JP6548882B2 - Method for producing hardened body for eluting nutrient components in water - Google Patents

Method for producing hardened body for eluting nutrient components in water Download PDF

Info

Publication number
JP6548882B2
JP6548882B2 JP2014201408A JP2014201408A JP6548882B2 JP 6548882 B2 JP6548882 B2 JP 6548882B2 JP 2014201408 A JP2014201408 A JP 2014201408A JP 2014201408 A JP2014201408 A JP 2014201408A JP 6548882 B2 JP6548882 B2 JP 6548882B2
Authority
JP
Japan
Prior art keywords
granules
nutrition
water
concrete
nutrient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014201408A
Other languages
Japanese (ja)
Other versions
JP2016067301A (en
Inventor
市村 高央
高央 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2014201408A priority Critical patent/JP6548882B2/en
Publication of JP2016067301A publication Critical patent/JP2016067301A/en
Application granted granted Critical
Publication of JP6548882B2 publication Critical patent/JP6548882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Artificial Fish Reefs (AREA)
  • Cultivation Of Seaweed (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

本発明は、栄養供給用粒体に関する。   The present invention relates to granules for nutrition.

近年、日本の沿岸海域の各地において、海中の海藻類が減少する、いわゆる磯焼けと呼ばれる現象が確認されている。磯焼けは、魚介類の住処や産卵場所の喪失、餌の減少等の海洋環境の劣化と、該劣化による漁獲高の減少の一因となっている。磯焼けの原因としては、海水温の上昇、河川から供給される栄養成分の減少、ウニなどの藻食性動物による食害等が挙げられる。
磯焼けを改善する方法として、例えば、特許文献1には、表面が被覆された粉粒状肥料及びまたは肥料成分を含浸させた多孔質粉粒体を含むセメント組成物を硬化した多孔質のセメント硬化体を海中に設置する方法が提案されている。
In recent years, a phenomenon called so-called scorching has been identified in which seaweeds in the sea decrease in various parts of the coastal waters of Japan. Skewers are responsible for the deterioration of the marine environment such as loss of fish and shellfish housing places and spawning grounds, loss of food and the like, as well as the reduction of fish catch due to the deterioration. Causes of scorching include rising sea water temperature, decreasing nutrient components supplied from rivers, and feeding damage by algae-feeding animals such as sea urchins.
As a method for improving scorching, for example, Patent Document 1 discloses a porous cement-hardened cement composition containing a surface-coated granular fertilizer and / or a porous powder impregnated with a fertilizer component. A method has been proposed for placing the body in the water.

特開2000−335986号公報Unexamined-Japanese-Patent No. 2000-335986

特許文献1に記載された多孔質のセメント硬化体は、肥料成分をセメント組成物に含有させるために、表面が被覆された粉粒状肥料または肥料成分を含浸させた多孔質粉粒体を用いている。ここで、肥料成分を含浸させた多孔質粉粒体を作製するためには、該多孔質粉粒体を、肥料成分を分散または溶解させた溶液中に浸漬する必要がある。しかしながら、肥料成分の濃度が高くなると溶液の粘性が上がるため、多孔質粉粒体への肥料成分の含浸量が減少して、作製された多孔質粉粒体の使用時に、栄養成分の溶出量が減少したり、あるいは、肥料成分を十分に含浸させるために含浸時間が長くなるという問題があった。
本発明の目的は、栄養成分の溶出量を多くすることができる栄養供給用粒体を提供することにある。
The porous cement-hardened body described in Patent Document 1 uses a porous granular material impregnated with a surface-coated granular granular fertilizer or a fertilizer component in order to incorporate a fertilizer component into a cement composition. There is. Here, in order to produce a porous granular material impregnated with a fertilizer component, it is necessary to immerse the porous granular material in a solution in which the fertilizer component is dispersed or dissolved. However, when the concentration of the fertilizer component increases, the viscosity of the solution increases, so the amount of impregnation of the fertilizer component into the porous powder decreases, and the elution amount of the nutrient component when using the produced porous powder Or there is a problem that the impregnation time becomes longer in order to fully impregnate the fertilizer component.
An object of the present invention is to provide a granule for nutrient supply which can increase the elution amount of a nutrient component.

本発明者は、上記課題を解決するために鋭意検討した結果、特定のコア体と、該コア体の表面に被覆された特定の被覆層とからなる栄養供給用粒体によれば、本発明の目的を達成できることを見出し、本発明を完成した。
すなわち、本発明は、以下の[1]〜[5]を提供するものである。
[1] 栄養成分および水を含む液状物を、吸水可能な粒状体に含浸させてなるコア体と、該コア体の表面に被覆された水硬性組成物からなる被覆層とからなることを特徴とする栄養供給用粒体。
[2] 上記粒状体が、粉体を材料として用いてなる造粒物である前記[1]に記載の栄養供給用粒体。
[3] 上記コア体の粒径が0.1〜50mmであり、かつ、上記被覆層の厚さが0.1〜10mmである前記[1]又は[2]に記載の栄養供給用粒体。
[4] 上記粒状体の材料が、無機質または有機質の多孔質材料である前記[1]〜[3]のいずれかに記載の栄養供給用粒体。
[5] 上記水硬性組成物が、セメントまたは石膏を含む前記[1]〜[4]のいずれかに記載の栄養供給用粒体。
MEANS TO SOLVE THE PROBLEM As a result of earnestly examining in order to solve the said subject, the inventor of this invention is based on the granule for nutrient supply which consists of a specific core body and the specific coating layer coat | covered on the surface of this core body. The present invention has been accomplished by finding that the object of the invention can be achieved.
That is, the present invention provides the following [1] to [5].
[1] It is characterized by comprising a core body obtained by impregnating a liquid substance containing a nutrient component and water into a water-absorbent granular body, and a coating layer consisting of a hydraulic composition coated on the surface of the core body. Nutritional granules used.
[2] The nutrition supplying granules according to the above [1], wherein the granules are granules formed by using powder as a material.
[3] The grain for nutrition supply according to the above [1] or [2], wherein the particle size of the core body is 0.1 to 50 mm, and the thickness of the coating layer is 0.1 to 10 mm. .
[4] The nutrition supplying granules according to any one of the above [1] to [3], wherein the material of the granules is an inorganic or organic porous material.
[5] The nutrition supplying granules according to any one of the above [1] to [4], wherein the hydraulic composition contains cement or gypsum.

