JP2015005971A - 垂直キャビティ面発光レーザー用の電力効率の優れた高速ドライバ - Google Patents

垂直キャビティ面発光レーザー用の電力効率の優れた高速ドライバ Download PDF

Info

Publication number
JP2015005971A
JP2015005971A JP2014087213A JP2014087213A JP2015005971A JP 2015005971 A JP2015005971 A JP 2015005971A JP 2014087213 A JP2014087213 A JP 2014087213A JP 2014087213 A JP2014087213 A JP 2014087213A JP 2015005971 A JP2015005971 A JP 2015005971A
Authority
JP
Japan
Prior art keywords
vcsel
output
driver
stage
optical transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014087213A
Other languages
English (en)
Other versions
JP6405681B2 (ja
Inventor
シュオ−チュン カオ トニー
Shuo-Chun Kao Tony
シュオ−チュン カオ トニー
ネドビィッチ ニコラ
Nedovic Nikola
ネドビィッチ ニコラ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JP2015005971A publication Critical patent/JP2015005971A/ja
Application granted granted Critical
Publication of JP6405681B2 publication Critical patent/JP6405681B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0427Electrical excitation ; Circuits therefor for applying modulation to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0261Non-optical elements, e.g. laser driver components, heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06226Modulation at ultra-high frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]

Abstract

【課題】高帯域幅の光トランスミッタを提供する。【解決手段】光トランスミッタが開示されている。本開示のいくつかの実施形態によれば、光トランスミッタは、垂直キャビティ面発光レーザー(VCSEL)と、VCSELドライバと、を有してもよい。VCSELドライバは、電圧信号を受信するように構成された入力段と、低インピーダンス出力段と、を有してもよく、低インピーダンス出力段は、入力段に結合された入力と、VCSELに結合されると共に変調された出力電流をVCSELに供給するように構成された低インピーダンス出力と、を有する。【選択図】図3

Description

本開示は、一般に、電気回路に関し、且つ、更に詳しくは、垂直キャビティ面発光レーザー用のドライバに関する。
コンピュータ及び通信装置が益々高速化すると共に通信帯域幅に対する需要が増大するのに伴って、望ましい速度及び帯域幅を装置が実現できるように、相応してそれらの装置内において使用されているコンポーネント間の接続の速度を増大させる要求が存在している。従来の電子回路は、コンポーネント間において約10Gbpsを上回るデータ速度を任意のかなりの距離にわたって実現することができない。この結果、光通信が注目を集めるようになっている。
米国特許第6587489号明細書 米国特許第6980575号明細書
