JP5543846B2 - Non-pneumatic tire - Google Patents

Non-pneumatic tire Download PDF

Info

Publication number
JP5543846B2
JP5543846B2 JP2010123094A JP2010123094A JP5543846B2 JP 5543846 B2 JP5543846 B2 JP 5543846B2 JP 2010123094 A JP2010123094 A JP 2010123094A JP 2010123094 A JP2010123094 A JP 2010123094A JP 5543846 B2 JP5543846 B2 JP 5543846B2
Authority
JP
Japan
Prior art keywords
annular portion
tire
pneumatic tire
connecting portion
foamed polyurethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010123094A
Other languages
Japanese (ja)
Other versions
JP2011246049A (en
Inventor
邦至 赤坂
義雄 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2010123094A priority Critical patent/JP5543846B2/en
Publication of JP2011246049A publication Critical patent/JP2011246049A/en
Application granted granted Critical
Publication of JP5543846B2 publication Critical patent/JP5543846B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tires In General (AREA)

Description

本発明は、タイヤ構造部材として、車両からの荷重を支持する支持構造体を備える非空気圧タイヤ(non−pneumatic tire)に関するものであり、好ましくは空気入りタイヤの代わりとして使用することができる非空気圧タイヤに関するものである。   The present invention relates to a non-pneumatic tire provided with a support structure that supports a load from a vehicle as a tire structural member, and preferably a non-pneumatic tire that can be used as a substitute for a pneumatic tire. It relates to tires.

空気入りタイヤは、荷重の支持機能、接地面からの衝撃吸収能、および動力等の伝達能(加速、停止、方向転換)を有し、このため、多くの車両、特に自転車、オートバイ、自動車、トラックに採用されている。   The pneumatic tire has a load supporting function, a shock absorbing ability from the ground contact surface, and a transmission ability (acceleration, stop, change of direction) such as power. For this reason, many vehicles, particularly bicycles, motorcycles, automobiles, It is used in trucks.

特に、これらの能力は自動車、その他のモーター車両の発展に大きく貢献した。更に、空気入りタイヤの衝撃吸収能力は、医療機器や電子機器の運搬用カート、その他の用途でも有用である。   In particular, these capabilities greatly contributed to the development of automobiles and other motor vehicles. Furthermore, the impact absorbing ability of pneumatic tires is useful for medical equipment and electronic equipment transport carts and other applications.

従来の非空気圧タイヤとしては、例えばソリッドタイヤ、スプリングタイヤ、クッションタイヤ等が存在するが、空気入りタイヤの優れた性能を有していない。例えば、ソリッドタイヤおよびクッションタイヤは、接地部分の圧縮によって荷重を支持するが、この種のタイヤは重くて、堅く、空気入りタイヤのような衝撃吸収能力はない。また、非空気圧タイヤでは、弾性を高めてクッション性を改善することも可能であるが、空気入りタイヤが有するような荷重支持能または耐久性が悪くなるという問題がある。   Conventional non-pneumatic tires include, for example, solid tires, spring tires, cushion tires, and the like, but do not have the superior performance of pneumatic tires. For example, solid tires and cushion tires support the load by compressing the contact portion, but this type of tire is heavy and stiff, and does not have the ability to absorb shock like a pneumatic tire. Further, in the non-pneumatic tire, it is possible to improve the cushioning property by increasing the elasticity, but there is a problem that the load supporting ability or the durability as the pneumatic tire has is deteriorated.

そこで、下記の特許文献1には、空気入りタイヤと同様な動作特性を有する非空気圧タイヤを開発する目的で、タイヤに加わる荷重を支持する補強された環状バンドと、この補強された環状バンドとホイールまたはハブとの間で張力によって荷重力を伝達する複数のウェブスポークとを有する非空気圧タイヤが提案されている。しかし、この非空気圧タイヤは、周方向に隣接するウェブスポーク間に間隔が空いていることにより、そのウェブスポーク間の領域で環状バンドの剛性が低くなるため、接地の際に環状バンドに支持されるトレッド部がウェブスポーク間でバックリングを起こす場合がある。   Therefore, in Patent Document 1 below, for the purpose of developing a non-pneumatic tire having the same operating characteristics as a pneumatic tire, a reinforced annular band that supports a load applied to the tire, and the reinforced annular band, Non-pneumatic tires have been proposed that have a plurality of web spokes that transmit load forces by tension with a wheel or hub. However, since this non-pneumatic tire has a gap between web spokes adjacent to each other in the circumferential direction, the rigidity of the annular band is reduced in the region between the web spokes. The tread part may cause buckling between web spokes.

このようなバックリング対策として、下記の特許文献2には、タイヤ周方向に隣接するスポーク間に形成された複数の空間のうちの少なくとも一部を空気が封じ込められた構成にした非空気圧タイヤが記載されている。   As a countermeasure against such buckling, the following Patent Document 2 discloses a non-pneumatic tire in which air is contained in at least a part of a plurality of spaces formed between spokes adjacent in the tire circumferential direction. Have been described.

特表2005−500932号公報Special Table 2005-500932 Publication 特開2009−196603号公報JP 2009-196603 A

ところで、段差乗越し時などの高荷重域においては、スポークの座屈が発生することがある。スポークが座屈すると、高歪における屈曲疲労、およびスポーク同士の接触による異常摩耗などが起こり、スポークが早期に破壊してしまい、非空気圧タイヤの耐久性が低下するという問題がある。また、スポークの座屈により、スポーク剛性が急激に低下してしまい、操縦安定性が低下するといった問題もある。しかし、特許文献2の非空気圧タイヤは、封じ込められた空気の反発により荷重を分散させてトレッド部のバックリングを抑制する構成であるため、剛性が不足し、高荷重域においてスポークの座屈を抑制する効果が十分でなかった。   By the way, in a high load region such as when stepping over a step, spoke buckling may occur. When the spokes buckle, bending fatigue due to high strain, abnormal wear due to contact between the spokes, and the like occur, so that the spokes are destroyed at an early stage and the durability of the non-pneumatic tire is lowered. Moreover, there is a problem that the spoke rigidity is drastically lowered due to the buckling of the spoke, and the steering stability is lowered. However, the non-pneumatic tire of Patent Document 2 is configured to disperse the load by the repulsion of the contained air and suppress the buckling of the tread portion, so that the rigidity is insufficient, and the buckling of the spoke in the high load region is insufficient. The suppression effect was not sufficient.

そこで、本発明の目的は、高荷重域においてもスポークの座屈を十分に抑制することができ、耐久性及び操縦安定性を向上させた非空気圧タイヤを提供することにある。   Accordingly, an object of the present invention is to provide a non-pneumatic tire that can sufficiently suppress the buckling of a spoke even in a high load range and has improved durability and steering stability.

上記目的は、下記の如き本発明により達成できる。
即ち、本発明の非空気圧タイヤは、車両からの荷重を支持する支持構造体を備える非空気圧タイヤにおいて、前記支持構造体は、内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、前記内側環状部と前記外側環状部とを連結しタイヤ周方向に各々が独立する複数の連結部とを備え、前記環状部と前記連結部とにより区分けされた各空隙部に発泡ポリウレタン部材がそれぞれ配設され、前記発泡ポリウレタン部材の一部は少なくとも前記外側環状部に近接していることを特徴とする。
The above object can be achieved by the present invention as described below.
That is, the non-pneumatic tire of the present invention is a non-pneumatic tire provided with a support structure that supports a load from a vehicle, and the support structure is provided concentrically on the inner annular portion and on the outer side of the inner annular portion. A plurality of connecting portions that connect the inner annular portion and the outer annular portion and are independent in the tire circumferential direction, and are separated by the annular portion and the connecting portion. The foamed polyurethane member is respectively disposed on the foamed polyurethane member, and at least a part of the foamed polyurethane member is close to the outer annular portion.