本発明の栄養供給用粒体によれば、栄養成分の溶出量を多くすることができる。
また、本発明において、粉体を材料として用いてなる造粒物を、吸水可能な粒状体として用いた場合には、栄養成分を短時間で当該吸水可能な粒状体に含浸させることができるので、本発明の栄養供給用粒体の製造効率を高めることができる。
According to the granules for nutrition supply of the present invention, it is possible to increase the elution amount of the nutrition component.
Further, in the present invention, when the granulated material using powder as a material is used as a water-absorbent granular material, the nutrient component can be impregnated into the water-absorbent granular material in a short time. The production efficiency of the granules for nutrition of the present invention can be enhanced.

本発明の栄養供給用粒体を、その中心を通る面で切断した状態を模式的に示す断面図である。It is sectional drawing which shows typically the state which cut | disconnected the granule for nutritions of this invention by the surface which passes the center.

以下、本発明の栄養供給用粒体について、図1を参照にしながら詳しく説明する。
本発明の栄養供給用粒体1は、栄養成分および水を含む液状物を、吸水可能な粒状体に含浸させてなるコア体2と、該コア体2の表面に被覆された水硬性組成物からなる被覆層3とからなるものである。
上記栄養成分とは、植物を生育させるために必要な成分をいう。具体的には、窒素、リン、カリウム、マグネシウム、ケイ素、硫黄等の、無機肥料における主要成分;鉄、銅、亜鉛、ニッケル、マンガン、コバルト、モリブデン等の、無機肥料における微量成分;アミノ酸、タンパク質等の有機肥料成分が挙げられる。
栄養成分は、1種を単独で、あるいは2種以上を組み合わせて用いてもよい。本発明においては、2種以上を組み合わせて用いることが好ましい。
Hereinafter, the granules for nutrition supply of the present invention will be described in detail with reference to FIG.
The granule for nutrition 1 of the present invention comprises a core body 2 obtained by impregnating a liquid substance containing a nutrient component and water into a water-absorbent granular body, and a hydraulic composition coated on the surface of the core body 2 And the covering layer 3 consisting of
The said nutrient component means the component required in order to grow a plant. Specifically, main components of inorganic fertilizers such as nitrogen, phosphorus, potassium, magnesium, silicon and sulfur; trace components of inorganic fertilizers such as iron, copper, zinc, nickel, manganese, cobalt and molybdenum; amino acids, proteins And organic fertilizer components such as
The nutrient components may be used alone or in combination of two or more. In the present invention, it is preferable to use two or more in combination.

上記栄養成分および水を含む液状物は、上述の栄養成分と水を、用途に応じて適宜配合を調整した液状物(水溶液又は懸濁液)である。該液状物として、食品加工業や水産加工業において排出される煮汁等を使用することも可能である。   The liquid containing the nutritional component and water is a liquid (aqueous solution or suspension) obtained by appropriately adjusting the composition of the nutritional component and water described above according to the application. As the liquid, it is also possible to use the juice etc. discharged in the food processing industry or the fishery processing industry.

上記吸水可能な粒状体としては、上記液状物を含浸することができる材料であればよく、無機質および有機質のいずれの材料も使用することができる。また、上記液状物の含浸量を多くしかつ含浸に要する時間を短くする観点から、多孔質の材料(以下、「多孔質材料」ともいう。)が好ましい。
無機質の材料としては、例えば、頁岩、軽石、火山性ゼオライト、珪藻土、シラス、バーミキュライト、炭酸カルシウム含有物質(石灰岩、貝殻、鶏卵の殻等)等やこれらの焼成物;真珠岩や黒曜石を粉砕、焼成して発泡させた焼成物;煉瓦や陶磁器等の破砕物が挙げられる。
有機質の材料としては、例えば、ポリウレタン、ポリエチレン、ポリスチレン、ポリ塩化ビニル、ポリビニルアルコール等の合成樹脂を発泡させたもの;天然および人工ゴム;木質材料の破砕物等が挙げられる。
上記木質材料における木の種類は、特に限定されるものではない。また、木質材料として、木材の切削時に発生するおがくずや、合板作成時に発生する端切れ材や、建設廃材や、間伐などで発生する木材等の破砕物等を使用することが出来る。
As the above-mentioned water-absorbent granular material, any material which can impregnate the above-mentioned liquid can be used, and any of inorganic and organic materials can be used. Further, from the viewpoint of increasing the amount of impregnation of the liquid material and shortening the time required for the impregnation, a porous material (hereinafter also referred to as "porous material") is preferable.
Examples of inorganic materials include shale, pumice, volcanic zeolite, diatomaceous earth, shirasu, vermiculite, calcium carbonate-containing substances (such as limestone, shells, eggshells of eggs) and the like, calcined products of these, pearlite and obsidian, Fired products obtained by firing and foaming; crushed products such as bricks and ceramics.
Examples of the organic material include foams of synthetic resins such as polyurethane, polyethylene, polystyrene, polyvinyl chloride, polyvinyl alcohol and the like; natural and artificial rubbers; crushed materials of wood materials and the like.
The type of wood in the above woody material is not particularly limited. Further, as wood materials, sawdust generated at the time of cutting of wood, scraps generated at the time of making plywood, construction scraps, crushed materials such as wood generated at thinning or the like can be used.

