JP2015012755A - 電力変換装置の保護装置 - Google Patents

電力変換装置の保護装置 Download PDF

Info

Publication number
JP2015012755A
JP2015012755A JP2013138265A JP2013138265A JP2015012755A JP 2015012755 A JP2015012755 A JP 2015012755A JP 2013138265 A JP2013138265 A JP 2013138265A JP 2013138265 A JP2013138265 A JP 2013138265A JP 2015012755 A JP2015012755 A JP 2015012755A
Authority
JP
Japan
Prior art keywords
switching element
overcurrent
gate voltage
circuit
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013138265A
Other languages
English (en)
Other versions
JP6090012B2 (ja
Inventor
山本 一成
Kazunari Yamamoto
一成 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013138265A priority Critical patent/JP6090012B2/ja
Publication of JP2015012755A publication Critical patent/JP2015012755A/ja
Application granted granted Critical
Publication of JP6090012B2 publication Critical patent/JP6090012B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

【課題】本発明は、電力変換装置の保護装置に係り、ノイズ発生時において通常動作を確保しつつ、スイッチング素子の短絡時における発熱を抑えることにある。【解決手段】上下アームを構成するスイッチング素子を有する電力変換装置を保護する保護装置は、スイッチング素子に流れる過電流を検出する過電流検出回路と、過電流検出手段により検出される過電流に基づいて、該スイッチング素子の短絡を検出する短絡検出手段と、過電流検出手段により過電流が検出された場合に、該スイッチング素子にオン指令時に印加するゲート電圧を通常値よりも低下させると共に、その後、短絡検出手段によりスイッチング素子の短絡が検出されたときは、該ゲート電圧を更に低下させ、一方、短絡検出手段によりスイッチング素子の短絡が検出されなかったときは、該ゲート電圧を通常値まで上昇させる駆動回路と、を備える。【選択図】図5

