとしては、カーボンブラック、シリカ、アルミナ等のセラミックス、その他の無機フィラーなどが挙げられる。   In the present invention, in addition to reinforcement using reinforcing fibers, it is possible to perform reinforcement with a granular filler or reinforcement with a metal ring or the like. Examples of the particulate filler include ceramics such as carbon black, silica, and alumina, and other inorganic fillers.

本発明における非空気圧タイヤTは弾性材料で成形されるが、非空気圧タイヤTを製造する際に、一体成形が可能となる観点から、内側環状部1、中間環状部2、外側環状部3、内側連結部4、及び外側連結部5は、補強構造を除いて基本的に同じ材質とすることが好ましい。   The non-pneumatic tire T in the present invention is formed of an elastic material. From the viewpoint of enabling integral molding when manufacturing the non-pneumatic tire T, the inner annular portion 1, the intermediate annular portion 2, the outer annular portion 3, The inner connecting portion 4 and the outer connecting portion 5 are preferably made of basically the same material except for the reinforcing structure.

<別実施形態>
外側環状部3の内周面7は、タイヤ子午線断面において、タイヤ幅方向の中央部7aが両側部7bよりもタイヤ径方向内側に突出した凸形状に形成されていればよく、この凸形状は前述した円弧状でなくともよい。例えば、図3Aに示すような三角形状、図3Bに示すような台形状などでもよい。この場合、三角形状および台形状の角部は、応力集中を防ぐために丸みを持たせるのがよい。なお、凸形状に角張った部分があると応力が集中して、外側環状部3と外側連結部5との連結界面で破断や剥離が生じやすくなるため、凸形状を円弧状にするのが特に好ましい。
<Another embodiment>
The inner peripheral surface 7 of the outer annular portion 3 only needs to be formed in a convex shape in which the central portion 7a in the tire width direction protrudes inward in the tire radial direction from both side portions 7b in the tire meridian cross section. It does not have to be the arc shape described above. For example, a triangular shape as shown in FIG. 3A or a trapezoidal shape as shown in FIG. 3B may be used. In this case, the triangular and trapezoidal corners are preferably rounded to prevent stress concentration. In addition, if there is an angular portion in the convex shape, stress concentrates, and breakage or peeling is likely to occur at the connection interface between the outer annular portion 3 and the outer coupling portion 5, so it is particularly preferable to make the convex shape an arc shape. preferable.

以下、本発明の構成と効果を具体的に示す実施例等について説明する。尚、実施例等における評価項目は、下記のようにして測定を行った。初めに、非空気圧タイヤに縦荷重500Nを負荷した状態での、連結部に生じる応力集中部の最大応力値を求めた。次いで、非空気圧タイヤの耐久性を、時速6kmの条件下で、タイヤ破損確認までの走行距離にて評価した。図4の模式図に示すように、評価対象のタイヤに500Nを負荷し、ドラム上を回転させた。表1に、各非空気圧タイヤについて、外側環状部の寸法、応力集中部の最大応力値、タイヤの破損に至るまでの走行距離を示す。   Examples and the like specifically showing the configuration and effects of the present invention will be described below. In addition, the evaluation item in an Example etc. measured as follows. First, the maximum stress value of the stress concentration portion generated in the connecting portion in a state where a longitudinal load of 500 N was applied to the non-pneumatic tire was obtained. Next, the durability of the non-pneumatic tire was evaluated based on the travel distance until the tire breakage was confirmed under the condition of 6 km / h. As shown in the schematic diagram of FIG. 4, 500N was loaded on the evaluation target tire and rotated on the drum. Table 1 shows the dimensions of the outer annular portion, the maximum stress value of the stress concentration portion, and the travel distance until the tire breaks for each non-pneumatic tire.

比較例1
タイヤ最大外径が156mm、タイヤ幅が57mm、タイヤ断面高さHが33mmである非空気圧タイヤを作製した。トレッド面の曲率半径は55mmとした。タイヤ幅方向中央部でのトレッド面6の最大外径位置から内周面7までのタイヤ径方向の距離αはタイヤ幅Wの20%とし、タイヤ幅方向両側部でのトレッド面6の最大外径位置から内周面7までの距離βはタイヤ幅Wの20%とした。すなわち、図5に示すように、外側環状部3の内周面7は、内径がタイヤ幅方向に一定となるように形成した。
Comparative Example 1
A non-pneumatic tire having a maximum tire outer diameter of 156 mm, a tire width of 57 mm, and a tire cross-section height H of 33 mm was produced. The radius of curvature of the tread surface was 55 mm. The distance α in the tire radial direction from the position of the maximum outer diameter of the tread surface 6 at the center in the tire width direction to the inner peripheral surface 7 is 20% of the tire width W, and the maximum outside of the tread surface 6 at both sides in the tire width direction. The distance β from the radial position to the inner peripheral surface 7 was 20% of the tire width W. That is, as shown in FIG. 5, the inner peripheral surface 7 of the outer annular portion 3 was formed so that the inner diameter was constant in the tire width direction.