上記粒状体は粒径を調整せずに使用してもよく、目的に応じて粒径が特定の範囲内となるように調整して使用してもよい。該粒径は、粒状体の形状によっても異なるが、後述する造粒の容易性や、含浸を行う際に上記液状物を粒状物の内部にまで十分に浸漬させる観点から、好ましくは20mm以下、より好ましくは10mm以下、特に好ましくは5mm以下である。   The above-mentioned granular material may be used without adjusting the particle size, and may be adjusted and used so that the particle size falls within a specific range according to the purpose. The particle size varies depending on the shape of the granular material, but is preferably 20 mm or less, from the viewpoint of ease of granulation to be described later and in view of sufficiently immersing the liquid in the granular material when performing impregnation. More preferably, it is 10 mm or less, and particularly preferably 5 mm or less.

上記粒状体に、栄養成分および水を含む液状物を含浸させることで、本発明で用いられるコア体2を得ることができる。
上記粒状体に、栄養成分および水を含む液状物を含浸させる方法としては、該液状物に上記粒状体を一定時間浸漬する方法や、該液状物と上記粒状体をミキサーを用いて混練する方法等が挙げられる。中でも、短時間で上記液状物を十分に浸漬させる観点から、ミキサーを用いて混練する方法が好ましい。
上記ミキサーについては特に限定されるものではなく、粉体の混合において一般的に使用されるミキサー(例えば、モルタルやコンクリートの練り混ぜに使用されるミキサー)を用いればよい。
具体的には、縦型ミキサー、横型ミキサー、ナウターミキサー、傾胴ミキサー、強制ミキサー、二軸ミキサー等が挙げられる。縦型ミキサーとしては、例えば、ホバート社製の「ホバートミキサー」、ヘンシェル社製の「ヘンシェルミキサー」等が挙げられる。横型ミキサーとしては、例えば、レディゲ社製の「レディゲミキサー」等が挙げられる。
また、ペール缶等の容器に上記粒状体と上記液状物を投入して、ハンドミキサー等を用いて混練して含浸させてもよい。
上記液状物の配合量は、上記液状物の固形分濃度によっても異なるが、含浸後に粒状物を造粒することが容易であり、かつ、造粒後のコア体2が崩壊しない観点から、上記粒状体100質量部に対して、好ましくは10〜400質量部、より好ましくは50〜300質量部である。
The core body 2 used by this invention can be obtained by impregnating the said granular material with the liquid substance containing a nutrient component and water.
As a method of impregnating the granular material with a liquid containing a nutrient component and water, there is a method of immersing the granular in the liquid for a fixed time, or a method of kneading the liquid and the granular using a mixer Etc. Among them, a method of kneading using a mixer is preferable from the viewpoint of sufficiently immersing the liquid material in a short time.
The mixer is not particularly limited, and a mixer generally used for mixing powders (for example, a mixer used for mixing mortar and concrete) may be used.
Specifically, vertical mixers, horizontal mixers, Nauta mixers, tilt cylinder mixers, forced mixers, twin-screw mixers and the like can be mentioned. Examples of the vertical mixer include "Hobart mixer" manufactured by Hobart, "Henschel mixer" manufactured by Henschel, and the like. Examples of the horizontal mixer include "Ledige mixer" manufactured by Ledige.
Alternatively, the above-mentioned granular material and the above-mentioned liquid material may be introduced into a container such as a pail and the resulting mixture may be kneaded and impregnated using a hand mixer or the like.
Although the compounding amount of the liquid substance varies depending on the solid content concentration of the liquid substance, it is easy to granulate the granular substance after impregnation, and from the viewpoint that the core body 2 after granulation is not disintegrated, Preferably it is 10-400 mass parts with respect to 100 mass parts of granular materials, More preferably, it is 50-300 mass parts.

栄養成分を含浸させた粒状体を、そのまま本発明におけるコア体2として使用してもよいが、栄養成分が十分に含浸された栄養供給用粒体1を得る観点から、上記粒状体として、粉体を材料として用いてなる造粒物を、コア体2として使用することが好ましい。なお、上記粉体の材料や含浸方法は、上述の粒状体と同様である。
上記造粒物を製造する方法としては、転動造粒、攪拌造粒、圧縮造粒、押出造粒等の各種造粒方法を用いることができる。また、造粒に用いられる装置としては、パンペレタイザー、ミキサー、ディスクペレッター等を用いることができる。
また、造粒を行う際に、必要に応じてバインダーを添加しても良い。
上記造粒物の粒径は、好ましくは0.1〜50mm、より好ましくは0.5〜20mm、特に好ましくは1〜15mmである。該粒径が0.1mm以上であれば、上記栄養供給用粒体への栄養成分の含浸量を増やすことができる。該粒径が50mm以下であれば、造粒が容易になる。
Although the granular material impregnated with the nutritional component may be used as it is as the core body 2 in the present invention, from the viewpoint of obtaining the nutrient supply granules 1 sufficiently impregnated with the nutritional component, powder as the above-mentioned granular material It is preferable to use as the core body 2 a granulated product using a body as a material. In addition, the material and the impregnation method of the said powder are the same as that of the above-mentioned granular material.
As a method of manufacturing the said granulated material, various granulation methods, such as rolling granulation, stirring granulation, compression granulation, extrusion granulation, can be used. Moreover, as an apparatus used for granulation, a pan pelletizer, a mixer, a disc pelleter etc. can be used.
Moreover, when performing granulation, you may add a binder as needed.
The particle size of the granulated product is preferably 0.1 to 50 mm, more preferably 0.5 to 20 mm, and particularly preferably 1 to 15 mm. If the particle size is 0.1 mm or more, the amount of impregnation of the nutrient components into the nutrient granules can be increased. If the particle size is 50 mm or less, granulation is facilitated.

