JP2015012536A - 半導体スイッチ回路 - Google Patents

半導体スイッチ回路 Download PDF

Info

Publication number
JP2015012536A
JP2015012536A JP2013138224A JP2013138224A JP2015012536A JP 2015012536 A JP2015012536 A JP 2015012536A JP 2013138224 A JP2013138224 A JP 2013138224A JP 2013138224 A JP2013138224 A JP 2013138224A JP 2015012536 A JP2015012536 A JP 2015012536A
Authority
JP
Japan
Prior art keywords
circuit
short
gate
voltage
decoder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013138224A
Other languages
English (en)
Inventor
武田 豊
Yutaka Takeda
豊 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2013138224A priority Critical patent/JP2015012536A/ja
Publication of JP2015012536A publication Critical patent/JP2015012536A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】高周波信号に対する挿入損失を低減しつつ、かつ、スイチング時間の短縮を図る。【解決手段】デコーダ回路102は、高周波スイッチ回路101を構成するスイッチ素子対51又は52を導通状態とする駆動制御電圧VDDを出力する際、同時に、スイッチ素子対51又は52が非導通状態から導通状態へ切り替えられる際の短時間の間、短絡用FET5又は6を導通状態とする短絡制御用駆動制御電圧VDD2を出力可能に構成されてなり、スイッチ素子対51又は52が非導通状態から導通状態への切り替わりの際のゲート抵抗を低抵抗に維持可能に構成去れたものとなっている。【選択図】図1

