JP2015029434A - Aquatic organism growth medium, and method of manufacturing aquatic organism growth medium - Google Patents

Aquatic organism growth medium, and method of manufacturing aquatic organism growth medium Download PDF

Info

Publication number
JP2015029434A
JP2015029434A JP2013159167A JP2013159167A JP2015029434A JP 2015029434 A JP2015029434 A JP 2015029434A JP 2013159167 A JP2013159167 A JP 2013159167A JP 2013159167 A JP2013159167 A JP 2013159167A JP 2015029434 A JP2015029434 A JP 2015029434A
Authority
JP
Japan
Prior art keywords
aggregate
cement
growth medium
porous material
nutrients
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013159167A
Other languages
Japanese (ja)
Other versions
JP6115865B2 (en
Inventor
靖訓 田中
Yasukuni Tanaka
靖訓 田中
博喜 湯浅
Hiroki Yuasa
博喜 湯浅
神谷 隆
Takashi Kamiya
隆 神谷
市村 高央
Takahisa Ichimura
高央 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
REMATEC CORP
Taiheiyo Cement Corp
Original Assignee
REMATEC CORP
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by REMATEC CORP, Taiheiyo Cement Corp filed Critical REMATEC CORP
Priority to JP2013159167A priority Critical patent/JP6115865B2/en
Publication of JP2015029434A publication Critical patent/JP2015029434A/en
Application granted granted Critical
Publication of JP6115865B2 publication Critical patent/JP6115865B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Artificial Fish Reefs (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aquatic organism growth medium supplied with sufficient nutrients such as many kinds of amino acid necessary for the growth of an aquatic organism.SOLUTION: An aquatic organism growth medium is formed by solidification of cement 6, aggregate, and sand 5. At least part of the aggregate is composed of nutrient supply aggregate 3 in which a porous member is impregnated with nutrients for an aquatic organism, and the external surface of the porous member is covered by a coating layer 2 to suppress elution of the nutrients in water.

Description

本発明は、セメントと骨材と砂とから固化成形した水中生物生育培体及びその製造方法に関する。   The present invention relates to an aquatic organism growth medium solidified from cement, aggregate and sand, and a method for producing the same.

一般的に、セメントと骨材と砂とからなる材料によって、固化反応させてブロック状の成形体を形成するには、セメントの成分である珪酸カルシウム中の酸化カルシウム(CaO)が、水(H2O)と水和反応して水酸化カルシウム(Ca(OH)2)を生成し、これらの反応の進行とともに、固化した微粒子がさらにセメント中の珪酸(SiO2)イオンやアルミナ(Al23)イオンと反応して、エトリンガイトと呼ばれるセメント水和物を生成し、更に水和物粒子同士が結合して固形物が形成されるものと考えられている。
しかし、上記セメント固化反応は、PHの低下や、分散性のある因子の存在によって凝集作用が低下し、反応が阻害されて固化困難になるものと考えられている。
従来、前記水中生物生育培体を製造するのに、セメントと砂利などの骨材と砂との混合物に、水生生物に対する栄養素としてアミノ酸などを更に混入させて固化成形することが提案されているが、混入させる栄養素としては、セメント固化反応においてPHを低下させたり、固化反応により生成する微細な水和物同士の結合反応が抑制されたりすることがあり、水中生物生育培体を製造するのは困難であった。
そこで、混入するアミノ酸としてアルギニン単独の場合に限って水中生物生育培体を製造できることが知られている(例えば、特許文献1参照)。
In general, in order to form a block-shaped molded body by a solidification reaction using a material composed of cement, aggregate and sand, calcium oxide (CaO) in calcium silicate which is a component of cement is water (H 2 O) and hydrated to produce calcium hydroxide (Ca (OH) 2 ). As these reactions progress, the solidified fine particles further become silicic acid (SiO 2 ) ions and alumina (Al 2 O) in the cement. 3 ) It is considered that a cement hydrate called ettringite is produced by reacting with ions, and hydrate particles are further bonded to form a solid.
However, the cement solidification reaction is considered to be difficult to solidify due to a decrease in pH and agglomeration action due to the presence of a dispersible factor, which inhibits the reaction.
Conventionally, in order to produce the aquatic organism growth medium, it has been proposed to further solidify the mixture by mixing amino acids and the like as nutrients for aquatic organisms into a mixture of aggregate and sand such as cement and gravel. As a nutrient to be mixed, there is a case where PH is lowered in a cement solidification reaction, or a binding reaction between fine hydrates generated by the solidification reaction may be suppressed. It was difficult.
Thus, it is known that an aquatic organism growth medium can be produced only when arginine is used alone as a mixed amino acid (see, for example, Patent Document 1).

特開2011−142877号公報JP 2011-142877 A

上述した水中生物生育培体では、水中生物に必要な必須アミノ酸が不足して生育を十分に行えないという欠点があった。   The above-mentioned aquatic organism growth medium has a drawback in that the essential amino acids necessary for aquatic organisms are insufficient to allow sufficient growth.

従って、本発明の目的は、上記問題点を解消し、水中生物の生育に必要な多種のアミノ酸などの栄養素を十分に備えた水中生物生育培体を提供できるようにするところにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide an aquatic organism growth medium that is sufficiently provided with nutrients such as various amino acids necessary for the growth of aquatic organisms.

本発明の第1の水中生物生育培体の特徴構成は、セメントと骨材と砂とから固化成形した水中生物生育培体であって、前記骨材の少なくとも一部が、多孔質材に水生生物に対する栄養素を含浸させると共に、その多孔質材の外表面を水中における前記栄養素の溶出を抑制する被覆層で覆ってある栄養供給骨材からなるものであるところにある。   The characteristic constitution of the first aquatic organism growth medium of the present invention is an aquatic organism growth medium solidified and formed from cement, aggregate and sand, and at least a part of the aggregate is aquatic in a porous material. It is made of a nutrient supply aggregate that is impregnated with nutrients for living organisms and whose outer surface is covered with a coating layer that suppresses elution of the nutrients in water.

本発明の第1の特徴構成によれば、骨材の少なくとも一部が、多孔質材に水生生物に対する栄養素を含浸させると共に、その多孔質材の外表面を水中における前記栄養素の溶出を抑制する被覆層で覆ってある栄養供給骨材からなるものを使用して、その骨材とセメントと砂から水中生物生育培体を固化成形することにより、セメントの固化反応時に、多孔質材に含浸させた栄養素が溶出してセメントの固化反応を阻害する虞を防止でき、強度の高いコンクリート製の水中生物生育培体を提供できる。
従って、その水中生物生育培体を、水中に投入する漁礁や、テトラポット等に使用できる。
しかも、固化成形した水中生物生育培体における栄養供給骨材は、外表面を覆ってある被覆層によって、ゆっくりと時間をかけて、水中生物のために必要な栄養素が溶出してきて、水中生物の繁殖を促進させることができる。
According to the first characteristic configuration of the present invention, at least a part of the aggregate impregnates the porous material with nutrients for aquatic organisms, and suppresses the elution of the nutrients in water on the outer surface of the porous material. By using a material composed of a nutrient supply aggregate covered with a coating layer and solidifying and molding an underwater biological growth medium from the aggregate, cement and sand, the porous material is impregnated during the cement solidification reaction. It is possible to prevent the possibility that the nutrients elute and inhibit the cement solidification reaction, and to provide a high-strength concrete underwater biological growth medium.
Therefore, the aquatic organism growth medium can be used for fishing reefs, tetrapots and the like to be poured into water.
In addition, the nutrient supply aggregate in the solidified aquatic organism growing medium slowly dissolves the nutrients necessary for aquatic organisms by the coating layer covering the outer surface, Breeding can be promoted.

本発明の第2の特徴構成は、前記多孔質材が有機多孔質体または無機多孔質体であり、前記被覆層が水硬性材料からなるところにある。   According to a second characteristic configuration of the present invention, the porous material is an organic porous material or an inorganic porous material, and the coating layer is made of a hydraulic material.

本発明の第2の特徴構成によれば、本発明の第1の特徴構成による上述の作用効果を叶えることができるのに加えて、有機多孔質体または無機多孔質体からなる多孔質材に栄養素を含浸させるのに、一般的には栄養素を溶解させた水溶液で含浸させることで、容易に多孔質材中に担持させることができ、その状態で、その外表面を水硬性材料で覆うことで、多孔質体中の水分を吸収して硬化反応をおこさせて、被覆層を簡単に形成することができる。   According to the second characteristic configuration of the present invention, in addition to being able to achieve the above-described operational effects according to the first characteristic configuration of the present invention, a porous material comprising an organic porous material or an inorganic porous material is provided. In order to impregnate the nutrients, it is generally possible to easily carry them in the porous material by impregnating with an aqueous solution in which the nutrients are dissolved, and in that state, the outer surface is covered with a hydraulic material. Thus, the coating layer can be easily formed by absorbing moisture in the porous body to cause a curing reaction.