コア体2を水硬性組成物で被覆することにより、本発明の栄養供給用粒体1を得ることができる。
上記水硬性組成物としては、無機系の材料が好ましく、例えば、セメント、石膏類等が挙げられる。上記セメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等のJISに規定されている各種ポルトランドセメント;高炉セメント、フライアッシュセメント、スラグセメント等の混合セメント;エコセメント;及びアルミナセメント等の特殊セメント等が挙げられる。
中でも、汎用性の点から、普通ポルトランドセメント及び早強ポルトランドセメントが好ましい。
これらは、1種を単独で、あるいは2種以上を組み合わせて用いてもよい。
また、必要に応じて、石灰石微粉末、シリカフューム、フライアッシュ、高炉スラグ、カルシウムアルミネート、ドロマイト等の混和材;ビニロン、ポリエチレン、ポリスチレン、ポリプロピレン、カーボン、ガラス、鉄等からなる繊維等を混合してもよい。
また、被覆の性状に影響を及ぼさない範囲内で、細骨材等を用いてもよい。
By coating the core body 2 with a hydraulic composition, the granules 1 for nutrition of the present invention can be obtained.
As said hydraulic composition, the material of an inorganic type is preferable, for example, cement, gypsum etc. are mentioned. As the cement, various portland cements defined in JIS such as ordinary portland cement, early strength portland cement, moderate heat portland cement, low temperature portland cement, etc .; mixed cement such as blast furnace cement, fly ash cement, slag cement; eco-cement And special cements such as alumina cement.
Among them, ordinary portland cement and early-strength Portland cement are preferable in terms of versatility.
One of these may be used alone, or two or more of these may be used in combination.
Also, if necessary, admixtures such as limestone fine powder, silica fume, fly ash, blast furnace slag, calcium aluminate, dolomite; fibers made of vinylon, polyethylene, polystyrene, polypropylene, carbon, glass, iron etc. May be
Moreover, you may use a fine aggregate etc. in the range which does not affect the property of coating | cover.

また、上記水硬性組成物には、硬化性状を調整するための材料として、一般的にセメントまたはコンクリートに用いられている、硬化促進剤、凝結遅延剤、収縮低減剤、AE剤、減水剤、高性能減水剤、流動化剤、増粘剤、消泡剤等の添加物を、被覆の性状に影響を及ぼさない範囲内で用いてもよい。
これらは、1種を単独で、あるいは2種以上を組み合わせて用いてもよい。
In the above hydraulic composition, a hardening accelerator, a setting retarder, a shrinkage reducing agent, an AE agent, a water reducing agent, which is generally used for cement or concrete as a material for adjusting the hardening property. Additives such as high performance water reducing agents, fluidizing agents, thickeners, antifoaming agents and the like may be used within limits not affecting the properties of the coating.
One of these may be used alone, or two or more of these may be used in combination.

コア体2を上記水硬性組成物で被覆する方法としては、(i)コア体2をコーティング装置に投入して、該装置を回転させながら、水硬性組成物および水を投入して被覆する方法、(ii)コア体2をコーティング装置に投入して、該装置を回転させながら、予め水硬性組成物と水を練り混ぜたスラリーをコーティング装置に投入する方法、(iii)水硬性組成物をコーティング装置に投入して、該装置を回転させながら、コア体2を投入して、更に水を投入する方法等が挙げられる。
中でも、作業の容易性の観点から、上記(i)の方法が好ましい。
上記コーティング装置としては、パンコーティング装置や、転動コーティング装置等が挙げられる。中でも、作業効率の観点から、パンコーティング装置が好ましい。
上記水硬性組成物からなる被覆層3の厚さは、好ましくは0.1〜10mm、より好ましくは0.3〜6mm、特に好ましくは0.4〜4mmである。該厚さが上記数値範囲内であれば、栄養供給用粒体からの栄養成分の溶出量を適切な量にすることができる。
As a method of coating the core body 2 with the above-mentioned hydraulic composition, (i) the core body 2 is put into a coating apparatus, and while the apparatus is rotated, the hydraulic composition and water are introduced and coated (Ii) A method of charging the core body 2 into a coating apparatus and charging a slurry prepared by mixing the hydraulic composition and water in advance into a coating apparatus while rotating the apparatus (iii) A hydraulic composition The method of throwing in the core body 2 and throwing in water further, etc. is mentioned, throwing in a coating apparatus and rotating this apparatus.
Among them, the method (i) is preferable from the viewpoint of ease of operation.
As said coating apparatus, a pan coating apparatus, a rolling coating apparatus, etc. are mentioned. Among them, a pan coating apparatus is preferable from the viewpoint of working efficiency.
The thickness of the coating layer 3 made of the hydraulic composition is preferably 0.1 to 10 mm, more preferably 0.3 to 6 mm, and particularly preferably 0.4 to 4 mm. If the said thickness is in the said numerical range, the elution amount of the nutrient component from the granule for nutrition can be made into a suitable quantity.

