JP2015013244A - 成膜装置及び成膜方法 - Google Patents

成膜装置及び成膜方法 Download PDF

Info

Publication number
JP2015013244A
JP2015013244A JP2013140437A JP2013140437A JP2015013244A JP 2015013244 A JP2015013244 A JP 2015013244A JP 2013140437 A JP2013140437 A JP 2013140437A JP 2013140437 A JP2013140437 A JP 2013140437A JP 2015013244 A JP2015013244 A JP 2015013244A
Authority
JP
Japan
Prior art keywords
fine particles
conductor
voltage
substrate
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013140437A
Other languages
English (en)
Inventor
吉富 輝雄
Teruo Yoshitomi
輝雄 吉富
福田 武司
Takeshi Fukuda
武司 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Saitama University NUC
Original Assignee
Calsonic Kansei Corp
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp, Saitama University NUC filed Critical Calsonic Kansei Corp
Priority to JP2013140437A priority Critical patent/JP2015013244A/ja
Publication of JP2015013244A publication Critical patent/JP2015013244A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Special Spraying Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

【課題】霧化された微粒子MPを確実に帯電させる。【解決手段】成膜装置は、成膜される物質を含む溶液LQを微粒子MPとして霧化させる霧化装置11と、キャリアガスを導入し、導入されたキャリアガスの運動エネルギを用いて、霧化された微粒子を導体メッシュ13に向けて送り、且つ、導体メッシュ13の間を通過させる輸送部12と、第1の極性の電圧が印加されることにより、微粒子MPがその間を通過する際に微粒子MPを帯電させる導体メッシュ13と、帯電した微粒子MPに静電引力を作用させて、基体Sb上に微粒子MPを堆積する基体支持台14と、を備える。【選択図】図1