本発明の第3の特徴構成は、前記有機多孔質体は、木片、魚粉、繊維材、海綿体の中の少なくとも1種であるところにある。   The 3rd characteristic structure of this invention exists in the place where the said organic porous body is at least 1 sort (s) in a wooden piece, a fish meal, a fiber material, and a sponge body.

本発明の第3の特徴構成によれば、木片、魚粉、繊維材、海綿体の中の少なくとも1種で有機多孔質体を形成してあることにより、一般的に廃棄物として放出させるものを利用でき、安価で環境にやさしい材料を使用できる。   According to the third characteristic configuration of the present invention, an organic porous body is formed of at least one of a piece of wood, fish meal, a fiber material, and a spongy body. Available, inexpensive and environmentally friendly materials can be used.

本発明の第4の特徴構成は、前記被覆層は、セメント、生石灰(CaO)、漆喰、の中から選択されたものによって形成されたものである。   According to a fourth characteristic configuration of the present invention, the coating layer is formed by a material selected from cement, quicklime (CaO), and plaster.

本発明の第4の特徴構成によれば、セメント、生石灰(CaO)、漆喰、の中から選択された被覆層は、安価な材料により、多孔質材から水分を吸収して容易に栄養素の溶出を抑制する保護膜を形成できる。   According to the fourth characteristic configuration of the present invention, the coating layer selected from cement, quicklime (CaO), and plaster absorbs moisture from the porous material by an inexpensive material and easily dissolves nutrients. The protective film which suppresses can be formed.

本発明の第5の特徴構成は、前記栄養素は、フィッシュミールのソリブルである。   According to a fifth characteristic configuration of the present invention, the nutrient is a fish meal solibble.

本発明の第5の特徴構成によれば、栄養素として使用するフィッシュミールのソリブルは、安価で入手しやすい材料で、水生生物の生育に必要な必須アミノ酸を多く含んでいる。
そのために単一のアミノ酸を含んだだけの従来提案のテトラポットに比べて、水中生物の繁殖を、良好に行わせることができる。
According to the fifth characteristic configuration of the present invention, the fish meal solubil used as a nutrient is an inexpensive and readily available material and contains many essential amino acids necessary for the growth of aquatic organisms.
Therefore, as compared with the conventionally proposed tetrapot only containing a single amino acid, it is possible to reproduce the aquatic organisms well.

本発明の第6の水中生物生育培体の製造方法の特徴構成は、多孔質材に水生生物に対する栄養素の溶解液を含浸させた後、その栄養素含浸多孔質材の表面に水硬性材料の粉体を接触させ、前記栄養素含浸多孔質材に含浸した前記溶解液中の水分を前記水硬性材料に吸水させて前記水硬性材料を硬化反応させ、前記水硬性材料の硬化反応により前記多孔質材の表面に、栄養素の溶出を抑制する被覆層を形成した栄養供給骨材を形成し、前記栄養供給骨材を、セメントと砂とに混入させる骨材の少なくとも一部に使用して固化成形するところにある。   According to the sixth aspect of the method for producing an aquatic organism growth medium of the present invention, after impregnating a porous material with a solution of nutrients for aquatic organisms, the surface of the nutrient-impregnated porous material is a powder of hydraulic material. The porous material is brought into contact with the body, the water in the solution impregnated in the nutrient-impregnated porous material is absorbed into the hydraulic material, the hydraulic material is cured, and the porous material is cured by the curing reaction of the hydraulic material. A nutrient supply aggregate having a coating layer that suppresses elution of nutrients is formed on the surface of the material, and the nutrient supply aggregate is solidified and formed using at least a part of the aggregate mixed with cement and sand. By the way.

本発明の第6の特徴構成によれば、多孔質材の表面に、栄養素の溶出を抑制する被覆層を形成した栄養供給骨材を形成するのに、多孔質材に水生生物に対する栄養素の溶解液を含浸させた後、その栄養素含浸多孔質材の表面に水硬性材料の粉体を接触させ、前記栄養素含浸多孔質材に含浸した前記溶解液中の水分を前記水硬性材料に吸水させて前記水硬性材料を硬化反応させることで、多孔質材中に溶解液の状態で容易に栄養素を含浸させられると共に、溶解液中の水分を、水硬性材料によって吸水除去させることができ、多孔質材から簡単に栄養素が溶出しないようにできる。
しかも、水硬性材料の硬化反応により、多孔質材の外表面を強固に保護でき、骨材としての機能を十分に発揮させることができる。
そして、前記栄養供給骨材を、セメントと砂とに混入させる骨材の少なくとも一部に使用して固化成形することにより、強度の高いコンクリート製の水中生物生育培体を製造できる。
According to the sixth characteristic configuration of the present invention, a nutrient supply aggregate in which a coating layer for suppressing elution of nutrients is formed on the surface of the porous material. After impregnating the liquid, the powder of the hydraulic material is brought into contact with the surface of the nutrient-impregnated porous material, and water in the solution impregnated in the nutrient-impregnated porous material is absorbed by the hydraulic material. By causing the hydraulic material to undergo a curing reaction, the porous material can be easily impregnated with nutrients in the form of a solution, and the water in the solution can be absorbed and removed by the hydraulic material. Nutrients can easily be prevented from eluting from the wood.
In addition, the outer surface of the porous material can be strongly protected by the curing reaction of the hydraulic material, and the function as an aggregate can be sufficiently exhibited.
And the above-mentioned nutrient supply aggregate is used for at least a part of aggregate mixed with cement and sand and solidified and molded, whereby a high-strength concrete underwater organism growth medium can be manufactured.

本発明の水中生物生育培体の使用例を示す斜視図である。It is a perspective view which shows the usage example of the aquatic organism growth culture medium of this invention. 本発明の水中生物生育培体の製造手順を示す工程図である。It is process drawing which shows the manufacturing procedure of the aquatic organism growth culture medium of this invention. 本発明の水中生物生育培体の製造方法を示す斜視図である。It is a perspective view which shows the manufacturing method of the aquatic organism growth culture body of this invention. (a)から(d)は、別実施形態の水中生物生育培体を示す斜視図である。(A) to (d) is a perspective view showing an aquatic organism growth medium of another embodiment. (e)から(h)は、別実施形態の水中生物生育培体を示す斜視図である。(E) to (h) is a perspective view showing an aquatic organism growth medium of another embodiment.

以下に本発明の実施の形態を図面に基づいて説明する。
図1〜図3に示すように、本発明の水中生物生育培体は、多孔質材として廃棄物木片1を多数準備して、その多数の木片1に、水生生物に対する栄養素としてのフィッシュミールのソリブル4を含浸させ、そのソリブル4の含浸した木片1の外表面に、水硬性材料としてセメント6粉体を付着させて木片1中の水分を吸水させることで固化反応させ、木片1の外表面を覆う固化した被覆層2によって、木片1の外表面から栄養素が水中に溶出するのを抑制する不動化機能を備えた栄養供給骨材3を形成する。そして、前記栄養供給骨材3を全骨材の少なくとも一部として、砂5とセメント6に混入させてコンクリート材料を構成させ、そのコンクリート材料に水を添加し固化反応させてコンクリートブロック7を形成し、水中生物生育用の培体に構成する。
Embodiments of the present invention will be described below with reference to the drawings.
As shown in FIG. 1 to FIG. 3, the aquatic organism growth medium of the present invention prepares a large number of waste wood pieces 1 as porous materials, and the fish pieces as nutrients for aquatic organisms are prepared on the wood pieces 1. The outer surface of the piece of wood 1 is impregnated with the solid 6 by adhering the powder 6 to the outer surface of the wood piece 1 impregnated with the solible 4 and adhering the water in the wood piece 1 with cement 6 powder as a hydraulic material. The nutrient supply aggregate 3 having an immobilization function that suppresses the elution of nutrients into the water from the outer surface of the wood piece 1 is formed by the solidified covering layer 2 covering. The nutrient supply aggregate 3 is mixed with sand 5 and cement 6 as at least a part of the total aggregate to form a concrete material, and water is added to the concrete material to cause a solidification reaction to form a concrete block 7. And a medium for growing aquatic organisms.

