JP2015031462A - 縦型窒化炉 - Google Patents

縦型窒化炉 Download PDF

Info

Publication number
JP2015031462A
JP2015031462A JP2013162125A JP2013162125A JP2015031462A JP 2015031462 A JP2015031462 A JP 2015031462A JP 2013162125 A JP2013162125 A JP 2013162125A JP 2013162125 A JP2013162125 A JP 2013162125A JP 2015031462 A JP2015031462 A JP 2015031462A
Authority
JP
Japan
Prior art keywords
reaction
rod
nitriding furnace
vertical
reaction cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013162125A
Other languages
English (en)
Inventor
邦拓 後藤
Kunihiro Goto
邦拓 後藤
縄田 輝彦
Teruhiko Nawata
輝彦 縄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2013162125A priority Critical patent/JP2015031462A/ja
Publication of JP2015031462A publication Critical patent/JP2015031462A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Furnace Charging Or Discharging (AREA)
  • Furnace Details (AREA)

Abstract

【課題】 アルミナ等の金属酸化物、カーボン、バインダーなどからなる造粒物を原料とし、窒素ガス雰囲気下で還元窒化することにより窒化物を製造するための縦型炉において、窒化反応によって生起する棚吊り現象を解消する機能を有する縦型窒化炉を提供する。【解決手段】 上部に被窒化原料の投入手段10を、下部に反応生成物の取出手段11を有する反応筒2、上記反応筒の胴部外周の一部又は全部に、該反応筒内壁を所定の反応温度に加熱するための加熱手段5を、また、上記反応筒に窒素を含む反応ガスを流通させるための反応ガス供給手段9を備えた縦型窒化炉の、上記反応筒内の中心部に棒状体3を可動状態に設けたことを特徴とする。【選択図】 図1