本発明の非空気圧タイヤは、車両からの荷重を支持する支持構造体を備える。支持構造体は、内側環状部、外側環状部の各環状部と、内側環状部と外側環状部を連結しタイヤ周方向に各々が独立する複数の連結部とを備えている。また、本発明の非空気圧タイヤは、環状部と連結部とによって区分けされた各空隙部に発泡ポリウレタン部材がそれぞれ配設され、この発泡ポリウレタン部材の一部が少なくとも外側環状部に近接している。なお、本発明における近接とは、発泡ポリウレタン部材の一部が外側環状部に接触するか、または外側環状部との間にわずかな隙間が存在する状態を意味している。この構成によれば、隣り合う連結部間の外側環状部で接地する際にも、発泡ポリウレタン部材は剛性が高く、タイヤ径方向の縦荷重を支持することができるため、外側環状部の過剰な変形を抑え、連結部(スポーク)の座屈を抑制することができる。さらに、隣り合う連結部間に発泡ポリウレタン部材が配設されているため、発泡ポリウレタン部材が連結部(スポーク)のタイヤ周方向への変形を直接抑え、連結部(スポーク)の座屈を抑制することができる。この結果、高荷重域においてもスポークの座屈を十分に抑制することができ、耐久性及び操縦安定性を向上させた非空気圧タイヤを提供することができる。   The non-pneumatic tire of the present invention includes a support structure that supports a load from a vehicle. The support structure includes an annular portion of an inner annular portion and an outer annular portion, and a plurality of connecting portions that connect the inner annular portion and the outer annular portion and are independent in the tire circumferential direction. In the non-pneumatic tire of the present invention, a foamed polyurethane member is disposed in each of the gaps divided by the annular part and the connecting part, and a part of the foamed polyurethane member is at least close to the outer annular part. . Note that the proximity in the present invention means a state in which a part of the foamed polyurethane member is in contact with the outer annular portion or there is a slight gap between the outer annular portion. According to this configuration, the polyurethane foam member has high rigidity and can support a longitudinal load in the tire radial direction even when grounding at the outer annular portion between the adjacent connecting portions. Deformation can be suppressed and buckling of the connecting portion (spoke) can be suppressed. Furthermore, since the foamed polyurethane member is disposed between the adjacent connecting portions, the foamed polyurethane member directly suppresses deformation of the connecting portion (spoke) in the tire circumferential direction and suppresses buckling of the connecting portion (spoke). be able to. As a result, it is possible to provide a non-pneumatic tire that can sufficiently suppress the buckling of spokes even in a high load range and has improved durability and steering stability.

本発明にかかる非空気圧タイヤにおいて、前記発泡ポリウレタン部材は、前記内側環状部の外周面全面に接触し、前記外側環状部の内周面であって隣り合う前記連結部間の中央部に近接していることが好ましい。   In the non-pneumatic tire according to the present invention, the polyurethane foam member is in contact with the entire outer peripheral surface of the inner annular portion and is adjacent to a central portion between the adjacent connecting portions on the inner peripheral surface of the outer annular portion. It is preferable.

隣り合う連結部間の中央部の位置で接地する際、外側環状部は最も撓みやすい。そのため、上記構成によれば、発泡ポリウレタン部材が外側環状部の変形を効果的に抑え、連結部の座屈を十分に抑制することができる。   When grounding at the position of the central portion between adjacent connecting portions, the outer annular portion is most easily bent. Therefore, according to the said structure, a polyurethane foam member can suppress a deformation | transformation of an outer side annular part effectively, and can fully suppress the buckling of a connection part.

本発明にかかる非空気圧タイヤにおいて、タイヤ軸方向から見た前記発泡ポリウレタン部材の断面形状は、タイヤ径方向外方に向かって幅狭となる半円形、半楕円形、台形、又は三角形であることが好ましい。   In the non-pneumatic tire according to the present invention, the cross-sectional shape of the polyurethane foam member viewed from the tire axial direction is a semicircular shape, a semi-elliptical shape, a trapezoidal shape, or a triangular shape that becomes narrower outward in the tire radial direction. Is preferred.

この構成によれば、発泡ポリウレタン部材と連結部との間に隙間があるので、非空気圧タイヤで発生する熱を外部へ逃がしやすく、放熱性が良好である。   According to this configuration, since there is a gap between the foamed polyurethane member and the connecting portion, heat generated in the non-pneumatic tire can be easily released to the outside, and heat dissipation is good.

本発明の非空気圧タイヤの一例を示す正面図Front view showing an example of the non-pneumatic tire of the present invention 本発明の非空気圧タイヤの一例を示すタイヤ子午線断面図Tire meridian cross-sectional view showing an example of the non-pneumatic tire of the present invention 図1の非空気圧タイヤを右から見た右側面図Right side view of the non-pneumatic tire of Fig. 1 as seen from the right キャンバー角αで傾いた非空気圧タイヤTを車両正面から見た図A view of a non-pneumatic tire T leaning at a camber angle α as seen from the front of the vehicle 実施例及び比較例の非空気圧タイヤを示す正面図The front view which shows the non-pneumatic tire of an Example and a comparative example 評価試験方法を説明するための模式図Schematic diagram for explaining the evaluation test method 実施例及び比較例における耐久性、転がり抵抗の評価結果Evaluation results of durability and rolling resistance in Examples and Comparative Examples 実施例及び比較例における剛性変動試験の結果を示すグラフThe graph which shows the result of the rigidity fluctuation test in an Example and a comparative example

以下、本発明の実施の形態について、図面を参照しながら説明する。図1は本発明の非空気圧タイヤの一例を示す正面図である。図2は、本発明の非空気圧タイヤの一例を示すタイヤ子午線断面図である。図3は、図1の非空気圧タイヤを右から見た右側面図の一部を示している。ここで、Oは軸芯を、Hはタイヤ断面高さを、それぞれ示している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a front view showing an example of a non-pneumatic tire of the present invention. FIG. 2 is a tire meridian cross-sectional view showing an example of the non-pneumatic tire of the present invention. FIG. 3 shows a part of a right side view of the non-pneumatic tire of FIG. 1 as viewed from the right. Here, O indicates the shaft core, and H indicates the tire cross-sectional height.

本実施形態で示す非空気圧タイヤTは、キャンバーを付けてコーナリングする車両に用いられるのが好ましい。すなわち、車両がコーナリングする際、車両を正面から見ると、図4に示すように非空気圧タイヤTの上部は左右のどちらかにキャンバー角αで傾く。通常の自動車用タイヤのキャンバー角αは最大でも2度程度であるが、本実施形態で示す非空気圧タイヤTは、最大8度程度のキャンバーを付けてコーナリングする車両にも使用可能である。   The non-pneumatic tire T shown in the present embodiment is preferably used in a vehicle that is cornered with a camber. That is, when the vehicle corners, when the vehicle is viewed from the front, the upper part of the non-pneumatic tire T is inclined to the left or right at a camber angle α as shown in FIG. The camber angle α of a normal automobile tire is about 2 degrees at the maximum, but the non-pneumatic tire T shown in the present embodiment can be used for a vehicle that is cornered with a camber of about 8 degrees at the maximum.

非空気圧タイヤTは、車両からの荷重を支持する支持構造体SSを備えている。さらに、本発明の非空気圧タイヤTは、支持構造体SSの外周にトレッド部6を備えている。また、本発明の非空気圧タイヤTは、支持構造体SSの中に発泡ポリウレタン部材8を備えていることを特徴とする。   The non-pneumatic tire T includes a support structure SS that supports a load from the vehicle. Furthermore, the non-pneumatic tire T of the present invention includes a tread portion 6 on the outer periphery of the support structure SS. Further, the non-pneumatic tire T of the present invention is characterized in that the polyurethane foam member 8 is provided in the support structure SS.