Description

本発明は、成膜装置及び成膜方法に関するものである。
従来から、樹脂系薄膜の形成方法として、樹脂系原料を霧化または気化して基体に付着させて樹脂系薄膜を形成する方法が知られている(特許文献1参照)。特許文献1の方法では、空隙欠陥がなくかつ表面が平坦な樹脂系薄膜を形成するために、基体と、霧化または気化した樹脂系原料との少なくともいずれか一方を荷電粒子線の照射により帯電させている。
また、機能性高分子、生体高分子、無機物質、或いは、有機高分子などの薄膜を形成する方法が知られている(特許文献2参照)。特許文献2の方法では、機能性高分子などの生物学的活性や機能を失うことなく薄膜を形成するために、機能性高分子などを含む溶液(または溶媒)を帯電させて、振動子により振動を与えることによって、帯電された微小な粒子状物質として霧化している。
特開平10−251833号公報 特開2003−136005号公報
しかし、特許文献1の方法における、荷電粒子線の照射による帯電では、基体或いは樹脂系原料を十分に帯電させることができない。
特許文献2の方法では、帯電した霧(霧化した微小な粒子状物質)を安定して得ることが難しい。なぜなら、例えば、霧化した微小な粒子状物質がメッシュを通過するときに帯電させて粒子の大きさを揃える例では、メッシュの穴が小さいため、霧化の効率が悪くなるからである。また、溶液に高電圧を直接印加しているために、振動子及び霧化装置を高電圧から保護する必要が生じ、装置が複雑になり、高価になる。
本発明は、上記課題に鑑みて成されたものであり、その目的は、霧化された微粒子を確実に帯電させることができる成膜装置及び成膜方法を提供することである。
上記目的を達成するため、本発明の第1の態様に係わる成膜装置は、成膜される物質を含む溶液を微粒子として霧化させる霧化装置と、キャリアガスを導入し、導入されたキャリアガスの運動エネルギを用いて、霧化された微粒子を導体メッシュに向けて送り、且つ、導体メッシュの間を通過させる輸送部と、第1の極性の電圧が印加されることにより、微粒子がその間を通過する際に微粒子を帯電させる導体メッシュと、帯電した微粒子に静電引力を作用させて、基体上に微粒子を堆積する基体支持台と、を備える。
第1の態様に係わる成膜装置によれば、導体メッシュに第1の極性の電圧を印加することにより、微粒子が導体メッシュの間を通過する際に、微粒子が印加した極性と同じ極性(第1の極性)に帯電する。そして、基体支持台を用いて導体メッシュと基体との間に電場を形成することにより微粒子に吸着力を作用させて基体上に微粒子を堆積することができる。導体メッシュの間を通過する際に、霧化した微粒子が導体メッシュに十分に接近するため、確実に帯電させることができる。
第1の態様に係わる成膜装置において、基体支持台は、基体、或いは帯電した微粒子から見て基体の後方に位置する導体板に、第1の極性とは異なる第2の極性の電圧を印加してもよい。
成膜速度を高めるためには、帯電した微粒子に作用する静電引力を大きくして、微粒子が基体に引きつけられる力を大きくする必要がある。しかし、静電引力を大きくするために、導体メッシュに印加する第1の極性の電圧を高くすると、微粒子は導体メッシュの間を通過する前に帯電してしまい、帯電した微粒子は導体メッシュを通過し難くなり、成膜速度が低下してしまう。そこで、基体或いは導体板に第1の極性とは異なる第2の極性の電圧を印加する。これにより、帯電した微粒子が導体メッシュを通過しくくなることなく、導体メッシュと基体或いは導体板とにより形成される電場をより大きくすることができるので、より大きな吸着力を微粒子に作用させて成膜速度を高めることができる。
更に、導体メッシュで印加する電圧の絶対値よりも、基体或いは導体板に印加する電圧の絶対値を大きくしてもよい。帯電した微粒子が導体メッシュの間をより通過しやすくなり、より大きな吸着力を微粒子に作用させることができるので、成膜速度を高めることができる。
本発明の第2の態様に係わる成膜方法は、成膜される物質を含む溶液を微粒子として霧化させ、導体メッシュに向かって流れるキャリアガスの運動エネルギを用いて、導体メッシュの間を霧化した微粒子を通過させ、導体メッシュに電圧を印加することにより、導体メッシュの間を微粒子が通過する際に微粒子を帯電させ、帯電した微粒子に静電引力を作用させて基体上に微粒子を堆積する。
本発明に係わる成膜装置及び成膜方法によれば、霧化された液滴を確実に帯電させることができる。
図1は、本発明の第1実施形態に係わる成膜装置の構成を示す概略図である。 図2は、図1の成膜装置を用いた成膜方法の手順を示すフローチャートである。 図3は、本発明の第2実施形態に係わる成膜装置の構成を示す概略図である。 図4(a)は基体Sbに接地電位を印加し、導体メッシュ13に印加する電圧28を上げた場合の成膜速度の変化Paを示すグラフであり、図4(b)は導体メッシュ13に印加する電圧28を途中で一定に保ち、その後は基体Sbに印加する電圧29を上げた場合の成膜速度の変化Pbを示すグラフである。 図5は、表1及び表2に示した実験結果をまとめたグラフである。
以下、図面を参照して本発明の実施形態を説明する。
(第1実施形態)