Description

本発明は、上下アームを構成するスイッチング素子を有する電力変換装置を保護する保護装置に関する。
従来、上下アームを構成するスイッチング素子を有する電力変換装置を保護する保護装置が知られている(例えば、特許文献1参照)。この保護装置は、電力変換装置を、上下アームのスイッチング素子の短絡により生じる過電流から保護するためのものである。この保護装置は、各スイッチング素子に流れる過電流を検出し、過電流が検出された際にスイッチング素子のスイッチング動作を停止させる。スイッチング動作が停止されれば、スイッチング素子が過電流から保護される。従って、上記した保護装置によれば、電力変換装置を、上下アームのスイッチング素子が短絡した際に生じる過電流から保護することができる。
特開2008−011683号公報
ところで、スイッチング素子の過電流は、そのスイッチング素子が短絡した際に生ずると共に、また、そのスイッチング素子が短絡していなくてもノイズ等に起因して生ずることがある。この点、スイッチング素子の短絡とノイズとを区別することなく過電流検出時に常にスイッチング動作が停止されると、その過電流がノイズに起因して生じていたときは、スイッチング動作の停止によって電力変換装置の通常動作が過度に制限されることとなる。
一方、スイッチング素子の過電流は、スイッチング素子の短絡時には長時間に亘って継続して生ずる一方、ノイズ時には短時間しか生じない。この点、過電流検出後、その過電流に基づいてスイッチング素子の短絡とノイズとを区別するための処理を行ったうえで、スイッチング素子の短絡が生じたと判定した場合に始めて電力変換装置の保護動作を行うことが考えられる。しかしながら、かかる構成において、過電流検出からスイッチング素子の短絡検出までの期間に電力変換装置の保護動作を全く行わないものとすると、スイッチング素子の短絡に起因して過電流が生じていたときにその短絡によりそのスイッチング素子が発熱して熱暴走や破損が生じ易くなってしまう。
本発明は、上述の点に鑑みてなされたものであり、ノイズ発生時において通常動作を確保しつつ、スイッチング素子の短絡時における発熱を抑えることが可能な電力変換装置の保護装置を提供することを目的とする。
上記の目的は、上下アームを構成するスイッチング素子を有する電力変換装置を保護する保護装置であって、前記スイッチング素子に流れる過電流を検出する過電流検出回路と、前記過電流検出手段により検出される前記過電流に基づいて、前記スイッチング素子の短絡を検出する短絡検出手段と、前記過電流検出手段により前記過電流が検出された場合に、該スイッチング素子にオン指令時に印加するゲート電圧を通常値よりも低下させると共に、その後、前記短絡検出手段により前記スイッチング素子の短絡が検出されたときは、該スイッチング素子に印加するゲート電圧を更に低下させ、一方、前記短絡検出手段により前記スイッチング素子の短絡が検出されなかったときは、該スイッチング素子にオン指令時に印加するゲート電圧を前記通常値まで上昇させる駆動回路と、を備える電力変換装置の保護装置により達成される。
本発明によれば、ノイズ発生時において通常動作を確保しつつ、スイッチング素子の短絡時における発熱を抑えることができる。
本発明の一実施例である電力変換装置及びその電力変換装置を保護する保護装置を含むシステムの構成図である。 本実施例の保護装置が有する保護用駆動回路の構成図である。 本実施例の電力変換装置が備えるスイッチング素子の特性を表した図である。 本実施例の電力変換装置において駆動回路及び保護用駆動回路が実行する制御ルーチンの一例のフローチャートである。 本実施例の保護装置における一例の動作タイムチャートである。
以下、図面を用いて、本発明に係る電力変換装置の保護装置の具体的な実施の形態について説明する。
図1は、本発明の一実施例である電力変換装置10及びその電力変換装置10を保護する保護装置12を含むシステムの構成図を示す。本実施例の電力変換装置10は、例えば、電気自動車やハイブリッド自動車に搭載されて、電気負荷である駆動源としての三相モータ14とバッテリなどの直流電源16との間で電圧変換を行う装置である。また、保護装置12は、電力変換装置10の短絡により生じる過電流からの保護を実現するための装置である。
三相モータ14は、U相,V相,W相の3つのコイルの一端が中性点に共通接続された三相交流のモータジェネレータである。三相モータ14は、電力供給により車軸を回転させる駆動力を発生する電動機としての機能を有すると共に、車軸及び/又はエンジンからの駆動力により発電する発電機としての機能を有する。また、直流電源16は、リチウムイオン電池やニッケル水素電池などの充放電可能なバッテリを有し、所定電圧(例えば650ボルト)を出力することが可能である。
