JP2019058186A - Artificial reef made of concrete - Google Patents
Artificial reef made of concrete Download PDFInfo
- Publication number
- JP2019058186A JP2019058186A JP2018234124A JP2018234124A JP2019058186A JP 2019058186 A JP2019058186 A JP 2019058186A JP 2018234124 A JP2018234124 A JP 2018234124A JP 2018234124 A JP2018234124 A JP 2018234124A JP 2019058186 A JP2019058186 A JP 2019058186A
- Authority
- JP
- Japan
- Prior art keywords
- artificial reef
- concrete
- artificial
- reef
- biomass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Artificial Fish Reefs (AREA)
Abstract
Description
本発明は、コンクリート製人工礁に関する。更に詳しくは、木粉、稲藁、麦藁、籾殻等のバイオマス資源を含み、藻類育成効果に優れた、コンクリート製の人工礁に関する。 The present invention relates to a concrete artificial reef. More specifically, the present invention relates to an artificial reef made of concrete, which contains biomass resources such as wood flour, rice straw, wheat straw, rice husk and the like and is excellent in algae growth effect.
従来から全国各地で藻場が大規模に消失する「磯焼け」と呼ばれる自然現象が発生し、水産業に多大な影響を与え、問題となっている。磯焼けとは、浅海の岩礁・転石域において、海藻の群落(藻場)が季節的消長や多少の経年変化の範囲を超えて著しく衰退、または消失して貧植生状態となる現象を言う。磯焼けは一旦発生すると、藻場が回復するまでに長い年月を要するため、磯根資源の成長不良や減少を招き、沿岸漁業に大きな影響を及ぼす。磯焼け対策としては、ウニ・魚による食害を防止することや、藻類の生産量を増加させることが考えられる。後者として、藻類が着生する足場となる人工礁を海中に投入することが行われている。この人工礁の材料としては、コンクリート、石、鉄鋼、FRP等様々なものが使われるが、その中でもコンクリートが広く使われている。 A natural phenomenon known as "burning firewood" has caused a large loss of seaweed beds across the country, which has a significant impact on the fisheries industry. Firewood burning refers to a phenomenon in which seaweed communities (seaweed beds) significantly decline or disappear beyond the range of seasonal change and some secular change in a shallow reef / rollstone area, resulting in poor vegetation. Once burning occurs, it takes a long period of time to recover the algal flora, which leads to poor growth and decline of the sonar resources, and has a major impact on coastal fisheries. As measures against scum burning, it is conceivable to prevent feeding damage by sea urchins and fish and to increase algae production. As the latter, artificial reefs, which serve as a footing for algae to settle, are being introduced into the sea. Various materials such as concrete, stone, steel, FRP, etc. are used as materials for this artificial reef, and among them, concrete is widely used.
ところで、わが国は、国土の約2/3は森林で、特に地方には森林資源が豊富に存在している。しかし、輸入材の影響などにより、国産材の利用は低迷したままであり、地域資源の活用、適切な森林管理のためにも、木材利用を促進することが課題となっている。例えば、秋田県においては、秋田杉を代表とする木質バイオマスの利活用が課題となっている。また、秋田県では、稲藁、麦藁、籾殻等のバイオマス資源も豊富であり、その利活用も課題となっている。 By the way, in Japan, about two-thirds of the land is forest, especially in the region there are abundant forest resources. However, the use of domestic timber remains sluggish due to the influence of imported timber, etc. It is an issue to promote timber utilization for regional resource utilization and appropriate forest management. For example, in Akita Prefecture, utilization of woody biomass represented by Akita Sugi is an issue. In Akita Prefecture, biomass resources such as rice straw, wheat straw and rice husk are also abundant, and their utilization is also an issue.
地域に存在する木材を利用し、磯焼けにより失われた藻場を回復するための方策として、木材を材料とした人工礁の活用が検討されている。例えば、木材そのものを利用する方法や、木材を細片化してセメントで成型した木毛セメント板を人工礁へ利用すること(特許文献1)が試みられている。しかし、このような試みにも関わらず、木材が人工礁の材料として、広く利用されているとはいえない状況である。さらに、稲藁、麦藁、籾殻等の他のバイオマスの利用もあまり見受けられない。 The use of artificial reefs made of wood is being considered as a measure to recover the algal bed lost by burning by utilizing the wood existing in the area. For example, a method of utilizing wood itself, and utilization of a wood-cement board formed by cementing into pieces of wood as an artificial reef have been attempted (Patent Document 1). However, despite such attempts, wood is not widely used as a material for artificial reefs. Furthermore, the use of other biomass such as rice straw, wheat straw, rice husk, etc. is not seen so much.