比較例2〜6
図6に示すように、上記距離α及び距離βをそれぞれ同じ距離だけ大きくしたこと以外は比較例1と同じとしたものを比較例2とした。α/W及びβ/Wを比較例2では25%、比較例3では27.5%、比較例4では30%、比較例5では35%、比較例6では37.5%とした。これにより、比較例2〜6の外側連結部5のタイヤ径方向長さは、比較例1に比べてタイヤ幅方向に一様に短くなっている。
Comparative Examples 2-6
As shown in FIG. 6, Comparative Example 2 is the same as Comparative Example 1 except that the distance α and the distance β are increased by the same distance. α / W and β / W were 25% in Comparative Example 2, 27.5% in Comparative Example 3, 30% in Comparative Example 4, 35% in Comparative Example 5, and 37.5% in Comparative Example 6. Thereby, the tire radial direction length of the outer connection part 5 of Comparative Examples 2 to 6 is uniformly shorter than the Comparative Example 1 in the tire width direction.

実施例1〜5
図7に示すように、外側環状部3の内周面7を、タイヤ幅方向の中央部7aが両側部7bよりもタイヤ径方向内側に突出した円弧状の凸形状に形成したこと以外は比較例1と同じとしたものを実施例1〜5とした。突出高さhは、距離αから距離βを引いた値となる。α/Wを実施例1では25%、実施例2では27.5%、実施例3では30%、実施例4では35%、実施例5では37.5%とした。これにより、h/Wは実施例1では5%、実施例2では7.5%、実施例3では10%、実施例4では15%、実施例5では17.5%となっている。
Examples 1-5
As shown in FIG. 7, the inner peripheral surface 7 of the outer annular portion 3 is compared except that the central portion 7a in the tire width direction is formed in an arcuate convex shape that protrudes inward in the tire radial direction from both side portions 7b. Examples 1 to 5 were the same as Example 1. The protrusion height h is a value obtained by subtracting the distance β from the distance α. α / W was 25% in Example 1, 27.5% in Example 2, 30% in Example 3, 35% in Example 4, and 37.5% in Example 5. As a result, h / W is 5% in Example 1, 7.5% in Example 2, 10% in Example 3, 15% in Example 4, and 17.5% in Example 5.

表1のように、実施例1〜5では、比較例1に比べ、連結部の応力集中部の最大応力値は小さくなり、タイヤの破損に至るまでの走行距離が長くなって耐久性を向上できることが分かる。比較例2〜6でも比較例1に比べ、応力集中部の最大応力値は減少し、耐久性も向上しているが、外側連結部のタイヤ径方向長さはタイヤ幅方向に一定であるため、実施例1〜5に比べると外側連結部のタイヤ幅方向中央部の応力集中を緩和する効果が少ない。さらに、比較例2〜6は外側環状部の重量増加が大きくなるため、実施例1〜5に比べ燃費性能が悪化するおそれがある。   As shown in Table 1, in Examples 1 to 5, compared to Comparative Example 1, the maximum stress value of the stress concentration portion of the connecting portion is reduced, and the running distance until the tire is damaged is increased and the durability is improved. I understand that I can do it. In Comparative Examples 2 to 6, the maximum stress value of the stress concentration portion is reduced and the durability is improved as compared with Comparative Example 1, but the length of the outer connecting portion in the tire radial direction is constant in the tire width direction. Compared to Examples 1 to 5, the effect of alleviating stress concentration at the center in the tire width direction of the outer connecting portion is small. Furthermore, since the weight increase of an outer side annular part becomes large in Comparative Examples 2-6, there exists a possibility that a fuel consumption performance may deteriorate compared with Examples 1-5.

1 内側環状部
2 中間環状部
3 外側環状部
4 内側連結部
5 外側連結部
6 トレッド面
7 外側環状部の内周面
7a タイヤ幅方向の中央部
7b タイヤ幅方向の両側部
T 非空気圧タイヤ
h 突出高さ
DESCRIPTION OF SYMBOLS 1 Inner annular part 2 Middle annular part 3 Outer annular part 4 Inner coupling part 5 Outer coupling part 6 Tread surface 7 Inner peripheral surface of outer annular part 7a Center part in tire width direction 7b Both side parts in tire width direction T Non-pneumatic tire h Projection height

Claims (3)