Description

本発明は、窒化アルミニウム等の窒化物の製造に用いる新規な縦型窒化炉に関する。詳しくは、アルミナ等の金属酸化物、カーボン、バインダーなどからなる造粒物を原料とし、窒素ガス雰囲気下で還元窒化することにより窒化物を製造するための縦型炉において、窒化反応によって生起する棚吊り現象を解消する機能を有する縦型窒化炉を提供するものである。
窒化アルミニウムや窒化ホウ素などの窒化物粉末は、焼結体が一般に高熱伝導性、高絶縁性、高耐食性、高強度等の優れた工業的特性を有するため、例えば高密度実装用基盤、高出力素子のヒートシンク、高出力IGBT基板、高出力LED放熱基板などの各種工業材料のセラミックス原料として注目されている。しかして、こうした窒化物粉末の効率的な製造方法の一つとして、アルミナ等の酸化物とカーボンブラックの混合粉体を窒素ガス含有雰囲気下に高温度で焼成し、酸化物を還元窒化する方法が知られている。
また、この方法において、反応を均一或いは効率的に行うために、焼成する酸化物とカーボンブラックとを、予め造粒して造粒体として縦型窒化炉に供給し、窒素ガス気流下で還元窒化し、窒化物粉末を製造する方法が知られている(特許文献1、2参照)。
特開平6−211507公報 特許2556459号公報
かかる縦型窒化炉を用いて連続的に窒化物を製造する場合、その生産性を阻害する要因として、窒化反応に付随して、炉内に供給された造粒体が流動しなくなる現象、所謂、「棚吊り」が発生するという問題がある。棚吊りが発生すると縦型炉から製品を連続的に取り出すことができなくなり、炉の運転を中断し、多くの場合炉を常温まで冷却した後に炉を開放するなどの方法で製品を取り出す必要があるため生産性を著しく阻害する。
したがって、還元窒化反応を中断することなく棚吊りを解消するための技術が望まれていた。
本発明者らは、上記課題を解決すべく鋭意研究を行った結果、縦型窒化炉の反応筒の中心部に、該反応筒のほぼ全長に渡る長さの棒状体を可動状態で設け、棚吊りの発生時あるいは間欠的または定常的に、上下あるいは回転などの動作を行わせることにより、棚釣りを効果的に解消することができ、しかも、前記棒状体の存在によって窒化反応が阻害されず、炉の運転を長時間安定して行うことが可能となり、反応生成物の生産性が著しく向上することを見出し、本発明を完成するに至った。
即ち、本発明は、上部に被窒化原料の投入手段を、下部に反応生成物の取出手段を有する反応筒、上記反応筒の胴部外周の一部又は全部に、該反応筒内壁を所定の反応温度に加熱するための加熱手段を、また、上記反応筒に窒素を含む反応ガスを流通させるための反応ガス供給手段を備えた縦型窒化炉において、上記反応筒内の中心部に、棒状体を可動状態に設けたことを特徴とする縦型窒化炉である。
本発明の縦型窒化炉によれば、窒化反応によって生起する反応筒内の棚吊りを、炉の運転を中断することなく解消することができ、長時間且つ安定的に連続還元窒化反応を行うことができるので、非常に効率的に目的物である窒化物粉末を製造することができる。
尚、窒化反応における特有の棚吊りの原因はまだ明らかではないが、以下のように推定している。即ち、造粒体が炉内にて流動する際に反応筒や他の造粒体との間で摩擦を受けることにより表面が削り取られ、または造粒体が押しつぶされることにより発生する微粉が造粒体の隙間に入り込み堆積することによる。その際、原料の酸化物やカーボンに含まれる不純物が複合酸化物を形成し、微粉に作用し棚吊りを強固にする。また、還元窒化反応の際に硫黄や鉄などの不純物による液相の介在により成長したウィスカー状の窒化物結晶も棚吊りを強固にする原因である。
上記の推定メカニズムによると、コストダウンや窒化物粉末の粒子性状の調整などを目的として純度の低い原料を使用する場合には棚吊りの頻度が特に高くなることが予想され、かかる場合において、本発明のむ縦型窒化炉の果たす役割は大きいといえる。
本発明の縦型窒化炉の一態様を示す概念図
(縦型窒化炉の基本構造)
本発明の縦型窒化炉1は、基本的に、上部に被窒化原料の投入手段10を、下部に反応生成物の取出手段11を有する反応筒2、上記反応筒2の胴部外周の一部又は全部に、該反応筒内壁を所定の反応温度に加熱するための加熱手段5を、また、上記反応筒に窒素を含む反応ガスを流通させるための反応ガス供給手段9を備えるものであれば、炉本体の構造、反応筒の形状、加熱方式、各構成部材など特に限定されない。
例えば、アルミナとカーボンと窒素ガスを原料として還元窒化反応により窒化アルミニウムの製造を行う場合、反応は通常1500℃〜1800℃の還元雰囲気で行われるため、原料と接する反応筒2や該反応筒を保温するために好適に設けられる断熱材6等は、黒鉛等の炭素系の素材であることが好ましい。反応筒2の断面形状は特に制限されないが、円、楕円、正方形、長方形、五角形などの多角形などが挙げられるが、円が最も一般的である。その大きさは、窒化物粉末の生産量に応じて内径100mm〜500mm、長さ50cm〜300cm程度が好ましい。