上記コア体2を水硬性組成物で被覆し、次いで、該水硬性組成物を十分硬化させることで、本発明の栄養供給用粒体1を得ることができる。
本発明の栄養供給用粒体は、単体で使用することもできるが、コンクリート、モルタル等の水硬性組成物に、骨材の代替品として使用することもできる。
本発明の栄養供給用粒体を粗骨材の代替品として使用する場合、その配合割合は、粗骨材の全体積(代替品である栄養供給用粒体を含む)中、好ましくは5〜30体積%、より好ましくは10〜25体積%である。
本発明の栄養供給用粒体を含むコンクリート及びモルタル等の硬化体は、該栄養供給用粒体と同様に、水中において栄養成分を溶出することができる。
本発明の栄養供給用粒体や該粒体を含む硬化体を水中(例えば、海中)等に静置することで、該粒体から栄養成分が溶出され、この栄養成分が、水中の藻類等の栄養源となる。本発明の栄養供給用粒体は、栄養成分の含有量が多いことから、栄養成分の溶出量を多くすることができる。また、長期に亘って、栄養成分を溶出することができる。
By coating the core body 2 with a hydraulic composition and then sufficiently curing the hydraulic composition, the granules 1 for nutrition of the present invention can be obtained.
Although the granules for nutrition supply of the present invention can be used alone, they can also be used as a substitute for aggregate in hydraulic compositions such as concrete and mortar.
When the granules for nutrition of the present invention are used as a substitute for coarse aggregate, the blending ratio is preferably 5 to 5 parts of the total volume of the coarse aggregate (including granules for nutrition which is a substitute). It is 30% by volume, more preferably 10 to 25% by volume.
Hardened bodies such as concrete and mortar containing the granules for nutrition of the present invention can elute nutrient components in water, similarly to the granules for nutrition.
By leaving the granules for nutrient supply of the present invention or the cured product containing the granules in water (for example, in the sea) etc., the nutrient components are eluted from the granules, and this nutrient component It is a source of nutrition for The granules for nutrient supply of the present invention can increase the elution amount of the nutritional component because the content of the nutritional component is large. In addition, nutrient components can be eluted over a long period of time.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1]
木材加工工場において発生した木質廃材を、二軸破砕機を用いて粒径が3mm以下になるまで粉砕して、粉体(表1中、「木屑粉砕物」と示す。)を得た。得られた粉体5kgと、栄養成分としてフィッシュミール工場において発生した可溶性タンパク質水溶液であるソルブル15kgを、レディゲミキサーを用いて5分間混合して、粉体に栄養成分を含浸させた。
含浸後の粉体を、直径が1mであるパンペレタイザーを用いて、大きな粒度を有する粉粒体に造粒した後、得られた造粒物の質量(栄養成分の含浸後の粉粒体の質量)を測定した。なお、栄養成分の含浸を行う前の粉体の質量を予め測定した。
下記式(1)を用いて、ソルブルの含浸率(質量%)を算出した。
ソルブルの含浸率(質量%)={(含浸後の粉粒体の質量)−(含浸前の粉体の質量)}/(含浸前の粉体の質量) ・・・(1)
次いで、含浸後の粉粒体(造粒物)について、篩分けを行うことで、粒径が5〜10mmであるコア体(粉体を材料として用いてなる造粒物)を得た。
該コア体を、直径が30cmである小型パンペレタイザーに入れて、普通ポルトランドセメント(太平洋セメント社製)と水を適宜添加しながら小型パンペレタイザーを回転させて、コア体のコーティングを行い、粒径が6〜16mmである栄養供給用粒体を調製した。
なお、コア体100質量部に対する、普通ポルトランドセメントの配合量は200質量部であり、水の配合量は25質量部であった。
また、栄養供給用粒体を、その中心を通る面で切断して、被覆層の厚みを測定したところ、0.5〜3mmであった。
EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
Example 1
The wood waste generated in the wood processing plant was crushed to a particle size of 3 mm or less using a biaxial crusher to obtain a powder (denoted in Table 1 as "grind of wood waste"). 5 kg of the obtained powder and 15 kg of a soluble protein aqueous solution generated as a nutrient component in a fish meal factory were mixed for 5 minutes using a Lodige mixer to impregnate the powder with a nutrient component.
After the powder after impregnation is granulated into powder particles having a large particle size using a pan pelletizer having a diameter of 1 m, the mass of the obtained granulated product (the powder particles after impregnation of the nutritional component) Mass) was measured. In addition, the mass of the powder before impregnating a nutrient component was measured previously.
The impregnation rate (mass%) of the soluble was calculated using the following formula (1).
Soluble impregnation rate (mass%) = {(mass of granular material after impregnation) − (mass of powder before impregnation)} / (mass of powder before impregnation) (1)
Next, the impregnated powder particles (granulated product) were sieved to obtain a core body (granulated product using powder as a material) having a particle size of 5 to 10 mm.
The core body is placed in a small pan pelletizer having a diameter of 30 cm, and the core body is coated by rotating the small pan pelletizer while appropriately adding ordinary Portland cement (manufactured by Pacific Cement Co., Ltd.) and water. Prepared granules for nutrient supply having a diameter of 6 to 16 mm.
In addition, the compounding quantity of normal portland cement was 200 mass parts with respect to 100 mass parts of core bodies, and the compounding quantity of water was 25 mass parts.
Moreover, when the granule for nutrient supply was cut | disconnected in terms of passing through the center, and the thickness of the coating layer was measured, it was 0.5-3 mm.

得られた栄養供給用粒体からの栄養成分の溶出量を、「JIS K 0058−1 2005(スラグ類の化学物質試験方法−第1部:溶出量試験方法)」に準拠して測定した。
具体的には、得られた栄養供給用粒体500gを、容器内に入れられた純水5,000gに投入し、常温(20℃)で、7日間静置した。静置後、容器内の溶液を0.45μmのメンブレンフィルターによりろ別して、ろ別後の溶液中の有機体窒素の濃度(mg/リットル)を、ケルダール法を用いて測定した。該濃度が大きければ、栄養成分の溶出量が多いことを意味する。
The elution amount of the nutrient component from the obtained granules for nutrient supply was measured according to "JIS K 0058-1 2005 (Chemical substance test method for slags-Part 1: elution amount test method)".
Specifically, 500 g of the obtained granules for nutrient supply were put into 5,000 g of pure water contained in a container, and allowed to stand at normal temperature (20 ° C.) for 7 days. After standing, the solution in the container was filtered off with a 0.45 μm membrane filter, and the concentration of organic nitrogen (mg / l) in the solution after filtration was measured using the Kjeldahl method. If the concentration is high, it means that the elution amount of the nutrient component is large.