高速通信リンクにおいて、光学的シグナリングは、電気的シグナリングの一代替肢である。垂直キャビティ面発光レーザー(Vertical−Cavity Surfce−Emitting Laser:VCSEL)は、高速光リンクにおける代表的な光源である。VCSELによって生成された光は、光媒体(例えば、ファイバ又は導波路)に結合され、且つ、例えば、フォトダイオード(PhotoDiode:PD)により、レシーバにおいて検知される。VCSELに基づいた光通信リンクの場合には、信号の通信の際にVCSELドライバによってVCSELのパワーを変調する必要がある。
光トランスミッタ(光送信器)が開示されている。本開示の一実施形態によれば、光トランスミッタは、垂直キャビティ面発光レーザー(VCSEL)と、VCSELドライバと、を有してもよい。VCSELドライバは、電圧信号を受信するように構成された入力段と、低インピーダンス出力段と、を有してもよく、低インピーダンス出力段は、入力段に結合された入力と、VCSELに結合されると共に変調された出力電流をVCSELに供給するように構成された低インピーダンス出力と、を有する。
本開示の別の実施形態によれば、VCSELドライバは、電圧信号を受信するように構成された入力段と、低インピーダンス出力段と、を有してもよく、低インピーダンス出力段は、入力段に結合された入力と、VCSELに結合された際に変調された出力電流をVCSELに供給するように構成された低インピーダンス出力と、を有する。
本発明の目的及び利点は、請求項において具体的に指摘されている要素及び組合せによって実現及び達成されることになる。
上述の一般的な説明及び以下の詳細な説明は、いずれも、特許請求されている本発明を限定するためのものではなく、その例示及び説明を目的としたものであることを理解されたい。
これらの実施形態及びその利点の更に完全且つ包括的な理解は、同一の参照符号によって同一の特徴を示している添付図面との関連において以下の説明を参照することにより、得られることになろう。
本開示の教示内容による例示用の高速光リンクのブロックダイアグラムを示す。 本開示の教示内容による例示用のVCSELの直流性能を表すグラフを示す。 本開示の教示内容による例示用の光トランスミッタの回路図を示す。 本開示の教示内容による例示用の光トランスミッタの回路図を示す。 本開示の教示内容による例示用の光トランスミッタの回路図を示す。
図1は、本開示の教示内容による例示用の高速光リンク100のブロックダイアグラムを示している。高速光リンク100は、論理ブロック102及び114と、ドライバ104と、垂直キャビティ面発光レーザー(VCSEL)106と、光媒体107と、フォトダイオード108と、トランスインピーダンス増幅器110と、クロック及びデータリカバ(Clock−and−Data Recover:CDR)回路112と、を含んでもよい。VCSEL106は、高速光リンク100において光源として機能してもよい。いくつかの実施形態においては、VCSEL106は、トランスミッタ内に存在してもよく、且つ、ドライバ104によってバイアス及び/又は変調してもよい。従って、VCSEL106は、データを論理ブロック102から光媒体107上において送信してもよい。いくつかの実施形態においては、光媒体107は、ファイバ、導波路、又は光信号を搬送するように構成された任意のその他の適切な媒体であってもよい。
VCSEL106によって生成された光は、光媒体107の他端においてレシーバによって検知してもよい。このようなレシーバは、例えば、フォトダイオード108を含んでもよい。フォトダイオード108は、光信号を電流信号に変化するように構成してもよい。いくつかの実施形態においては、フォトダイオード108は、そのカソードにおいて、フォトダイオード108を逆バイアスするために十分なバイアス電圧(例えば、2ボルトのVB2)に結合してもよい。フォトダイオード108は、そのアノードにおいて、トランスインピーダンス増幅器110に結合してもよく、トランスインピーダンス増幅器110は、フォトダイオード108からの電流信号を電圧信号に変換してもよい。そして、CDR回路112は、この電圧信号をトランスインピーダンス増幅器110から受信してもよい。いくつかの実施形態においては、CDR回路112は、電圧信号から論理ブロック102に由来するデータを回復してもよく、且つ、そのデータ内に埋め込まれているクロック信号を回復してもよい。そして、このデータ及び埋め込まれていたクロック信号は、論理ブロック114によって処理してもよい。