Description

本発明は、半導体スイッチ回路に係り、特に、無線通信機器に用いられる高周波用の半導体スイッチ回路の動作特性の改善等を図ったものに関する。
この種の従来装置としては、携帯電話を含む無線通信機器において、送受信、周波数帯切替、入出力端子などの端子切替等の目的で広く用いられている高周波スイッチ集積回路(IC)がある。
かかる高周波スイッチICにおいて、スイッチ素子としては、ダイオード、FET等が用いられており、特に、FETを用いたスイッチICは小型で、低消費電流が特徴である。
スイッチ素子は、制御信号に応じてON状態、又は、OFF状態となり、スイッチとして機能せしめられ、ON状態の場合には等価的に低抵抗素子として、OFF状態では等価的に低容量素子として、それぞれ振る舞うものとなっている。
そして、ON状態におけるスイッチ素子の抵抗値はON抵抗と称され、また、OFF状態におけるスイッチ素子の容量値はOFF容量と称される。
スイッチ回路は、かかるスイッチ素子のON状態とOFF状態を切り替えることで、必要な経路間を接続したり、切断したりすることで所望の端子間の切替を行うようになっている。
高周波スイッチICは、高周波信号を切り替える高周波スイッチ回路と、制御信号を受けて高周波スイッチ回路に制御信号を伝達する論理制御回路あるいはロジックデコーダ回路が設けられて構成されるものもある。
この論理制御回路あるいはロジックデコーダ回路を、高周波スイッチICに搭載する利点としては、一つには、切替経路数、すなわち、状態数が多いスイッチの制御信号線数を削減できることにある。
また、もう一つには、切替電圧を、実際に高周波スイッチ素子を切り替える電圧と別に設定できることにあり、このような機能は、論理制御回路あるいはロジックデコーダ回路に、レベルシフト機能を設けることで容易に実現可能である。
図8には、従来の半導体スイッチ回路の構成例が示されており、以下、同図を参照しつつ、かかる半導体スイッチ回路について説明する。
この従来の半導体スイッチ回路は、高周波スイッチ回路101Aと、デコーダ回路(図8においては「DEC」と表記)102Aと、負電圧発生回路(図8においては「N−GEN」と表記)103Aとに大別されて構成されてなるものである。
高周波スイッチ回路101Aは、1つの共通端子PCと、2つの個別端子P1,P2を有し、共通端子PCと個別端子P1,P2とが、個別端子P1,P2のそれぞれに対応して設けられた2組のスイッチ素子対51A,52Aにより選択的に導通状態とせしめられるよう構成されてなるものである。
一方のスイッチ素子対51Aは、共通端子PCと個別端子P1との間に直列接続された2つのスイッチ素子SW1,SW2により構成され、他方のスイッチ素子対52Aは、共通端子PCと個別端子P2との間に直列接続された2つのスイッチ素子SW3,SW4により構成されたものとなっており、これらスイッチ素子対51A,52Aは、デコーダ回路102Aにより、それぞれの導通、非導通が制御されるようになっている。
デコーダ回路102Aは、外部から供給される外部制御信号CTLに応じて、スイッチ素子対51A,52Aの導通、非導通を切り替えるための制御信号(駆動制御電圧)を、高周波スイッチ回路101Aへ出力するよう構成されたものである。
また、負電圧発生回路103Aは、デコーダ回路102Aによるスイッチ素子対51A,52Aの切り替えに必要な負電圧VSSを生成、出力するよう構成されてなるものである。
かかる構成においては、デコーダ回路102Aにより、一方のスイッチ素子対51Aに対して駆動制御電圧VDDがゲート抵抗器RGを介して、他方のスイッチ素子対52Aに対して駆動制御電圧VSSが、ゲート抵抗器RGを介して、それぞれ印加されると、一方のスイッチ素子対51Aの導通により共通端子PCと個別端子PC1間が高周波信号の通過経路となる一方、他方のスイッチ素子対52Aの非導通により共通端子PCと個別端子PC2間は非通過経路とされるものとなっている。
そして、共通端子PCと個別端子PC2間を通過経路とし、共通端子PCと個別端子PC1間を非通過経路とする場合には、デコーダ回路102Aによる駆動制御電圧VDD、VSSの印加は上述の場合とは逆となるよう構成されたものとなっている。
ここで、上述したような構成の半導体スイッチ回路における高周波スイッチ回路101Aのスイッチ素子SW1〜SW4のスイッチ切替時間について、一般に、次述するような事が言える。
先ず、スイッチ素子SW1〜SW4として、具体的にはFETが用いられるが、このFETの切替時間は、基本的には、FETのゲート容量Cgと、外部に接続するゲート抵抗RGの時定数τにより定まる。
切替時間を高速化するには、時定数τを小さくする必要があり、ゲート抵抗RG、ゲート容量Cg共に小さいほうが、切替時間は速くなる。
なお、上述のような従来回路としては、例えば、特許文献1等に開示されたものがある。
特開2004−146862号公報(第5−10頁、図1−図6)
しかしながら、高周波信号に対する高周波スイッチ回路10Aの挿入損失はゲート抵抗RGを大きくするほど小さくできる一方、ゲート抵抗RGの増大はFETのスイッチング時間を増大させるため、双方はトレードオフの関係となるという問題がある。
本発明は、上記実状に鑑みてなされたもので、高周波信号に対する挿入損失を小さくしつつ、スイッチング時間の短縮を可能とする半導体スイッチ回路を提供するものである。
上記本発明の目的を達成するため、本発明に係る半導体スイッチ回路は、
少なくとも1つの共通端子と、2つ以上の個別端子を有し、前記共通端子と前記個別端子とが、前記個別端子のそれぞれに対応して設けられたスイッチ素子により選択的に導通状態とされるよう構成されてなる高周波スイッチ回路と、
外部から供給される外部制御信号に応じて、前記スイッチ素子のオン、オフ状態を制御する駆動制御電圧を出力するデコーダ回路と、
前記デコーダ回路の前記駆動制御電圧の出力に用いられる負電圧を生成し、前記デコーダ回路へ供給する負電圧発生回路とを具備してなる半導体スイッチ回路において、
前記高周波スイッチ回路を構成するスイッチ素子は電界効果トランジスタを用いてなり、前記電界効果トランジスタのゲートには、ゲート抵抗器を介して前記デコーダ回路からの駆動制御電圧が印加されるよう構成される一方、