参考例1
実施例1で用いたものと同じ木質廃材を、二軸破砕機を用いて、粒径が25mm以下になるまで破砕した。その後、破砕された木質廃材について、篩分けを行うことで、粒径が15〜25mmである粒状体(表1中、「木屑粗砕物」と示す。)を得た。得られた粒状体5kgと、実施例1で用いたものと同じソルブル15kgを混合した後、24時間静置することで、粒状体に栄養成分を含浸させた。
含浸前の粒状体の質量と、含浸後の粒状体の質量を測定し、下記式(2)を用いてソルブルの含浸率を算出した。
ソルブルの含浸率(質量%)={(含浸後の粒状体の質量)−(含浸前の粒状体の質量)}/(含浸前の粒状体の質量) ・・・(2)
含浸後の粒状体をコア体として使用する以外は、実施例1と同様にして、コア体のコーティングを行い、粒径が20〜30mmである栄養供給用粒体を得た。得られた栄養供給用粒体の被覆層の厚みは、0.5〜5mmであった。
また、得られた栄養供給用粒体からの栄養成分の溶出量の大きさを表す有機体窒素の濃度を、実施例1と同様にして測定した。
[ Reference Example 1 ]
The same wood waste as used in Example 1 was crushed using a biaxial crusher until the particle size became 25 mm or less. Thereafter, the crushed wood waste was sieved to obtain a granular body having a particle diameter of 15 to 25 mm (in FIG. 1, indicated as "rough wood chip"). After mixing 5 kg of the obtained granules with 15 kg of the same solvable as used in Example 1, the granules were allowed to stand for 24 hours to impregnate the granules into the nutritional component.
The mass of the granular body before the impregnation and the mass of the granular body after the impregnation were measured, and the impregnation rate of the soluble was calculated using the following formula (2).
Soluble impregnation rate (% by mass) = {(mass of granular body after impregnation) − (mass of granular body before impregnation)} / (mass of granular body before impregnation) (2)
The core body was coated in the same manner as in Example 1 except that the impregnated granular body was used as the core body, to obtain a nutrient supply granular body having a particle size of 20 to 30 mm. The thickness of the coating layer of the obtained granules for nutrition was 0.5 to 5 mm.
Further, the concentration of organic nitrogen, which indicates the size of the elution amount of the nutrient component from the obtained granules for nutrient supply, was measured in the same manner as in Example 1.

[比較例1]
粒状体として、粒径が5〜20mmであるコンクリート用粗骨材(茨城県桜川市産の砕石2005)を用いる以外は、実施例2と同様にして、粒径が10〜25mmである栄養供給用粒体を得た。得られた栄養供給用粒体の被覆層の厚みは、0.5〜5mmであった。
含浸前の粒状体の質量と、含浸後の粒状体の質量を測定し、上記式(2)を用いてソルブルの含浸率を算出した。また、得られた栄養供給用粒体からの栄養成分の溶出量の大きさを表す有機体窒素の濃度を、実施例1と同様にして測定した。
結果を表1に示す。
Comparative Example 1
Nutritional supply having a particle size of 10 to 25 mm in the same manner as in Example 2 except that a coarse aggregate for concrete having a particle size of 5 to 20 mm (crushed stone 2005 from Sakuragawa City, Ibaraki Prefecture) is used as the granular material. Granules were obtained. The thickness of the coating layer of the obtained granules for nutrition was 0.5 to 5 mm.
The mass of the granular body before impregnation and the mass of the granular body after impregnation were measured, and the impregnation rate of the soluble was calculated using the above-mentioned equation (2). Further, the concentration of organic nitrogen, which indicates the size of the elution amount of the nutrient component from the obtained granules for nutrient supply, was measured in the same manner as in Example 1.
The results are shown in Table 1.

Figure 0006548882
Figure 0006548882

表1から、本発明の栄養供給用粒体(実施例1、参考例1)は、比較例1に比べて、ソルブルの含浸率が大きい。特に実施例1は、参考例1および比較例1に比べて、ソルブルの含浸率が大きいことから、栄養供給用粒体中の栄養成分の量が多いことがわかる。
さらに、表1から、本発明の栄養供給用粒体(実施例1、参考例1)は、比較例1に比べて溶液中の有機体窒素の濃度が大きいことから、栄養供給用粒体からの栄養成分の溶出量が多いことがわかる。
From Table 1, the granules for nutrient supply of the present invention (Example 1 , Reference Example 1 ) have a larger impregnation rate of the soluble than the comparative example 1. In particular, since the impregnation rate of the soluble is larger in Example 1 than in Reference Example 1 and Comparative Example 1, it can be understood that the amount of the nutritional component in the granules for nutrition supply is large.
Furthermore, from Table 1, since the nutrient supply granules (Example 1 , Reference Example 1 ) of the present invention had a large concentration of organic nitrogen in the solution compared with Comparative Example 1, it was determined from the granules for nutrition provision. It can be seen that the elution amount of the nutrient components of

[実施例3〜4]
(A)使用材料
使用材料として、以下に示す材料を使用した。
(1) 粗骨材:茨城県桜川市産の砕石2005
(2) 細骨材:静岡県掛川市産の砂
(3) セメント:普通ポルトランドセメント(太平洋セメント社製)
(4) 高性能AE減水剤:BASFジャパン社製、商品名「マスターグレニウムSP8SV」
(5) 空気量調整剤:BASFジャパン社製、商品名「マスターエア404」
(6) 栄養供給用粒体:実施例1において製造したもの
[Examples 3 to 4]
(A) Materials Used The materials shown below were used as materials used.
(1) Coarse aggregate: Crushed stone from Sakuragawa city, Ibaraki prefecture 2005
(2) Fine aggregate: Sand from Kakegawa City, Shizuoka Prefecture (3) Cement: Ordinary portland cement (manufactured by Pacific Cement Co., Ltd.)
(4) High-performance AE water reducing agent: manufactured by BASF Japan Ltd., trade name "Mastergrenium SP8 SV"
(5) Air amount regulator: BASF Japan Ltd., trade name "Master Air 404"
(6) Granules for nutrition supply: those manufactured in Example 1