図2は、例示用のVCSELの直流(Direct−Current:DC)性能を表すグラフ200を示している。特定の実施形態においては、VCSELのDC性能の特徴は、所与の電流においてそのVCSELが放出しうる光学パワーをプロットすることにより、判定してもよい。VCSELがその閾値電流ITH未満においてバイアスされている際には、VCSELは、無視可能な光学パワーを生成することになろう。但し、VCSEL106がITH超においてバイアスされた際には、VCSEL106は、比例定数ηによってバイアス電流に比例した光学パワーを生成することになろう。定数ηは、VCSELのスロープ効率と呼ばれる場合があり、且つ、ワット/アンペアの単位を有してもよい。
いくつかの実施形態においては、VCSELは、情報を送信するべく、ITH超の様々なレベルにおいて駆動又は変調してもよい。例えば、VCSELは、論理Low(ロー)を送信するために、低電流ILOにおいて、且つ、論理High(ハイ)を送信するために、高電流IHIにおいて、駆動してもよい。IHIとILOの平均値は、VCSEL106の平均DC電流(IAVG)と呼ばれる場合がある。例えば、7mAのIHIと3mAのILOの場合には、IAVGは、5mAとなろう。図2に示されているように、いくつかの実施形態においては、ILO及びIHIは、そのいずれもが、ITHを上回ってもよい。図2のグラフ200は、必ずしも縮尺が正確ではなく、且つ、ILO及びIHIがITHを上回ってもよいいくつかの実施形態においては、ILO及びIHIの値は、ITH超の任意の適切な電流値であってもよい。本開示においては、所与のILOと所与のIHIの間のデルタは、変調電流IMと呼ばれる場合がある。
図3は、本開示の教示内容による光トランスミッタ300の概略図を示している。光トランスミッタ300は、VCSELドライバ301と、VCSEL106と、を含んでもよい。いくつかの実施形態においては、VCSELドライバ301は、第1段305と、出力段306と、を含んでもよい。第1段305は、Nタイプの金属酸化物半導体トランジスタ(N−type Metal−Oxide Semiconductor transistor:NMOS)302及び304と、抵抗器312及び314と、電流源318と、を含んでもよい。出力段306は、NMOS320と、電流源330と、を含んでもよい。VCSELドライバ301は、低インピーダンス出力VOUTを含んでもよく、この低インピーダンス出力VOUTは、VCSEL106に結合してもよく、且つ、出力電圧によってVCSEL106を駆動するように構成してもよい。更には、VCSELドライバ301は、VOUTにおける所与の範囲の出力電圧において、適切な電流をVCSEL106に供給するように構成してもよい。
第1段305は、VCSELドライバ301の入力段として、且つ/又は、利得段として、動作してもよい。いくつかの実施形態においては、NMOS302及びNMOS304は、差分ペア入力として構成してもよい。例えば、NMOS302及びNMOS304の個々のゲートは、差分電圧入力VINの正及び負の端子に結合してもよい。NMOS302及びNMOS304は、それぞれ、ソースを有してもよく、これらのソースは、電流源318に結合してもよい。本開示においては、「電流源」は、電流を吸収(sink)又は供給(source)しうる要素を意味している場合がある。電流源318は、バイアス電流IS1を吸収するように構成してもよく、バイアス電流IS1は、VCSELドライバ301の第1段をバイアスしてもよい。NMOS302は、ドレインを有してもよく、このドレインは、抵抗器312を通じて電源ラインVDDに結合してもよい。同様に、NMOS304も、ドレインを有してもよく、このドレインは、抵抗器314を通じてVDDに結合してもよい。