前記栄養素として使用するフィッシュミールのソリブル4は、水揚げされた魚や一般的に廃棄処分される魚のアラを蒸煮して圧搾により脂と水溶液とを分離し、その分離した水溶液(スティックウォーターと称する)を更に水分50〜60%にまで濃縮したものである。
尚、前記脂と水溶液を分離した物を乾燥したものがフィッシュミール(魚粉)で、前記脂(魚油)と共に利用される。
前記水溶液(スティックウォーター)は、約90%が水分で、粗タンパク質10%、粗脂肪分0.30%、粗繊維質0.1%未満、粗灰分0.40%、全窒素17000mg/L、リン0.13%、PH6.1(23℃)の成分をしめすものであり、これに対し、ソリブル4は、その成分分析によれば、水分54.6%、粗タンパク質39.5%、粗脂肪2.8%、粗灰分4.7%のものや、水分60%、粗タンパク質35.8%、粗脂肪分2.5%、粗灰分4.1%の物で、これらを使用する。
前記スティックウォーターを水分約50〜60%にまで濃縮したソリブル4は、一般的には肥料に使用されたり廃棄されたりするのであるが、廃棄するには経費のかかる水処理が必要となる。しかし、ソリブル4中には、水生生物としての魚介類や藻類などの生育のための多種の必須アミノ酸や窒素(N)、リン(P)などの栄養素が多く含まれる。
そのために安価な栄養材料としてソリブル4を使用するが、単純に木片1に含浸させたものを骨材として、セメント6と砂5に混入させただけでは、PHが低下するためにセメント6の固化反応が阻害されやすい。
Fishmeal Solibble 4 used as the nutrient is a steamed fish or generally discarded fish, which is separated from fat and aqueous solution by pressing, and the separated aqueous solution (referred to as stick water) is used. Further, the water is concentrated to 50 to 60%.
In addition, what dried the thing which isolate | separated the said fat and aqueous solution is fishmeal (fish meal), and is utilized with the said fat (fish oil).
The aqueous solution (stick water) is about 90% water, crude protein 10%, crude fat content 0.30%, crude fiber content less than 0.1%, crude ash content 0.40%, total nitrogen 17000mg / L, In contrast to this, the component of phosphorus 0.13% and pH 6.1 (23 ° C.) indicates that Soluble 4 has a moisture content of 54.6%, a crude protein of 39.5%, a crude protein of These are those having a fat of 2.8%, a crude ash content of 4.7%, a water content of 60%, a crude protein of 35.8%, a crude fat content of 2.5%, and a crude ash content of 4.1%.
The solubil 4 obtained by concentrating the stick water to about 50 to 60% of water is generally used as a fertilizer or discarded. However, expensive water treatment is required for disposal. However, Soluble 4 contains a large amount of various essential amino acids and nutrients such as nitrogen (N) and phosphorus (P) for the growth of seafood and algae as aquatic organisms.
For this purpose, Solibble 4 is used as an inexpensive nutritional material. However, simply by impregnating the piece of wood 1 into the aggregate 6 and mixing it with the cement 6 and the sand 5, the PH decreases and the cement 6 is solidified. The reaction is likely to be inhibited.

本発明では、ソリブル4を含浸した木片1の外周面にセメント6粉体を塗して、そのセメント6粉体に木片1の水分を吸水させて、固化反応を起こさせて被覆層2を形成する。その被覆層2による保護のために、骨材や砂5と混入したコンクリート材料中のセメント6固化反応時に、木片1中の栄養素が溶出せずに、セメント6固化反応を阻害するのを防止できる。
尚、本発明の水中生物生育培体として固化成形したコンクリートブロック7は、テトラポットのような形状以外に、図4(a)から図5(h)に示すように、漁礁や、水中構造物としての自由な形状に成形してもよい。
In the present invention, the cement 6 powder is applied to the outer peripheral surface of the wood piece 1 impregnated with the solubil 4, the moisture of the wood piece 1 is absorbed into the cement 6 powder, and a solidification reaction is caused to form the coating layer 2. To do. Due to the protection by the covering layer 2, it is possible to prevent the cement 6 solidification reaction from being inhibited without elution of the nutrients in the wood piece 1 during the cement 6 solidification reaction in the concrete material mixed with aggregate or sand 5. .
In addition, the concrete block 7 solidified and formed as the aquatic organism growth medium of the present invention has a shape other than a tetrapot, as shown in FIGS. 4 (a) to 5 (h), such as fishing reefs and underwater structures. You may shape | mold into the free shape as.

〔別実施形態〕
以下に他の実施の形態を説明する。
〈1〉 前記多孔質材としては、廃棄物としての木片以外に、間伐材を粉砕した木片や、魚粉、繊維材、海綿体等の有機質多孔体を利用する例や、活性炭、軽石等の無機多孔質体を利用してもよい。
〈2〉 前記被覆層を形成する材料としては、セメント以外に、生石灰(CaO)、漆喰など無機水硬性材料の少なくとも1種が使用でき、また、通水性を確保できるものであれば合成樹脂等の有機硬化性材料も使用できる。
〈3〉 前記栄養素としては、フィッシュミールのソリブル以外に、特定して生育させる水生生物の種類に応じて、必須アミノ酸の配合割合を調整するべく意図的に合成したものでもよい。
[Another embodiment]
Other embodiments will be described below.
<1> Examples of the porous material include, in addition to wood chips as waste, wood pieces obtained by pulverizing thinned wood, organic porous bodies such as fish meal, fiber materials, and sponges, and inorganic materials such as activated carbon and pumice. A porous body may be used.
<2> As a material for forming the coating layer, in addition to cement, at least one inorganic hydraulic material such as quick lime (CaO) and plaster can be used, and a synthetic resin or the like can be used as long as water permeability can be secured. Organic curable materials can also be used.
<3> In addition to the fishmeal solubil, the nutrient may be intentionally synthesized to adjust the blending ratio of essential amino acids according to the type of aquatic organisms to be specifically grown.

次に、セメント6と骨材と砂5との混合物を各種準備して、それらの混合成分に水を添加してコンクリートブロック7を成形し、強度を確認するために、30〜50cmの高さから落下試験を行い割れるかどうかを確認する実験をした。   Next, various mixtures of cement 6, aggregate and sand 5 are prepared, and water is added to the mixed components to form a concrete block 7, and the height is 30 to 50 cm in order to confirm the strength. A drop test was conducted to confirm whether or not it cracked.

[実施例1]
セメント:砂:骨材:水=1:3:6:0.5(体積比)
尚、上記骨材6中において、バラスと呼ばれる一般的な砕石と、ソリブルを含浸させた木片で漆喰などの水硬性材料により形成した被覆層で覆ったものとの比が、9:1である。
[Example 1]
Cement: Sand: Aggregate: Water = 1: 3: 6: 0.5 (Volume ratio)
In the aggregate 6, the ratio of the general crushed stone called ballast and the one covered with a covering material formed of a hydraulic material such as plaster with a piece of wood impregnated with a solibble is 9: 1. .

[実施例2]
セメント:砂:骨材:水=1:3:6:0.5(体積比)
尚、上記骨材6中において、バラスと呼ばれる一般的な砕石と、ソリブルを含浸させた木片で上記被覆層で覆ったものとの比が、3:1である。
[Example 2]
Cement: Sand: Aggregate: Water = 1: 3: 6: 0.5 (Volume ratio)
In the aggregate 6, the ratio of general crushed stone called ballast and the one covered with the covering layer with a piece of wood impregnated with a solibble is 3: 1.

[比較例1]
セメント:砂:骨材:ソリブル=1:3:6:0.5(体積比)
尚、上記骨材は、全てバラスと呼ばれる一般的な砕石を使用する。
[Comparative Example 1]
Cement: Sand: Aggregate: Solibble = 1: 3: 6: 0.5 (volume ratio)
In addition, the said aggregate uses the general crushed stone called all ballasts.

[比較例2]
セメント:砂:骨材:水=1:3:6:0.5(体積比)
尚、上記骨材6中において、バラスと呼ばれる一般的な砕石と、ソリブルを含浸させた未乾燥の木片で、且つ、被覆層で覆ってないものとの比が、1:2である。
[Comparative Example 2]
Cement: Sand: Aggregate: Water = 1: 3: 6: 0.5 (Volume ratio)
In the aggregate 6, the ratio of general crushed stone called ballast to undried wood pieces impregnated with solubilized and not covered with a coating layer is 1: 2.

[比較例3]
セメント:砂:骨材:水=1:3:6:0.5(体積比)
尚、上記骨材6中において、バラスと呼ばれる一般的な砕石と、ソリブルを含浸させた未乾燥の木片で、且つ、被覆層で覆ってないものとの比が、1:1である。
[Comparative Example 3]
Cement: Sand: Aggregate: Water = 1: 3: 6: 0.5 (Volume ratio)
In the above-mentioned aggregate 6, the ratio between general crushed stone called ballast and undried wood pieces impregnated with solible and not covered with a coating layer is 1: 1.