本発明の目的は、人工礁の材料として、木材、稲藁、麦藁、籾殻等のバイオマスの利用促進を図るとともに、藻類が生育しやすい、より優れた人工礁を提供することである。 An object of the present invention is to promote utilization of biomass such as wood, rice straw, wheat straw, rice husk and the like as a material of artificial reef, and to provide a superior artificial reef in which algae is easy to grow.
本発明者は、上記目的を達成するために種々検討の結果、木材、稲藁、麦藁、籾殻等のバイオマスを粉砕し、人工礁の材料として広く使われているコンクリートに混和させることで、木材や他のバイオマス利用の促進とともに、藻類がより生育しやすい人工礁を製造できることを見出し、本発明に到達した。すなわち本発明は以下の通りである。 As a result of various studies to achieve the above-mentioned purpose, the present inventor grinds the biomass of wood, rice straw, wheat straw, rice husk, etc. and mixes it with concrete which is widely used as a material for artificial reefs. In addition to promoting the utilization of biomass and other biomass, they have found that algae can produce artificial reefs that are more easily grown, and reached the present invention. That is, the present invention is as follows.
1.コンクリートを主材料とする人工礁であって、生コンクリートの構成成分にバイオマス粉砕物が含まれる人工礁。
2.木材、稲藁、麦藁、籾殻のうち、いずれか1又は2以上のバイオマスの粉砕物が含まれる前記1の人工礁。
3.バイオマス粉砕物が木粉である前記1の人工礁。
4.生コンクリートの構成成分に、石炭灰及び/又はスラグが含まれる前記1〜3のいずれか1の人工礁。
5.生コンクリートの構成成分に、砂、及び砂利を含まない、前記4の人工礁。
6.人工礁が藻礁である前記1〜5いずれか1の人工礁。
1. An artificial reef whose main material is concrete, which contains crushed biomass as a component of fresh concrete.
2. The artificial reef according to the above 1 wherein the crushed material of any one or two or more of wood, rice straw, wheat straw and rice husk is contained.
3. The artificial reef as described in 1 above, wherein the crushed biomass is wood flour.
4. 5. The artificial reef according to any one of the above 1 to 3, wherein coal ash and / or slag is contained in the component of the fresh concrete.
5. Said 4 artificial reefs which do not contain sand and gravel in the component of fresh concrete.
6. An artificial reef according to any one of the above 1 to 5, wherein the artificial reef is a reef.
本発明によれば、広く使われているコンクリート製の人工礁の材料として、木粉、稲藁、麦藁、籾殻などのバイオマスを使用することになる。その結果、地域資源である木材、稲藁、麦藁、籾殻などのバイオマスの利用を促進することができる。加えて、従来のコンクリート製の人工礁と比較しても、優れた藻類育成効果を有する人工礁を提供することができる。さらに、石炭火力発電所等の石炭燃焼施設から大量に生じる石炭灰や金属精錬の際に発生するスラグをコンクリートの材料として使用すれば、廃材を利用することになり、製造コストを低減させた人工礁を提供することができる。 According to the present invention, biomass such as wood flour, rice straw, wheat straw, rice husk, etc. will be used as a material of artificial reef made of concrete widely used. As a result, it is possible to promote the use of regional resources such as wood, rice straw, wheat straw, rice husk and other biomass. In addition, artificial reefs having superior algae growing effects can be provided as compared to conventional concrete artificial reefs. Furthermore, if coal ash generated from a large amount of coal combustion facilities such as a coal-fired power plant or slag generated during metal refining is used as a material for concrete, waste material will be used, and man-hours reduced in manufacturing cost Can provide a reef.
以下に本発明を詳細に説明する。
本発明の人工礁には漁礁、藻礁等が含まれる。漁礁は主に魚の住処を提供するものであるが、藻類が生育することもある。藻礁は主に藻類の着生を目的とするが、魚の住処となることもある。
The present invention will be described in detail below.
The artificial reef of the present invention includes reefs, algae reefs and the like. Although reefs mainly provide housing for fish, algae may grow. Algae reefs are mainly intended for the deposition of algae, but they may also be homes for fish.