VCSELドライバ301の第1段305の出力は、抵抗器314とNMOS304のドレインの間のノードVXを有してもよい。VINにおける様々な入力電圧に応じたノードVXにおける電圧スイングは、電流源318によって供給される電流と、抵抗器314の抵抗値と、に基づいて制御してもよい。例えば、正の電圧がVINに跨って印加された場合には(例えば、NMOS304のゲートよりも高い電圧がNMOS302のゲートに印加された場合には)、電流源318によって供給される第1段バイアス電流がNMOS302を通じて流れることになり、且つ、NMOS304及び抵抗器314を通じた電流は、ほとんど又はまったく流れないであろう。電流がNMOS304及び抵抗器314を通じてほとんど又はまったく流れないことにより、抵抗器314に跨る電圧降下は、略ゼロボルトとなり、且つ、ノードVXにおける電圧は、VDDの電圧と略等価なものとなろう。VINに跨って負の電圧が印加された場合には(NMOS304のゲートよりも低い電圧がNMOS302のゲートに印加された場合には)、電流源318によって供給される第1段バイアス電流は、NMOS304及び抵抗器314を通じて流れることになろう。このような状態においては、ノードVXにおける電圧は、VDDの電圧から第1段バイアス電流によって生成される抵抗器314に跨る電圧降下を差し引いたものと略等価なものとなろう。従って、ノードVXにおける電圧スイングは、次式のように表現してもよく、
ΔVX=R314×IS1 (式1)
この場合に、ΔVXは、ノードVXにおける電圧スイングであってよく、R314は、抵抗器314の抵抗値であってよく、且つ、IS1は、電流源318によって供給される第1段バイアス電流であってよい。更に詳しく後述するように、R314及びIS1は、VXにおける望ましい電圧スイングを供給するように設計してもよく、このVXにおける望ましい電圧スイングは、VCSELドライバ301の出力における望ましい電圧スイングと、VCSEL106用の望ましい変調電流IMと、に対応することになろう。
出力段306は、NMOS320と、電流源330と、を含んでもよい。電流源330は、バイアス電流IBIASをVCSEL106に供給してもよい。いくつかの実施形態においては、IBIASは、図2に示されているように、ILOに等しくてもよい。NMOS320は、様々なレベルの更なる電流によってVCSEL106を駆動するように構成してもよい。例えば、NMOS320は、更なる電流をVCSEL106に供給しない第1状態と、図2に示されているように、IMと等価であってもよい更なる電流をVCSEL106に供給する第2状態と、の間において交互に変化することにより、VCSEL106を通じた電流を変調してもよい。
NMOS320は、ソースフォロワとして構成してもよく、この場合に、ドレインは、VDDに結合され、ゲートは、第1段305の出力(例えば、ノードVX)に結合され、且つ、ソースは、VOUTに結合される。NMOS320のゲートは、図2においては、第1段305の出力(例えば、ノードVX)に直接的に結合されるものとして示されているが、いくつかの実施形態においては、NMOS320のゲートは、1つ又は複数の介在するコンポーネントを通じて第1段305の出力に間接的に結合してもよい。NMOS320のゲートからNMOS320のソースに至る電圧降下は、大きな範囲のドレイン−ソース電流において、わずかに変化することになる。従って、VOUTにおける電圧は、広い範囲の出力電流において、第1段の出力(例えば、ノードVX)における電圧を追跡することになろう。VCSELドライバ301は、VOUTにおける電圧を駆動するように構成してもよいことから、VCSELドライバ301は、本明細書においては、電圧モードドライバと呼ばれる場合がある。
いくつかの実施形態においては、VCSEL106は、VCSELドライバ301の出力に結合された第1端子と、バイアス電圧VBに結合された第2端子と、を有してもよい。VBにおける電圧は、VCSEL106のパワーレベルの変調を許容するためにVCSEL106に跨って十分な電圧を供給することになる任意の適切なバイアス電圧であってよい。例えば、VCSELドライバ301のVDD電源が十分に大きい場合には(例えば、5ボルト)、VBは、正の電圧に設定してもよく、或いは、GNDに設定してもよい。その一方で、VCSELドライバ301のVDD電源が、例えば、1ボルトである場合には、VBは、VCSELドライバ106のパワーの変調を許容するために十分な電位をVCSEL106に跨って確立できるように、負の電圧に設定してもよい。