前記ゲート抵抗器を短絡、接続するゲート抵抗短絡回路と、
前記ゲート抵抗短絡回路の駆動に必要な電圧を生成し、前記デコーダ回路へ供給するゲート抵抗短絡回路駆動電圧出力回路が設けられ、
前記ゲート抵抗短絡回路は、ドレイン・ソース間に前記ゲート抵抗器が並列接続された短絡用電界効果トランジスタを具備し、前記短絡用電界効果トランジスタは、ゲートへの短絡制御用駆動制御電圧の印加に応じて、その導通・非導通が制御可能に設けられ、
前記デコーダ回路は、前記高周波スイッチ回路を構成する前記電界効果トランジスタを導通状態とする駆動制御電圧を出力する際に、同時に、前記高周波スイッチ回路を構成する前記電界効果トランジスタが非導通状態から導通状態へ切り替わる際の短時間の間、前記短絡用電界効果トランジスタを導通状態とする短絡制御用駆動制御電圧を出力可能に構成されてなり、前記高周波スイッチ回路を構成する前記電界効果トランジスタの非導通状態から導通状態への切り替わりの際のゲート抵抗を低抵抗に維持可能にしてなるものである。
本発明によれば、高周波スイッチ回路を構成する電界効果トランジスタが非導通状態から導通状態となる際に、ゲート抵抗器を短時間の間、短絡状態とし、その後は、ゲート抵抗器を接続せしめるように構成したので、従来と異なり、高周波スイッチ回路を構成する電界効果トランジスタのスイチング時間の短縮と高周波信号に対する挿入損失の低減の双方の要求を満足することができるという効果を奏するものである。
本発明の実施の形態における半導体スイッチ回路の回路構成例を示す回路図である。 図1に示された半導体スイッチ回路を構成するデコーダ回路の具体回路構成例を示す回路図である。 本発明の実施の形態における半導体スイッチ回路の定常状態における外部制御信号に対するゲート電圧と高周波信号との関係を示す波形図であり、図3(A)は外部制御信号の変化を示す波形図、図3(B)はゲート電圧の変化を示す波形図、図3(C)は高周波信号の変化を示す波形図である。 本発明の実施の形態における半導体スイッチ回路における高周波スイッチ回路を構成する電界効果トランジスタの切り替え時のゲート電圧の変化を示す拡大波形図である。 本発明の実施の形態における半導体スイッチ回路を構成する高周波スイッチ回路を構成する電界効果トランジスタのゲート電圧の変化を示す波形図である。 本発明の実施の形態における半導体スイッチ回路の共通端子と個別端子間に出力される高周波信号の出力レベル変化を示す波形図である。 本発明の実施の形態における半導体スイッチ回路の共通端子と個別端子間における高周波信号に対する回路の挿入損失の周波数変化を示す特性線図である。 従来の半導体スイッチ回路の回路構成例を示す回路図である。 従来の半導体スイッチ回路における高周波スイッチ回路のスイッチ素子として電界効果トランジスタのゲート電圧の変化を示す波形図であり、図9(A)はゲート抵抗器RGが100kΩの場合のゲート電圧の変化を示す波形図、図9(B)はゲート抵抗器RGが0Ωの場合のゲート電圧の変化を示す波形図である。 従来の半導体スイッチ回路の共通端子に出力される高周波信号の出力レベル変化を示す波形図であり、図10(A)はゲート抵抗器RGが100kΩの場合に共通端子と個別端子間に出力される高周波信号の出力レベル変化を示す波形図、図10(B)はゲート抵抗器RGが0Ωの場合に共通端子と個別端子間に出力される高周波信号の出力レベル変化を示す波形図である。 従来の半導体スイッチ回路においてゲート抵抗器RGが0Ωの場合に共通端子と個別端子間における高周波信号に対する回路の挿入損失の周波数変化を示す特性線図である。
以下、本発明の実施の形態について、図1乃至図7を参照しつつ説明する。
なお、以下に説明する部材、配置等は本発明を限定するものではなく、本発明の趣旨の範囲内で種々改変することができるものである。
最初に、本発明の実施の形態における半導体スイッチ回路の回路構成について、図1を参照しつつ説明する。
本発明の実施の形態における半導体スイッチ回路は、高周波スイッチ回路101と、ゲート抵抗短絡回路104と、デコーダ回路(図1においては「DEC」と表記)102と、ゲート抵抗短絡回路駆動電圧出力回路105と、負電圧発生回路(図1においては「N−GEN」と表記)103とに大別されて構成されてなるものである。
なお、理解を容易にするため、図1においては、エンハンスメント型N型の電界効果型トランジスタを白抜き記号で表記する一方、ディプレッション型N型の電界効果型トランジスタ(以下「FET」と称する)を通常の記号で表記したものとしている。
高周波スイッチ回路101は、1つの共通端子(図1においては「PC」と表記)33と、2つの個別端子(図1においては、それぞれ「P1」、「P2」と表記)31,32を有し、共通端子33と個別端子31,32とが、個別端子31,32のそれぞれに対応して設けられた2組のスイッチ素子対51,52により選択的に導通状態とせしめられるよう構成されてなるもので、その基本的構成は従来回路と同様のものである。
スイッチ素子対51,52は、ディプレッション型N型のFETを用いてなり、一方のスイッチ素子対51は、直列接続された第1及び第2のFET1,2により、他方のスイッチ素子対52は、直列接続された第3及び第4のFET3,4により、それぞれ構成されたものとなっている。
すなわち、第1及び第2のFET1,2は、第1のFET1のソース(又はドレイン)と第2のFET2のドレイン(又はソース)が相互に接続される一方、第1のFET1のドレイン(又はソース)が共通端子33に接続され、第2のFET2のソース(又はドレイン)が第1の個別端子31に接続されたものとなっている。
そして、第1のFET1のゲートには第1の個別ゲート抵抗器11の一端が、また、第2のFET2のゲートには第2の個別ゲート抵抗器12の一端が、それぞれ接続される一方、これら第1及び第2の個別ゲート抵抗器11,12の他端は、相互に接続されて、次述するゲート抵抗短絡回路104の第1の共通ゲート抵抗器(図1においては「RG」と表記)15の一端に接続されたものとなっている。