本実施形態の非空気圧タイヤTは、図1の正面図に示すように、支持構造体SSが、内側環状部1と、その外側に同心円状に設けられた中間環状部2と、その外側に同心円状に設けられた外側環状部3と、内側環状部1と中間環状部2とを連結し周方向に各々が独立する複数の内側連結部4と、外側環状部3と中間環状部2とを連結し周方向に各々が独立する複数の外側連結部5とを備えている。この実施形態では、支持構造体SSが中間環状部2を備えているが、中間環状部2は必ずしも必要ではなく、中間環状部2を設けず、内側連結部4と外側連結部5とが連続し1本の連結部を構成してもよい。   As shown in the front view of FIG. 1, the non-pneumatic tire T according to the present embodiment includes an inner annular portion 1, an intermediate annular portion 2 provided concentrically on the outer side thereof, and an outer side thereof. A concentric outer ring part 3, an inner ring part 1, an intermediate ring part 2, a plurality of inner connection parts 4 that are independent in the circumferential direction, an outer ring part 3, and an intermediate ring part 2 And a plurality of outer connecting portions 5 that are independent of each other in the circumferential direction. In this embodiment, the support structure SS includes the intermediate annular portion 2, but the intermediate annular portion 2 is not always necessary, and the intermediate annular portion 2 is not provided, and the inner connecting portion 4 and the outer connecting portion 5 are continuous. However, you may comprise one connection part.

内側環状部1は、ユニフォミティを向上させる観点から、厚みが一定の円筒形状であることが好ましい。また、内側環状部1の内周面には、車軸やリムとの装着のために、嵌合性を保持するための凹凸等を設けるのが好ましい。   The inner annular portion 1 is preferably a cylindrical shape having a constant thickness from the viewpoint of improving uniformity. Moreover, it is preferable to provide the inner peripheral surface of the inner annular portion 1 with irregularities or the like for maintaining fitting properties for mounting with an axle or a rim.

内側環状部1の厚みは、内側連結部4に力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さHの6〜30%が好ましく、10〜20%がより好ましい。   The thickness of the inner annular portion 1 is preferably 6 to 30%, and 10 to 20% of the tire cross-section height H from the viewpoint of reducing weight and improving durability while sufficiently transmitting force to the inner connecting portion 4. More preferred.

内側環状部1の内径は、非空気圧タイヤTを装着するリムや車軸の寸法などに併せて適宜決定されるが、本発明では中間環状部2を備えるために、内側環状部1の内径をより小さくすることが可能である。内側環状部1の内径は、50〜560mmが好ましく、80〜200mmがより好ましい。   The inner annular portion 1 has an inner diameter appropriately determined in accordance with the dimensions of the rim on which the non-pneumatic tire T is mounted and the axle. However, in the present invention, since the intermediate annular portion 2 is provided, the inner annular portion 1 has a larger inner diameter. It can be made smaller. The inner annular portion 1 has an inner diameter of preferably 50 to 560 mm, and more preferably 80 to 200 mm.

内側環状部1の軸方向の幅は、用途、車軸の長さ等に応じて適宜決定されるが、30〜100mmが好ましく、40〜80mmがより好ましい。   The axial width of the inner annular portion 1 is appropriately determined according to the application, the length of the axle, and the like, but is preferably 30 to 100 mm, and more preferably 40 to 80 mm.

内側環状部1の引張モジュラスは、内側連結部4に力を十分伝達しつつ、軽量化や耐久性の向上、装着性を図る観点から、1〜180000MPaが好ましく、1〜50000MPaがより好ましい。なお、本発明における引張モジュラスは、JIS K7312に準じて引張試験を行い、10%伸び時の引張応力から算出した値である。   The tensile modulus of the inner annular portion 1 is preferably from 1 to 180000 MPa, more preferably from 1 to 50000 MPa, from the viewpoint of reducing weight, improving durability, and wearing properties while sufficiently transmitting force to the inner connecting portion 4. The tensile modulus in the present invention is a value calculated from a tensile stress at 10% elongation by conducting a tensile test according to JIS K7312.

本発明における支持構造体SSは、弾性材料で成形されるが、支持構造体SSを製造する際に、一体成形が可能となる観点から、内側環状部1、中間環状部2、外側環状部3、内側連結部4、及び外側連結部5は、補強構造を除いて基本的に同じ材質とすることが好ましい。   The support structure SS in the present invention is formed of an elastic material. From the viewpoint of enabling integral molding when the support structure SS is manufactured, the inner annular portion 1, the intermediate annular portion 2, and the outer annular portion 3 are used. The inner connecting portion 4 and the outer connecting portion 5 are preferably basically made of the same material except for the reinforcing structure.

本発明における弾性材料とは、JIS K7312に準じて引張試験を行い、10%伸び時の引張応力から算出した引張モジュラスが、100MPa以下のものを指す。本発明の弾性材料としては、十分な耐久性を得ながら、適度な剛性を付与する観点から、好ましくは引張モジュラスが0.1〜100MPaであり、より好ましくは0.1〜50MPaである。母材として用いられる弾性材料としては、熱可塑性エラストマー、架橋ゴム、その他の樹脂が挙げられる。   The elastic material in the present invention refers to a material having a tensile modulus calculated from a tensile stress at 10% elongation by a tensile test according to JIS K7312 and 100 MPa or less. The elastic material of the present invention preferably has a tensile modulus of 0.1 to 100 MPa, more preferably 0.1 to 50 MPa, from the viewpoint of imparting adequate rigidity while obtaining sufficient durability. Examples of the elastic material used as the base material include thermoplastic elastomers, crosslinked rubbers, and other resins.

熱可塑性エラストマーとしては、ポリエステルエラストマー、ポリオレフィンエラストマー、ポリアミドエラストマー、ポリスチレンエラストマー、ポリ塩化ビニルエラストマー、ポリウレタンエラストマー等が例示される。架橋ゴム材料を構成するゴム材料としては、天然ゴムの他、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IIR)、ニトリルゴム(NBR)、水素添加ニトリルゴム(水添NBR)、クロロプレンゴム(CR)、エチレンプロピレンゴム(EPDM)、フッ素ゴム、シリコンゴム、アクリルゴム、ウレタンゴム等の合成ゴムが例示される。これらのゴム材料は必要に応じて2種以上を併用してもよい。   Examples of the thermoplastic elastomer include polyester elastomer, polyolefin elastomer, polyamide elastomer, polystyrene elastomer, polyvinyl chloride elastomer, polyurethane elastomer and the like. Rubber materials constituting the crosslinked rubber material include natural rubber, styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IIR), nitrile rubber (NBR), hydrogenated nitrile rubber (hydrogenated NBR). And synthetic rubbers such as chloroprene rubber (CR), ethylene propylene rubber (EPDM), fluorine rubber, silicon rubber, acrylic rubber, and urethane rubber. These rubber materials may be used in combination of two or more as required.

その他の樹脂としては、熱可塑性樹脂、又は熱硬化性樹脂が挙げられる。熱可塑性樹脂としては、ポリエチレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂などが挙げられ、熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ポリウレタン樹脂、シリコン樹脂、ポリイミド樹脂、メラミン樹脂などが挙げられる。   Examples of other resins include thermoplastic resins and thermosetting resins. Examples of the thermoplastic resin include polyethylene resin, polystyrene resin, and polyvinyl chloride resin, and examples of the thermosetting resin include epoxy resin, phenol resin, polyurethane resin, silicon resin, polyimide resin, and melamine resin.

上記の弾性材料のうち、成形・加工性やコストの観点から、好ましくは、ポリウレタン樹脂が用いられる。なお、弾性材料としては、発泡材料を使用してもよく、上記の熱可塑性エラストマー、架橋ゴム、その他の樹脂を発泡させたもの使用可能である。   Of the above elastic materials, a polyurethane resin is preferably used from the viewpoint of moldability / workability and cost. In addition, as an elastic material, you may use a foaming material, and what used said thermoplastic elastomer, crosslinked rubber, and other resin foamed can be used.

弾性材料で一体成形された支持構造体SSは、内側環状部1、中間環状部2、外側環状部3、内側連結部4、及び外側連結部5が、補強繊維により補強されていることが好ましい。   In the support structure SS integrally formed of an elastic material, the inner annular portion 1, the intermediate annular portion 2, the outer annular portion 3, the inner connecting portion 4, and the outer connecting portion 5 are preferably reinforced with reinforcing fibers. .