(B)コンクリート供試体の作製および評価
上記材料を表2に示す配合で、パン型強制ミキサーを用いて練り混ぜて、コンクリートを調製した。該コンクリートを型枠に打設し、打設1日後に脱型を行い、次いで、水中養生を行うことで、φ10×20cmのコンクリート供試体を作製した。材齢3日、7日、28日における各供試体の圧縮強さを、「JIS A 1108(コンクリートの圧縮強度試験方法)」に準じて測定した。
また、材齢7日のコンクリート供試体を用いて、コンクリート供試体からの栄養成分の溶出量を、「土木学会基準 JSCE−G 575 2005(硬化したコンクリートからの微量成分溶出試験方法)」に準拠して測定した。
具体的には、コンクリート供試体を、コンクリート供試体の表面積100mm当たり5mlとなる量(3.925リットル)の純水を入れた容器に入れて、常温(20℃)で、7日間静置した。静置後、容器内の溶液を0.45μmのメンブレンフィルターによりろ別して、ろ別後の溶液中の有機体窒素の濃度(mg/リットル)をケルダール法を用いて測定した。
なお、実施例3におけるコンクリートは、通常のコンクリート(比較例2)と異なり、通常のコンクリートに用いられる粗骨材のうち10体積%が栄養供給用粒体によって置換された物である。また、実施例4におけるコンクリートは、通常のコンクリートに用いられる粗骨材のうち20体積%が栄養供給用粒体によって置換された物である。
(B) Preparation and Evaluation of Concrete Specimen The above materials were mixed using the pan-type forced mixer with the formulations shown in Table 2 to prepare concrete. The concrete was cast in a formwork, decasted one day after casting, and then cured in water to prepare a concrete sample of φ10 × 20 cm. The compressive strength of each specimen at material ages of 3 days, 7 days, and 28 days was measured according to "JIS A 1108 (Test method for compressive strength of concrete)".
In addition, using a 7-day-old concrete specimen, the elution amount of the nutrient component from the concrete specimen conformed to "JSCE-G 575 2005 (Measures for Dissolution of Trace Component from Hardened Concrete)". Measured.
Specifically, a concrete sample is placed in a container containing pure water in an amount (3.925 liters) of 5 ml per 100 mm 2 of the surface area of the concrete sample and allowed to stand for 7 days at normal temperature (20 ° C.) did. After standing, the solution in the container was filtered off with a 0.45 μm membrane filter, and the concentration of organic nitrogen (mg / l) in the solution after filtration was measured using the Kjeldahl method.
In addition, the concrete in Example 3 is a thing in which 10 volume% of the coarse aggregates used for normal concrete was substituted by the granule for nutrition supply unlike the normal concrete (comparative example 2). Moreover, the concrete in Example 4 is a thing by which 20 volume% of the coarse aggregate used for normal concrete was substituted by the granule for nutrient supply.

[比較例2]
上記材料を表2に示す配合で混練したコンクリートを用いる以外は、実施例3と同様にして、コンクリート供試体を作製した。
得られたコンクリート供試体の圧縮強さ及び栄養成分の溶出量を、実施例3と同様にして測定した。
結果を表3に示す。
Comparative Example 2
A concrete sample was produced in the same manner as in Example 3 except that the concrete obtained by kneading the above-mentioned materials in the composition shown in Table 2 was used.
The compressive strength and the elution amount of the nutrient component of the obtained concrete specimen were measured in the same manner as in Example 3.
The results are shown in Table 3.

Figure 0006548882
Figure 0006548882

Figure 0006548882
Figure 0006548882

表3から、本発明の栄養供給用粒体を粗骨材の一部として使用したコンクリートは、溶液中の有機体窒素の濃度が大きく、栄養供給用粒体から栄養成分が溶出しており、栄養成分の供給源として使用できることがわかった。
また、本発明の栄養供給用粒体を粗骨材の一部として使用したコンクリートは、コンクリートの初期(材齢3日)の強度発現性が低いものの、材齢が進むにつれて強度が増加しており、コンクリートとして問題なく使用できることがわかった。
From Table 3, in the concrete using the granules for nutrition supply of the present invention as a part of the coarse aggregate, the concentration of organic nitrogen in the solution is large, and the nutrient components are eluted from the granules for nutrition supply, It turned out that it could be used as a source of nutritional ingredients.
Moreover, although the concrete which used the granules for nutrition supply of the present invention as a part of coarse aggregate has strength development property of the initial stage (3 days of material age) of concrete is low, the strength increases with age. It turned out that it can be used without problems as concrete.