また、第3及び第4のFET3,4は、第3のFET3のソース(又はドレイン)と第4のFET4のドレイン(又はソース)が相互に接続される一方、第3のFET3のドレイン(又はソース)が共通端子33に接続され、第4のFET4のソース(又はドレイン)が第2の個別端子32に接続されたものとなっている。
そして、第3のFET3のゲートには第3の個別ゲート抵抗器13の一端が、また、第4のFET4のゲートには第4の個別ゲート抵抗器14の一端が、それぞれ接続される一方、これら第3及び第4の個別ゲート抵抗器13,14の他端は、相互に接続されて、次述するゲート抵抗短絡回路104の第2の共通ゲート抵抗器(図1においては「RG」と表記)16の一端に接続されたものとなっている。
ゲート抵抗短絡回路104は、エンハンスメント型N型の2つの短絡用FET5,6と、第1及び第2の共通ゲート抵抗器15,16と、2つの短絡用FET用ゲート抵抗器17,18とを有して構成されたものとなっている。
第1の短絡用FET5のドレイン(又はソース)とソース(又はドレイン)の間には、第1の共通ゲート抵抗器15が並列接続され、ソース(又はドレイン)との接続点は、先の第1の個別ゲート抵抗器11の一端に接続され、ドレイン(又はソース)との接続点には、デコーダ回路102からの制御信号としての駆動制御電圧が印加されるようになっている(詳細は後述)。
また、第1の短絡用FET5のゲートには、第1の短絡用FET用ゲート抵抗器17を介してデコーダ回路102から所定のゲート電圧が印加されるようになっている(詳細は後述)。
第2の短絡用FET6も一方の第1の短絡用FET5と同様に接続されたものとなっている。
すなわち、第2の短絡用FET6のドレイン(又はソース)とソース(又はドレイン)の間には、第2の共通ゲート抵抗器16が並列接続され、ソース(又はドレイン)との接続点は、先の第4の個別ゲート抵抗器14の一端に接続され、ドレイン(又はソース)との接続点には、デコーダ回路102からの制御信号としての駆動制御電圧が印加されるようになっている(詳細は後述)。
また、第2の短絡用FET6のゲートには、第2の短絡用FET用ゲート抵抗器18を介してデコーダ回路102から所定のゲート電圧が印加されるようになっている(詳細は後述)。
本発明の実施の形態においては、上述の第1及び第2の短絡用FET5,6は、そのゲート幅が、第1乃至第4のFET1〜4のゲート幅の大凡1%程度に設定されたものとなっており、そのため、ゲート・ソース間、及び、ゲート・ドレイン間のそれぞれの寄生容量が、第1乃至第4のFET1〜4に比して小さく、そのため立ち上がりの速いものとなっている。
デコーダ回路102は、外部から印加される外部制御信号VCTLに応じて、ゲート抵抗短絡回路104に対して制御信号としての駆動制御電圧を出力するよう構成されてなるものである。
ゲート抵抗短絡回路駆動電圧出力回路105は、ゲート抵抗短絡回路104の第1及び第2の短絡用FET5,6を導通状態とするに必要な電圧を生成し、デコーダ回路102へ供給するよう構成されたものである。
かかるゲート抵抗短絡回路駆動電圧出力回路105は、ダイオード7を用いて構成されたものとなっている。すなわち、ダイオード7は、アノードに電源電圧VDDが印加され、カソードに得られる電圧が、第1及び第2の短絡用FET5,6を導通状態とする際のゲート電圧VDD2として、デコーダ回路102へ出力されるようになっている。
また、負電圧発生回路103は、電源電圧を基に、第1及び第2の短絡用FET5,6を非導通状態とする際に必要とされる負電圧VSSを生成し、デコーダ回路102へ供給するよう構成されてなるもので、その基本的構成は、従来回路と同様のものである。
次に、かかる構成における動作について説明する。
まず、第1のスイッチ素子対51が導通状態となっており、第2のスイッチ素子対52が非導通状態となっている定常状態について説明する。
かかる定常状態においては、外部制御信号VCTLは論理値Highに相当するレベルにあるとする。そして、デコーダ回路102からは、第1のスイッチ素子対51を導通状態に維持するに必要な電圧VDD=1.5Vが、また、第1の短絡用FET5を非導通状態に維持するに必要な電圧VDD2=0.5Vが、それぞれ出力される。
また、デコーダ回路102からは、第2のスイッチ素子対52を非導通状態に維持するに必要な電圧VSS=−7Vが、また、第2の短絡用FET6を非導通状態に維持するに必要な電圧VSS2=−7Vが、それぞれ出力される。
かかる条件の下、回路が定常状態にある場合、第1の共通ゲート抵抗器15と第1の個別ゲート抵抗器11の相互の接続点における電圧(以下、便宜的に「ゲート抵抗出力電圧」と称する)VG2は、VDD=1.5Vとなり(図3(B)参照)、第1の短絡用FET5の閾値である0.25Vを超えているため第1の短絡用FET5は非導通状態であり、第1の共通ゲート抵抗器15は非短絡状態に維持され、デコーダ回路102からの第1及び第2のFET1,2のゲート電圧としての電圧VDDは第1の共通ゲート抵抗器15を介して印加されることとなる。
なお、図3(B)において、VG3は、第1の短絡用FET5のゲートにおける電圧(以下、便宜的に「ゲート抵抗短絡回路駆動電圧」と称する)を表したものである。
また、図3(A)は外部制御信号VCTLを、図3(C)は、共通端子33と第1の個別端子31間を通過する高周波信号を、それぞれ表したものである。
したがって、かかる定常状態にあっては、第1及び第2のFET1,2のゲートに対して高ゲート抵抗状態が確保され、低挿入損失特性が得られることとなる。
かかる高周波信号に対する挿入損失を従来回路と比較して見ると、まず、図11には、従来の半導体スイッチ回路の共通端子PCと個別端子P2間における高周波信号に対する回路の挿入損失の周波数変化を示す特性線が示されており、例えば、2GHzにおける挿入損失は、0.286dBである。なお、図11において、横軸は高周波信号の周波数を、縦軸は挿入損失を、それぞれ示している。また、この特性例は、従来回路においてゲート抵抗器RGを0Ωと設定した場合のものである。