ソースフォロワ構成においては、NMOS320は、所定の範囲の出力電流にわたってVOUTにおける電圧を駆動してもよい。例えば、VCSEL106によって吸収される電流は、VOUTにおける電圧の増大に伴って増大することになる。同様に、VCSEL106によって吸収される電流は、VOUTにおける電圧の減少に伴って減少することになる。従って、VCSELドライバ301は、VOUTの電圧を増減させることにより、VCSEL106のパワーを変調してもよい。
VCSEL106を駆動する(例えば、VCSEL106のパワーを変調する)際にVCSELドライバ301によって実現されることになる帯域幅は、VCSELドライバ301の出力における静電容量と、VCSELドライバ301の出力インピーダンスと、に逆比例することになろう。例えば、VCSELドライバ301及びVCSEL106の帯域幅は、次式のように表現してもよく、
帯域幅=1/(2π*ROUT*COUT) (式2)
ここで、ROUTは、VCSEL106がVCSELドライバ301に結合された際のVOUTにおける合成インピーダンスであり、且つ、COUTは、VCSELドライバ301の出力における静電容量307である。いくつかの実施形態においては、COUTは、300fFの範囲であってよく、これには、VCSEL106自体の寄生静電容量と、静電放電保護装置(明示的に図示されてはいない)などのVCSELドライバ301の出力における出力装置の寄生静電容量と、が含まれてもよい。COUTは、任意の配線、ピン接続、及び/又ははんだバンプの寄生静電容量などのVCSELドライバ301とVCSEL106の間の任意の配線の寄生静電容量を更に含んでもよい。
OUTは、VCSELドライバ301自体の出力インピーダンスと、VCSEL106のインピーダンスと、の関数となろう。いくつかの実施形態においては、VCSEL106の抵抗値(本明細書においては、VCSEL106のインピーダンスとも呼ばれる)は、約60Ωであってもよい。ROUTは、VCSEL106のインピーダンスとの並列状態にあるVCSELドライバ301の出力インピーダンスと等価なものとなろう。従って、VCSELドライバ301の出力におけるインピーダンスは、次式のように表現してもよく、
OUT=(RDRIVER×RV)/(RDRIVER+RV) (式3)
ここで、RDRIVERは、VCSELドライバ301の出力インピーダンスであり、且つ、RVは、VCSEL106のインピーダンスである。
上記の式2及び式3に示されているように、VCSEL及びそのドライバの帯域幅は、ドライバの出力インピーダンスによって左右されることになる。例えば、利得段をその出力段として使用するドライバは、VCSELの抵抗値(例えば、60Ω)との比較において非常に大きな出力インピーダンスRDRIVERを有してもよい。このようなドライバの場合には、RDRIVERとの並列状態にあるRVの値は、RVのみの値に略等価なものとなろう。従って、ROUTは、RVに略等価なものとなろう。式2を参照すれば、300fFのCOUT、60ΩのRV、及び高出力インピーダンスを有するドライバを有するシステムは、約8.8GHzの帯域幅を有することになろう。
VCSELドライバ301の低インピーダンス出力により、VCSELドライバ301は、高帯域幅(例えば、15GHz超)を実現することができよう。いくつかの実施形態においては、VCSELドライバ301の出力段におけるNMOS320のソースフォロワ構成は、低出力インピーダンスをVCSELドライバ301にもたらすことになろう。例えば、ソースフォロワとして構成されたNMOS320を有するVCSELドライバ301の出力インピーダンスは、その出力段として非常に大きな出力インピーダンスを有する利得段を内蔵するドライバとの比較において、小さなものとなろう。いくつかの実施形態においては、VCSELドライバ301の出力インピーダンスは、次式のように表現してもよく、
DRIVER=1/gm (式4)
ここで、gmは、ソースフォロワNMOS320のトランスコンダクタンス(相互コンダクタンス)であってもよい。NMOS320のトランスコンダクタンスは、NMOS320を製造する半導体プロセスと、NMOS320のチャネル長に対するNMOS320のチャネル幅の比と、の影響を受けることになろう。