補強繊維としては、長繊維、短繊維、織布、不織布などの補強繊維が挙げられるが、長繊維を使用する形態として、タイヤ軸方向に配列される繊維とタイヤ周方向に配列される繊維とから構成されるネット状繊維集合体を使用するのが好ましい。   Examples of the reinforcing fibers include reinforcing fibers such as long fibers, short fibers, woven fabrics, and non-woven fabrics. As a form using long fibers, fibers arranged in the tire axial direction and fibers arranged in the tire circumferential direction It is preferable to use a net-like fiber assembly composed of:

補強繊維の種類としては、例えば、レーヨンコード、ナイロン−6,6等のポリアミドコード、ポリエチレンテレフタレート等のポリエステルコード、アラミドコード、ガラス繊維コード、カーボンファイバー、スチールコード等が挙げられる。   Examples of the types of reinforcing fibers include rayon cords, polyamide cords such as nylon-6,6, polyester cords such as polyethylene terephthalate, aramid cords, glass fiber cords, carbon fibers, and steel cords.

本発明では、補強繊維を用いる補強の他、粒状フィラーによる補強や、金属リング等による補強を行うことが可能である。粒状フィラーとしては、カーボンブラック、シリカ、アルミナ等のセラミックス、その他の無機フィラーなどが挙げられる。   In the present invention, in addition to reinforcement using reinforcing fibers, it is possible to perform reinforcement with a granular filler or reinforcement with a metal ring or the like. Examples of the particulate filler include ceramics such as carbon black, silica, and alumina, and other inorganic fillers.

中間環状部2は、ユニフォミティを向上させる観点から、厚みが一定の円筒形状であることが好ましいが、多角形筒状などでもよい。   The intermediate annular portion 2 is preferably a cylindrical shape with a constant thickness from the viewpoint of improving uniformity, but may be a polygonal cylindrical shape or the like.

中間環状部2の厚みは、内側連結部4と外側連結部5とを十分補強しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さHの3〜10%が好ましく、4〜9%がより好ましい。   The thickness of the intermediate annular portion 2 is preferably 3 to 10% of the tire cross-section height H from the viewpoint of reducing the weight and improving the durability while sufficiently reinforcing the inner connecting portion 4 and the outer connecting portion 5. -9% is more preferable.

中間環状部2の内径は、内側環状部1の内径を超えて、外側環状部3の内径未満となる。但し、中間環状部2の内径としては、内側連結部4と外側連結部5との補強効果を向上させる観点から、外側環状部3の内径から内側環状部1の内径を差し引いた値の20〜80%の値を、内側環状部1の内径に加えた内径とすることが好ましく、30〜60%の値を、内側環状部1の内径に加えた内径とすることがより好ましい。   The inner annular portion 2 has an inner diameter that exceeds the inner diameter of the inner annular portion 1 and less than the inner diameter of the outer annular portion 3. However, the inner ring portion 2 has an inner diameter of 20 to a value obtained by subtracting the inner ring portion 1 from the inner ring portion 3 from the viewpoint of improving the reinforcing effect of the inner connecting portion 4 and the outer connecting portion 5. The value of 80% is preferably the inner diameter added to the inner diameter of the inner annular portion 1, and the value of 30 to 60% is more preferably the inner diameter added to the inner diameter of the inner annular portion 1.

中間環状部2の軸方向の幅は、用途等に応じて適宜決定されるが、30〜100mmが好ましく、40〜80mmがより好ましい。   The axial width of the intermediate annular portion 2 is appropriately determined according to the application and the like, but is preferably 30 to 100 mm, and more preferably 40 to 80 mm.

中間環状部2の引張モジュラスは、1〜180000MPaが好ましく、1〜50000MPaがより好ましい。   The tensile modulus of the intermediate annular portion 2 is preferably 1 to 180000 MPa, and more preferably 1 to 50000 MPa.

外側環状部3の形状は、ユニフォミティを向上させる観点から、厚みが一定の円筒形状であることが好ましい。外側環状部3の厚みは、外側連結部5からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さHの2〜10%が好ましく、2〜9%がより好ましい。   The shape of the outer annular portion 3 is preferably a cylindrical shape with a constant thickness from the viewpoint of improving uniformity. The thickness of the outer annular portion 3 is preferably 2 to 10% of the tire cross-section height H from the viewpoint of reducing the weight and improving the durability while sufficiently transmitting the force from the outer connecting portion 5, and is 2 to 9%. Is more preferable.

外側環状部3の内径は、その用途等応じて適宜決定されるが、本発明では中間環状部2を備えるために、外側環状部3の内径をより大きくすることが可能である。外側環状部3の外径は、100〜600mmが好ましく、120〜300mmがより好ましい。   The inner diameter of the outer annular portion 3 is appropriately determined according to its use and the like, but since the intermediate annular portion 2 is provided in the present invention, the inner diameter of the outer annular portion 3 can be made larger. 100-600 mm is preferable and the outer diameter of the outer side annular part 3 has more preferable 120-300 mm.

外側環状部3の軸方向の幅は、用途等に応じて適宜決定されるが、30〜100mmが好ましく、40〜80mmがより好ましい。   The axial width of the outer annular portion 3 is appropriately determined according to the application and the like, but is preferably 30 to 100 mm, and more preferably 40 to 80 mm.

外側環状部3の引張モジュラスは、外側連結部5からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、1〜180000MPaが好ましく、1〜50000MPaがより好ましい。   The tensile modulus of the outer annular portion 3 is preferably 1 to 180000 MPa, more preferably 1 to 50000 MPa, from the viewpoint of reducing the weight and improving the durability while sufficiently transmitting the force from the outer connecting portion 5.

外側環状部3の引張モジュラスを高める場合、弾性材料を繊維等で補強した繊維補強材料が好ましい。外側環状部3を補強繊維により補強することで、外側環状部3とトレッド部6などとの接着も十分となる。   When the tensile modulus of the outer annular portion 3 is increased, a fiber reinforced material obtained by reinforcing an elastic material with fibers or the like is preferable. By reinforcing the outer annular portion 3 with the reinforcing fiber, the adhesion between the outer annular portion 3 and the tread portion 6 becomes sufficient.

内側連結部4は、内側環状部1と中間環状部2とを連結するものであり、両者の間に適当な間隔を開けるなどして、周方向に各々が独立するように複数設けられる。内側連結部4は、ユニフォミティを向上させる観点から、周方向に規則的に設けることが好ましい。   The inner connecting portion 4 connects the inner annular portion 1 and the intermediate annular portion 2, and a plurality of inner connecting portions 4 are provided so that each is independent in the circumferential direction, for example, by providing an appropriate interval therebetween. The inner connecting portion 4 is preferably provided regularly in the circumferential direction from the viewpoint of improving uniformity.

内側連結部4を全周に渡って設ける際の数(軸方向に複数設ける場合は1個として数える)としては、車両からの荷重を十分支持しつつ、軽量化、動力伝達の向上、耐久性の向上を図る観点から、20〜60個が好ましく、20〜50個がより好ましい。図1には、内側連結部4を30個設けた例を示す。   As for the number of inner connection parts 4 provided over the entire circumference (when a plurality of inner connection parts 4 are provided in the axial direction, it is counted as one), while supporting the load from the vehicle sufficiently, weight reduction, improvement of power transmission, durability From the viewpoint of improving the quality, 20 to 60 are preferable, and 20 to 50 are more preferable. FIG. 1 shows an example in which 30 inner connecting portions 4 are provided.