これに対して、本発明の実施の形態における半導体スイッチ回路にあっては、上述の従来回路の特性例同様、2GHzにおける挿入損失は、図7に示された特性例にあるように0.214dBであり、高ゲート抵抗状態の確保による低挿入損失特性が実現できていることが確認できるものとなっている。
次に、第1のFET1が非導通状態から導通状態に切り替わる際の回路動作、特に、第1の短絡用FET5の動作を中心に図4を参照しつつ説明する。
外部制御信号が論理値Lowに相当するレベルから論理値Highに相当するレベルに変化すると同時に、デコーダ回路102からは先に述べたような駆動制御電圧が出力される。
第1及び第2の短絡用FET5,6は、先に述べたように、そのゲート幅が、第1乃至第4のFET1〜4に比して小さく設定されており、寄生容量が小さいため、デコーダ回路102から印加されたゲート電圧の立ち上がりは素早く、電圧レベルは即座にVDD2に達する(図4のVG3参照)。
これに対して第1のFET1のゲートに印加される電圧、すなわち、第1の共通ゲート抵抗器15と第1の個別ゲート抵抗器11の相互の接続点における電圧VG2は、第1のFET1の寄生容量が第1の短絡用FET5より大であること等に起因してその立ち上がりが、上述のゲート電圧VG3に比して遅く(図4のVG2参照)、VG3がVDD3に達した直後にあっては、未だ、第1の短絡用FET5の閾値Vth=+0.25Vを以下であるため、第1の短絡用FET5は導通状態となり(図4参照)、それによって、第1の共通ゲート抵抗器15は短絡状態となる。
そのため、第1及び第2のFET1,2のゲート側における回路時定数が低下し、ゲート電圧VG2は急速に閾値Vth=+0.25Vまで上昇し、この閾値を超えたところで、第1の短絡用FET5は導通状態から非導通状態となる(図4参照)。
なお、上述のような動作を確保するため、ゲート抵抗短絡回路駆動電圧出力回路105に用いられるダイオード7は、その降下電圧Vfが、第1及び第2の短絡用FET5,6のピンチオフ電圧Vgs(off10)よりも大きいものを用いる必要がある。
上述の回路動作の説明は、一方のスイッチ素子対51が非導通状態から導通状態に変化する場合であるが、他方のスイッチ素子対52が非導通状態から導通状態に変化する場合の回路動作も基本的に同一であるので、それについて再度の詳細な説明は省略することとする。
図5には、先のゲート抵抗出力電圧VG2、ゲート抵抗短絡回路駆動電圧VG3、及び、第1の共通ゲート抵抗器15のデコーダ回路102側の端部における電圧(以下、便宜的に「ゲート抵抗入力電圧」と称する)VG1の時間変化に対する波形変化の実測に基づく波形図が示されており、上述のように第1及び第2のFET1,2が非導通状態から導通状態へ切り替わる際に、第1の短絡用FET5を短時間の間、導通状態とするため、ゲート抵抗出力電圧VG2が第1の短絡用FET5が導通状態から非導通状態となるまでは、立ち上がりが鋭いことが確認できるものとなっている。
なお、図5において、実線の特性線はゲート抵抗入力電圧VG1を、一点鎖線の特性線はゲート抵抗出力電圧VG2を、二点鎖線の特性線はゲート抵抗短絡回路駆動電圧VG3を、それぞれ表している。
一方、図9には、図8に示された従来回路における上述したゲート抵抗入力電圧VG1、及び、ゲート抵抗出力電圧VG2に対応する各電圧の変化特性例が示されており、以下、同図について説明する。
図9(A)には、図8に示された従来回路においてゲート抵抗器RGを100kΩに設定した場合におけるゲート抵抗器RGのデコーダ回路102側の端部におけるゲート電圧VG1の変化例が実線で、また、ゲート抵抗器RGのスイッチ素子SW1〜SW4側の端部におけるゲート電圧VG2の変化例が一点鎖線で、それぞれ示されており、同図によれば、従来回路ではスイッチ素子SW1〜SW4側のゲート電圧VG2の立ち上がりが、抵抗値の大きなゲート抵抗器RGのために鈍いことが確認できる。
また、図9(B)には、同じ従来回路においてゲート抵抗器RGを0Ωとした場合のゲート電圧VG2の変化例が一点鎖線で示されており、同図によれば、ゲート抵抗器RGを0Ωとすることにより、ゲート電圧VG2の立ち上がりは遅延がなく、鋭くなることが確認できる。しかしながら、ゲート抵抗器RGを0Ωとすることで、ゲート電圧VG2の立ち上がりを鋭くすることはできるが、高周波信号に対するスイッチSW1〜SW4の挿入損失が増大するという従来の問題を解消することはできない。
次に、本発明の実施の形態における半導体スイッチ回路の使用周波数における高周波信号の出力レベルについて、従来回路と比較しつつ、図6、及び、図10を参照しつつ説明する。
まず、図10(A)には、図8に示された従来回路において、ゲート抵抗器RGを100kΩに設定した場合に、スイッチ素子SW1〜SW4の切り替えに応じて共通端子PCに出力される高周波信号のレベル変化が示されている。
また、図10(A)において、40usecの時点で外部制御信号VTCLが論理値Highとされており、これに対して、高周波信号は、その約1.2μsec後に出力されていることから、スイッチング時間は約1.2μsecであることが確認できる。
一方、図10(B)には、図8に示された従来回路において、ゲート抵抗器RGを0Ωに設定した場合に、スイッチ素子SW1〜SW4の切り替えに応じて共通端子PCに出力される高周波信号のレベル変化が示されている。
また、図10(B)において、40usecの時点で外部制御信号VTCLが論理値Highとされており、これに対して、高周波信号は、その約0.41μsec後に出力されていることから、スイッチング時間は約0.4μsecであり、ゲート抵抗器RGを100kΩに設定した場合よりスイッチング時間が改善されていることが確認できるものとなっている。
これに対して、本発明の実施の形態における半導体スイッチ回路においては、図6に示されたように、スイッチング時間は約0.6μsecとなっており、スイッチング時間の改善が確認できるものとなっている。
次に、デコーダ回路102の具体回路構成例について、図2を参照しつつ説明する。
この図2に示された具体回路例は、例えば、第1のスイッチ素子対51と第1の短絡用FET5へ対する駆動制御電圧を出力する回路部分であり、第2のスイッチ素子対52及び第2の短絡用FET6へ対する駆動制御電圧を出力する回路部分は、基本的に同様の回路構成を有するものであり、図2においては、その図示を省略してある。