電力変換装置10は、三相モータ14と直流電源16との間に介在する三相インバータであって、直流電源16から供給された直流電力を交流電力に変換して三相モータ14へ出力すると共に、三相モータ14から供給された交流電力を直流電力に変換して直流電源16へ出力する装置である。尚、直流電源16は、バッテリの電力変換装置10側に、一対のスイッチング素子のオン/オフによるリアクトルのエネルギ蓄積作用を利用してバッテリ電圧を昇圧した昇圧電圧を直流電源16の出力電圧として出力する昇圧コンバータを設けたものであってもよい。
電力変換装置10は、三相モータ14に対応した上下アーム20,22,24と、平滑コンデンサ26と、を有している。U相の上下アーム20とV相の上下アーム22とW相の上下アーム24と平滑コンデンサ26とは、直流電源16の正極と負極との間に並列に接続されている。各相の上下アーム20,22,24は、上アーム素子20a,22a,24aと、下アーム素子20b,22b,24bと、からなる。平滑コンデンサ26は、直流電源16の出力電圧を平滑化して上下アーム20,22,24へ供給するための素子である。
各相の上下アーム20,22,24の上アーム素子20a,22a,24aと下アーム素子20b,22b,24bとは、直流電源16の正極と負極との間に直列に接続されている。各相の上下アーム20,22,24の上アーム素子20a,22a,24aと下アーム素子20b,22b,24bとの間の中間点は、三相モータ14の当該相のコイルの他端に接続されている。
各相の上アーム素子20a,22a,24a及び下アーム素子20b,22b,24bはそれぞれ、半導体からなり、スイッチング動作するスイッチング素子Qと、ダイオードDと、を有する。電力変換装置10は、三相モータ14に対応してそれぞれ6つのスイッチング素子Q及びダイオードDを有している。スイッチング素子QとダイオードDとは、並列接続されている。
各スイッチング素子Qは、パワートランジスタである例えばIGBTなどである。ダイオードDは、スイッチング素子Qでの電流の流れとは逆向きの電流の流れ、すなわち、スイッチング素子QであるIBGTのエミッタ側からコレクタ側への電流の流通を許容する逆並列ダイオードである。尚、スイッチング素子Qは、IGBT以外のMOSFETなどのパワー素子であってもよい。
電力変換装置10は、また、駆動回路30を有している。駆動回路30は、上アーム素子20a,22a,24a及び下アーム素子20b,22b,24bの各スイッチング素子Qのゲートに接続されている。駆動回路30は、各スイッチング素子Qをスイッチング駆動するための回路であって、各スイッチング素子Qのゲートに印加するゲート電圧を適切なタイミングで出力する。
電力変換装置10は、駆動回路30にて、上アーム素子20a,22a,24aのスイッチング素子Qと下アーム素子20b,22b,24bのスイッチング素子Qとを交互にオン/オフさせつつ三相の上下アーム20,22,24の位相を120°ずつずらすことにより、直流電源16側の直流電圧と三相モータ14側の交流電圧との間で電力変換を行う。
また、保護装置12は、電流検出部32と、過電流検出回路34と、保護用駆動回路36と、を有している。尚、説明の便宜上、図1には、U相の下アーム素子20aのスイッチング素子Qに対する保護装置12のみを示している。かかる保護装置12は、各相の上下アーム20,22,24のスイッチング素子Qに対してそれぞれ設けられる。
電流検出部32は、スイッチング素子Qのエミッタ電極Eに流れる電流を検出する部位である。電流検出部32は、スイッチング素子Qのセンス電極SEに一端が接続されるセンス抵抗40を有している。センス抵抗40の他端は接地されている。スイッチング素子Qのセンス電極SEに流れるエミッタセンス電流はセンス電極SEに流れる電流に比例し、その比は1/1000程度である。センス抵抗40の一端には、スイッチング素子Qのエミッタ電極に流れる電流すなわちスイッチング素子Qのコレクタ電極側からエミッタ電極側に流れる電流に応じた電圧が現れる。
電流検出部32には、過電流検出回路34が接続されている。電流検出部32の出力電圧は、過電流検出回路34に供給される。過電流検出回路34は、電流検出部32からの電圧に基づいてスイッチング素子Qに流れる電流を検出し、そのスイッチング素子Qに過電流が流れているか否かを判別する。具体的には、その過電流有無の判別を、電流検出部32からの電圧が所定の閾値を上回るか否かに基づいて行う。尚、この所定の閾値は、スイッチング素子Qに過電流が流れるときに生ずる最低の電圧に設定されている。