[比較例4]
セメント:砂:骨材:水=1:3:6:0.5(体積比)
尚、上記骨材6中において、バラスと呼ばれる一般的な砕石と、ソリブルを含浸させた未乾燥の木片で、且つ、被覆層で覆ってないものとの比が、3:1である。
[Comparative Example 4]
Cement: Sand: Aggregate: Water = 1: 3: 6: 0.5 (Volume ratio)
In the aggregate 6, the ratio of the general crushed stone called ballast to the undried wood piece impregnated with the solible and not covered with the coating layer is 3: 1.

[比較例5]
セメント:砂:骨材:水=1:3:6:0.5(体積比)
尚、上記骨材6中において、バラスと呼ばれる一般的な砕石と、ソリブルを含浸させて乾燥させた木片で、且つ、被覆層で覆ってないものとの比が、1:2である。
[Comparative Example 5]
Cement: Sand: Aggregate: Water = 1: 3: 6: 0.5 (Volume ratio)
In the aggregate 6, the ratio of general crushed stone called ballast to a piece of wood impregnated with solubil and dried and not covered with a coating layer is 1: 2.

[比較例6]
セメント:砂:骨材:水=1:3:6:0.5(体積比)
尚、上記骨材6中において、バラスと呼ばれる一般的な砕石と、ソリブルを含浸させて乾燥させた木片で、且つ、被覆層で覆ってないものとの比が、1:1である。
[Comparative Example 6]
Cement: Sand: Aggregate: Water = 1: 3: 6: 0.5 (Volume ratio)
In the aggregate 6, the ratio of general crushed stone called ballast to a piece of wood impregnated with a solible and dried, but not covered with a coating layer is 1: 1.

[比較例7]
セメント:砂:骨材:水=1:3:6:0.5(体積比)
尚、上記骨材6中において、バラスと呼ばれる一般的な砕石と、ソリブルを含浸させて乾燥させた木片で、且つ、被覆層で覆ってないものとの比が、3:1である。
[Comparative Example 7]
Cement: Sand: Aggregate: Water = 1: 3: 6: 0.5 (Volume ratio)
In the aggregate 6, the ratio of general crushed stone called ballast to a piece of wood impregnated with solubil and dried, but not covered with a coating layer is 3: 1.

[結果]
上記の実施例1及び実施例2は、セメントが固化して強度も十分にあった。
比較例1は、全体が固化せずに形状が保てなく崩壊した。
従って、水の代わりに投入したソリブルがPHを低下させ、そのPH低下によって、セメントの固化反応が阻害されたものと思われる。
比較例2〜比較例6は、ソリブルを含浸した木片が、被覆層で覆われていないために、セメントの固化反応中に木片中のソリブルが溶出してきて、セメントの固化反応を阻害し、そのために、セメントの固化反応が悪く、強度が十分なく落下試験で砕けてしまった。
比較例7は、セメントが固化したが、強度が不十分で、落下試験で割れてしまった。これは、木片の混入率が低く、且つ、乾燥後の木片からのソリブルの溶出量が少なかったために、セメントが一応固化したものの、やはり、溶出ソリブルによるセメント固化反応の阻害が原因で、強度不足になったものと思われる。
また、上記実施例1のように砕石の混入割合が多くなればなるほどブロックとしての強度は上がるが、水中生物生育能が低減し、実施例2のように、木片の混入割合が多くなればなるほど、水中生物生育能は向上するがブロックとしての強度が低下する。
[result]
In Examples 1 and 2, the cement was solidified and had sufficient strength.
In Comparative Example 1, the whole was not solidified, and the shape could not be maintained and collapsed.
Therefore, it is considered that the solubil introduced in place of water lowers the PH, and the solidification reaction of the cement is inhibited by the PH reduction.
In Comparative Examples 2 to 6, since the wood pieces impregnated with the solible are not covered with the coating layer, the solubilization in the wood pieces is eluted during the solidification reaction of the cement to inhibit the solidification reaction of the cement. In addition, the solidification reaction of the cement was poor, the strength was not sufficient, and it was crushed in the drop test.
In Comparative Example 7, the cement was solidified, but the strength was insufficient, and it was cracked in the drop test. This is because the mixing rate of wood fragments is low and the amount of solubil elution from the wood pieces after drying is small, so that the cement has solidified temporarily, but again the strength is insufficient due to the inhibition of the cement solidification reaction by the elution solibble It seems that it became.
Moreover, although the intensity | strength as a block goes up, so that the mixing rate of crushed stone increases like the said Example 1, underwater organism growth ability reduces, and the mixing rate of a piece of wood increases, like Example 2. In addition, the ability to grow underwater organisms is improved, but the strength as a block is reduced.

従って、上記試験で、固化したコンクリートブロックでは、漁礁や消波ブロックのように強度を上げるためには、骨材中の木片の混入割合を減らす必要があるが、コンクリートブロックの用途によっては、例えば、海砂採取によって生じた海中の凹部に投入する貧配合コンクリートに使用する場合には、低強度でも木片の配合比を多くすることができる。   Therefore, in the above test, in the solidified concrete block, it is necessary to reduce the mixing ratio of the wood pieces in the aggregate in order to increase the strength like fishing reefs and wave-dissipating blocks, but depending on the use of the concrete block, for example In addition, when used for poor blended concrete that is put into a recess in the sea generated by sea sand collection, the blending ratio of wood pieces can be increased even at low strength.

1 木片(多孔質材)
2 被覆層
3 栄養供給骨材
4 ソリブル
5 砂
6 セメント
1 Wood piece (porous material)
2 Covering layer 3 Nutrient supply aggregate 4 Solibble 5 Sand 6 Cement

本発明は、セメントと骨材と砂とから固化成形した水中生物生育培体及びその製造方法に関する。   The present invention relates to an aquatic organism growth medium solidified from cement, aggregate and sand, and a method for producing the same.

一般的に、セメントと骨材と砂とからなる材料によって、固化反応させてブロック状の成形体を形成するには、セメントの成分である珪酸カルシウム中の酸化カルシウム(CaO)が、水(H2O)と水和反応して水酸化カルシウム(Ca(OH)2)を生成し、これらの反応の進行とともに、固化した微粒子がさらにセメント中の珪酸(SiO2)イオン
やアルミナ(Al23)イオンと反応して、エトリンガイトと呼ばれるセメント水和物を生成し、更に水和物粒子同士が結合して固形物が形成されるものと考えられている。
しかし、上記セメント固化反応は、PHの低下や、分散性のある因子の存在によって凝集作用が低下し、反応が阻害されて固化困難になるものと考えられている。
従来、前記水中生物生育培体を製造するのに、セメントと砂利などの骨材と砂との混合物に、水生生物に対する栄養素としてアミノ酸などを更に混入させて固化成形することが提案されているが、混入させる栄養素としては、セメント固化反応においてPHを低下させたり、固化反応により生成する微細な水和物同士の結合反応が抑制されたりすることがあり、水中生物生育培体を製造するのは困難であった。
そこで、混入するアミノ酸としてアルギニン単独の場合に限って水中生物生育培体を製造できることが知られている(例えば、特許文献1参照)。
In general, in order to form a block-shaped molded body by a solidification reaction using a material composed of cement, aggregate and sand, calcium oxide (CaO) in calcium silicate which is a component of cement is water (H 2 O) and hydrated to produce calcium hydroxide (Ca (OH) 2 ). As these reactions progress, the solidified fine particles further become silicic acid (SiO 2 ) ions and alumina (Al 2 O) in the cement. 3 ) It is considered that a cement hydrate called ettringite is produced by reacting with ions, and hydrate particles are further bonded to form a solid.
However, the cement solidification reaction is considered to be difficult to solidify due to a decrease in pH and agglomeration action due to the presence of a dispersible factor, which inhibits the reaction.
Conventionally, in order to produce the aquatic organism growth medium, it has been proposed to further solidify the mixture by mixing amino acids and the like as nutrients for aquatic organisms into a mixture of aggregate and sand such as cement and gravel. As a nutrient to be mixed, there is a case where PH is lowered in a cement solidification reaction, or a binding reaction between fine hydrates generated by the solidification reaction may be suppressed. It was difficult.
Thus, it is known that an aquatic organism growth medium can be produced only when arginine is used alone as a mixed amino acid (see, for example, Patent Document 1).

特開2011−142877号公報JP 2011-142877 A

上述した水中生物生育培体では、水中生物に必要な必須アミノ酸が不足して生育を十分に行えないという欠点があった。   The above-mentioned aquatic organism growth medium has a drawback in that the essential amino acids necessary for aquatic organisms are insufficient to allow sufficient growth.

従って、本発明の目的は、上記問題点を解消し、水中生物の生育に必要な多種のアミノ酸などの栄養素を十分に備えた水中生物生育培体を提供できるようにするところにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide an aquatic organism growth medium that is sufficiently provided with nutrients such as various amino acids necessary for the growth of aquatic organisms.