本発明の材料である生コンクリートは、一般に、セメント、細骨材、粗骨材、水、混和剤、及び必要に応じて混和材を混合し、練ることで、製造される。多くの場合、細骨材には砂、粗骨材には砂利が使われる。混和剤は、少量混合するもので、コンクリートの種々の性能を向上させる役割を果たし、例えば、気泡を発生させてコンクリートの練り混ぜをスムーズにするAE剤(Air Entraining剤)、セメントを分散させる減水剤がある。混和材は、比較的、量多く混合するもので、火山灰や石炭灰などのセメントと反応して新しい化合物を生成するものや、コンクリートの収縮によるひび割れ防ぐために用いる膨張材、金属精錬のときに発生するスラグなどである。なお、各種構成成分を混合した硬化前のコンクリートは生コンクリートと呼ばれる。ここで、石炭灰にはフライアッシュやボトムアッシュ、ボトムアッシュを急冷、水洗したクリンカアッシュが含まれる。また、骨材の代わりとして、石炭灰を使用することもでき、この場合、砂や砂利は混合しなくてもよい。 Fresh concrete, which is the material of the present invention, is generally produced by mixing and kneading cement, fine aggregate, coarse aggregate, water, admixture, and, if necessary, admixture. In many cases, sand is used for fine aggregate and gravel is used for coarse aggregate. Admixtures mix in small amounts and play a role in improving various performances of concrete, for example, air entraining agent that generates air bubbles to smooth mixing of concrete, water reduction that disperses cement There is an agent. Admixtures are mixed in relatively large amounts, and react with cements such as volcanic ash and coal ash to form new compounds, expansive agents used to prevent cracking due to shrinkage of concrete, and occur during metal refining Slag etc. In addition, the concrete before hardening which mixed various structural components is called fresh concrete. Here, the coal ash includes fly ash and bottom ash, and clinker ash obtained by quenching and washing the bottom ash. Also, coal ash can be used as a substitute for aggregate, in which case sand and gravel do not have to be mixed.
本発明ではこれら材料に加えて、生コンクリートに木材、稲藁、麦藁、籾殻などバイオマスの粉砕物を混合する。木粉の場合、使用する樹種に制限はなく、広葉樹でも針葉樹でもよいが、例えばスギを用いてもよい。さらに、異なる樹脂を混ぜて使用してもよい。木材の使用部位にも制限はなく、辺材、心材を区別せず使用してよいし、樹皮が含まれていてもよい。もちろん、それぞれ単独で使用してもよいし、いずれか2以上を混ぜて使用してもよい。木粉の最大粒径は、好ましくは1000μm以下、さらに好ましくは250μm以下、特に好ましくは100μm以下である。ただし、コンタミネーション程度に上記最大粒径より大きい木粉が混じるのは構わない。
粒子径が小さいほど、藻類の生育には良いと考えられる。これは、粒子径を小さくすることで、木粉内のセルロースがより低分子化して、アルカリ環境下のコンクリート内から、藻類の生育に有用な成分が溶出しやすくなるためと考えられる。
また、木材のセルロースには結晶領域と非晶領域が存在するが、本発明の木粉は、結晶領域が50%以下になるよう破壊されているのが好ましく、30%以下であればより好ましく、10%以下であればさらに好ましい。結晶領域が破壊されれば、木粉内のセルロースが低分子化され、より溶出されやすくなると考えられるからである。
In the present invention, in addition to these materials, ground materials of biomass such as wood, rice straw, wheat straw, rice husk and the like are mixed with fresh concrete. In the case of wood flour, there is no limitation on the type of tree used, and it may be hardwood or softwood, but for example, cedar may be used. Furthermore, different resins may be mixed and used. There is no limitation on the use site of wood, and it may be used without distinction between sapwood and heartwood, and may include bark. Of course, each may be used alone, or any two or more may be mixed and used. The maximum particle size of wood flour is preferably at most 1000 μm, more preferably at most 250 μm, particularly preferably at most 100 μm. However, it does not matter that wood flour larger than the above-mentioned maximum particle size is mixed to the extent of contamination.
The smaller the particle size, the better for algae growth. This is considered to be due to the fact that by reducing the particle size, the cellulose in the wood flour is reduced in molecular weight, and components useful for algae growth are easily eluted from the concrete in an alkaline environment.
In addition, although crystalline regions and amorphous regions exist in cellulose of wood, it is preferable that the wood flour of the present invention is broken so that the crystalline region is 50% or less, and more preferably 30% or less. 10% or less is more preferable. If the crystalline region is destroyed, it is thought that the cellulose in the wood flour is reduced in molecular weight and more easily eluted.