図1を参照して、本発明の第1実施形態に係わる成膜装置の構成を説明する。成膜装置は、成膜される物質が溶液として供給され、当該物質を所定の基体支持台に載置された基体の上に成膜する装置である。このような成膜装置は、図1に示すように、成膜される物質を含む溶液LQを微粒子MPとして霧化させる霧化装置11と、霧化された微粒子MPを導体メッシュ13に向けて送り、且つ、導体メッシュ13の間を通過させる輸送部12と、微粒子MPがその間を通過する際に微粒子MPを帯電させる導体メッシュ13と、帯電した微粒子MPに静電引力を作用させて、基体Sb上に微粒子MPを堆積する基体支持台14とを備える。
霧化装置11は、溶液LQを収容する容器20と、容器20に収容された溶液LQに超音波SSを加えることにより、溶液LQを微粒子として霧化(気化を含む)させる超音波素子21と、超音波素子21の動作を制御する超音波制御器19とを有する。図1に示す例では、容器20の底部中央に超音波素子21が配置され、容器20の底部中央から射出される超音波SSにより溶液LQの一部が霧化されて微粒子MPへ変化する。
輸送部12は、キャリアガスを導入し、導入されたキャリアガスの運動エネルギを用いて、霧化装置11で発生した微粒子MPを、導体メッシュ13まで搬送し、導体メッシュ13の目を通過させる。具体的に、輸送部12は、その内部において微粒子MPが発生する霧化管24と、霧化管24の中にキャリアガスを導入するための送風管22と、霧化管24の中に配置された導体性帯23と、霧化管24の一端に接続された輸送管25と、輸送管25の他端に接続された塗布管26とを有する。
霧化管24は、その他端が溶液LQの中の超音波素子21の上方に配置されている。霧化管24の内部に、導体性帯23が配置されている。霧化管24の一端は、輸送管25の一端に接続され、輸送管25の他端は、塗布管26の一端に接続されている。塗布管26の内部に、導体メッシュ13が配置されている。塗布管26の他端は、基体支持台14の上方に位置する。
導体メッシュ13は、塗布管26の内部に配置されている。導体メッシュ13は、例えば金属メッシュからなり、微粒子MPが通過可能な程度の編み目状の平面形状を有する。導体メッシュ13に対して、外部から第1の極性(例えば、負)の電圧28を印加することができる。
基体支持台14の上には、基体Sbを加熱するための加熱装置27が載置され、加熱装置27の上に、基体Sbが載置される。後述する成膜時には、加熱装置27の上に載置された基体Sbと塗布管26の他端との間に電位差が生じるため、基体Sbと塗布管26の他端と間で放電が生じることを防止するために、所定の放電防止ギャップGPが形成される。
図2を参照して、図1の成膜装置を用いた成膜方法の一例を説明する。超音波制御器19は、超音波素子21を動作させて、溶液LQの一部を霧化して霧化管24の内部に微粒子MPを発生させる(ステップS01)。同時に、送風管22を通じて霧化管24の中にキャリアガスを導入する。そして、輸送管25に向けて移動するキャリアガスの運動エネルギを用いて、微粒子MPを輸送管25に向けて移動させる。導体性帯23の間を通過する際に、微粒子MPが帯びた電荷が除去される。微粒子MPは、輸送管25の内部を、図1の矢印FLに示す方向にキャリアガスと共に移動する。
塗布管26に到達した微粒子MPは、導体メッシュ13の間を通過する(ステップS02)。導体メッシュ13に第1の極性の電圧(例えば、負の電圧)を印加することにより、微粒子MPが導体メッシュ13の間を通過する際に、微粒子MPは、導体メッシュ13に印加した極性と同じ極性(負極)に帯電する(ステップS02)。帯電した微粒子MPは分裂して粒子径が小さくなる。
そして、第1実施形態では、基体支持台14の上方に配置された基体Sbに直接、接地電位を印加する。これにより、負の電圧が印可された導体メッシュ13と接地電池が印加された基体Sbとの間に電場が形成される。この電場により、負に帯電した微粒子MPには基体Sbに向かう静電引力が作用する。この静電引力は、基体Sbに対する吸着力として機能して、基体Sb上に微粒子MPが堆積される(ステップS03)。
基体Sbは加熱装置27により所定の温度まで加熱されているため、微粒子MPが堆積される際に、微粒子MPは基体Sbへの接近と共に蒸発が進み、乾燥直前で基体Sbに付着する。微粒子MPは基体Sbに付着した直後に乾燥する。これにより、溶液LQに含まれる物質が基体Sb上に堆積され、基体Sbに薄膜を成膜することができる。
図1には示さないが、成膜後に基体Sbに高温処理を施すことにより、成膜した薄膜を硬化させる。なお、導体メッシュ13に印加される電圧28が、塗布管26、輸送管25、霧化管24の内壁を伝って超音波素子21或いは超音波制御器19を破壊してしまうことを防止するために、霧化管24の内壁には接地電位が印加されている。
以上説明したように、本発明の第1実施形態によれば、以下の作用効果が得られる。導体メッシュ13に第1の極性の電圧(負の電圧)を印加することにより、微粒子MPが導体メッシュ13の間を通過する際に、印加した極性と同じ極性(第1の極性)に微粒子MPが帯電する。そして、基体支持台14を用いて導体メッシュ13と基体Sbとの間に電場を形成することにより微粒子MPに吸着力(静電引力)を作用させて基体Sb上に微粒子MPを堆積することができる。導体メッシュ13の間を通過する際に、霧化した微粒子MPが導体メッシュ13に十分に接近するため、確実に帯電させることができる。
高電圧が印加された導体メッシュ13の間を微粒子MPが通過する際に、微粒子MPは帯電することにより更に細かく分裂する。基体Sbに向かう微粒子MPは霧化初期状態よりも更に微細化するため、霧化の効率が向上し、且つ、成膜の品質を向上させることができる。