また、上記反応筒2は、造粒体の流動が容易に行われるように、内径が上部から下部にかけて拡径していることが、棚吊りの発生率を低下させるために好ましい。この場合、拡径は、2〜5%程度となるように設計することが好適である。更に、反応筒2の内表面あるいは外表面には反応ガスが反応筒から漏出しないようにガラス状カーボン形成やCVDなどによりガス不透過処理を行うことが好ましい。反応筒の内面にこれらの処理を施すことにより、反応筒の劣化や消耗を抑制することもできる。
本発明の縦型窒化炉において、縦型窒化炉1の全体を覆うケーシング、加熱手段5、断熱材6などは、反応筒を所定の温度に保持するように設計されるのが一般的である。上記ケーシングは、図示されていないが、必要に応じて水冷されており、また、気密性を有することが好ましい。前記加熱手段は抵抗加熱方式や高周波誘導加熱方式などを用いることができるが、黒鉛製ヒーターを用いた抵抗加熱方式が好適である。
被窒化原料の造粒体は反応筒2の上部より、原料投入手段10を使用して連続的または間欠的に供給される。上記原料投入手段10は、公知の機構が何ら制限なく用いられる。例えば、振動フィーダー、ロータリーフィーダー、スクリューフィーダー、二重バルブ式フィーダー等が好適である。また、還元窒化後の反応性生物は反応筒2の下部に設けられた反応生成物の取出手段11から連続的に取り出される。取り出し機構は、公知の機構が何ら制限なく用いられる。
通常、還元窒化反応に用いる窒素ガスの導入口を反応筒の下部に、反応後のガスの排出口を上部に設けるが、逆の配置も適宜選択することができる。
(棒状体)
本発明の縦型窒化炉1には、反応筒2内の中心部に、棒状体3を可働の状態で設けることを特徴とする。
上記棒状体は、反応筒2の中央に設けることにより、筒内を通過する粒状体の流動を阻害せず、また、ガスの流れにも悪影響を与えることなく存在せしめることができる。また、可動、即ち、後述するように、上下動、回転などの動きができるように設置することによって、前記棚吊りの現象が発生したとき、或いは、発生を予防するために、棒状体を動かすことにより、かかる棚吊りを完全に解消することが可能となる。
かかる棒状体3を、反応筒に存在させる範囲は、棚吊りが発生し得る範囲であれば特に制限されず、例えば、棚吊りが比較的反応筒の上部で発生する場合は、その位置に届く長さであればよい。しかし、突発的な棚吊りが別の場所で起こる虞もあり、また、反応によって棚吊りの位置も変化する場合もあるため、該棒状体3は、反応筒のほぼ全長、具体的には、反応筒の80%以上、好ましくは、90%以上に渡る長さで設けることが好ましい。
前記棒状体3の材質は特に限定されないが、還元窒化の際の耐久性を勘案すると黒鉛等の炭素系素材であることが好ましい。またガラス状カーボン被覆やCVD等により表面処理を行うことにより耐久性を高めることができる。
棒状体3の構造は、前記機能を発揮するものであれば、特に制限されない。例えば、断面が円形、多角形の棒、断面が円形又は多角形を成す環状の棒が一般的である。上記棒状体は、長さ方向に渡って、断面積や断面形状が変化してもよい。
また、本発明において、棒状体3は、外周に突起を設けることにより棚吊り部分の解砕を非常に効果的に行うことができるため好ましい。上記突起の形状は限定されないが、棚吊りの解砕効果を勘案すると、突起の高さは、2mmから20mmの範囲より、反応筒の内径を勘案して決定することが好ましい。また、上記突起は、棚吊りが頻発する位置を予め調査し、その部分に集中的に設けることが好ましい。勿論、突起が無い部分においても、棒状体を動かすことにより、棚吊りを解消する効果は十分ある。
本発明において、棒状体3は炉体の上部に設置する棒状体駆動装置7に連結される。棒状体駆動装置7の動作は、回転、上下動、またはこれらの組み合わせのものを採用することができる。棒状体駆動装置7は公知の駆動機構を採用することができ、また、炉の気密性を阻害しないように、公知のシール構造が適宜採用される。また、棒状体の駆動は、棚吊りの発生の際に行えばよいが、縦型窒化炉の運転中に連続的または間欠的に行うこともできる。回転や上下動の周期や上下動の振幅は特に限定されないが、棚吊りの発生位置の範囲や必要とされる解砕効果を勘案して棒状体の可動範囲等を設定すればよい。
また、棒状体の表面に突起を設ける場合、棚吊りの解砕効果を高めるため、可動の方向や可動範囲によって突起の形状や配置等を選択することが好ましい。
(造粒体原料)
本発明の縦型炉は、窒化アルミニウム、窒化ホウ素、窒化珪素等の窒化物粉末の製造に用いることができるが、窒化アルミニウム粉末の製造に最も好適に用いることができる。
窒化アルミニウム粉末の製造において被窒化原料であるアルミナとカーボンとバインダーからなる造粒体の製造方法の例を以下に述べる。
先ず、アルミナ粉末とカーボン粉末の混合物を準備する。アルミナ粉末とカーボン粉末とを混合する方法としては、アルミナ粉末、カーボン粉末が均一になるような方法であればいずれの方法でも良いが、通常混合手段はブレンダー、ミキサー、ボールミルによる混合が好適であり、この場合、湿式、乾式を問わず実施することができる。
本発明において、アルミナ粉末とカーボン粉末の混合比は、化学両論比より、カーボン粉末の上記アルミナ粉末(水和物の場合はアルミナ換算)に対する重量比は、アルミナ換算(C/Al)で0.36以上であれば特に制限されないが、好ましくは0.36〜1.00、より好ましくは0.36〜0.50の範囲とするのが好適である。