上記粒径の木粉の混合割合は「木粉重量/生コンクリート全体の重量」の値が2〜20%が好ましく、4〜15%がより好ましく、5〜10%が特に好ましい。木材には、いくつかのセメント効果阻害を有する成分が含まれることが知られているから、混合する木粉の割合は高ければいいというのではなく、一定以下であることがより好ましい。 The value of "weight of wood flour / weight of whole fresh concrete" is preferably 2 to 20%, more preferably 4 to 15%, and particularly preferably 5 to 10%. Since it is known that wood contains components having some cement effect inhibition, the proportion of wood flour to be mixed may not be as high as possible, and it is more preferable that the proportion be below a certain level.
木粉は、スギ鋸屑等を使用してもよいし、スギ鋸屑等を原料として、更に、ディスクミル等の湿式粉砕装置、またはロッドミルやボールミル等の乾式粉砕装置を用いて製造してもよい。得られた木粉は振動式分級機等の分級装置を用いて分画することで、一定の粒子径以下のものを得ることができる。粒子径のごく小さいものも、上記湿式及び乾式の粉砕装置で製造できる。
。
Wood flour may be cedar sawdust or the like, and may be manufactured using cedar sawdust or the like as a raw material and further using a wet pulverizing apparatus such as a disc mill or a dry pulverizing apparatus such as a rod mill or a ball mill. The obtained wood flour can be fractionated using a classification device such as a vibratory classifier to obtain particles of a certain particle diameter or less. Even very small particle sizes can be produced by the above-mentioned wet and dry pulverizers.
.
コンクリートには、上記一般的材料やバイオマス粉砕物以外の、他の材料を混合してよい。例えば、藻類の栄養素である栄養塩類やアミノ酸等を混合してもよい。 Concrete may be mixed with other materials other than the above-mentioned general materials and biomass crushed materials. For example, nutrients such as nutrients of algae and amino acids may be mixed.
人工礁の形状に特に制限はなく、例えばブロック状、円柱状、櫓状などが考えられる。ブロック状や円柱状であれば、表面積を増やすために貫通孔を作ることも考えられるが、貫通孔はあってもよいがなくてもよい。敢えて貫通孔を作っても貫通孔内部に藻類は着生しにくい。表面は平滑でも、凹凸があってもよい。人工礁の製造は、例えば、コンクリートを望みの形状の型枠に入れて、コンクリートを流し込んで行う。 There is no restriction | limiting in particular in the shape of an artificial reef, For example, block shape, a column shape, a bowl shape etc. can be considered. If it is a block shape or a column shape, although it is also considered to make a through-hole in order to increase a surface area, it may or may not have a through-hole. Even if the through hole is made purposely, it is difficult for algae to form inside the through hole. The surface may be smooth or uneven. The production of artificial reefs is carried out, for example, by pouring concrete into a mold having a desired shape.
硬化後のコンクリートの圧縮強度に制限はないが、10〜22N/mm2であればより好ましい。海中での耐久性は必要だが、圧縮強度は強いほどよいわけではなく、人工礁の表面はある程度更新された方が、藻類の生育にはよいとされている。 Although there is no restriction | limiting in the compressive strength of the concrete after hardening, It is more preferable if it is 10-22 N / mm < 2 >. Durability in the sea is necessary, but the compressive strength is not as good as strong, and it is said that the surface of the artificial reef should be renewed to some extent for the growth of algae.
本発明の人工礁は以下のように製造される。常法に従い、材料を混合し、生コンクリートを調整する。この生コンクリートをあらかじめ準備した型枠に流し込んで、成型する。 The artificial reef of the present invention is manufactured as follows. Mix the ingredients and prepare fresh concrete according to the usual method. The raw concrete is poured into a previously prepared form and molded.
以下に、本発明を実施例で説明する。 The invention will now be described by way of example.
実施例1
人工礁(藻礁)の製造
(1)微粉砕木粉の製造
製材工場から排出されたスギ鋸屑を、目開き5mmの篩にかけて、これより大きいスギ鋸屑を取り除いた。この篩を通過したスギ鋸屑を、ミルで3時間粉砕処理して、最大粒径100μm以下とし、これを微粉砕木粉とした。
(2)粗粉砕木粉の製造
目開き5mmの篩にかけたスギ鋸屑を、振動式分級機で分画し、目開き250〜1000μmの画分を集めた。これを粗粉砕木粉とした
(3)人工礁(藻礁の製造)
表1に示した4種類の組成の生コンクリートを調製した。1は普通コンクリート、2はフライアッシュとスラグを使用した特殊コンクリート、3は微粉砕木粉を混合した特殊コンクリート、4は租粉砕木粉を混合した特殊コンクリートである。それぞれのコンクリートで、3つの形状(図1A〜C)の人工礁(藻礁)を製造した。Aは表面(側面)平滑タイプ、Bは表面(側面)凹凸タイプ、CはAを中抜きしたものである。これらを比較藻礁1−A、1−B、1−C、2−A、2−B,2−C、実験藻礁3−A、3−B、・・・・4−Cとした。
Example 1
Production of artificial reef (algal reef) (1) Production of pulverized wood powder The cedar sawdust discharged from the lumber mill was passed through a 5 mm mesh sieve to remove larger cedar sawdust. The cedar sawdust that has passed through the sieve is ground for 3 hours in a mill to a maximum particle size of 100 μm or less, which is used as a pulverized wood powder.