いくつかの実施形態においては、NMOS320のgmは、VCSELドライバ301の望ましい出力インピーダンスを、且つ、従って、VCSELドライバ301及びVCSEL106の望ましい帯域幅を、実現するように設計してもよい。例えば、NMOS320は、1/gmがVCSEL106の抵抗値と等価なものとなるように(例えば、RDRIVER=RV=60Ω)、サイズ設定してもよい。式3においてRDRIVERにRVを代入することにより、RVの半分のROUTが結果的に得られることになる。式2を参照すれば、300fFのCOUT、60ΩのRV、及びRVのインピーダンスに等価な出力インピーダンスを有するVCSELドライバ301を有するシステムは、約17.7GHzの帯域幅を有することになろう。
ソースフォロワNMOS320は、VCSELドライバ301の出力インピーダンス(1/gm)が所与の帯域幅要件を満足するように、任意の適切なgmを有するべく構成してもよい。例えば、17.7GHz未満であるが8.8GHzを上回っている帯域幅要件(例えば、13.3GHz)を有するVCSELドライバ301の実施形態は、60Ωを上回る出力インピーダンス(例えば、120Ω)を有するように構成してもよい。このような実施形態の場合には、VCSELドライバ301の出力インピーダンスは、VCSEL106のインピーダンスを上回ってもよいが、その場合にも、VCSELドライバ301の出力インピーダンスは、VCSEL106がVOUTに結合された際のVOUTにおける合成インピーダンスに影響を与えるように十分に小さなものとなろう。更には、17.7GHzを上回る帯域幅要件を有するVCSELドライバ301の実施形態は、VCSELドライバ301及びVCSEL106が最大で25GHzの又は25GHz超の帯域幅(例えば、115GHz)を実現するように、60Ω未満の出力インピーダンス(例えば、5Ω)を有するように構成してもよい。
いくつかの実施形態においては、VCSEL106の抵抗値は、例示用の60Ωを上回ってもよく、或いは、これを下回ってもよい。更には、いくつかの実施形態においては、VCSELドライバ301の出力における静電容量は、例示用の300fFを上回ってもよく、或いは、これを下回ってもよい。式2及び式3に示されているように、このようなパラメータは、VCSELドライバ301がVCSEL106を変調してもよい帯域幅に影響を及ぼすことになろう。RV及びCOUTの値とは無関係に、VCSELドライバ301は、VCSELドライバ301の出力インピーダンスを最適化するために、且つ、従って、VCSELドライバ301及びVCSEL106によって実現される帯域幅を最適化するために、上述のようにソースフォロワ出力段を有するように構成してもよい。
いくつかの実施形態においては、VCSELドライバ301の出力をVCSEL106に結合することになる配線(例えば、接合配線、ピン接続、及び/又は印刷回路基板経路)は、寄生抵抗値をする場合がある。高周波数において、そのような配線は、抵抗性の送信ラインとして機能することになろう。VCSELドライバ301からVCSEL106までの電力の転送を極大化すると共に/又は反射を最小化するために、VCSELドライバ301は、VCSEL106の出力インピーダンスと整合しうる出力インピーダンスを有するように構成してもよい。例えば、VCSELドライバ301のいくつかの実施形態は、60Ωのインピーダンスを有するVCSEL106の実施形態と整合するべく、60Ωの出力インピーダンスを有するように構成してもよい。同様に、VCSELドライバ301の個々の実施形態は、50Ω及び70Ωのインピーダンスを有するVCSEL106の個々の実施形態と整合するべく、50Ω及び70Ωの出力インピーダンスを有するように構成してもよい。
VCSELドライバ301におけるNMOS320のソースフォロワ構成は、電力効率の優れた方式により、VCSELドライバ301の出力インピーダンスを最適化することになろう。図3に示されているように、出力段306は、VOUTからVB又はGNDへの別の抵抗性経路を通じて電流を駆動することなしに、電流をVCSEL106に供給してもよい。従って、VCSELドライバ301の低インピーダンス出力段は、VOUTからVB又はGNDに結合されたVCSELとの並列状態にあるVOUTからVB又はGNDへの低抵抗性経路を内蔵することにより、例えば、低出力インピーダンスと、従って、高帯域幅と、を実現するドライバよりも更に効率的な方式により、高帯域幅を実現することになろう。この結果、VCSELドライバ301は、高帯域幅を実現するのみならず、これを電力効率の優れた方式によって実行することになろう。