1 栄養供給用粒体
2 コア体
3 被覆層
1 Granule for nutrition supply 2 Core body 3 Coating layer

Claims (3)

栄養成分および水を含む液状物を、吸水可能な粒径がmm以下である木屑粉砕物に含浸させた後、該木屑粉砕物を造粒して、粒径が10mmであるコア体を得て、次いで、該コア体の表面を水硬性組成物で被覆して、該コア体の表面に被覆された水硬性組成物からなる厚さが0.5mmである被覆層を形成して、上記コア体と上記被覆層からなる栄養供給用粒体を得る工程と、
上記栄養供給用粒体を粗骨材の一部として用いて、コンクリートを得て、次いで、上記コンクリートを硬化させて、上記コンクリートの硬化体を得る工程と
からなることを特徴とする、水中において栄養成分を溶出するための硬化体の製造方法
A liquid containing nutrients and water, after which water can particle size was impregnated with wood chips pulverized product is less than 3 mm, and granulating the wood chips ground product, a particle size of 5 ~ 10 mm core A coating layer having a thickness of 0.5 to 3 mm comprising the hydraulic composition coated on the surface of the core body by coating the surface of the core body with the hydraulic composition; Forming a nutrient supply granule comprising the core body and the covering layer ;
Using the granules for nutrient supply as a part of the coarse aggregate to obtain concrete, and then hardening the concrete to obtain a hardened body of the concrete;
The manufacturing method of the hardening body for eluting nutrient components in water characterized by comprising .
上記水硬性組成物が、セメントまたは石膏を含む請求項に記載の硬化体の製造方法。 The hydraulic composition, method for producing a cured product according to claim 1 comprising a cement or gypsum. 上記硬化体が、粗骨材として、上記栄養供給用粒体、及び、上記栄養供給用粒体以外の粗骨材を含むものであり、かつ、上記栄養供給用粒体と上記栄養供給用粒体以外の粗骨材の合計量中の上記栄養供給用粒体の割合が、5〜30体積%である請求項1又は2に記載の硬化体の製造方法。 The hardened body contains, as a coarse aggregate, the granules for nutrition and the coarse aggregate other than the granules for nutrition, and the granules for nutrition and the granules for nutrition The method for producing a cured product according to claim 1 or 2 , wherein the proportion of the nutrition supplying granules in the total amount of coarse aggregates other than the body is 5 to 30% by volume.
JP2014201408A 2014-09-30 2014-09-30 Method for producing hardened body for eluting nutrient components in water Active JP6548882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014201408A JP6548882B2 (en) 2014-09-30 2014-09-30 Method for producing hardened body for eluting nutrient components in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014201408A JP6548882B2 (en) 2014-09-30 2014-09-30 Method for producing hardened body for eluting nutrient components in water

Publications (2)

Publication Number Publication Date
JP2016067301A JP2016067301A (en) 2016-05-09
JP6548882B2 true JP6548882B2 (en) 2019-07-24

Family

ID=55863366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014201408A Active JP6548882B2 (en) 2014-09-30 2014-09-30 Method for producing hardened body for eluting nutrient components in water

Country Status (1)

Country Link
JP (1) JP6548882B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111557261A (en) * 2020-05-20 2020-08-21 中交三航(重庆)生态修复研究院有限公司 Bionic log for building fish habitat and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7009183B2 (en) * 2017-11-30 2022-01-25 太平洋セメント株式会社 Granules for nutrient supply
JP7424933B2 (en) 2020-07-27 2024-01-30 日鉄エンジニアリング株式会社 Algae growing material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49117291A (en) * 1973-03-28 1974-11-08
JPS5224869A (en) * 1975-08-14 1977-02-24 Chisso Corp Underrwater fertilizer
JP2000335986A (en) * 1999-05-31 2000-12-05 Daicel Chem Ind Ltd Porous cement hardened body including coated fertilizer granule
JP2003321291A (en) * 2002-04-25 2003-11-11 Toomu:Kk Additive and method for producing the same
JP2005008464A (en) * 2003-06-17 2005-01-13 Daicel Chem Ind Ltd Cement-coated particle and method for producing the same
JP2006206477A (en) * 2005-01-27 2006-08-10 Toko Tekko Kk Growth-promoting and -activating woody pellet for agriculture and horticulture and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111557261A (en) * 2020-05-20 2020-08-21 中交三航(重庆)生态修复研究院有限公司 Bionic log for building fish habitat and preparation method thereof

Also Published As

Publication number Publication date
JP2016067301A (en) 2016-05-09

Similar Documents

Publication Publication Date Title
CN104452525B (en) A kind of water-permeable brick and preparation method thereof
JP6940268B2 (en) Manufacturing method of parts for fish reefs or algae reefs
CN103159448B (en) A kind of preparation method of the Artificial fish reef concrete material with slag as primary raw material
CN101033127A (en) Method for preparing desulfurization plastering gypsum
JP6548882B2 (en) Method for producing hardened body for eluting nutrient components in water
JP2014047121A (en) Coal ash granulated body and granulated body mixture
CN114538845B (en) Ecological concrete containing nutrition substrate particles and preparation method thereof
JP2007015880A (en) Heavy weight aggregate and heavy concrete, and manufacturing method thereof
KR100894587B1 (en) Manufacturing method for soil blocks to be used for environmetal artificial fish selters
JP7009183B2 (en) Granules for nutrient supply
JP6478660B2 (en) Coal ash activation method, activated coal ash, and method for producing cement composition
JP6516711B2 (en) Concrete artificial reef
WO2015008398A1 (en) Water quality purification material, method for manufacturing same, and method for purifying water quality of fish and shellfish farm
JP6769744B2 (en) Fertilizer component supply method
JP2000070960A (en) Dephosphorization material produced by utilizing building waste
JP2008162842A (en) High-strength admixture for mortar or concrete
JP2022152501A (en) Concrete containing attractant and concrete structure
WO2021005860A1 (en) Raw material for culturing, and method for producing same
JP2019154399A (en) Nutrient-feeding granule and nutrient feeding method to algae using the same
JP2003116398A (en) Fishing bank or rocky shore animal-protecting bank using scallop shell
JP2009161385A (en) Crushed shell material for concrete admixture and concrete containing the same
Patel et al. High performance concrete using quaternary blend
JP7513544B2 (en) Cement-containing powder composition and hydraulic composition
JP2001342461A (en) Ground stabilization material
JP2019058186A (en) Artificial reef made of concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190626

R150 Certificate of patent or registration of utility model

Ref document number: 6548882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250