(第2実施形態)
図3を参照して、本発明の第2実施形態に係わる成膜装置の構成を説明する。第2実施形態に係わる成膜装置は、図1の成膜装置と比較して、以下の点が相違する。図1の成膜装置では基体Sbに接地電位を印加したが、第2実施形態に係わる成膜装置では、基体Sbに、第1の極性とは異なる第2の極性の電圧、即ち正の電圧29を印加する。その他の点については、図1の成膜装置と同じであり説明を省略する。
第2実施形態による作用効果を以下に説明する。
成膜速度を高めるためには、帯電した微粒子MPに作用する静電引力を大きくして、微粒子MPが基体Sbに引きつけられる力を大きくする必要がある。静電引力を大きくするために、導体メッシュ13に印加する第1の極性(負)の電圧28を高くすると、前述したように、霧化された微粒子MPを、霧化初期状態よりも更に微細化することができる。しかし、導体メッシュ13への高電圧印加により、微粒子MPは導体メッシュ13の間を通過する前に帯電してしまい、帯電した微粒子MPは導体メッシュ13を通過し難くなる。通過できた微粒子MP自体の帯電量は十分であっても、基体Sb側へ到達できる微粒子MPの量は減ってしまうため、成膜速度が低下してしまう。そこで、微粒子MPの更なる微細化に必要な導体メッシュ13側の電圧印加は、微粒子MPの導体メッシュ13通過を阻害しない程度に抑える。そして、微粒子MPを基体Sbへ引付けるために必要な電位差を大きくするために、第1の極性(負)とは異なる第2の極性(正)の電圧29を基体Sbに印加する。これにより、導体メッシュ13と基体Sbとの間に、電圧28と電圧29とを加算した電位差が生じる。よって、帯電した微粒子MPが導体メッシュ13を通過しくくなることなく、導体メッシュ13と基体Sbとにより形成される電場をより大きくすることができるので、より大きな吸着力を微粒子MPに作用させて成膜速度を高めることができる。
図4(a)は基体Sbに接地電位を印加し、導体メッシュ13に印加する電圧28を上げた場合の基体Sbと導体メッシュ13との電位差に対する成膜速度の変化Paを示し、図4(b)は導体メッシュ13に印加する電圧28を途中で一定に保ち、その後は基体Sbに印加する電圧29を上げた場合の基体Sbと導体メッシュ13との電位差に対する成膜速度の変化Pbを示す。図4(a)に示すように、電圧28の上昇と共に成膜速度も上昇するが、所定の電位差以上では、前述したように、帯電した微粒子MPが導体メッシュ13を通過しくくなるため、電位差の上昇と共に成膜速度は低下する。これに対して、図4(b)に示すように、所定の電位差まで電圧28を上昇させ、その後は基体Sbに印加する電圧29を上昇させることにより、所定の電位差以上であっても、成膜速度を上昇させることができる。
また、第2実施形態において、導体メッシュ13で印加する電圧28の絶対値よりも、基体に印加する電圧29の絶対値を大きくしてもよい。これにより、帯電した微粒子MPが導体メッシュ13の間をより通過しやすくなり、より大きな吸着力を微粒子MPに作用させることができるので、成膜速度を高めることができる。
(実験結果)
図5、表1及び表2を参照して、発明者が行った実験の結果を説明する。表1は、基体Sbに印加する電圧29を接地電位(0kV)に保持し、導体メッシュ13に印加する電圧28を変化させた場合の基体Sb上に成膜される薄膜の膜厚を示す。成膜時間は一定としている。導体メッシュ13に印加する電圧28を、0kV、−1kV、−3kV、−5kVに変化させた場合、薄膜の膜厚は、0nm、0nm、15.6nm、15.2nmとなった。電圧28の絶対値の上昇とともに、成膜速度が増加して膜厚も増加するが、膜厚は電圧28が−3kVの時に最大値(15.6nm)を取り、電圧28の絶対値の更なる上昇により膜厚は増加しない。
Figure 2015013244
表2は、導体メッシュ13に印加する電圧28を膜厚が最大値を取った時の値(−3kV)に維持し、基体Sbに印加する電圧29を変化させた場合の基体Sb上に成膜される薄膜の膜厚を示す。成膜時間は表1と同様に一定としている。基体Sbに印加する電圧29を、0kV、1kV、7kVに変化させた場合、薄膜の膜厚は、15.6nm、28.5nm、48.35nmとなった。電圧29の絶対値の上昇とともに、表1における最大値(15.6nm)よりも膜厚が更に増加した。
Figure 2015013244
図5は、表1及び表2に示した実験結果をまとめたグラフである。横軸は、導体メッシュ13と基体Sbとの間に印加される電位差(kV)、つまり電圧28と電圧29の絶対値を加算した値を示し、横軸は基体Sb上に成膜される薄膜の膜厚(nm)を示す。符号Waは表1に示す実験結果をまとめたグラフを示し、符号Wbは表2に示す実験結果をまとめたグラフを示す。
上記のように、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
例えば、本発明の第1及び第2の実施形態では、基体Sbに対して接地電位或いは第2の極性の電圧29を印加する例を示したが、基体Sbの代わりに、帯電した微粒子MPから見て基体Sbの後方に位置する導体板に対して、接地電位或いは第2の極性の電圧29を印加しても構わない。
また、第1の極性を負とし、第2の極性を正とした場合を説明したが、逆であっても構わない。
11…霧化装置
12…輸送部
13…導体メッシュ
14…基体支持台
LQ…溶液
MP…微粒子
Sb…基体