本発明の第1の水中生物生育培体の特徴構成は、セメントと骨材と砂とから固化成形した水中生物生育培体であって、前記骨材の少なくとも一部が、多孔質材に水生生物に対する栄養素を含浸させると共に、その多孔質材の外表面を水中における前記栄養素の溶出を抑制する被覆層で覆ってある栄養供給骨材からなるものであるところにある。   The characteristic constitution of the first aquatic organism growth medium of the present invention is an aquatic organism growth medium solidified and formed from cement, aggregate and sand, and at least a part of the aggregate is aquatic in a porous material. It is made of a nutrient supply aggregate that is impregnated with nutrients for living organisms and whose outer surface is covered with a coating layer that suppresses elution of the nutrients in water.

本発明の第1の特徴構成によれば、骨材の少なくとも一部が、多孔質材に水生生物に対する栄養素を含浸させると共に、その多孔質材の外表面を水中における前記栄養素の溶出を抑制する被覆層で覆ってある栄養供給骨材からなるものを使用して、その骨材とセメントと砂から水中生物生育培体を固化成形することにより、セメントの固化反応時に、多孔質材に含浸させた栄養素が溶出してセメントの固化反応を阻害する虞を防止でき、強度の高いコンクリート製の水中生物生育培体を提供できる。
従って、その水中生物生育培体を、水中に投入する漁礁や、テトラポット等に使用できる。
しかも、固化成形した水中生物生育培体における栄養供給骨材は、外表面を覆ってある被覆層によって、ゆっくりと時間をかけて、水中生物のために必要な栄養素が溶出してきて、水中生物の繁殖を促進させることができる。
According to the first characteristic configuration of the present invention, at least a part of the aggregate impregnates the porous material with nutrients for aquatic organisms, and suppresses the elution of the nutrients in water on the outer surface of the porous material. By using a material composed of a nutrient supply aggregate covered with a coating layer and solidifying and molding an underwater biological growth medium from the aggregate, cement and sand, the porous material is impregnated during the cement solidification reaction. It is possible to prevent the possibility that the nutrients elute and inhibit the cement solidification reaction, and to provide a high-strength concrete underwater biological growth medium.
Therefore, the aquatic organism growth medium can be used for fishing reefs, tetrapots and the like to be poured into water.
In addition, the nutrient supply aggregate in the solidified aquatic organism growth medium slowly dissolves the nutrients necessary for aquatic organisms over time by the coating layer covering the outer surface, Breeding can be promoted.

本発明の第2の特徴構成は、前記多孔質材が有機多孔質体または無機多孔質体であり、前記被覆層が水硬性材料からなるところにある。   According to a second characteristic configuration of the present invention, the porous material is an organic porous material or an inorganic porous material, and the coating layer is made of a hydraulic material.

本発明の第2の特徴構成によれば、本発明の第1の特徴構成による上述の作用効果を叶えることができるのに加えて、有機多孔質体または無機多孔質体からなる多孔質材に栄養素を含浸させるのに、一般的には栄養素を溶解させた水溶液で含浸させることで、容易に多孔質材中に担持させることができ、その状態で、その外表面を水硬性材料で覆うことで、多孔質体中の水分を吸収して硬化反応をおこさせて、被覆層を簡単に形成することができる。   According to the second characteristic configuration of the present invention, in addition to being able to achieve the above-described operational effects according to the first characteristic configuration of the present invention, a porous material comprising an organic porous material or an inorganic porous material is provided. In order to impregnate the nutrients, it is generally possible to easily carry them in the porous material by impregnating with an aqueous solution in which the nutrients are dissolved, and in that state, the outer surface is covered with a hydraulic material. Thus, the coating layer can be easily formed by absorbing moisture in the porous body to cause a curing reaction.

本発明の第3の特徴構成は、前記有機多孔質体は、木片、魚粉、繊維材、海綿体の中の少なくとも1種であるところにある。   The 3rd characteristic structure of this invention exists in the place where the said organic porous body is at least 1 sort (s) in a wooden piece, a fish meal, a fiber material, and a sponge body.

本発明の第3の特徴構成によれば、木片、魚粉、繊維材、海綿体の中の少なくとも1種で有機多孔質体を形成してあることにより、一般的に廃棄物として放出させるものを利用でき、安価で環境にやさしい材料を使用できる。   According to the third characteristic configuration of the present invention, an organic porous body is formed of at least one of a piece of wood, fish meal, a fiber material, and a spongy body. Available, inexpensive and environmentally friendly materials can be used.

本発明の第4の特徴構成は、前記被覆層は、セメント、生石灰(CaO)、漆喰、の中から選択されたものによって形成されたものである。   According to a fourth characteristic configuration of the present invention, the coating layer is formed by a material selected from cement, quicklime (CaO), and plaster.

本発明の第4の特徴構成によれば、セメント、生石灰(CaO)、漆喰、の中から選択された被覆層は、安価な材料により、多孔質材から水分を吸収して容易に栄養素の溶出を抑制する保護膜を形成できる。   According to the fourth characteristic configuration of the present invention, the coating layer selected from cement, quicklime (CaO), and plaster absorbs moisture from the porous material by an inexpensive material and easily dissolves nutrients. The protective film which suppresses can be formed.

本発明の第5の特徴構成は、前記栄養素は、フィッシュミールのソリブルである。   According to a fifth characteristic configuration of the present invention, the nutrient is a fish meal solibble.

本発明の第5の特徴構成によれば、栄養素として使用するフィッシュミールのソリブルは、安価で入手しやすい材料で、水生生物の生育に必要な必須アミノ酸を多く含んでいる。
そのために単一のアミノ酸を含んだだけの従来提案のテトラポットに比べて、水中生物の繁殖を、良好に行わせることができる。
According to the fifth characteristic configuration of the present invention, the fish meal solubil used as a nutrient is an inexpensive and readily available material and contains many essential amino acids necessary for the growth of aquatic organisms.
Therefore, as compared with the conventionally proposed tetrapot only containing a single amino acid, it is possible to reproduce the aquatic organisms well.

本発明の第6の特徴構成は、前記栄養素は、特定して生育させる水中生物の種類に応じて、必須アミノ酸の配合割合を調整するべく意図的に合成したものである。 According to a sixth characteristic configuration of the present invention, the nutrient is intentionally synthesized so as to adjust the blending ratio of essential amino acids according to the type of aquatic organisms to be specified and grown.

本発明の第7の水中生物生育培体の製造方法の特徴構成は、多孔質材に水生生物に対する栄養素の溶解液を含浸させた後、その栄養素含浸多孔質材の表面に水硬性材料の粉体を接触させ、前記栄養素含浸多孔質材に含浸した前記溶解液中の水分を前記水硬性材料に吸水させて前記水硬性材料を硬化反応させ、前記水硬性材料の硬化反応により前記多孔質材の表面に、栄養素の溶出を抑制する被覆層を形成した栄養供給骨材を形成し、前記栄養供給骨材を、セメントと砂とに混入させる骨材の少なくとも一部に使用して固化成形するところにある。 According to the seventh aspect of the method for producing an aquatic organism growth medium of the present invention, the porous material is impregnated with a solution of nutrients for aquatic organisms, and then the surface of the nutrient-impregnated porous material is powdered with hydraulic material. The porous material is brought into contact with the body, the water in the solution impregnated in the nutrient-impregnated porous material is absorbed into the hydraulic material, the hydraulic material is cured, and the porous material is cured by the curing reaction of the hydraulic material. A nutrient supply aggregate having a coating layer that suppresses elution of nutrients is formed on the surface of the material, and the nutrient supply aggregate is solidified and formed using at least a part of the aggregate mixed with cement and sand. By the way.