(2) Production of coarsely crushed wood powder A cedar sawdust which has been sieved with an opening of 5 mm is fractionated with a vibrating classifier, and a fraction of openings of 250 to 1000 μm is collected. This is used as coarsely crushed wood flour (3) Artificial reef (production of algal reef)
Fresh concrete of four compositions shown in Table 1 was prepared. 1 is ordinary concrete, 2 is special concrete using fly ash and slag, 3 is special concrete mixed with pulverized wood powder, and 4 is special concrete mixed with crushed wood powder. For each concrete, artificial reefs (algal reefs) of three shapes (Figures 1A-C) were produced. A is a surface (side surface) smooth type, B is a surface (side surface) concavo-convex type, and C is a hollow of A. These were comparative algae reefs 1-A, 1-B, 1-C, 2-A, 2-B, 2-C, and experimental algae reefs 3-A, 3-B,.
実施例2
人工礁(藻礁)を使用した培養実験
[栄養塩不添加の培養実験]
人工礁(藻礁)にホンダワラとワカメをタネ付した。水槽を準備し、海水を入れ、12時間ごとにON/OFFが切り替わるように照明し、エアストーンをとりつけ常時エアレーションを行った。この1つの水槽に人工礁(藻礁)12個をいれ、ホンダワラとワカメのタネを注入した。タネを注入してから1週間静置した(図2)。
続いて、人工礁(藻礁)を水槽から取り出し、1〜4のコンクリートの組成ごとに、No.1〜No.4の4つの水槽に分けて、移設した。例えば水槽No.1には、1−A、1−B、1−Cの人工礁(藻礁)を移設した。水槽の模式図、測定事項を図3に記載した。1週間ごとに、写真を撮影し着生を観測し、水温、pH、塩分濃度を測定した。培養は移設した日から約1.5月継続した(10月13日〜12月4日)。
[栄養塩を添加した培養実験]
上記12個の人工礁に付着した藻類を取り除き、再び実験に使用した。栄養塩を添加しないときと同様、ホンダワラとワカメをタネ付し、1週間後4つの水槽に移設した。移設先の水槽にはあらかじめ栄養塩を加えておいた。栄養塩の添加量は表2に示した。移設後培養を開始した(12月11日〜)。さらに、培養開始から約1月後(翌年1月6日)と約2月後(2月19日)にも、再度栄養塩を添加した。培養開始から約1.5月後(1月26日)に、水槽No.3の実験藻礁3−A、3−B、3−Cから、顕著に繁茂していたシオミドロを除去した。
各種測定や人工礁の写真撮影を、栄養塩不添加のときと同様に行った。培養開始から約1.5月後(1月27日)、2月後(2月9日)、4月後(3月8日)に、各人工礁(藻礁)に生育した藻類を適宜採取した。撮影した写真と採取したサンプルから着生・生育した海藻リストを作成した。
Example 2
Culture experiment using artificial reef (algal reef) [culture experiment without nutrient addition]
Seeds of Hondawara and Wakame were planted on artificial reefs (algal reefs). A water tank was prepared, seawater was put in, lights were turned on and off every 12 hours, air stone was attached, and aeration was always performed. We put 12 artificial reefs (algal reefs) in this one tank, and injected the seeds of Honda Walla and Wakame seaweed. After pouring the seeds, it was allowed to stand for 1 week (Fig. 2).
Subsequently, the artificial reef (algal reef) is taken out of the water tank, and the composition No. 1 is obtained for each of the compositions 1 to 4 of concrete. 1 to No. It was divided into 4 tanks of 4 and transferred. For example, tank No. The artificial reef (algal reef) of 1-A, 1-B and 1-C was transferred to No. 1. The schematic diagram of the water tank and the measurement items are shown in FIG. Photographs were taken weekly to observe epiphysis, and the water temperature, pH and salinity were measured. The culture was continued for about 1.5 months from the day of transfer (Oct. 13 to Dec. 4).