還元窒化反応速度を速くする目的で、アルミナ粉末とカーボン粉末との混合物に、アルカリ土類金属化合物又は希土類金属化合物を存在せしめることができる。
バインダーは公知のものを制限無く用いることができるが例えば、ポリビニルアルコール、フェノール樹脂、アクリル樹脂、アルギン酸塩、砂糖、セルロースエーテル、デキストリン、でんぷん、糖蜜、ポリビニルピオリドンなどが挙げられる。また、必要に応じて公知の界面活性剤を添加することもできる。
造粒体の製造方法は、前記原料を使用した、転動造粒、押出造粒、噴霧造粒、圧縮造粒、攪拌造粒、流動層造粒など、何等制限無く採用され、公知の造粒方法が何等制限無く採用できる。
前記造粒後の造粒体は、必要に応じて乾燥した後、還元窒化に供される。上記乾燥を行う場合、方式は、静置式、流動層式のバッチ乾燥、トンネル式、キルン式、流動層式の連続乾燥など、造粒体が崩壊しない方法であればいかなる方法でもよい。
本発明において、アルミナ−カーボン造粒体の平均相当直径は、0.5mm〜50mmであり、好ましくは1.0〜20mm、特に好ましくは、2.0〜15mmである。平均相当直径が0.5mm未満の場合、反応筒内の窒素ガスの圧力損失が高くなり偏流を起こしやすくなる。一方、50mmを越える場合は、造粒体内の反応ガス拡散が遅くなってしまう。窒素ガスの偏流の発生や造粒体内の反応ガス拡散が遅くなることにより、還元窒化反応速度が低下し、原料の一部が所定の炉内滞留時間内に窒化されない場合もある。
アルミナ−カーボン造粒体の密度は、特に制限されないが、造粒体中への反応ガスの浸透性などを考慮すれば、0.8〜2.9g/cmが好ましく、0.9〜2.3g/cmがさらに好ましく、特に好ましくは1.0〜1.7g/cmである。上記密度は、造粒方法、或いは、造粒条件を選択することにより、適宜調整することができる。
以下、本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1
図1の概念図に示す縦型窒化炉1内に設置された長さ1.5m、内径120mmの黒鉛製の反応筒2の中心部に、直径30mmの黒鉛製の棒状体3を反応筒の90%の範囲に設置した。棒状体の上端は、炉体1の上部に設置された棒状体可動装置7に連結されており、棒状体を回転および上下方向に各20mm移動することができる。棒状体の下端は反応筒下端から150mm上方に位置している。棒状体の表面には高さ8mmの突起4が棒状体の下端から250mmの位置から500mmの位置にかけて12箇所設けられている。
先ず、反応筒内に平均径がおよそ3mmの黒鉛の破砕物を、その上端面位置が、反応筒の上端になるように充填し、窒素ガスをガス導入口9から10L/minの流量で導入し、反応筒内を流通したガスをガス排出口8から排出しながら反応筒温度1650℃まで昇温した。窒素ガス導入量を50L/minに増加させ、反応筒の温度が安定したことを確認した後、原料の導入を開始した。
原料として、平均粒子径0.8μmのアルミナと平均粒子系20nmのカーボンブラックを2:1の重量比で混合し、5%のポリビニルアルコール水溶液をバインダーとして加え、転動造粒法により平均直径8mmの造粒体を作製し、120℃で12時間乾燥したものを用意した。乾燥後の造粒体の密度は1.20g/cmであった。
この造粒体を120g原料投入口10から反応筒に投入し、引き続き、反応筒内の黒鉛の破砕物を生成物排出口11から排出した。その際、原料の上端面位置が反応筒の上端位置に戻るように排出量を調整した。原料の上端位置は、炉の上部に設置したレベルメーター12(レーザー式レベルメーター)を用いて測定した。この操作を5分毎に繰り返した。反応筒内の黒鉛破砕物を全て排出した後、反応生成物の排出が開始された。
棒状体を静置した状態で原料の導入を開始したが、開始から10時間後に、反応生成物の排出による原料上端位置の降下が停止し、原料上端面が反応筒上端面に戻らなくなったため、反応筒内の造粒体の棚吊りが発生したと判断した。そこで、棒状体駆動装置7により、棒状体を上下の20mm移動を3回行ったところ棚吊りが解砕し、原料の上端位置の降下が再開した。その後、およそ10時間毎に同様な棚吊りの現象が発生したが上記と同様の操作を繰り返すことにより、計画どおり120時間連続で還元窒化反応を継続することができた
実施例2
棚吊りが発生した際に、棒状体駆動装置7により、棒状体を3秒かけて3回転させた他は、実施例1と同様の縦型窒化炉および条件で還元窒化反応を行った。本実施例においても、およそ10時間毎に造粒体の棚吊りが発生したが、棒状体駆動装置7により棒状体の回転操作を行ったところ、棚吊りが解砕し、計画通り120時間連続で還元窒化反応を継続することができた。
比較例1
実施例1の縦型窒化炉において棒状体を設置しないほかは、実施例1と同様の条件で還元窒化反応を行ったところ、12時間後に反応筒内の造粒体の棚吊りが発生し、造粒体の流動が停止したため、運転を停止した。
1 縦型窒化炉
2 反応筒
3 棒状体
4 棒状体表面の突起
5 加熱手段
6 断熱材
7 棒状体駆動装置
8 ガス排出口
9 反応ガス供給手段
10 原料の投入手段
11 反応生成物の取出手段
12 レベルメーター