本発明の第7の特徴構成によれば、多孔質材の表面に、栄養素の溶出を抑制する被覆層を形成した栄養供給骨材を形成するのに、多孔質材に水生生物に対する栄養素の溶解液を含浸させた後、その栄養素含浸多孔質材の表面に水硬性材料の粉体を接触させ、前記栄養素含浸多孔質材に含浸した前記溶解液中の水分を前記水硬性材料に吸水させて前記水硬性材料を硬化反応させることで、多孔質材中に溶解液の状態で容易に栄養素を含浸させられると共に、溶解液中の水分を、水硬性材料によって吸水除去させることができ、多孔質材から簡単に栄養素が溶出しないようにできる。
しかも、水硬性材料の硬化反応により、多孔質材の外表面を強固に保護でき、骨材としての機能を十分に発揮させることができる。
そして、前記栄養供給骨材を、セメントと砂とに混入させる骨材の少なくとも一部に使用して固化成形することにより、強度の高いコンクリート製の水中生物生育培体を製造できる。
According to the seventh characteristic configuration of the present invention, a nutrient supply aggregate in which a coating layer that suppresses elution of nutrients is formed on the surface of the porous material. After impregnating the liquid, the powder of the hydraulic material is brought into contact with the surface of the nutrient-impregnated porous material, and water in the solution impregnated in the nutrient-impregnated porous material is absorbed by the hydraulic material. By causing the hydraulic material to undergo a curing reaction, the porous material can be easily impregnated with nutrients in the form of a solution, and the water in the solution can be absorbed and removed by the hydraulic material. Nutrients can easily be prevented from eluting from the wood.
In addition, the outer surface of the porous material can be strongly protected by the curing reaction of the hydraulic material, and the function as an aggregate can be sufficiently exhibited.
And the above-mentioned nutrient supply aggregate is used for at least a part of aggregate mixed with cement and sand and solidified and molded, whereby a high-strength concrete underwater organism growth medium can be manufactured.

本発明の水中生物生育培体の使用例を示す斜視図である。It is a perspective view which shows the usage example of the aquatic organism growth culture medium of this invention. 本発明の水中生物生育培体の製造手順を示す工程図である。It is process drawing which shows the manufacturing procedure of the aquatic organism growth culture medium of this invention. 本発明の水中生物生育培体の製造方法を示す斜視図である。It is a perspective view which shows the manufacturing method of the aquatic organism growth culture body of this invention. (a)から(d)は、別実施形態の水中生物生育培体を示す斜視図である。(A) to (d) is a perspective view showing an aquatic organism growth medium of another embodiment. (e)から(h)は、別実施形態の水中生物生育培体を示す斜視図である。(E) to (h) is a perspective view showing an aquatic organism growth medium of another embodiment.

以下に本発明の実施の形態を図面に基づいて説明する。
図1〜図3に示すように、本発明の水中生物生育培体は、多孔質材として廃棄物木片1を多数準備して、その多数の木片1に、水生生物に対する栄養素としてのフィッシュミールのソリブル4を含浸させ、そのソリブル4の含浸した木片1の外表面に、水硬性材料としてセメント6粉体を付着させて木片1中の水分を吸水させることで固化反応させ、木片1の外表面を覆う固化した被覆層2によって、木片1の外表面から栄養素が水中に溶出するのを抑制する不動化機能を備えた栄養供給骨材3を形成する。そして、前記栄養供給骨材3を全骨材の少なくとも一部として、砂5とセメント6に混入させてコンクリート材料を構成させ、そのコンクリート材料に水を添加し固化反応させてコンクリートブロック7を形成し、水中生物生育用の培体に構成する。
Embodiments of the present invention will be described below with reference to the drawings.
As shown in FIG. 1 to FIG. 3, the aquatic organism growth medium of the present invention prepares a large number of waste wood pieces 1 as porous materials, and the fish pieces as nutrients for aquatic organisms are prepared on the wood pieces 1. The outer surface of the piece of wood 1 is impregnated with the solid 6 by adhering the powder 6 to the outer surface of the wood piece 1 impregnated with the solible 4 and adhering the water in the wood piece 1 with cement 6 powder as a hydraulic material. The nutrient supply aggregate 3 having an immobilization function that suppresses the elution of nutrients into the water from the outer surface of the wood piece 1 is formed by the solidified covering layer 2 covering. The nutrient supply aggregate 3 is mixed with sand 5 and cement 6 as at least a part of the total aggregate to form a concrete material, and water is added to the concrete material to cause a solidification reaction to form a concrete block 7. And a medium for growing aquatic organisms.

前記栄養素として使用するフィッシュミールのソリブル4は、水揚げされた魚や一般的に廃棄処分される魚のアラを蒸煮して圧搾により脂と水溶液とを分離し、その分離した水溶液(スティックウォーターと称する)を更に水分50〜60%にまで濃縮したものである。
尚、前記脂と水溶液を分離した物を乾燥したものがフィッシュミール(魚粉)で、前記脂(魚油)と共に利用される。
前記水溶液(スティックウォーター)は、約90%が水分で、粗タンパク質10%、粗脂肪分0.30%、粗繊維質0.1%未満、粗灰分0.40%、全窒素17000mg/L、リン0.13%、PH6.1(23℃)の成分をしめすものであり、これに対し、ソリブル4は、その成分分析によれば、水分54.6%、粗タンパク質39.5%、粗脂肪2.8%、粗灰分4.7%のものや、水分60%、粗タンパク質35.8%、粗脂肪分2.5%、粗灰分4.1%の物で、これらを使用する。
前記スティックウォーターを水分約50〜60%にまで濃縮したソリブル4は、一般的には肥料に使用されたり廃棄されたりするのであるが、廃棄するには経費のかかる水処理が必要となる。しかし、ソリブル4中には、水生生物としての魚介類や藻類などの生育のための多種の必須アミノ酸や窒素(N)、リン(P)などの栄養素が多く含まれる。
そのために安価な栄養材料としてソリブル4を使用するが、単純に木片1に含浸させたものを骨材として、セメント6と砂5に混入させただけでは、PHが低下するためにセメント6の固化反応が阻害されやすい。
Fishmeal Solibble 4 used as the nutrient is a steamed fish or generally discarded fish, which is separated from fat and aqueous solution by pressing, and the separated aqueous solution (referred to as stick water) is used. Further, the water is concentrated to 50 to 60%.
In addition, what dried the thing which isolate | separated the said fat and aqueous solution is fishmeal (fish meal), and is utilized with the said fat (fish oil).
The aqueous solution (stick water) is about 90% water, crude protein 10%, crude fat content 0.30%, crude fiber content less than 0.1%, crude ash content 0.40%, total nitrogen 17000mg / L, In contrast to this, the component of phosphorus 0.13% and pH 6.1 (23 ° C.) indicates that Soluble 4 has a moisture content of 54.6%, a crude protein of 39.5%, a crude protein of These are those having a fat of 2.8%, a crude ash content of 4.7%, a water content of 60%, a crude protein of 35.8%, a crude fat content of 2.5%, and a crude ash content of 4.1%.
The solubil 4 obtained by concentrating the stick water to about 50 to 60% of water is generally used as a fertilizer or discarded. However, expensive water treatment is required for disposal. However, Soluble 4 contains a large amount of various essential amino acids and nutrients such as nitrogen (N) and phosphorus (P) for the growth of seafood and algae as aquatic organisms.
For this purpose, Solibble 4 is used as an inexpensive nutritional material. However, simply by impregnating the piece of wood 1 into the aggregate 6 and mixing it with the cement 6 and the sand 5, the PH decreases and the cement 6 is solidified. The reaction is easily inhibited.

本発明では、ソリブル4を含浸した木片1の外周面にセメント6粉体を塗して、そのセメント6粉体に木片1の水分を吸水させて、固化反応を起こさせて被覆層2を形成する。その被覆層2による保護のために、骨材や砂5と混入したコンクリート材料中のセメント6固化反応時に、木片1中の栄養素が溶出せずに、セメント6固化反応を阻害するのを防止できる。
尚、本発明の水中生物生育培体として固化成形したコンクリートブロック7は、テトラポットのような形状以外に、図4(a)から図5(h)に示すように、漁礁や、水中構造物としての自由な形状に成形してもよい。
In the present invention, the cement 6 powder is applied to the outer peripheral surface of the wood piece 1 impregnated with the solubil 4, the moisture of the wood piece 1 is absorbed into the cement 6 powder, and a solidification reaction is caused to form the coating layer 2. To do. Due to the protection by the covering layer 2, it is possible to prevent the cement 6 solidification reaction from being inhibited without elution of the nutrients in the wood piece 1 during the cement 6 solidification reaction in the concrete material mixed with aggregate or sand 5. .
In addition, the concrete block 7 solidified and formed as the aquatic organism growth medium of the present invention has a shape other than a tetrapot, as shown in FIGS. 4 (a) to 5 (h), such as fishing reefs and underwater structures. You may shape | mold into the free shape as.