Claims (4)

  1. 成膜される物質を含む溶液(LQ)を微粒子(MP)として霧化させる霧化装置(11)と、
    キャリアガスを導入し、導入されたキャリアガスの運動エネルギを用いて、霧化された前記微粒子(MP)を導体メッシュ(13)に向けて送り、且つ、前記導体メッシュ(13)の間を通過させる輸送部(12)と、
    第1の極性の電圧(28)が印加されることにより、前記微粒子(MP)がその間を通過する際に前記微粒子(MP)を帯電させる前記導体メッシュ(13)と、
    帯電した前記微粒子(MP)に静電引力を作用させて、基体(Sb)上に前記微粒子(MP)を堆積する基体支持台(14)と、
    を備えることを特徴とする成膜装置。
  2. 前記基体支持台(14)は、基体(Sb)、或いは帯電した前記微粒子(MP)から見て前記基体(Sb)の後方に位置する導体板に、前記第1の極性とは異なる第2の極性の電圧(29)を印加することを特徴とする請求項1に記載の成膜装置。
  3. 前記導体メッシュ(13)に印加する電圧(28)の絶対値よりも、前記基体(Sb)或いは導体板に印加する電圧(29)の絶対値を大きくすることを特徴とする請求項2に記載の成膜装置。
  4. 成膜される物質を含む溶液(LQ)を微粒子(MP)として霧化させ、
    導体メッシュ(13)に向かって流れるキャリアガスの運動エネルギを用いて、導体メッシュ(13)の間を霧化した前記微粒子(MP)を通過させ、
    前記導体メッシュ(13)に電圧を印加することにより、前記導体メッシュ(13)の間を前記微粒子(MP)が通過する際に前記微粒子(MP)を帯電させ、
    帯電した前記微粒子(MP)に静電引力を作用させて基体(Sb)上に前記微粒子(MP)を堆積する
    ことを特徴とする成膜方法。
JP2013140437A 2013-07-04 2013-07-04 成膜装置及び成膜方法 Pending JP2015013244A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013140437A JP2015013244A (ja) 2013-07-04 2013-07-04 成膜装置及び成膜方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013140437A JP2015013244A (ja) 2013-07-04 2013-07-04 成膜装置及び成膜方法

Publications (1)

Publication Number Publication Date
JP2015013244A true JP2015013244A (ja) 2015-01-22

Family

ID=52435460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013140437A Pending JP2015013244A (ja) 2013-07-04 2013-07-04 成膜装置及び成膜方法

Country Status (1)