[Culture experiment added with nutrient salts]
The algae attached to the 12 artificial reefs were removed and used again for the experiment. As in the case where no nutrient salt was added, Hondaweed and Wakame were seeded and transferred to four water tanks one week later. Nutrients were added in advance to the tank of the transfer destination. The amount of nutrient added is shown in Table 2. After transfer, culture was started (from December 11). Furthermore, the nutrient salt was added again about one month after the start of the culture (Jan. 6, next year) and about two months after the start of the culture (February 19). About 1.5 months after the start of culture (Jan. 26), the water tank No. From the 3 experimental algal reefs 3-A, 3-B, 3-C, Shiimodoro, which had grown significantly, was removed.
Various measurements and photographs of artificial reefs were taken as in the case of no nutrient addition. About 1.5 months (January 27), February (February 9), April (March 8) after culture start, algae which grew on each artificial reef (algal reef) It was collected. A list of seaweeds that had grown and grown was created from the photographs taken and the samples collected.
[結果]
藻類の着生・生育状態を撮影した人工礁(藻礁)写真のうち、栄養塩不添加実験の、培養開始後1週間(10月20日)(図4)と約1.5月(12月2日)(図5、図6)のものを示した。図6は、各組成の形状B(比較藻礁1−B、2−B、実験藻礁3−B、4−B)について上から見た平面写真である。
栄養塩添加については、培養開始後3日(12月14日)(図7)と約1.5月(1月26日)(図8)の人工礁(藻礁)の写真を示した。作成した海藻リストは、図9に示した。組成1(表1)を基準として、各海藻ごとの着生(+)、各組成ごとの生育状況(基準、優、良)を示した。
培養後の写真(図5、6、8)と海藻リスト(図9)をみると、栄養塩添加、不添加ともに、組成3(微粉砕木粉入り)が、藻類の着生及び生育が適していることが分かった。特にワカメの生育は、組成3(微粉砕木粉入り)が優れていた(図9)。さらに、実験結果は示さないが、栄養塩添加の組成3は、培養開始後約4月後(3月15日)において、他の3つの組成と比較して、アオノリが繁茂しており、アオノリの着生及び生育についても、他の組成より適していることがわかった。
人工礁(藻礁)の形状による着生のしやすさは、海藻ごとに異なった。ワカメは凹凸をつけた形状Bの表面(側面)への着生が顕著であったが、それ以外の海藻は平滑面へ着生した。また、形状Cの貫通孔には、海藻の着生は確認できなかった。なお、本実施例では、実海域の海水を使用したため、タネ付した以外の海藻も着生・生育した。
測定した水温、pH、塩分濃度の推移を図10に示した。各水槽ごとのデータに違いはほとんどなかった。ただし、組成3の人工礁(藻礁)を設置した水槽No.3において、pHが他の水槽より、0.1〜0.3程度高かった。
[result]
Of the artificial reef (algal reef) photographs of algal blooms and growth conditions, one week (Oct. 20) (Fig. 4) and about 1.5 months of culture start experiment without nutrient addition. May 2) (Figures 5 and 6) are shown. FIG. 6 is a top plan view of shape B (comparison algae 1-B, 2-B, experimental algae reef 3-B, 4-B) of each composition.
Regarding nutrient salt addition, photographs of artificial reefs (algal reefs) three days after the start of culture (Dec. 14) (FIG. 7) and about 1.5 months (Jan. 26) (FIG. 8) are shown. The created seaweed list is shown in FIG. Based on the composition 1 (Table 1), the epiphysis (+) for each seaweed and the growth condition (standard, excellent, good) for each composition were shown.
Looking at the photographs after cultivation (Figs. 5, 6, 8) and the seaweed list (Fig. 9), composition 3 (with finely ground wood flour) is suitable for algal settlement and growth, both with and without nutrients added. It turned out that it was. In particular, the growth of wakame was excellent in composition 3 (with finely ground wood flour) (FIG. 9). Furthermore, although experimental results are not shown, composition 3 of nutrient salt addition is thickened with green algae compared with the other 3 compositions at about 4 months after the start of culture (March 15). It was also found that the deposition and growth of the composition are more suitable than other compositions.
The ease of settlement due to the shape of the artificial reef (algal reef) was different for each seaweed. Wakame had remarkable deposition on the surface (side surface) of the uneven shape B, but the other seaweeds deposited on the smooth surface. In addition, the formation of seaweed could not be confirmed in the through holes of shape C. In addition, in this example, since sea water in the actual sea area was used, seaweeds other than those with seeds were grown and grown.