〔別実施形態〕
以下に他の実施の形態を説明する。
〈1〉 前記多孔質材としては、廃棄物としての木片以外に、間伐材を粉砕した木片や、魚粉、繊維材、海綿体等の有機質多孔体を利用する例や、活性炭、軽石等の無機多孔質体を利用してもよい。
〈2〉 前記被覆層を形成する材料としては、セメント以外に、生石灰(CaO)、漆喰など無機水硬性材料の少なくとも1種が使用でき、また、通水性を確保できるものであれば合成樹脂等の有機硬化性材料も使用できる。
〈3〉 前記栄養素としては、フィッシュミールのソリブル以外に、特定して生育させる水生生物の種類に応じて、必須アミノ酸の配合割合を調整するべく意図的に合成したものでもよい。
[Another embodiment]
Other embodiments will be described below.
<1> Examples of the porous material include, in addition to wood chips as waste, wood pieces obtained by pulverizing thinned wood, organic porous bodies such as fish meal, fiber materials, and sponges, and inorganic materials such as activated carbon and pumice. A porous body may be used.
<2> As a material for forming the coating layer, in addition to cement, at least one inorganic hydraulic material such as quick lime (CaO) and plaster can be used, and a synthetic resin or the like can be used as long as water permeability can be secured. Organic curable materials can also be used.
<3> In addition to the fishmeal solubil, the nutrient may be intentionally synthesized to adjust the blending ratio of essential amino acids according to the type of aquatic organisms to be specifically grown.

次に、セメント6と骨材と砂5との混合物を各種準備して、それらの混合成分に水を添加してコンクリートブロック7を成形し、強度を確認するために、30〜50cmの高さから落下試験を行い割れるかどうかを確認する実験をした。   Next, various mixtures of cement 6, aggregate and sand 5 are prepared, and water is added to the mixed components to form a concrete block 7, and the height is 30 to 50 cm in order to confirm the strength. A drop test was conducted to confirm whether or not it cracked.

[実施例1]
セメント:砂:骨材:水=1:3:6:0.5(体積比)
尚、上記骨材6中において、バラスと呼ばれる一般的な砕石と、ソリブルを含浸させた木片で漆喰などの水硬性材料により形成した被覆層で覆ったものとの比が、9:1である。
[Example 1]
Cement: Sand: Aggregate: Water = 1: 3: 6: 0.5 (Volume ratio)
In the aggregate 6, the ratio of the general crushed stone called ballast and the one covered with a covering material formed of a hydraulic material such as plaster with a piece of wood impregnated with a solibble is 9: 1. .

[実施例2]
セメント:砂:骨材:水=1:3:6:0.5(体積比)
尚、上記骨材6中において、バラスと呼ばれる一般的な砕石と、ソリブルを含浸させた木片で上記被覆層で覆ったものとの比が、3:1である。
[Example 2]
Cement: Sand: Aggregate: Water = 1: 3: 6: 0.5 (Volume ratio)
In the aggregate 6, the ratio of general crushed stone called ballast and the one covered with the covering layer with a piece of wood impregnated with a solibble is 3: 1.

[比較例1]
セメント:砂:骨材:ソリブル=1:3:6:0.5(体積比)
尚、上記骨材は、全てバラスと呼ばれる一般的な砕石を使用する。
[Comparative Example 1]
Cement: Sand: Aggregate: Solibble = 1: 3: 6: 0.5 (volume ratio)
In addition, the said aggregate uses the general crushed stone called all ballasts.

[比較例2]
セメント:砂:骨材:水=1:3:6:0.5(体積比)
尚、上記骨材6中において、バラスと呼ばれる一般的な砕石と、ソリブルを含浸させた未乾燥の木片で、且つ、被覆層で覆ってないものとの比が、1:2である。
[Comparative Example 2]
Cement: Sand: Aggregate: Water = 1: 3: 6: 0.5 (Volume ratio)
In the aggregate 6, the ratio of general crushed stone called ballast to undried wood pieces impregnated with solubilized and not covered with a coating layer is 1: 2.

[比較例3]
セメント:砂:骨材:水=1:3:6:0.5(体積比)
尚、上記骨材6中において、バラスと呼ばれる一般的な砕石と、ソリブルを含浸させた未乾燥の木片で、且つ、被覆層で覆ってないものとの比が、1:1である。
[Comparative Example 3]
Cement: Sand: Aggregate: Water = 1: 3: 6: 0.5 (Volume ratio)
In the above-mentioned aggregate 6, the ratio between general crushed stone called ballast and undried wood pieces impregnated with solible and not covered with a coating layer is 1: 1.

[比較例4]
セメント:砂:骨材:水=1:3:6:0.5(体積比)
尚、上記骨材6中において、バラスと呼ばれる一般的な砕石と、ソリブルを含浸させた未乾燥の木片で、且つ、被覆層で覆ってないものとの比が、3:1である。
[Comparative Example 4]
Cement: Sand: Aggregate: Water = 1: 3: 6: 0.5 (Volume ratio)
In the aggregate 6, the ratio of the general crushed stone called ballast to the undried wood piece impregnated with the solible and not covered with the coating layer is 3: 1.

[比較例5]
セメント:砂:骨材:水=1:3:6:0.5(体積比)
尚、上記骨材6中において、バラスと呼ばれる一般的な砕石と、ソリブルを含浸させて乾燥させた木片で、且つ、被覆層で覆ってないものとの比が、1:2である。
[Comparative Example 5]
Cement: Sand: Aggregate: Water = 1: 3: 6: 0.5 (Volume ratio)
In the aggregate 6, the ratio of general crushed stone called ballast to a piece of wood impregnated with solubil and dried and not covered with a coating layer is 1: 2.

[比較例6]
セメント:砂:骨材:水=1:3:6:0.5(体積比)
尚、上記骨材6中において、バラスと呼ばれる一般的な砕石と、ソリブルを含浸させて乾燥させた木片で、且つ、被覆層で覆ってないものとの比が、1:1である。
[Comparative Example 6]
Cement: Sand: Aggregate: Water = 1: 3: 6: 0.5 (Volume ratio)
In the aggregate 6, the ratio of general crushed stone called ballast to a piece of wood impregnated with a solible and dried, but not covered with a coating layer is 1: 1.

[比較例7]
セメント:砂:骨材:水=1:3:6:0.5(体積比)
尚、上記骨材6中において、バラスと呼ばれる一般的な砕石と、ソリブルを含浸させて乾燥させた木片で、且つ、被覆層で覆ってないものとの比が、3:1である。
[Comparative Example 7]
Cement: Sand: Aggregate: Water = 1: 3: 6: 0.5 (Volume ratio)
In the aggregate 6, the ratio of general crushed stone called ballast to a piece of wood impregnated with solubil and dried, but not covered with a coating layer is 3: 1.

[結果]
上記の実施例1及び実施例2は、セメントが固化して強度も十分にあった。
比較例1は、全体が固化せずに形状が保てなく崩壊した。
従って、水の代わりに投入したソリブルがPHを低下させ、そのPH低下によって、セメントの固化反応が阻害されたものと思われる。
比較例2〜比較例6は、ソリブルを含浸した木片が、被覆層で覆われていないために、セメントの固化反応中に木片中のソリブルが溶出してきて、セメントの固化反応を阻害し、そのために、セメントの固化反応が悪く、強度が十分なく落下試験で砕けてしまった。
比較例7は、セメントが固化したが、強度が不十分で、落下試験で割れてしまった。これは、木片の混入率が低く、且つ、乾燥後の木片からのソリブルの溶出量が少なかったために、セメントが一応固化したものの、やはり、溶出ソリブルによるセメント固化反応の阻害が原因で、強度不足になったものと思われる。
また、上記実施例1のように砕石の混入割合が多くなればなるほどブロックとしての強度は上がるが、水中生物生育能が低減し、実施例2のように、木片の混入割合が多くなればなるほど、水中生物生育能は向上するがブロックとしての強度が低下する。
[result]
In Examples 1 and 2, the cement was solidified and had sufficient strength.
In Comparative Example 1, the whole was not solidified, and the shape could not be maintained and collapsed.
Therefore, it is considered that the solubil introduced in place of water lowers the PH, and the solidification reaction of the cement is inhibited by the PH reduction.
In Comparative Examples 2 to 6, since the wood pieces impregnated with the solible are not covered with the coating layer, the solubilization in the wood pieces is eluted during the solidification reaction of the cement to inhibit the solidification reaction of the cement. In addition, the solidification reaction of the cement was poor, the strength was not sufficient, and it was crushed in the drop test.
In Comparative Example 7, the cement was solidified, but the strength was insufficient, and it was cracked in the drop test. This is because the mixing rate of wood fragments is low and the amount of solubil elution from the wood pieces after drying is small, so that the cement has solidified temporarily, but again the strength is insufficient due to the inhibition of the cement solidification reaction by the elution solibble It seems that it became.
Moreover, although the intensity | strength as a block goes up, so that the mixing rate of crushed stone increases like the said Example 1, underwater organism growth ability reduces, and the mixing rate of a piece of wood increases, like Example 2. In addition, the ability to grow underwater organisms is improved, but the strength as a block is reduced.