過電流検出回路34には、駆動回路30及び保護用駆動回路36が接続されている。過電流検出回路34は、駆動回路30及び保護用駆動回路36に対して、スイッチング素子Qに過電流が流れていると判別する場合には過電流の発生を示す信号(過電流検出信号)を供給する一方、スイッチング素子Qに過電流が流れていないと判別する場合には過電流検出信号の供給を行わない。
駆動回路30は、過電流検出回路34からの過電流検出信号が受信されない過電流非検出時にスイッチング素子Qをスイッチング駆動するための回路である。駆動回路30は、過電流検出回路34からの過電流検出信号が受信された場合に、スイッチング素子Qに過電流が流れていると判定し、出力電圧をゼロとすることでそのスイッチング素子Qのスイッチング駆動を停止させる。
保護用駆動回路36は、駆動回路30に並列に設けられており、上アーム素子20a,22a,24a及び下アーム素子20b,22b,24bの各スイッチング素子Qのゲートに接続されている。保護用駆動回路36は、過電流検出回路34からの過電流検出信号が受信された過電流検出時にそのスイッチング素子Qをスイッチング駆動するための回路である。保護用駆動回路36は、過電流検出時において、過電流非検出時に使用する駆動回路30に代えて、過電流保護の対象であるスイッチング素子Qのゲートに印加するゲート電圧を適切なタイミングで出力する。
次に、図2〜図5を参照して、本実施例の電力変換装置10の保護装置12の動作について説明する。図2は、本実施例の保護装置12が有する保護用駆動回路36の構成図を示す。図3は、本実施例の電力変換装置10が備えるスイッチング素子Qの特性を表した図を示す。図4は、本実施例の電力変換装置10において駆動回路30及び保護用駆動回路36が実行する制御ルーチンの一例のフローチャートを示す。また、図5は、本実施例の保護装置10における一例の動作タイムチャートを示す。
本実施例において、保護用駆動回路36は、半導体レギュレータ40と、タイマー42と、を有している。半導体レギュレータ40及びタイマー42には、過電流検出回路34が接続されている。半導体レギュレータ40及びタイマー42にはそれぞれ、過電流検出回路34から過電流検出信号が供給され得る。また、タイマー42は、半導体レギュレータ40及び駆動回路30に接続している。半導体レギュレータ40及び駆動回路30にはそれぞれ、タイマー42からの出力信号が供給され得る。
駆動回路30は、半導体からなるスイッチング素子を有し、過電流非検出時においてそのスイッチング素子をオン/オフすることにより上下アーム20,22,24のスイッチング素子Qに対してゲート電圧を印加することが可能である。駆動回路30からスイッチング素子Qに対してオン指令時に印加される所定のゲート電圧は、予め定められた第1のゲート電圧V1であって、例えば15ボルトに設定されている。
保護用駆動回路36は、半導体からなるスイッチング素子を有し、過電流検出時においてそのスイッチング素子をオン/オフすることにより上下アーム20,22,24のスイッチング素子Qに対してゲート電圧を印加することが可能である。保護用駆動回路36からスイッチング素子Qに対してオン指令時に印加される所定のゲート電圧は、駆動回路30からスイッチング素子Qに対してオン指令時に印加される所定のゲート電圧よりも低い、予め定められた第2のゲート電圧V2であって、例えば12ボルトに設定されている。
保護用駆動回路36のタイマー42は、過電流検出回路34から過電流検出信号が入力される状態が継続する時間(過電流継続時間)Tを計数するカウンターであって、その過電流継続時間Tが所定時間T0に至った場合にスイッチング素子Qに短絡に起因した過電流が流れたとしてカウントアップ信号を出力する。尚、所定時間T0は、スイッチング素子Qの短絡が生じたことを確定するのに必要な時間であって、スイッチング素子Qにノイズに起因した過電流が流れてもその過電流が継続することのない最小時間(例えば、200ns)に設定されている。
保護用駆動回路36の半導体レギュレータ40は、スイッチング素子のオン/オフにより定電圧を出力する回路である。半導体レギュレータ40は、過電流検出回路34から過電流検出信号が供給された場合に上記の第2のゲート電圧V2を出力する。また、半導体レギュレータ40は、過電流検出回路34から過電流検出信号が供給された後、タイマー42からカウントアップ信号が供給されていないときは上記の第2のゲート電圧V2の出力を維持する一方、タイマー42からカウントアップ信号が供給されたときは出力電圧をゼロとすることでそのスイッチング素子Qのスイッチング駆動を停止させる。また、駆動回路30は、過電流検出回路34から過電流検出信号が供給された後、タイマー42からカウントアップ信号が供給されていないときはそのスイッチング素子Qのスイッチング駆動を停止させる一方、タイマー42からカウントアップ信号が供給されたときは上記の第1のゲート電圧V1を出力する。