個々の内側連結部4の形状としては、板状体、柱状体などが挙げられるが、本実施形態では板状体の例を示す。これらの内側連結部4は、正面視断面において、タイヤ径方向又はタイヤ径方向から傾斜した方向に延びている。本発明では、ブレークポイントを高くして剛性変動を生じにくくすると共に、耐久性を向上させる観点から、正面視断面において、内側連結部4の延設方向が、タイヤ径方向±30°以内が好ましく、タイヤ径方向±15°以内がより好ましい。図1では、内側連結部4が、タイヤ径方向に延設されている例を示す。   Examples of the shape of each inner connecting portion 4 include a plate-like body and a columnar body. In this embodiment, an example of a plate-like body is shown. These inner connection parts 4 are extended in the tire radial direction or the direction inclined from the tire radial direction in the front sectional view. In the present invention, from the viewpoint of improving the durability by increasing the break point and making it difficult to change the rigidity, the extending direction of the inner connecting portion 4 is preferably within ± 30 ° in the tire radial direction in the front sectional view. The tire radial direction is more preferably within ± 15 °. FIG. 1 shows an example in which the inner connecting portion 4 is extended in the tire radial direction.

内側連結部4の厚みは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、タイヤ断面高さHの3〜12%が好ましく、4〜10%がより好ましい。   The thickness of the inner connecting portion 4 is preferably 3 to 12% of the tire cross-sectional height H from the viewpoint of reducing the weight, improving the durability, and improving the lateral rigidity while sufficiently transmitting the force from the inner annular portion 1. 4 to 10% is more preferable.

内側連結部4の引張モジュラスは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、1〜50MPaが好ましく、1〜30MPaがより好ましい。   The tensile modulus of the inner connecting portion 4 is preferably 1 to 50 MPa, more preferably 1 to 30 MPa from the viewpoint of reducing weight, improving durability, and improving lateral rigidity while sufficiently transmitting the force from the inner annular portion 1. preferable.

内側連結部4の引張モジュラスを高める場合、弾性材料を繊維等で補強した繊維補強材料が好ましい。   When the tensile modulus of the inner connecting portion 4 is increased, a fiber reinforced material obtained by reinforcing an elastic material with fibers or the like is preferable.

外側連結部5は、外側環状部3と中間環状部2とを連結するものであり、両者の間に適当な間隔を開けるなどして、周方向に各々が独立するように複数設けられる。外側連結部5は、ユニフォミティを向上させる観点から、周方向に規則的に設けることが好ましい。   The outer connecting portion 5 connects the outer annular portion 3 and the intermediate annular portion 2, and a plurality of outer connecting portions 5 are provided so that each of them is independent in the circumferential direction, for example, by providing an appropriate interval therebetween. The outer connecting portion 5 is preferably provided regularly in the circumferential direction from the viewpoint of improving uniformity.

なお、外側連結部5と内側連結部4とは全周の同じ位置に設けてもよく、異なる位置に設けてもよい。すなわち、外側連結部5と内側連結部4は、必ずしも図1のように同じ方向に連続するように延設する必要はない。   In addition, the outer side connection part 5 and the inner side connection part 4 may be provided in the same position of a perimeter, and may be provided in a different position. That is, the outer connecting portion 5 and the inner connecting portion 4 do not necessarily extend so as to be continuous in the same direction as shown in FIG.

外側連結部5を全周に渡って設ける際の数(軸方向に複数設ける場合は1個として数える)としては、車両からの荷重を十分支持しつつ、軽量化、動力伝達の向上、耐久性の向上を図る観点から、20〜60個が好ましく、20〜50個がより好ましい。図1には、外側連結部5を内側連結部4と同じく30個設けた例を示す。なお、外側連結部5の数と内側連結部4の数は、必ずしも同じとする必要はなく、外側連結部5を内側連結部4よりも多く設けてもよい。   As for the number of outer connecting parts 5 provided over the entire circumference (when a plurality of outer connecting parts 5 are provided in the axial direction, they are counted as one), while supporting the load from the vehicle sufficiently, weight reduction, improvement of power transmission, durability From the viewpoint of improving the quality, 20 to 60 are preferable, and 20 to 50 are more preferable. FIG. 1 shows an example in which 30 outer connecting parts 5 are provided in the same manner as the inner connecting part 4. In addition, the number of the outer side connection parts 5 and the number of the inner side connection parts 4 do not necessarily need to be the same, and you may provide more outer side connection parts 5 than the inner side connection parts 4. FIG.

個々の外側連結部5の形状としては、板状体、柱状体などが挙げられるが、本実施形態では板状体の例を示す。これらの外側連結部5は、正面視断面において、タイヤ径方向又はタイヤ径方向から傾斜した方向に延びている。本発明では、ブレークポイントを高くして剛性変動を生じにくくすると共に、耐久性を向上させる観点から、正面視断面において、外側連結部5の延設方向が、タイヤ径方向±30°以内が好ましく、タイヤ径方向±15°以内がより好ましい。図1では、外側連結部5が、タイヤ径方向に延設されている例を示す。   Examples of the shape of each outer connecting portion 5 include a plate-like body and a columnar body. In this embodiment, an example of a plate-like body is shown. These outer connecting portions 5 extend in a tire radial direction or a direction inclined from the tire radial direction in a front sectional view. In the present invention, from the viewpoint of improving the durability by increasing the break point and making it difficult to change the rigidity, the extending direction of the outer connecting portion 5 is preferably within ± 30 ° in the tire radial direction in the front sectional view. The tire radial direction is more preferably within ± 15 °. FIG. 1 shows an example in which the outer connecting portion 5 is extended in the tire radial direction.

外側連結部5の厚みは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、タイヤ断面高さHの3〜12%が好ましく、4〜10%がより好ましい。   The thickness of the outer connecting portion 5 is preferably 3 to 12% of the tire cross-section height H from the viewpoint of reducing weight, improving durability, and improving lateral rigidity while sufficiently transmitting the force from the inner annular portion 1. 4 to 10% is more preferable.

外側連結部5の引張モジュラスは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、1〜50MPaが好ましく、1〜30MPaがより好ましい。   The tensile modulus of the outer connecting portion 5 is preferably 1 to 50 MPa, more preferably 1 to 30 MPa from the viewpoint of reducing weight, improving durability, and improving lateral rigidity while sufficiently transmitting the force from the inner annular portion 1. preferable.

外側連結部5の引張モジュラスを高める場合、弾性材料を繊維等で補強した繊維補強材料が好ましい。   In order to increase the tensile modulus of the outer connecting portion 5, a fiber reinforced material obtained by reinforcing an elastic material with fibers or the like is preferable.

本実施形態において、それぞれの外側連結部5は、板状体であって、外側環状部3と交わる部分は、交線部51を構成する。この交線部51は、図3に破線で示されるように、タイヤ幅方向に対して角度θで傾斜している。また、隣り合う交線部51は、各々独立しており、タイヤ幅方向に対してそれぞれ反対の向きに角度θで傾斜している。すなわち、タイヤ径方向から見ると、隣り合う2つの交線部51がハの字状となるように、外側連結部5は設けられている。交線部51がタイヤ幅方向に平行の場合、外側連結部5直下で接地する場合と、外側連結部5間で接地する場合とでタイヤの上下方向の変位差(上下方向の振動幅)が大きくなり、乗り心地の悪化に繋がる。これに対し、交線部51がタイヤ幅方向に対して傾斜している場合、交線部51のタイヤ幅方向両端部51aが隣の交線部51のタイヤ幅方向両端部51aに近くなり、隣り合う外側連結部5どうしの間隔が狭くなるため、上記の変位差が小さくなる。ただし、本発明においては、必ずしも交線部51がタイヤ幅方向に対して傾斜する必要はない。   In the present embodiment, each outer connecting portion 5 is a plate-like body, and a portion that intersects with the outer annular portion 3 constitutes an intersection line portion 51. The intersection 51 is inclined at an angle θ with respect to the tire width direction as indicated by a broken line in FIG. Further, the adjacent intersecting line portions 51 are independent of each other, and are inclined at an angle θ in opposite directions to the tire width direction. That is, when viewed from the tire radial direction, the outer connecting portion 5 is provided so that two adjacent intersecting line portions 51 have a square shape. When the intersecting line portion 51 is parallel to the tire width direction, there is a difference in the vertical displacement of the tire (vibration width in the vertical direction) between when the ground is directly below the outer connecting portion 5 and when the ground is between the outer connecting portions 5. It becomes larger and leads to a worse ride. On the other hand, when the intersection line portion 51 is inclined with respect to the tire width direction, the tire width direction both end portions 51a of the intersection line portion 51 are close to the tire width direction both end portions 51a of the adjacent intersection line portion 51, Since the interval between the adjacent outer connecting portions 5 is narrowed, the displacement difference is reduced. However, in the present invention, the intersecting line portion 51 does not necessarily have to be inclined with respect to the tire width direction.