従って、上記試験で、固化したコンクリートブロックでは、漁礁や消波ブロックのように強度を上げるためには、骨材中の木片の混入割合を減らす必要があるが、コンクリートブロックの用途によっては、例えば、海砂採取によって生じた海中の凹部に投入する貧配合コンクリートに使用する場合には、低強度でも木片の配合比を多くすることができる。   Therefore, in the above test, in the solidified concrete block, it is necessary to reduce the mixing ratio of the wood pieces in the aggregate in order to increase the strength like fishing reefs and wave-dissipating blocks, but depending on the use of the concrete block, for example In addition, when used for poor blended concrete that is put into a recess in the sea generated by sea sand collection, the blending ratio of wood pieces can be increased even at low strength.

1 木片(多孔質材)
2 被覆層
3 栄養供給骨材
4 ソリブル
5 砂
6 セメント
1 Wood piece (porous material)
2 Covering layer 3 Nutrient supply aggregate 4 Solibble 5 Sand 6 Cement

Claims (6)

セメントと骨材と砂とから固化成形した水中生物生育培体であって、
前記骨材の少なくとも一部が、多孔質材に水生生物に対する栄養素を含浸させると共に、その多孔質材の外表面を水中における前記栄養素の溶出を抑制する被覆層で覆ってある栄養供給骨材からなる水中生物生育培体。
An underwater biological growth medium solidified from cement, aggregate and sand,
From the nutrient supply aggregate in which at least a part of the aggregate impregnates the porous material with nutrients for aquatic organisms and the outer surface of the porous material is covered with a coating layer that suppresses elution of the nutrient in water An underwater organism growing medium.
前記多孔質材が有機多孔質体または無機多孔質体であり、
前記被覆層が水硬性材料からなるものである請求項1に記載の水中生物生育培体。
The porous material is an organic porous material or an inorganic porous material;
The underwater organism growth medium according to claim 1, wherein the coating layer is made of a hydraulic material.
前記有機多孔質体は、木片、魚粉、繊維材、海綿体の中の少なくとも1種である請求項2に記載の水中生物生育培体。   The underwater organism growth medium according to claim 2, wherein the organic porous body is at least one of a piece of wood, a fish meal, a fiber material, and a spongy body. 前記被覆層は、セメント、生石灰(CaO)、漆喰、の中から選択されたものによって形成されたものである請求項2又は3に記載の水中生物生育培体。   The underwater organism growth medium according to claim 2 or 3, wherein the coating layer is formed by a material selected from cement, quicklime (CaO), and plaster. 前記栄養素は、フィッシュミールのソリブルである請求項1〜4のいずれか1項に記載の水中生物生育培体。   The aquatic organism growth medium according to any one of claims 1 to 4, wherein the nutrient is a fishmeal solible. 多孔質材に水生生物に対する栄養素の溶解液を含浸させた後、
その栄養素含浸多孔質材の表面に水硬性材料の粉体を接触させ、
前記栄養素含浸多孔質材に含浸した前記溶解液中の水分を前記水硬性材料に吸水させて前記水硬性材料を硬化反応させ、
前記水硬性材料の硬化反応により前記多孔質材の表面に、栄養素の溶出を抑制する被覆層を形成した栄養供給骨材を形成し、
前記栄養供給骨材を、セメントと砂とに混入させる骨材の少なくとも一部に使用して固化成形する水中生物生育培体の製造方法。
After impregnating the porous material with a solution of nutrients for aquatic organisms,
The hydraulic material powder is brought into contact with the surface of the nutrient-impregnated porous material,
Causing the hydraulic material to absorb moisture in the solution impregnated in the nutrient-impregnated porous material, causing the hydraulic material to cure,
Forming a nutrient supply aggregate in which a coating layer that suppresses elution of nutrients is formed on the surface of the porous material by a curing reaction of the hydraulic material,
A method for producing an underwater biological growth medium, wherein the nutrient supply aggregate is used for at least a part of aggregate mixed with cement and sand.
JP2013159167A 2013-07-31 2013-07-31 Underwater organism growth medium and method for producing underwater organism growth medium Active JP6115865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013159167A JP6115865B2 (en) 2013-07-31 2013-07-31 Underwater organism growth medium and method for producing underwater organism growth medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013159167A JP6115865B2 (en) 2013-07-31 2013-07-31 Underwater organism growth medium and method for producing underwater organism growth medium

Publications (2)

Publication Number Publication Date
JP2015029434A true JP2015029434A (en) 2015-02-16
JP6115865B2 JP6115865B2 (en) 2017-04-19

Family

ID=52515314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013159167A Active JP6115865B2 (en) 2013-07-31 2013-07-31 Underwater organism growth medium and method for producing underwater organism growth medium

Country Status (1)

Country Link
JP (1) JP6115865B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016185098A (en) * 2015-03-27 2016-10-27 株式会社ホクコン Environment improving concrete block
JP2017063785A (en) * 2015-09-29 2017-04-06 太平洋セメント株式会社 Granules for gathering aquatic organisms and cleaning system for area of water
CN107926804A (en) * 2017-12-18 2018-04-20 深圳海川新材料科技股份有限公司 A kind of layer stereo artificial marine habitat

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151824A (en) * 2003-11-20 2005-06-16 Pc Bridge Co Ltd Block for proliferation reef/algal reef comprising porous molding of hardened material of ceramic charcoal-containing cement hydrate and method for producing the same
JP2009077640A (en) * 2007-09-25 2009-04-16 Iwate Industrial Research Center Algal reef unit and method for producing the same
JP2010275155A (en) * 2009-05-29 2010-12-09 Zyuku Ltd Concrete composition, concrete structure and block for fish reef or spawning reef
JP2011142877A (en) * 2010-01-15 2011-07-28 Nikken Kogaku Co Ltd Environment activation concrete

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151824A (en) * 2003-11-20 2005-06-16 Pc Bridge Co Ltd Block for proliferation reef/algal reef comprising porous molding of hardened material of ceramic charcoal-containing cement hydrate and method for producing the same
JP2009077640A (en) * 2007-09-25 2009-04-16 Iwate Industrial Research Center Algal reef unit and method for producing the same
JP2010275155A (en) * 2009-05-29 2010-12-09 Zyuku Ltd Concrete composition, concrete structure and block for fish reef or spawning reef
JP2011142877A (en) * 2010-01-15 2011-07-28 Nikken Kogaku Co Ltd Environment activation concrete

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016185098A (en) * 2015-03-27 2016-10-27 株式会社ホクコン Environment improving concrete block
JP2017063785A (en) * 2015-09-29 2017-04-06 太平洋セメント株式会社 Granules for gathering aquatic organisms and cleaning system for area of water
CN107926804A (en) * 2017-12-18 2018-04-20 深圳海川新材料科技股份有限公司 A kind of layer stereo artificial marine habitat
CN107926804B (en) * 2017-12-18 2023-06-09 深圳海川新材料科技股份有限公司 Multilayer three-dimensional artificial fish reef

Also Published As

Publication number Publication date
JP6115865B2 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
KR101706116B1 (en) Ochre eco-friendly ready-mixed concrete composition
JP6115865B2 (en) Underwater organism growth medium and method for producing underwater organism growth medium
CN107574733A (en) A kind of imitative stone material water-permeable brick and preparation method thereof
KR100335013B1 (en) Composition for Producing Bio-ceramic Fishing Structure
JP2010104362A (en) Hardened material for creating seaweed bed
JP4954486B2 (en) Mineral supply agent for water, algal reef block and method for producing the same
KR101863044B1 (en) Greening Soil Stabilizer and Greening Method
KR100894587B1 (en) Manufacturing method for soil blocks to be used for environmetal artificial fish selters
KR101293132B1 (en) The binder composition using the main stuff for soil
KR101105343B1 (en) A water-penetration vegetation block
KR100599241B1 (en) Manufacturing method for soil conditioner using zeolite
JP6548882B2 (en) Method for producing hardened body for eluting nutrient components in water
JP4432696B2 (en) Method of manufacturing the substrate
KR101067962B1 (en) The artificial reef and its manufacturing method
WO2001019180A1 (en) Seaweed field forming material and its block
JP7009183B2 (en) Granules for nutrient supply
DE60023024D1 (en) PROCESS FOR PRODUCING GRANULAR DETERGENT COMPOSITIONS
KR101069808B1 (en) Loess brick
CN106673529B (en) A kind of baking-free water-permeable brick and preparation method thereof with antibacterial and deodorization
JP6769744B2 (en) Fertilizer component supply method
JP3536035B2 (en) Method for constructing seaweed beds of seaweed having rhizomes such as eelgrass and self-disintegrating porous concrete block used for the method
JP2001299129A (en) Block for forming seaweed bed
JP2020157197A (en) Coal ash solidified matter
KR101089699B1 (en) Method for manufacturing artificial rock for eco-building
JP2000023562A (en) Porous concrete for planting use and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170310

R150 Certificate of patent or registration of utility model

Ref document number: 6115865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250