このように、本実施例においては、スイッチング素子Qに過電流が生じていない場合(ステップ100での否定判定時)は、駆動回路30からそのスイッチング素子Qのゲートに比較的高い第1のゲート電圧V1が印加される(ステップ102)。一方、スイッチング素子Qに過電流が生じた場合(ステップ100での肯定判定時)は、その過電流検出直後から保護用駆動回路36からそのスイッチング素子Qのゲートに比較的低い第2のゲート電圧V2が印加される(ステップ104)。
従って、本実施例によれば、スイッチング素子Qに過電流が生じた場合は、そのスイッチング素子Qのゲートにオン指令時に印加するゲート電圧を、過電流が生じていない場合のものに比べて低く抑えることができると共に、その通常よりも低いゲート電圧の印加をその過電流検出後直ちに開始することができる。
また、本実施例においては、スイッチング素子Qへの第2のゲート電圧V2の印加が開始された後、過電流継続時間Tが所定時間T0に至る前にそのスイッチング素子Qの過電流が解消されたとき(ステップ106での否定判定後のステップ100での否定判定時)は、そのスイッチング素子Qの過電流がノイズに起因して生じていたと判定されて、その第2のゲート電圧V2の印加が停止されると共に、スイッチング素子Qのゲートに印加されるゲート電圧が駆動回路30からの第1のゲート電圧V1に切り替わる。
従って、本実施例によれば、スイッチング素子Qの過電流が所定時間T0に満たない短時間で終了したときは、そのスイッチング素子Qの過電流がノイズに起因して生じていたと判定して、その判定後直ちに、スイッチング素子Qのゲートにオン指令時に印加するゲート電圧を通常の比較的高いゲート電圧に戻すことができる(図5において一点鎖線で示す。)。
一方、スイッチング素子Qのゲートへの第2のゲート電圧V2の印加が開始された後、過電流継続時間Tが所定時間T0に至ったとき(ステップ106での肯定判定時)は、スイッチング素子Qの過電流が短絡に起因して生じていると判定されて(ステップ108)、スイッチング素子Qのゲートに印加されるゲート電圧が駆動回路30からの第1のゲート電圧V1に切り替わることなくゼロへ低下されることで(ステップ110)、そのスイッチング素子Qのスイッチング駆動が停止される。
従って、本実施例によれば、スイッチング素子Qの過電流が所定時間T0以上継続したときは、そのスイッチング素子Qの過電流が短絡に起因して生じていると判定して、その判定後直ちに、スイッチング素子Qのゲートに印加するゲート電圧をゼロへ低下させることができる(図5において実線で示す。)。
本実施例において、上下アーム20,22,24の各スイッチング素子Qは、コレクタ−エミッタ間電圧とコレクタ電流との間に図3に示す如き特性を有する。この特性は、コレクタ−エミッタ間電圧が比較的低いときはそのコレクタ−エミッタ間電圧に比例してコレクタ電流が増加する線形領域Aと、コレクタ−エミッタ間電圧が比較的高いときはそのコレクタ−エミッタ間電圧の大きさに関係なくコレクタ電流が略一定である飽和領域Bと、を有する。また、線形領域Aでは、ゲート電圧の大きさが異なってもコレクタ−エミッタ間電圧に対するコレクタ電流が略同じである一方、飽和領域Bでは、ゲート電圧が高いほどコレクタ−エミッタ間電圧に対するコレクタ電流が大きくなる。
スイッチング素子Qのスイッチング駆動は、通常、線形領域A内において行われる。すなわち、スイッチング駆動の通常使用時は、線形領域Aに対応する比較的低いコレクタ−エミッタ間電圧が利用される。この点、スイッチング素子Qにノイズ発生に起因した過電流が流れた場合、コレクタ−エミッタ間電圧は通常使用域内にあって小さいままであるので、そのスイッチング素子Qに印加されるゲート電圧が通常の第1のゲート電圧V1よりも低い第2のゲート電圧V2へ低下されても、スイッチング素子Qに比較的高い第1のゲート電圧V1が印加される通常動作時と略同じコレクタ電流が流れる。
従って、本実施例においては、ノイズ発生時、スイッチング素子Qに通常よりも低いゲート電圧が印加されても、比較的高いゲート電圧が印加される場合と比べてコレクタ電流の変動はほとんど生じないので、スイッチング素子Qの主機能はほとんど影響を受けない。このため、本実施例によれば、スイッチング素子Qにノイズ発生に起因した過電流が流れた場合、そのスイッチング素子Qのスイッチング動作が停止されることはなく、そのスイッチング素子Qの通常動作を確保することができる。