The transition of the measured water temperature, pH, and salinity is shown in FIG. There was almost no difference in the data for each tank. However, the tank No. 1 in which the artificial reef (alga reef) of composition 3 was installed. In 3, the pH was about 0.1 to 0.3 higher than that of the other water tanks.
実施例3
人工礁(藻礁)の物理的特性
各人工礁(藻礁)と同じ組成(表1)で、コンクリートを試作し、物理的特性をJIS等の規格に従い測定した(表3)。
Example 3
Physical properties of artificial reef (algal reef) Concrete was made on an experimental basis with the same composition (Table 1) as each artificial reef (algal reef), and physical characteristics were measured according to a standard such as JIS (Table 3).
[結果]
測定結果を図11、図12に示した。配合強度とは、コンクリート材料の配合割合を決めていく際に目標とする値で、表3の目標値にバラツキを考慮して決めるが、組成1、2の木粉を含まないコンクリートは配合強度以上の強度を示した。一方で、組成3,4については配合強度以下の強度であった。特に、組成2と、組成3、4の違いは、木粉添加の有無だけであるが、大きな差となった。さらには、組成3の微粉砕木粉を含むものは、配合強度と比べても強度は80%以下であり(図11)、さらに、組成4の粗粉砕木粉よりも強度が低い結果となった。
また、フライアッシュを含むコンクリート(組成2〜4(表1))は含まないもの(組成1)に比べ、単位容積質量が小さく、有効吸水率は高かった(図12)。
木粉を含むコンクリートで強度が低下するのは、アルカリ環境下でコンクリート内の木質成分から低分子の糖が溶出し、これがコンクリートの硬化阻害を引き起こすことが想定される。実際、実験結果の詳細は示さないが、出願人の実験によると、コンクリート内のアルカリ環境と同じpHのアルカリ溶液で処理すると微粉砕木粉は14.8%、粗粉砕木粉は3.8%、重量が減少し、木質成分が流出することが示唆された。
[result]
The measurement results are shown in FIG. 11 and FIG. The compounding strength is the target value when determining the mixing ratio of the concrete material, and it is determined in consideration of the variations in the target values in Table 3, but the concrete containing no wood powder of composition 1 and 2 is the compounding strength It showed the above strength. On the other hand, the compositions 3 and 4 had a strength equal to or less than the compounding strength. In particular, the difference between composition 2 and compositions 3 and 4 was the presence or absence of the addition of wood flour, but this was a large difference. Furthermore, those containing finely ground wood flour of composition 3 have a strength of 80% or less compared to the compounding strength (FIG. 11), and the strength is lower than that of coarsely ground wood flour of composition 4 The
Moreover, compared with the thing (composition 1) which does not contain the concrete (composition 2-4 (Table 1)) containing fly ash, unit volume mass was small and effective water absorption was high (FIG. 12).
The decrease in strength of concrete containing wood powder is assumed to be the elution of low molecular weight sugars from wood components in the concrete in an alkaline environment, which causes the inhibition of hardening of the concrete. In fact, although details of the experimental results are not shown, according to applicants' experiments, when treated with an alkaline solution at the same pH as the alkaline environment in concrete, 14.8% of pulverized wood flour and 3.8 of coarsely pulverized wood flour are used. %, The weight decreased, it was suggested that the wood component runoff.
実施例4
環境安全性の評価
人工礁(藻礁)は食物となる魚介類の生育環境となるので、海中において有害な物質が溶出することがないか調べた。特に、フライアッシュやスラグ類で可能性のある重金属類について調べた。試験は、「コンクリート用骨材又は道路用スラグ類に化学物質評価方法を導入する指針に関する検討会総合報告書」及び「秋田県フライアッシュコンクリート混合プレキャストコンクリート製品使用基準」に準拠して行った。具体的には、直径10cm、高さ7cmの円柱状の模擬供試体を製造し、これを海水を意図した3重量%食塩水に浸して、その後、JIS(JIS K 0058−1、−2)に準拠して食塩水中の重金属類を分析した。
[結果]
全ての項目において、測定下限値未満であり、基準値を満たした(表4)。
Example 4
Evaluation of environmental safety Since artificial reefs (algal reefs) become a growth environment for fish and shellfish that serve as food, it was examined whether harmful substances were eluted in the sea. In particular, we investigated possible heavy metals in fly ash and slags. The test was conducted in accordance with the “Study Report on the Guideline for Introducing Chemical Substance Evaluation Method to Aggregates for Concrete or Road Slags” and “Use Standard for Akita Prefecture Fly Ash Concrete Mixed Precast Concrete Product”. Specifically, a cylindrical simulated specimen having a diameter of 10 cm and a height of 7 cm is produced, and this is immersed in a 3 wt% saline solution intended for seawater, and then JIS (JIS K 0058-1, -2) The heavy metals in the saline solution were analyzed according to
[result]
In all items, it was less than the measurement lower limit and met the standard value (Table 4).