交線部51のタイヤ幅方向に対する傾斜角度θは、45度以下が好ましい。キャンバーを付けたコーナリング時には、タイヤ幅方向のトルクが発生し、交線部51をタイヤ幅方向に傾斜させると、このタイヤ幅方向のトルクに対する耐久力が低下する傾向にある。θを45度より大きくすると、上下方向の変位差改善の効果は高いが、タイヤ幅方向の耐久力の低下が著しくなり好ましくない。   The inclination angle θ of the intersection 51 with respect to the tire width direction is preferably 45 degrees or less. During cornering with a camber, torque in the tire width direction is generated, and if the intersection 51 is inclined in the tire width direction, the durability against the torque in the tire width direction tends to decrease. If θ is greater than 45 degrees, the effect of improving the displacement difference in the vertical direction is high, but the durability in the tire width direction is significantly reduced, which is not preferable.

内側連結部4および外側連結部5の厚みは、タイヤ径方向には一定であるが、図3に示されるように、タイヤ幅方向には、両端部51aから中央部51bへ向かって増大している。この実施形態では、両端部51aが厚みを有しているが、両端部51aの厚みをゼロとして中央部51bが膨らむようにしてもよい。ただし、本発明においては、内側連結部4および外側連結部5の厚みをタイヤ幅方向に一定にしても構わない。   The thicknesses of the inner connecting portion 4 and the outer connecting portion 5 are constant in the tire radial direction, but increase in the tire width direction from both end portions 51a toward the central portion 51b as shown in FIG. Yes. In this embodiment, both end portions 51a have a thickness, but the center portion 51b may swell with the thickness of both end portions 51a being zero. However, in this invention, you may make the thickness of the inner side connection part 4 and the outer side connection part 5 constant in a tire width direction.

トレッド部6は、支持構造体SSの外周に設けられている。トレッド部6は、図2に示されるように、タイヤ幅方向に曲率を有している。トレッド部6が、曲率を有することで、キャンバーを付けてコーナリングする際にも接地面積が小さくなりすぎず、直進走行時とコーナリング時との間の接地面積の変動が少なくなる。トレッド部6の曲率半径Rは、40〜100mmが好ましく、40〜65mmがより好ましい。曲率半径Rが40mmより小さい場合、キャンバー時の接地面積が過大となり、グリップ性能が急激に増加するため、急停止に近い状況となってしまう。また、曲率半径Rが100mmよりも大きい場合、キャンバー時の接地面積が過小となり、グリップ性能が急激に低下するため、滑りが発生してしまう。なお、本発明においては、トレッド部6に曲率を設けず、タイヤ幅方向と平行にしても構わない。   The tread portion 6 is provided on the outer periphery of the support structure SS. As shown in FIG. 2, the tread portion 6 has a curvature in the tire width direction. Since the tread portion 6 has a curvature, the ground contact area does not become too small even when cornering with a camber, and the variation of the ground contact area between straight traveling and cornering is reduced. 40-100 mm is preferable and, as for the curvature radius R of the tread part 6, 40-65 mm is more preferable. When the curvature radius R is smaller than 40 mm, the ground contact area at the time of camber becomes excessive, and the grip performance increases rapidly, resulting in a situation close to a sudden stop. Moreover, when the curvature radius R is larger than 100 mm, the ground contact area at the time of camber becomes too small, and the grip performance is drastically lowered, so that slip occurs. In the present invention, the tread portion 6 may be parallel to the tire width direction without providing a curvature.

トレッド部6は、弾性材料で成形される。本発明における弾性材料とは、JIS K7312に準じて引張試験を行い、10%伸び時の引張応力から算出した引張モジュラスが、100MPa以下のものを指す。本発明の弾性材料としては、十分な耐久性を得ながら、適度な剛性を付与する観点から、好ましくは引張モジュラスが0.1〜100MPaであり、より好ましくは0.1〜50MPaである。弾性材料としては、上述した熱可塑性エラストマー、架橋ゴム、熱可塑性樹脂、熱硬化性樹脂などが挙げられる。上記の弾性材料のうち、成形・加工性やコストの観点から、好ましくは、ポリウレタン樹脂が用いられる。   The tread portion 6 is formed of an elastic material. The elastic material in the present invention refers to a material having a tensile modulus calculated from a tensile stress at 10% elongation by a tensile test according to JIS K7312 and 100 MPa or less. The elastic material of the present invention preferably has a tensile modulus of 0.1 to 100 MPa, more preferably 0.1 to 50 MPa, from the viewpoint of imparting adequate rigidity while obtaining sufficient durability. Examples of the elastic material include the above-described thermoplastic elastomer, crosslinked rubber, thermoplastic resin, thermosetting resin, and the like. Of the above elastic materials, a polyurethane resin is preferably used from the viewpoint of moldability / workability and cost.

トレッド部6の外表面には、トレッドパターンとして、従来の空気入りタイヤと同様のパターンを設けることが可能である。   A pattern similar to that of a conventional pneumatic tire can be provided on the outer surface of the tread portion 6 as a tread pattern.

内側環状部1、中間環状部2、外側環状部3の各環状部と、内側連結部4、外側連結部5の各連結部とにより区分けされた各空隙部7には、発泡ポリウレタン部材8がそれぞれ配設されている。発泡ポリウレタン部材8は、空隙部7を完全に満たすように設けてもよいが、完全に満たさないように設けてもよい。ただし、空隙部7を発泡ポリウレタン部材8で完全に満たした場合、低荷重域においても剛性が高くなり過ぎてしまうため、通常走行時の衝撃吸収性(段差乗り越え性能等)が低下する可能性がある。   A foamed polyurethane member 8 is provided in each gap portion 7 divided by the annular portions of the inner annular portion 1, the intermediate annular portion 2, and the outer annular portion 3, and the coupling portions of the inner coupling portion 4 and the outer coupling portion 5. Each is arranged. The foamed polyurethane member 8 may be provided so as to completely fill the gap 7, but may be provided so as not to be completely filled. However, if the gap 7 is completely filled with the foamed polyurethane member 8, the rigidity becomes too high even in a low load region, so there is a possibility that the shock absorption (such as overstepping performance) during normal running may be reduced. is there.

タイヤ軸方向から見た発泡ポリウレタン部材8の断面形状は、タイヤ径方向外方に向かって幅狭となる半円形もしくは半楕円形となっている。ただし、発泡ポリウレタン部材8の断面形状は、半円形、半楕円形に限定されず、台形、三角形などでもよい。また、上記のように交線部51がタイヤ幅方向に対して傾斜しているため、これに合わせて発泡ポリウレタン部材8の幅は、タイヤ軸方向に沿って徐々に変化している。   The cross-sectional shape of the foamed polyurethane member 8 viewed from the tire axial direction is a semicircular or semielliptical shape that becomes narrower toward the outer side in the tire radial direction. However, the cross-sectional shape of the foamed polyurethane member 8 is not limited to a semicircular shape and a semi-elliptical shape, and may be a trapezoidal shape or a triangular shape. Moreover, since the intersection part 51 inclines with respect to the tire width direction as mentioned above, the width | variety of the polyurethane foam member 8 is changing gradually along a tire axial direction according to this.