尚、ノイズ発生に起因したスイッチング素子Qの過電流が解消されると、そのスイッチング素子Qに印加されるゲート電圧が第2のゲート電圧V2から通常の第1のゲート電圧V1に戻される。このため、本実施例によれば、スイッチング素子Qにノイズ発生に起因した過電流が流れた後にその過電流が解消された後も、そのスイッチング素子Qの通常動作を確保することができる。
一方、スイッチング素子Qに短絡に起因した過電流が流れた場合、そのスイッチング素子Qに印加されるゲート電圧が一旦第2のゲート電圧V2へ低下され、その後、過電流が比較的長時間に亘って継続することによりそのスイッチング素子Qの短絡が確定された後にそのスイッチング素子Qに印加されるゲート電圧がゼロへ低下される。すなわち、スイッチング素子Qに短絡に起因した過電流が流れた場合、その短絡の確定前に、そのスイッチング素子Qに印加されるゲート電圧が一時的に通常よりも低下されると共に、その状態でその短絡の有無が判定される。
この点、スイッチング素子Qに短絡に起因した過電流が流れた場合、そのスイッチング素子Qに印加されるゲート電圧が過電流検出時に直ちにゼロへ低下されるものではなく、また、そのスイッチング素子Qに印加されるゲート電圧が過電流検出から短絡検出までの期間中、通常の第1のゲート電圧V1に維持されるものではない。
短絡が生じた場合、スイッチング素子Qのスイッチング駆動は、飽和領域B内において行われる。すなわち、スイッチング駆動の短絡時は、飽和領域Bに対応する比較的高いコレクタ−エミッタ間電圧が利用される。この点、スイッチング素子Qに短絡発生に起因した過電流が流れた場合、コレクタ−エミッタ間電圧は通常使用域よりも高いので、そのスイッチング素子Qにオン指令時に印加されるゲート電圧が一旦通常の第1のゲート電圧V1よりも低い第2のゲート電圧V2へ低下されることで、スイッチング素子Qに比較的高い第1のゲート電圧V1が印加される通常動作時のものよりも小さいコレクタ電流が流れる。
従って、本実施例においては、スイッチング素子Qの短絡発生時、過電流検出から短絡検出までの期間中、オン指令時にスイッチング素子Qに通常よりも低いゲート電圧が印加されることで、比較的高いゲート電圧が印加される場合と比べてコレクタ電流は小さく抑制される。コレクタ電流が小さくなれば、(コレクタ電流)×(コレクタ−エミッタ間電圧)で表されるスイッチング素子Qの発熱が低減され、スイッチング素子Qの温度上昇が小さく、その到達温度が低く抑えられることとなる。
このため、本実施例によれば、スイッチング素子Qに短絡発生に起因した過電流が流れた場合、その過電流検出後直ちにスイッチング素子Qにオン指令時に印加するゲート電圧を通常よりも下げることで、そのオン指令中のスイッチング素子Qの発熱を抑えることができる。この点、スイッチング素子Qの熱暴走や破損の発生を防止することが可能である。
このように、本実施例の電力変換装置10の保護装置12によれば、ノイズ発生時においてスイッチング素子Qの通常動作を確保しつつ、スイッチング素子Qの短絡時においてそのスイッチング素子Qの発熱を抑えることができる。これにより、スイッチング素子Qを可能な限り通常動作させつつ過電流から保護することが可能である。
尚、スイッチング素子Qの過電流の継続によってそのスイッチング素子Qの短絡が確定されると、そのスイッチング素子Qに印加されるゲート電圧がゼロへ低下される。このため、本実施例によれば、スイッチング素子Qに短絡発生に起因した過電流が流れた後にその短絡が確定された後は、そのスイッチング素子Qのスイッチング動作が停止されるので、そのスイッチング素子Qが短絡から保護される。
尚、上記の実施例においては、保護用駆動回路36においてタイマー42がカウントアップ信号を出力することが特許請求の範囲に記載した「短絡検出手段」に、駆動回路30及び保護用駆動回路36が特許請求の範囲に記載した「駆動回路」に、第1のゲート電圧V1が特許請求の範囲に記載した「通常値」に、第2のゲート電圧V2が特許請求の範囲に記載した「所定値」に、それぞれ相当している。
ところで、上記の実施例においては、電流検出部32がスイッチング素子Qのセンス電極に接続されるセンス抵抗40を用いてそのスイッチング素子Qに流れる電流を検出することとしているが、他の手法(例えば、スイッチング素子Qのエミッタ電極に接続される抵抗)を用いてスイッチング素子Qに流れる電流を検出することとしてもよい。
10 電力変換装置
12 保護装置
14 三相モータ
16 直流電源
20,22,24 上下アーム
30 駆動回路
32 電流検出部
34 過電流検出回路
36 保護用駆動回路
40 半導体レギュレータ
42 タイマー
Q スイッチング素子
V1 第1のゲート電圧
V2 第2のゲート電圧
T0 所定時間