Claims (3)

  1. 上部に被窒化原料の投入手段を、下部に反応生成物の取出手段を有する反応筒、上記反応筒の胴部外周の一部又は全部に、該反応筒内壁を所定の反応温度に加熱するための加熱手段を、また、上記反応筒に窒素を含む反応ガスを流通させるための反応ガス供給手段を備えた縦型窒化炉において、上記反応筒内の中心部に棒状体を可動な状態で設けたことを特徴とする縦型窒化炉。
  2. 前記棒状体の外周に突起を設けた請求項1記載の縦型窒化炉。
  3. アルミナ粉末、カーボン源、及びバインダー成分を含む造粒体を前記被窒化原料とし、前記反応生成物として窒化アルミニウム粒体を得る方法に使用する、請求項1又は2に記載の縦型窒化炉。
JP2013162125A 2013-08-05 2013-08-05 縦型窒化炉 Pending JP2015031462A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013162125A JP2015031462A (ja) 2013-08-05 2013-08-05 縦型窒化炉

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013162125A JP2015031462A (ja) 2013-08-05 2013-08-05 縦型窒化炉

Publications (1)

Publication Number Publication Date
JP2015031462A true JP2015031462A (ja) 2015-02-16

Family

ID=52516921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013162125A Pending JP2015031462A (ja) 2013-08-05 2013-08-05 縦型窒化炉

Country Status (1)