発泡ポリウレタン部材8は、タイヤ径方向内側が内側環状部1の外周面または中間環状部2の外周面に固定され、タイヤ径方向外側が中間環状部2の内周面または外側環状部3の内周面に近接している。発泡ポリウレタン部材8のタイヤ径方向外側の先端と、中間環状部2の内周面または外側環状部3の内周面とが最も近接する位置は、隣り合う連結部4,5間の中央部となっている。   The foamed polyurethane member 8 is fixed to the outer circumferential surface of the inner annular portion 1 or the outer circumferential surface of the intermediate annular portion 2 on the inner side in the tire radial direction, and the inner side of the inner annular portion 2 or the outer annular portion 3 on the outer side in the tire radial direction. Close to the circumference. The position where the front end of the foamed polyurethane member 8 on the outer side in the tire radial direction and the inner peripheral surface of the intermediate annular portion 2 or the inner peripheral surface of the outer annular portion 3 are closest to each other is a central portion between the adjacent connecting portions 4 and 5. It has become.

発泡ポリウレタン部材8は、比重が0.4〜0.6g/cmの発泡ポリウレタンで構成されることが好ましい。比重が0.4g/cmよりも小さいと、発泡ポリウレタン部材8の剛性が不足するため、連結部4,5の座屈が発生しやすくなる。また、比重が0.6g/cmよりも大きいと、発泡ポリウレタン部材8の重量が増加するため、非空気圧タイヤTの転がり抵抗が悪化しやすくなる。 The foamed polyurethane member 8 is preferably composed of foamed polyurethane having a specific gravity of 0.4 to 0.6 g / cm 3 . When the specific gravity is smaller than 0.4 g / cm 3, the rigidity of the polyurethane foam member 8 is insufficient, so that the connecting portions 4 and 5 are likely to buckle. On the other hand, when the specific gravity is larger than 0.6 g / cm 3, the weight of the polyurethane foam member 8 increases, and thus the rolling resistance of the non-pneumatic tire T is likely to deteriorate.

また、発泡ポリウレタン部材8を構成する発泡ポリウレタンの圧縮弾性率は、支持構造体SSを構成する弾性材料の圧縮弾性率の10〜50%とすることが好ましい。10%よりも小さいと、発泡ポリウレタン部材8の剛性が不足するため、連結部4,5の座屈が発生しやすくなる。また、50%よりも大きいと、発泡ポリウレタン部材8の剛性が高くなりすぎるため、非空気圧タイヤTの乗り心地が悪化しやすくなる。   Moreover, it is preferable that the compression elastic modulus of the polyurethane foam which comprises the foaming polyurethane member 8 shall be 10 to 50% of the compression elastic modulus of the elastic material which comprises the support structure SS. If it is less than 10%, the rigidity of the polyurethane foam member 8 is insufficient, so that the connecting portions 4 and 5 are likely to buckle. On the other hand, if it is larger than 50%, the rigidity of the foamed polyurethane member 8 becomes too high, and the riding comfort of the non-pneumatic tire T tends to deteriorate.

非空気圧タイヤTの一例としては、タイヤ外径が156mm、タイヤ幅が57mm、タイヤ断面高さHが33mm、トレッド部6の厚みが10mm、曲率半径Rが55mm、連結部4,5の厚みが2mm、傾斜角度θが5度であるものが例示される。   As an example of the non-pneumatic tire T, the outer diameter of the tire is 156 mm, the tire width is 57 mm, the tire cross-section height H is 33 mm, the thickness of the tread portion 6 is 10 mm, the radius of curvature R is 55 mm, and the thickness of the connecting portions 4 and 5 is An example is 2 mm and the inclination angle θ is 5 degrees.

以下、本発明の構成と効果を具体的に示す実施例等について説明する。なお、実施例等における評価項目は下記のようにして測定を行った。   Examples and the like specifically showing the configuration and effects of the present invention will be described below. In addition, the evaluation item in an Example etc. measured as follows.

(1)耐久性
時速6kmの条件下で、タイヤ破損確認までの走行時間(距離)にて評価した。図6(a)の模式図に示すように、評価対象のタイヤに荷重を負荷し、ドラム上を回転させた。
(2)転がり抵抗
転がり抵抗測定用冶具を用い、高さ10cm、傾斜角5度の斜面からの自然落下による走行距離にて評価した。図6(b)の模式図に示すように、評価対象のタイヤに荷重を負荷し、斜面を自然落下させた。
(3)剛性変動試験
負荷する縦荷重を徐々に増加させながら、その際の変位量を測定して、剛性の変化の様子を試験した。剛性変動試験は、スポーク間(図3の線A上で接地した状態)、およびスポーク直下(図3の線B上で接地した状態)で行った。
(1) Durability Under the condition of 6 km / h, the evaluation was made based on the travel time (distance) until the tire breakage was confirmed. As shown in the schematic diagram of FIG. 6A, a load was applied to the evaluation target tire and the drum was rotated.
(2) Rolling resistance Using a rolling resistance measuring tool, the rolling resistance was evaluated based on the distance traveled by natural fall from a slope with a height of 10 cm and an inclination angle of 5 degrees. As shown in the schematic diagram of FIG. 6B, a load was applied to the tire to be evaluated, and the slope was naturally dropped.
(3) Rigidity variation test While gradually increasing the longitudinal load to be applied, the amount of displacement at that time was measured, and the state of change in stiffness was tested. The rigidity variation test was performed between the spokes (in a state of being grounded on the line A in FIG. 3) and directly under the spoke (in a state of being grounded on the line B in FIG. 3).

実施例1
図1に示すような非空気圧タイヤを作製し、上記性能を評価した。非空気圧タイヤの寸法は、タイヤ外径156mm、タイヤ幅57mm、タイヤ断面高さ33mm、トレッド部6の厚み10mm、トレッド部6の曲率半径55mmとした。発泡ポリウレタン部材8を構成する発泡ポリウレタンの比重は、0.5g/cmとした。また、発泡ポリウレタン部材8を構成する発泡ポリウレタンの圧縮弾性率は、支持構造体SSを構成する弾性材料の圧縮弾性率の20%とした。
Example 1
A non-pneumatic tire as shown in FIG. 1 was produced and the performance was evaluated. The dimensions of the non-pneumatic tire were a tire outer diameter of 156 mm, a tire width of 57 mm, a tire cross-section height of 33 mm, a tread portion 6 thickness of 10 mm, and a tread portion 6 with a radius of curvature of 55 mm. The specific gravity of the polyurethane foam constituting the polyurethane foam member 8 was 0.5 g / cm 3 . Further, the compression elastic modulus of the polyurethane foam constituting the polyurethane foam member 8 was 20% of the compression elastic modulus of the elastic material constituting the support structure SS.

実施例2
図5(a)に示すような非空気圧タイヤを作製し、上記性能を評価した。発泡ポリウレタン部材8の断面形状を台形とした以外は、実施例1の非空気圧タイヤと同じである。
Example 2
Non-pneumatic tires as shown in FIG. 5 (a) were produced and the performance was evaluated. The non-pneumatic tire of Example 1 is the same as the non-pneumatic tire of Example 1 except that the cross-sectional shape of the polyurethane foam member 8 is a trapezoid.

実施例3
図5(b)に示すような非空気圧タイヤを作製し、上記性能を評価した。発泡ポリウレタン部材8の断面形状を三角形とした以外は、実施例1の非空気圧タイヤと同じである。
Example 3
A non-pneumatic tire as shown in FIG. 5 (b) was produced and the performance was evaluated. The non-pneumatic tire of Example 1 is the same as that of Example 1 except that the cross-sectional shape of the polyurethane foam member 8 is triangular.

実施例4
図5(c)に示すような非空気圧タイヤを作製し、上記性能を評価した。各空隙部7を発泡ポリウレタン部材8で完全に満たした以外は、実施例1の非空気圧タイヤと同じである。
Example 4
A non-pneumatic tire as shown in FIG. 5 (c) was produced and the performance was evaluated. The non-pneumatic tire of Example 1 is the same as the non-pneumatic tire of Example 1 except that each gap 7 is completely filled with the foamed polyurethane member 8.