Claims (4)

  1. 上下アームを構成するスイッチング素子を有する電力変換装置を保護する保護装置であって、
    前記スイッチング素子に流れる過電流を検出する過電流検出回路と、
    前記過電流検出手段により検出される前記過電流に基づいて、前記スイッチング素子の短絡を検出する短絡検出手段と、
    前記過電流検出手段により前記過電流が検出された場合に、該スイッチング素子にオン指令時に印加するゲート電圧を通常値よりも低下させると共に、その後、前記短絡検出手段により前記スイッチング素子の短絡が検出されたときは、該スイッチング素子に印加するゲート電圧を更に低下させ、一方、前記短絡検出手段により前記スイッチング素子の短絡が検出されなかったときは、該スイッチング素子にオン指令時に印加するゲート電圧を前記通常値まで上昇させる駆動回路と、
    を備えることを特徴とする電力変換装置の保護装置。
  2. 前記短絡検出手段は、前記過電流検出手段により検出される前記過電流が所定時間以上継続する場合に、該スイッチング素子に短絡が生じていると判定すると共に、
    前記駆動回路は、前記過電流検出手段により前記過電流が検出された場合に、該スイッチング素子にオン指令時に印加するゲート電圧を通常値よりも低下させると共に、その後、前記短絡検出手段により前記過電流が前記所定時間以上継続することにより前記スイッチング素子に短絡が生じていると判定されたときは、該スイッチング素子に印加するゲート電圧を更に低下させ、一方、前記短絡検出手段により前記過電流が前記所定時間以上継続しなかったことにより前記スイッチング素子に短絡が生じていないと判定されたときは、該スイッチング素子にオン指令時に印加するゲート電圧を前記通常値まで上昇させることを特徴とする請求項1記載の電力変換装置の保護装置。
  3. 前記駆動回路は、前記過電流検出手段により前記過電流が検出された場合に、まず、該スイッチング素子にオン指令時に印加するゲート電圧を前記通常値よりも低い所定値へ低下させることを特徴とする請求項1又は2記載の電力変換装置の保護装置。
  4. 前記駆動回路は、前記スイッチング素子にオン指令時に印加するゲート電圧を前記所定値へ低下させた後、前記短絡検出手段により前記スイッチング素子の短絡が検出されたときは、該スイッチング素子に印加するゲート電圧をゼロへ低下させることを特徴とする請求項3記載の電力変換装置の保護装置。
JP2013138265A 2013-07-01 2013-07-01 電力変換装置の保護装置 Active JP6090012B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013138265A JP6090012B2 (ja) 2013-07-01 2013-07-01 電力変換装置の保護装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013138265A JP6090012B2 (ja) 2013-07-01 2013-07-01 電力変換装置の保護装置