結局、デコーダ回路102は、図2に示された回路を2組備えたものとなっている。なお、他方の回路、すなわち、例えば、第2のスイッチ素子対52及び第2の短絡用FET6へ対する駆動制御電圧を出力する回路部分については、外部制御信号VCTLを反転出力する反転素子(図示せず)が必要であり、その出力は、図2においてVCTLと表記された箇所に入力されることとなる。
以下、図2に示された具体回路例について、同図を参照しつつ説明する。
まず、この図2に示された具体回路例は、第1のスイッチ素子対51及び第1の短絡用FET5へ制御信号としての駆動制御電圧を出力する回路部分であるとして、以下説明することとし、第2のスイッチ素子対52及び第2の短絡用FET6への駆動制御電圧を出力する回路部分(図示せず)については、図2に示された具体回路例と異なる点について、以下、適宜、説明を行うものとし、その余の部分については、図2の説明を以て、第2のスイッチ素子対52及び第2の短絡用FET6への駆動制御電圧を出力する回路部分の説明に代えることとする。
この図2に示された具体回路例は、ディプレッション型N型のデコーダ用第1、第3、第7のFET(図2においては、「Q1」、「Q3」、「Q7」と表記)21、23、27と、エンハンスメント型N型のデコーダ用第4乃至第6、及び第8乃至第10のFET(図2においては、「Q4」〜「Q6」及び「Q8」〜「Q10」と表記)24〜26、28〜30と、エンハンスメント型P型のデコーダ用第2のFET(図2においては「Q2」と表記)22とを用いて構成されてなるもので、外部制御信号VCTLが論理値Highに相当するレベルにある場合に、第1のスイッチ素子対51に対してVDDが、第1の短絡用FET5に対してVDD2が、それぞれ出力される一方、外部制御信号VCTLが論理値Lowの場合には、第1のスイッチ素子対51に対してVSSが、第1の短絡用FET5に対してVSS2が、それぞれ出力されるよう構成されたものとなっている。
具体的には、まず、デコーダ用第1、第3、及び第5のFET21,23,25のドレイン(又はソース)には、外部から電源電圧VDDが印加されるようになっている。
そして、デコーダ用第1のFET21のソース(又はドレイン)は、デコーダ用第1の抵抗器41を介してデコーダ用第2のFET22のドレイン(又はソース)に接続され、この接続点には、デコーダ用第1のFET21のゲートが接続されたものとなっている。
デコーダ用第2のFET22のゲートは、外部制御信号入力端子34に接続されており、外部制御信号VCTLが印加されるようになっている一方、ソース(又はドレイン)は、デコーダ用第2の抵抗器42の一端に接続されている。
このデコーダ用第2の抵抗器42の他端とデコーダ用第3の抵抗器43の一端との間には、4つのダイオード61〜64が、デコーダ用第2の抵抗器42側にアノードが、デコーダ用第3の抵抗器43側に、カソードが、それぞれ位置するように直列接続されて設けられている。
そして、ダイオード64のカソードとデコーダ用第3の抵抗器43の接続点は、デコーダ用第4、第6、第8、及び、第10のFET24,26,28,30の各ゲートに接続される一方、デコーダ用第3の抵抗器43の他端は、デコーダ用第4、第6、第8、及び、第10のFET24,26,28,30のソース(又はドレイン)に接続されると共に、負電圧入力端子35に接続されており、負電圧発生回路103から出力された負電圧VSSが印加されるようになっている。
一方、デコーダ用第3のFET23は、ソース(又はドレイン)は、デコーダ用第4の抵抗器44を介してデコーダ用第4のFET24のドレイン(又はソース)に接続されると共に、デコーダ用第4のFET24のドレイン(又はソース)には、デコーダ用第3及び第5のFET23,25のゲートが接続されている。
また、デコーダ用第5のFET25のソース(又はドレイン)は、デコーダ用第6のFET26のドレイン(又はソース)に接続されると共に、スイッチ素子対用ゲート電圧出力端子36に接続されたものとなっている。
また、デコーダ用第7及び第9のFET27,29のドレイン(又はソース)は、相互に接続されてゲート抵抗短絡回路駆動電圧出力回路105により出力された電圧VDD2が印加されるようになっている。
そして、デコーダ用第7のFET27のソース(又はドレイン)は、デコーダ用第5の抵抗器45を介してデコーダ用第8のFET28のドレイン(又はソース)に接続されると共に、デコーダ用第8のFET28のドレイン(又はソース)は、デコーダ用第7及び第9のFET27,29のゲートと接続されている。
また、デコーダ用第9のFET29のソース(又はドレイン)は、デコーダ用第10のFET30のドレイン(又はソース)に接続されると共に、短絡用FET用ゲート電圧出力端子37に接続されたものとなっている。
かかる構成においては、外部制御信号VCTLが論理値Highに相当するレベルの場合、スイッチ素子対用ゲート電圧出力端子36からは1.5Vが、短絡用FET用ゲート電圧出力端子37からは0.5Vが、それぞれ出力される一方、外部制御信号VCTLが論理値Lowに相当するレベルの場合、スイッチ素子対用ゲート電圧出力端子36及び短絡用FET用ゲート電圧出力端子37には、負電圧発生回路103の出力電圧VSSである−7Vが出力されるようになっている。
なお、上述した本発明の実施の形態においては、共通端子33と個別端子31,32間の導通、非導通を制御するスイッチ素子として、2つのFETを直列接続したスイッチ素子対51,52を用いたが、これに限定される必要はなく、共通端子33と各個別端子31,32間に、それぞれ一つのFETを設ける構成としても良いことは勿論である。
スイッチング時間の減少と挿入損失の低減が所望される半導体スイッチ回路に適用できる。
5…第1の短絡用電界効果トランジスタ
6…第2の短絡用電界効果トランジスタ
15…第1の共通ゲート抵抗器
16…第2の共通ゲート抵抗器
101…高周波スイッチ回路
102…デコーダ回路
103…負電圧発生回路
104…ゲート抵抗短絡回路
105…ゲート抵抗短絡回路駆動電圧出力回路