Country Link
JP (1) JP2015013244A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3181242A1 (en) * 2015-12-16 2017-06-21 Idfc Ag Ultrasonic fluid dispersal device
JP2018015759A (ja) * 2016-07-27 2018-02-01 エクセル インダストリー 超音波ヘッドを含むコーティングシステム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5955368A (ja) * 1982-08-18 1984-03-30 コミサリヤ・ア・レネルジ・アトミク 薄膜デポジツト法
JPH0199473U (ja) * 1987-12-23 1989-07-04
JPH0446341A (ja) * 1990-06-14 1992-02-17 Fuji Photo Film Co Ltd 感光性印刷版の製造方法
JPH08167551A (ja) * 1994-12-12 1996-06-25 Hitachi Ltd 薄膜塗布装置
JP2006500627A (ja) * 2002-09-25 2006-01-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 静電蒸着方法
JP2009016490A (ja) * 2007-07-03 2009-01-22 Micronics Japan Co Ltd 配線形成装置、配線形成方法及び噴出制御装置
JP2009059984A (ja) * 2007-09-03 2009-03-19 Nippon Dempa Kogyo Co Ltd レジスト塗布装置
JP2011014776A (ja) * 2009-07-03 2011-01-20 Shindengen Electric Mfg Co Ltd 成膜方法、成膜装置及びこれを用いた薄膜モジュール並びに多層薄膜モジュール
JP2014093472A (ja) * 2012-11-06 2014-05-19 Saitama Univ シリコン基板積層体及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5955368A (ja) * 1982-08-18 1984-03-30 コミサリヤ・ア・レネルジ・アトミク 薄膜デポジツト法
JPH0199473U (ja) * 1987-12-23 1989-07-04
JPH0446341A (ja) * 1990-06-14 1992-02-17 Fuji Photo Film Co Ltd 感光性印刷版の製造方法
JPH08167551A (ja) * 1994-12-12 1996-06-25 Hitachi Ltd 薄膜塗布装置
JP2006500627A (ja) * 2002-09-25 2006-01-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 静電蒸着方法
JP2009016490A (ja) * 2007-07-03 2009-01-22 Micronics Japan Co Ltd 配線形成装置、配線形成方法及び噴出制御装置
JP2009059984A (ja) * 2007-09-03 2009-03-19 Nippon Dempa Kogyo Co Ltd レジスト塗布装置
JP2011014776A (ja) * 2009-07-03 2011-01-20 Shindengen Electric Mfg Co Ltd 成膜方法、成膜装置及びこれを用いた薄膜モジュール並びに多層薄膜モジュール
JP2014093472A (ja) * 2012-11-06 2014-05-19 Saitama Univ シリコン基板積層体及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6016030610; 福田武司、外2名: '超音波霧化法を用いた有機薄膜の成膜技術及び有機ELへの展開' 電子情報通信学会技術研究報告 Vol.113、No.42, 20130509, p.29-32 *
JPN6016030613; 佐藤新、外3名: '超音波霧化法を用いた有機ELの作製' 第60回応用物理学会春季学術講演会 講演予稿集 , 20130311, 12-013 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3181242A1 (en) * 2015-12-16 2017-06-21 Idfc Ag Ultrasonic fluid dispersal device
JP2018015759A (ja) * 2016-07-27 2018-02-01 エクセル インダストリー 超音波ヘッドを含むコーティングシステム
JP7020811B2 (ja) 2016-07-27 2022-02-16 エクセル インダストリー 超音波ヘッドを含むコーティングシステム

Similar Documents

Publication Publication Date Title
JP5491189B2 (ja) 固定化装置
CN101156505B (zh) 用于生成、加速和传播电子束和等离子体束的设备和方法
JP5417178B2 (ja) 超音波噴霧堆積を用いてコーティングを作る方法及び装置
JP5008310B2 (ja) 粉体処理装置
JP2008504442A (ja) 電気流体力学、特に後放電噴霧によって、薄膜蒸着する方法及び装置
JP5669328B2 (ja) 成膜方法
WO2004074172A1 (ja) 固定化方法、固定化装置および微小構造体製造方法
Chew et al. Nanoscale plasma-activated aerosol generation for in situ surface pathogen disinfection
JPS5955368A (ja) 薄膜デポジツト法
JP2015013244A (ja) 成膜装置及び成膜方法
RU2371379C1 (ru) Способ нанесения нанопокрытий и устройство для его осуществления
TW201002427A (en) Electrostatic coating apparatus
KR101382738B1 (ko) 정전 분무를 이용한 패턴 형성 장치와 방법 및, 표시패널의 제조 방법
JP6485628B2 (ja) 成膜方法及び成膜装置
WO2006085114A1 (en) Deposition of polymeric films
JP2008169275A (ja) ポリマー微粒子及びその製造方法
US9453278B2 (en) Deposition device and deposition method
Mao et al. Coating carbon nanotubes with colloidal nanocrystals by combining an electrospray technique with directed assembly using an electrostatic field
JP2007167761A (ja) 静電霧化装置
JP2014117691A (ja) 成膜装置
JP2015115462A (ja) 塗布装置および塗布方法
JP5912321B2 (ja) レジスト膜の形成方法、および、静電噴霧装置
WO2013047028A1 (ja) 静電霧化装置
WO2016147973A1 (ja) ナノファイバ製造装置
JP2012167140A (ja) ナノ粒子分散イオンゲル及びナノ粒子分散イオンゲルの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170221