Publications (2)

Publication Number Publication Date
JP2015012755A true JP2015012755A (ja) 2015-01-19
JP6090012B2 JP6090012B2 (ja) 2017-03-08

Family

ID=52305443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013138265A Active JP6090012B2 (ja) 2013-07-01 2013-07-01 電力変換装置の保護装置

Country Status (1)

Country Link
JP (1) JP6090012B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316808A (ja) * 1995-05-16 1996-11-29 Fuji Electric Co Ltd 半導体装置
JP2008172944A (ja) * 2007-01-12 2008-07-24 Hitachi Ltd 電力変換装置、モータ駆動装置、駆動方法およびモータ
JP2010154595A (ja) * 2008-12-24 2010-07-08 Denso Corp 電力変換装置
WO2011010687A1 (ja) * 2009-07-23 2011-01-27 日立オートモティブシステムズ株式会社 半導体素子制御装置、車載用電機システム
JP2012249481A (ja) * 2011-05-31 2012-12-13 Hitachi Automotive Systems Ltd インバータ駆動装置
US20140003103A1 (en) * 2012-06-29 2014-01-02 Eaton Corporation Multi-level inverter apparatus and methods using variable overcurrent response
JP2014183680A (ja) * 2013-03-21 2014-09-29 Honda Motor Co Ltd 短絡電流保護装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316808A (ja) * 1995-05-16 1996-11-29 Fuji Electric Co Ltd 半導体装置
JP2008172944A (ja) * 2007-01-12 2008-07-24 Hitachi Ltd 電力変換装置、モータ駆動装置、駆動方法およびモータ
JP2010154595A (ja) * 2008-12-24 2010-07-08 Denso Corp 電力変換装置
WO2011010687A1 (ja) * 2009-07-23 2011-01-27 日立オートモティブシステムズ株式会社 半導体素子制御装置、車載用電機システム
JP2012249481A (ja) * 2011-05-31 2012-12-13 Hitachi Automotive Systems Ltd インバータ駆動装置
US20140003103A1 (en) * 2012-06-29 2014-01-02 Eaton Corporation Multi-level inverter apparatus and methods using variable overcurrent response
JP2014183680A (ja) * 2013-03-21 2014-09-29 Honda Motor Co Ltd 短絡電流保護装置

Also Published As

Publication number Publication date
JP6090012B2 (ja) 2017-03-08

Similar Documents

Publication Publication Date Title
US10505439B2 (en) Inverter for an electric automobile
US9998061B2 (en) Motor control device and motor control method
US20160344329A1 (en) System and method for fault protection of a motor
KR101628401B1 (ko) 하이브리드 자동차 및 전기자동차의 인버터 고장 검출 방법
US8988026B2 (en) Single phase operation of a three-phase drive system
US8664907B2 (en) Fast switching for power inverter
WO2011118259A1 (ja) 放電制御装置
US9873340B2 (en) Inverter controller, electric power converter, and electric vehicle with selectable resistance values
JP5998548B2 (ja) 電力変換装置
US9680404B2 (en) Abnormality detection apparatus and abnormality detection method
JP5721787B2 (ja) 電力変換装置およびその制御方法
US8760898B2 (en) Fast switching for power inverter
JP2017112823A (ja) フィールド制御スイッチの過電流保護のためのシステムおよび方法
JP6135563B2 (ja) 電圧コンバータ
JP2008236907A (ja) 電力変換装置のゲート制御回路及びゲート制御方法
US8441826B2 (en) Fast switching for power inverter
JP2018121408A (ja) モータ駆動装置
US10027265B2 (en) Inverter control device and inverter control method
JP6090012B2 (ja) 電力変換装置の保護装置
JP2010166681A (ja) 交流機制御装置
JP2014204627A (ja) 電力変換装置
CN113992078B (zh) 一种永磁同步电机起动电流控制系统及控制方法
JP2007244102A (ja) 電源装置
JP5153382B2 (ja) 電源回生コンバータ
JP6358108B2 (ja) 制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170123

R151 Written notification of patent or utility model registration

Ref document number: 6090012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250