Country Link
JP (1) JP2015031462A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108120306A (zh) * 2016-11-28 2018-06-05 登封市宏远电热元件有限公司 一种硅碳棒生产保护装置
CN108613552A (zh) * 2018-05-02 2018-10-02 阜阳盛东智能制造技术研发有限公司 一种智能制造用烧结设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181311A (en) * 1981-04-15 1982-11-08 Hylsa Sa Device for crushing cohered block granules
JPS63243685A (ja) * 1987-03-30 1988-10-11 太陽誘電株式会社 セラミツク粉末焼成用縦型炉
JPH04130003A (ja) * 1990-09-18 1992-05-01 Asahi Chem Ind Co Ltd 窒化アルミニウム粉末の連続製造法
JPH06211507A (ja) * 1991-06-19 1994-08-02 Elf Atochem Sa アルミナの炭窒化による窒化アルミニウムの連続製造方法
JPH11314908A (ja) * 1998-05-01 1999-11-16 Ishikawajima Harima Heavy Ind Co Ltd 黒鉛化炉

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181311A (en) * 1981-04-15 1982-11-08 Hylsa Sa Device for crushing cohered block granules
JPS63243685A (ja) * 1987-03-30 1988-10-11 太陽誘電株式会社 セラミツク粉末焼成用縦型炉
JPH04130003A (ja) * 1990-09-18 1992-05-01 Asahi Chem Ind Co Ltd 窒化アルミニウム粉末の連続製造法
JPH06211507A (ja) * 1991-06-19 1994-08-02 Elf Atochem Sa アルミナの炭窒化による窒化アルミニウムの連続製造方法
JPH11314908A (ja) * 1998-05-01 1999-11-16 Ishikawajima Harima Heavy Ind Co Ltd 黒鉛化炉

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108120306A (zh) * 2016-11-28 2018-06-05 登封市宏远电热元件有限公司 一种硅碳棒生产保护装置
CN108613552A (zh) * 2018-05-02 2018-10-02 阜阳盛东智能制造技术研发有限公司 一种智能制造用烧结设备
CN108613552B (zh) * 2018-05-02 2019-11-05 江苏锡沂高新区科技发展有限公司 一种智能制造用烧结设备

Similar Documents

Publication Publication Date Title
US9227847B2 (en) Method for preparing vanadium-nitrogen alloy
CN103589201A (zh) 高发射率红外节能辐射涂料及其制备方法
CN105237001B (zh) 原位生成氮化铝的干熄焦炉用浇注料及其制备方法
CN107602099B (zh) 一种含改性石墨转炉挡渣用低碳滑板砖及其制备方法
JP2006265023A (ja) 水酸化リチウム一水塩の無水化方法
CN105000562B (zh) 一种碳化硅空心球的制备方法
CN105645963B (zh) 一种再结晶碳化硅制品及其制备方法
CN110407213B (zh) 一种(Ta, Nb, Ti, V)C高熵碳化物纳米粉体及其制备方法
CN103951436B (zh) 双辊薄带连铸用陶瓷侧封板及其制备方法
CN107827469B (zh) 低导热高耐磨刚玉质浇注料及其制备方法
CN103601520A (zh) 鱼雷罐用Al2O3-SiC-C耐火砖及其制备方法
CN105884363A (zh) 一种碳化硅泡沫陶瓷的制备工艺
JP2015031462A (ja) 縦型窒化炉
CN103922773A (zh) 薄带连铸用氮化硼质陶瓷侧封板及其制备方法
CN103804001B (zh) 一种环保型SiC-C复合重质泡泥
CN107500748B (zh) 一种镁铝尖晶石-石墨烯耐火材料制品及其制备工艺
CN105294160A (zh) 一种凝胶注模、微波烧结制备多孔氮化硅陶瓷的方法
CN104163640A (zh) 低压铸造用高纯氮化硅陶瓷升液管的微波烧结制备方法
CN111777417A (zh) 一种高炉渣高温碳化电炉用碳化硅-碳捣打料及其制备方法
CN109320224A (zh) 一种高纯度堇青石结合莫来石的材料及其制备方法
CN108395248A (zh) 一种碳化硅陶瓷热交换管的制备方法及其制得的产品
CN110483023A (zh) 一种微孔化刚玉砖及其制备方法
CN107244930A (zh) 一种耐铁水侵蚀高炉炭砖及其制备方法
CN206736335U (zh) 一种竖罐镁冶炼用中心筒
CN106830906B (zh) 一种低梯度差氧化铬制品的致密化方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170905