Claims (1)

  1. 少なくとも1つの共通端子と、2つ以上の個別端子を有し、前記共通端子と前記個別端子とが、前記個別端子のそれぞれに対応して設けられたスイッチ素子により選択的に導通状態とされるよう構成されてなる高周波スイッチ回路と、
    外部から供給される外部制御信号に応じて、前記スイッチ素子のオン、オフ状態を制御する駆動制御電圧を出力するデコーダ回路と、
    前記デコーダ回路の前記駆動制御電圧の出力に用いられる負電圧を生成し、前記デコーダ回路へ供給する負電圧発生回路とを具備してなる半導体スイッチ回路において、
    前記高周波スイッチ回路を構成するスイッチ素子は電界効果トランジスタを用いてなり、前記電界効果トランジスタのゲートには、ゲート抵抗器を介して前記デコーダ回路からの駆動制御電圧が印加されるよう構成される一方、
    前記ゲート抵抗器を短絡、接続するゲート抵抗短絡回路と、
    前記ゲート抵抗短絡回路の駆動に必要な電圧を生成し、前記デコーダ回路へ供給するゲート抵抗短絡回路駆動電圧出力回路が設けられ、
    前記ゲート抵抗短絡回路は、ドレイン・ソース間に前記ゲート抵抗器が並列接続された短絡用電界効果トランジスタを具備し、前記短絡用電界効果トランジスタは、ゲートへの短絡制御用駆動制御電圧の印加に応じて、その導通・非導通が制御可能に設けられ、
    前記デコーダ回路は、前記高周波スイッチ回路を構成する前記電界効果トランジスタを導通状態とする駆動制御電圧を出力する際に、同時に、前記高周波スイッチ回路を構成する前記電界効果トランジスタが非導通状態から導通状態へ切り替わる際の短時間の間、前記短絡用電界効果トランジスタを導通状態とする短絡制御用駆動制御電圧を出力可能に構成されてなり、前記高周波スイッチ回路を構成する前記電界効果トランジスタの非導通状態から導通状態への切り替わりの際のゲート抵抗を低抵抗に維持可能にしたことを特徴とする半導体スイッチ回路。
JP2013138224A 2013-07-01 2013-07-01 半導体スイッチ回路 Pending JP2015012536A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013138224A JP2015012536A (ja) 2013-07-01 2013-07-01 半導体スイッチ回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013138224A JP2015012536A (ja) 2013-07-01 2013-07-01 半導体スイッチ回路