内側環状部と、その内側環状部の外側に同心円状に設けられ、かつタイヤ幅方向の中央部から両側部へ向かって外径が徐々に小さくなるような曲率を有するトレッド面を備える外側環状部と、前記内側環状部と前記外側環状部とを連結する複数の連結部とを備える非空気圧タイヤであって、
タイヤ子午線断面において、前記外側環状部の内周面は、タイヤ幅方向の中央部が両側部よりもタイヤ径方向内側に突出した凸形状に形成されていることを特徴とする非空気圧タイヤ。
An outer annular portion provided with an inner annular portion and a tread surface provided concentrically outside the inner annular portion and having a curvature such that the outer diameter gradually decreases from the central portion in the tire width direction toward both side portions. And a non-pneumatic tire comprising a plurality of connecting portions that connect the inner annular portion and the outer annular portion,
In the tire meridian cross section, the inner peripheral surface of the outer annular portion is formed in a convex shape in which a center portion in the tire width direction protrudes inward in the tire radial direction from both side portions.
前記外側環状部の内周面は、円弧状の凸形状に形成されていることを特徴とする請求項1に記載の非空気圧タイヤ。   The non-pneumatic tire according to claim 1, wherein an inner peripheral surface of the outer annular portion is formed in an arcuate convex shape. 前記外側環状部の内周面は、前記両側部を基準とした前記中央部の突出高さがタイヤ幅の5〜20%となるように形成されていることを特徴とする請求項1又は2に記載の非空気圧タイヤ。


The inner peripheral surface of the outer annular portion is formed such that the protruding height of the central portion with respect to the both side portions is 5 to 20% of the tire width. Non-pneumatic tire described in.


JP2011155813A 2011-07-14 2011-07-14 Non-pneumatic tire Withdrawn JP2013018462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011155813A JP2013018462A (en) 2011-07-14 2011-07-14 Non-pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011155813A JP2013018462A (en) 2011-07-14 2011-07-14 Non-pneumatic tire

Publications (1)

Publication Number Publication Date
JP2013018462A true JP2013018462A (en) 2013-01-31

Family

ID=47690325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011155813A Withdrawn JP2013018462A (en) 2011-07-14 2011-07-14 Non-pneumatic tire

Country Status (1)

Country Link
JP (1) JP2013018462A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014118128A (en) * 2012-12-19 2014-06-30 Bridgestone Corp Non-pneumatic tire
JP2016113106A (en) * 2014-12-17 2016-06-23 東洋ゴム工業株式会社 Non-pneumatic tire
JP2017509521A (en) * 2013-12-24 2017-04-06 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー Airless tire structure with indefinite stiffness
EP3162589A4 (en) * 2014-06-24 2017-08-16 Bridgestone Corporation Non-pneumatic tire
WO2023200433A1 (en) * 2022-04-13 2023-10-19 Compagnie Generale Des Etablissements Michelin Non-pneumatic tire for rutwander having camber thrust stiffness

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014118128A (en) * 2012-12-19 2014-06-30 Bridgestone Corp Non-pneumatic tire
JP2017509521A (en) * 2013-12-24 2017-04-06 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー Airless tire structure with indefinite stiffness
EP3162589A4 (en) * 2014-06-24 2017-08-16 Bridgestone Corporation Non-pneumatic tire
US10486462B2 (en) 2014-06-24 2019-11-26 Bridgestone Corporation Non-pneumatic tire
JP2016113106A (en) * 2014-12-17 2016-06-23 東洋ゴム工業株式会社 Non-pneumatic tire
WO2023200433A1 (en) * 2022-04-13 2023-10-19 Compagnie Generale Des Etablissements Michelin Non-pneumatic tire for rutwander having camber thrust stiffness

Similar Documents

Publication Publication Date Title
JP4530231B2 (en) Non-pneumatic tire
JP5808048B2 (en) Non-pneumatic tire
JP5221306B2 (en) Non-pneumatic tire
JP6092046B2 (en) Non-pneumatic tire
JP5436365B2 (en) Non-pneumatic tire
JP5461303B2 (en) Non-pneumatic tire
JP5432837B2 (en) Non-pneumatic tire
JP5921364B2 (en) Non-pneumatic tire
JP6964470B2 (en) Non-pneumatic tire
JP6445238B2 (en) Non-pneumatic tire
JP2015039986A (en) Non-pneumatic tire
JP2011178308A (en) Non-pneumatic tire
JP5972149B2 (en) Non-pneumatic tire
JP5774905B2 (en) Non-pneumatic tire
JP6226734B2 (en) Non-pneumatic tire
JP2014008952A (en) Non-pneumatic tire
JP6180313B2 (en) Non-pneumatic tire
JP2013018462A (en) Non-pneumatic tire
JP6076704B2 (en) Non-pneumatic tire
JP5543846B2 (en) Non-pneumatic tire
JP2016113106A (en) Non-pneumatic tire
JP6182452B2 (en) Non-pneumatic tire
JP6754686B2 (en) Non-pneumatic tires
JP6092045B2 (en) Non-pneumatic tire
JP6045401B2 (en) Non-pneumatic tire

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007