本発明の人工礁は、材料に木粉を含み、優れた藻類育成効果を有する。この人工礁を使用すれば、木材利用を促進できると共に、優れた磯焼け対策にもなり、有用である。 The artificial reef of the present invention contains wood flour as a material and has an excellent algae growing effect. This artificial reef can be used to promote the utilization of wood and also to be an excellent measure against burning.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018234124A JP2019058186A (en) | 2018-12-14 | 2018-12-14 | Artificial reef made of concrete |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018234124A JP2019058186A (en) | 2018-12-14 | 2018-12-14 | Artificial reef made of concrete |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016209137A Division JP6516711B2 (en) | 2016-10-26 | 2016-10-26 | Concrete artificial reef |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019058186A true JP2019058186A (en) | 2019-04-18 |
Family
ID=66176934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018234124A Pending JP2019058186A (en) | 2018-12-14 | 2018-12-14 | Artificial reef made of concrete |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019058186A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110250067A (en) * | 2019-07-17 | 2019-09-20 | 浙江大学宁波理工学院 | Straw fish shelter and preparation method thereof |
TWI848886B (en) * | 2024-01-19 | 2024-07-11 | 御宬科技有限公司 | Method of making fish reefs by using oyster shells |
-
2018
- 2018-12-14 JP JP2018234124A patent/JP2019058186A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110250067A (en) * | 2019-07-17 | 2019-09-20 | 浙江大学宁波理工学院 | Straw fish shelter and preparation method thereof |
CN110250067B (en) * | 2019-07-17 | 2024-04-26 | 浙江大学宁波理工学院 | Rice grass carp reef and preparation method thereof |
TWI848886B (en) * | 2024-01-19 | 2024-07-11 | 御宬科技有限公司 | Method of making fish reefs by using oyster shells |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104938384A (en) | Bionic concrete artificial fish reef and preparation method thereof | |
KR100502698B1 (en) | Oyster Concrete Composition For Producing Structure Such As Environmental Friendly Fishing Structure and the method therefor | |
EP2524593B1 (en) | Environmentally active concrete | |
JP2019058186A (en) | Artificial reef made of concrete | |
JP6516711B2 (en) | Concrete artificial reef | |
CN114538845A (en) | Ecological concrete containing nutritional base material particles and preparation method thereof | |
JP5800259B2 (en) | Soil material | |
JP5188063B2 (en) | Method for producing solidified material for aquatic organisms | |
JP5215633B2 (en) | Soil improving material for promoting floating larval settlement of shellfish and method for promoting floating larval settlement of shellfish | |
JP6548882B2 (en) | Method for producing hardened body for eluting nutrient components in water | |
JP2005154163A (en) | Porous molded product which is obtained through cement hydration and hardening and contains ceramic charcoal and its manufacturing method | |
JP4037633B2 (en) | Fish reef using scallop shell | |
Ketebu et al. | Comparative study on cementitious content of ground mollusc snail and clam shell and their mixture as an alternative to cement | |
JP7107514B1 (en) | Mortar composition and hardened body | |
EP0900771B1 (en) | Cementitious mixures based on sulfoaluminous and ferroaluminous clinkers, and their use in the construction of cementitious structures in contact with aggressive solutions | |
JP2022152501A (en) | Concrete containing attractant and concrete structure | |
Lamichhane et al. | Evaluation of water hyacinth extract of Nepalese lakes as an admixture in concrete production | |
CN101891437B (en) | Boron mud pavement base course material | |
JP2020066550A (en) | Clinker ash compact and method for producing the same | |
JP2007117069A (en) | Underwater animal and plant-proliferating body and marine ranch by utilizing the same | |
TWI724662B (en) | Reservoir sludge bionic coral and manufacturing method thereof | |
RU2543805C1 (en) | Artificial soil and method of its preparation | |
JP2007001825A (en) | Warm-colored porous reformed sulfur solid body containing crushed shell as major ingredient, civil engineering/building structures, and shaped article for trapping octopus | |
JP2021171056A (en) | Solidifying material and underwater structure | |
KR200315795Y1 (en) | Artificial fishing reef produced by concrete composition comprising recycled fine aggregates and recycled coarse aggregates |