比較例1
図5(d)に示すような非空気圧タイヤを作製し、上記性能を評価した。この比較例1dでは、空隙部7のいずれにも発泡ポリウレタン部材8を設けていない。発泡ポリウレタン部材8を設けないこと以外は、実施例1の非空気圧タイヤと同じである。
Comparative Example 1
Non-pneumatic tires as shown in FIG. 5 (d) were produced and the performance was evaluated. In this comparative example 1d, the foamed polyurethane member 8 is not provided in any of the gaps 7. The non-pneumatic tire of Example 1 is the same as the non-pneumatic tire except that the foamed polyurethane member 8 is not provided.

図7に耐久性、転がり抵抗の評価結果を示す。また、図8に剛性変動試験の結果を示す。図8(a)はスポーク間、図8(b)はスポーク直下での結果を示している。図7のように、実施例1〜4は、比較例1に比べて、タイヤ破損確認までの走行時間が長く、耐久性が良好である。実施例1〜3は、実施例4に比べて、走行距離が長く、転がり抵抗が小さくなっている。また、図8のように、スポーク間、スポーク直下のいずれの条件においても、800N以下の低荷重域では、実施例1〜4、比較例1のいずれもほぼ線形である。しかし、スポーク間では1000N以上、スポーク直下では800N以上の高荷重域では、実施例1〜4がそのままほぼ線形であるのに対し、比較例1は非線形となっている。これは、高荷重域において、比較例1が座屈を起こしているのに対して、実施例1〜4は発泡ポリウレタン部材により座屈が抑制されていることに起因する。   FIG. 7 shows the evaluation results of durability and rolling resistance. FIG. 8 shows the result of the rigidity variation test. FIG. 8A shows the result between the spokes, and FIG. 8B shows the result immediately below the spoke. As shown in FIG. 7, Examples 1 to 4 have a longer running time until the tire breakage is confirmed and have better durability than Comparative Example 1. In the first to third embodiments, the travel distance is longer and the rolling resistance is smaller than that in the fourth embodiment. Further, as shown in FIG. 8, in any of the conditions between the spokes and immediately below the spokes, all of Examples 1 to 4 and Comparative Example 1 are almost linear in a low load region of 800 N or less. However, in the high load region of 1000 N or more between the spokes and 800 N or more immediately below the spokes, Examples 1 to 4 are almost linear as they are, but Comparative Example 1 is non-linear. This is because, in the high load region, Comparative Example 1 is buckled, while Examples 1-4 are buckled by the foamed polyurethane member.

1 内側環状部
2 中間環状部
3 外側環状部
4 内側連結部
5 外側連結部
6 トレッド部
7 空隙部
8 発泡ポリウレタン部材
SS 支持構造体
T 非空気圧タイヤ
DESCRIPTION OF SYMBOLS 1 Inner ring part 2 Middle ring part 3 Outer ring part 4 Inner connection part 5 Outer connection part 6 Tread part 7 Cavity part 8 Foam polyurethane member SS Support structure T Non-pneumatic tire

Claims (2)

車両からの荷重を支持する支持構造体を備える非空気圧タイヤにおいて、
前記支持構造体は、内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、前記内側環状部と前記外側環状部とを連結しタイヤ周方向に各々が独立する複数の連結部とを備え、
前記環状部と前記連結部とにより区分けされた各空隙部に発泡ポリウレタン部材がそれぞれ配設され、
前記発泡ポリウレタン部材は、前記内側環状部の外周面全面に接触し、かつ、前記外側環状部の内周面であって隣り合う前記連結部間の中央部に近接し、かつ、前記連結部との間に隙間があることを特徴とする非空気圧タイヤ。
In a non-pneumatic tire including a support structure that supports a load from a vehicle,
The support structure connects the inner annular portion, the outer annular portion concentrically provided outside the inner annular portion, the inner annular portion and the outer annular portion, and each is independent in the tire circumferential direction. A plurality of connecting portions,
A foamed polyurethane member is disposed in each gap portion divided by the annular portion and the connecting portion,
The foamed polyurethane member is in contact with the entire outer peripheral surface of the inner annular portion, and is close to the inner peripheral surface of the outer annular portion and a central portion between the adjacent connecting portions, and the connecting portion. Non-pneumatic tire characterized by a gap between the two .
タイヤ軸方向から見た前記発泡ポリウレタン部材の断面形状は、タイヤ径方向外方に向かって幅狭となる半円形、半楕円形、台形、又は三角形であることを特徴とする請求項1に記載の非空気圧タイヤ。
Cross-sectional shape of the foamed polyurethane member as viewed from the axial direction of the tire is according to claim 1, characterized in that the semicircular, semi-oval, trapezoidal, or triangular made narrower toward the tire radial direction outwardly Non-pneumatic tire.
JP2010123094A 2010-05-28 2010-05-28 Non-pneumatic tire Active JP5543846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010123094A JP5543846B2 (en) 2010-05-28 2010-05-28 Non-pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010123094A JP5543846B2 (en) 2010-05-28 2010-05-28 Non-pneumatic tire

Publications (2)

Publication Number Publication Date
JP2011246049A JP2011246049A (en) 2011-12-08
JP5543846B2 true JP5543846B2 (en) 2014-07-09

Family

ID=45411851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010123094A Active JP5543846B2 (en) 2010-05-28 2010-05-28 Non-pneumatic tire

Country Status (1)

Country Link
JP (1) JP5543846B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160121158A (en) * 2015-04-10 2016-10-19 최일호 Non-Pneumatic Tire

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6225023B2 (en) * 2013-12-27 2017-11-01 住友ゴム工業株式会社 Tread ring stiffness measuring apparatus and tread ring uniformity measuring method
KR101701384B1 (en) * 2015-06-03 2017-02-01 금호타이어 주식회사 Tire including detachable air chamber
US10150334B2 (en) * 2016-11-15 2018-12-11 The Goodyear Tire & Rubber Company Non-pneumatic support structure
CN113147266A (en) * 2016-12-02 2021-07-23 深圳市金特安科技有限公司 Open structure tyre

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8104524B2 (en) * 2007-03-27 2012-01-31 Resilient Technologies Llc Tension-based non-pneumatic tire
JP4506853B2 (en) * 2008-02-25 2010-07-21 横浜ゴム株式会社 Non-pneumatic tire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160121158A (en) * 2015-04-10 2016-10-19 최일호 Non-Pneumatic Tire
KR101670585B1 (en) 2015-04-10 2016-10-28 최일호 Non-Pneumatic Tire

Also Published As

Publication number Publication date
JP2011246049A (en) 2011-12-08

Similar Documents

Publication Publication Date Title
JP5221306B2 (en) Non-pneumatic tire
JP4530231B2 (en) Non-pneumatic tire
JP4674253B2 (en) Non-pneumatic tire
JP6092046B2 (en) Non-pneumatic tire
JP6099519B2 (en) Non-pneumatic tire
JP5436365B2 (en) Non-pneumatic tire
JP5461303B2 (en) Non-pneumatic tire
JP5432837B2 (en) Non-pneumatic tire
JP5808048B2 (en) Non-pneumatic tire
JP5972149B2 (en) Non-pneumatic tire
JP5921364B2 (en) Non-pneumatic tire
JP6215082B2 (en) Non-pneumatic tire
JP2011183894A (en) Non-pneumatic tire
JP5774905B2 (en) Non-pneumatic tire
JP6226734B2 (en) Non-pneumatic tire
JP6076704B2 (en) Non-pneumatic tire
JP5543846B2 (en) Non-pneumatic tire
JP2017007380A (en) Non-pneumatic tire
JP2013018462A (en) Non-pneumatic tire
JP6092045B2 (en) Non-pneumatic tire
JP6754686B2 (en) Non-pneumatic tires
JP6025498B2 (en) Non-pneumatic tire
JP6351109B2 (en) Non-pneumatic tire
JP6143660B2 (en) Non-pneumatic tire
JP6045401B2 (en) Non-pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140509

R150 Certificate of patent or registration of utility model

Ref document number: 5543846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250