Publications (1)

Publication Number Publication Date
JP2015012536A true JP2015012536A (ja) 2015-01-19

Family

ID=52305301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013138224A Pending JP2015012536A (ja) 2013-07-01 2013-07-01 半導体スイッチ回路

Country Status (1)

Country Link
JP (1) JP2015012536A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11595029B2 (en) 2020-09-24 2023-02-28 Kabushiki Kaisha Toshiba Switch circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124653A (ja) * 2007-11-19 2009-06-04 Renesas Technology Corp 高周波スイッチ回路
JP2010045780A (ja) * 2008-08-12 2010-02-25 Infineon Technologies Ag スイッチ
JP2011193312A (ja) * 2010-03-16 2011-09-29 New Japan Radio Co Ltd 半導体スイッチ回路
JP2012060668A (ja) * 2011-11-16 2012-03-22 Toshiba Corp 高周波半導体スイッチ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124653A (ja) * 2007-11-19 2009-06-04 Renesas Technology Corp 高周波スイッチ回路
JP2010045780A (ja) * 2008-08-12 2010-02-25 Infineon Technologies Ag スイッチ
JP2011193312A (ja) * 2010-03-16 2011-09-29 New Japan Radio Co Ltd 半導体スイッチ回路
JP2012060668A (ja) * 2011-11-16 2012-03-22 Toshiba Corp 高周波半導体スイッチ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11595029B2 (en) 2020-09-24 2023-02-28 Kabushiki Kaisha Toshiba Switch circuit

Similar Documents

Publication Publication Date Title
CN106981304B (zh) 非易失性存储器的驱动电路
US10897246B2 (en) Radio frequency switching circuitry with reduced switching time
US8643426B2 (en) Voltage level shifter
US20070176913A1 (en) Driver circuit usable for display panel
US20110316505A1 (en) Output Buffer With Improved Output Signal Quality
US10735001B2 (en) Level shifter circuit and method of operating the same
US10291230B2 (en) Level shifter and level shifting method
JP2013172482A (ja) スイッチ制御回路、半導体装置および無線通信装置
CN104348473A (zh) 具有振幅伺服环的高速电平移位器
US8957708B2 (en) Output buffer and semiconductor device
CN103269217A (zh) 输出缓冲器
US8970260B1 (en) Output drivers
US10622976B2 (en) Schmitt trigger circuit
US8476956B2 (en) Semiconductor switch
US7598791B2 (en) Semiconductor integrated apparatus using two or more types of power supplies
JP2015012536A (ja) 半導体スイッチ回路
US7133487B2 (en) Level shifter
US20140240002A1 (en) Voltage level converor and rf switching driver using the same
CN111506150B (zh) 输入电路
CN110034754B (zh) 一种集成电路及其传输电路
US8497725B2 (en) Active pull-up/pull-down circuit
US8836382B1 (en) Mixed voltage driving circuit
US10382041B2 (en) Buffer circuit
US9337829B2 (en) Electronic device with body-biasing circuit for portable equipment with USB connector for headset
US20150162912A1 (en) Level shifter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171107