上述のように、VCSELドライバ301からVCSEL106に供給される変調電流IMは、High及びLow状態におけるVOUTにおける電圧スイングに左右されることになり、且つ、このVOUTにおける電圧スイングは、High及びLow状態におけるVXにおける電圧スイングによって左右されることになる。式1によれば、VXにおける電圧スイングは、抵抗器314と、電流源318によって供給される第1段バイアス電流と、によって左右されることになる。従って、以下の式に示されているように、望ましい変調電流は、VCSELドライバ301の1つ又は複数の設計パラメータに基づいて判定してもよい。例えば、出力段306の全体トランスコンダクタンスは、次式のように表現してもよく、
M/ΔVX=gm/(1+gm*RV) (式5)
式5に式1を代入し、且つ、IMについて解くことにより、結果は、次式のとおりであり、
M=(gm*R314*IS1)/(1+gm*RV) (式6)
従って、式6に示されているように、望ましい変調電流は、NMOS320のトランスコンダクタンス(gm)、VCSEL106の抵抗値(RV)、抵抗器314の抵抗値(R314)、及び電流源318の第1段バイアス電流(IS1)を含むパラメータに基づいて提供されることになる。
図4は、本開示の教示内容による例示用のVCSELドライバ401の回路図を示している。いくつかの実施形態においては、VCSELドライバ401は、図3を参照して上述したVCSELドライバ301と類似した第1段305を有してもよい。又、VCSELドライバ401は、出力段406を有してもよい。VCSELドライバ301の出力段306と同様に、出力段406は、NMOS320を含んでもよく、このNMOS320は、VXに結合されたゲートと、VOUTに結合されたソースと、を有するソースフォロワ構成において構成してもよい。従って、出力段406は、図3を参照して上述したように、電力効率の優れた方式により、高周波数においてVCSEL106を変調する能力を有する低インピーダンス出力を提供することになろう。更には、出力段406は、フィードバックループを含んでもよく、このフィードバックループは、ノードVXのDCバイアス電圧を設定するように構成してもよい。この結果、このフィードバックループは、高周波数IM電流の変調の中心となる平均VCSEL電流IAVGを制御してもよい。
いくつかの実施形態においては、出力段406は、VDDとソースフォロワNMOS320のドレインの間において結合された検出抵抗器452を含んでもよい。検出抵抗器452とソースフォロワNMOS320のドレインを結合しているノードは、VSENSEと呼ばれる場合がある。VSENSEにおける電圧は、出力段406の出力電流に対応するものであってもよく、且つ、基準電圧VREFと比較してもよい。例えば、増幅器450は、VREFに結合された正の入力端子と、VSENSEに結合された負の入力端子と、を有してもよい。VREFの電圧は、望ましい平均DC出力電流(IAVG)に応じて任意の適切なレベルにおいて設定してもよい。例えば、VDDは、実質的に1Vに等しくてもよく、且つ、検出抵抗器452は、50Ωの抵抗値を有してもよい。5mAの望ましい平均DC電流(IAVG)の場合に、検出抵抗器452に跨る電圧降下は、250mVとなろう。従って、VREFは、0.75Vに設定してもよい(即ち、1VのVDDから250mVだけ降下したもの)。増幅器450の出力は、NMOS320のゲートに結合された電流源を駆動してもよい。例えば、増幅器450は、NMOS454のゲートに結合された出力を有してもよく、NMOS454は、GNDに結合されたソースと、NMOS320のゲートに(即ち、ノードVX)に結合されたドレインと、を有してもよい。
いくつかの実施形態においては、第1段305は、出力段406内のフィードバックループが存在しない状態において、ノードVXにおけるDC電圧が、望ましい平均DC出力電流を上回る電流においてNMOS320を駆動することになるように、構成してもよい。相応して、出力段406のフィードバックループは、望ましいレベルにDC出力電流を低減させるべく介入してもよい。例えば、平均DC出力電流が望ましいDC出力電流を上回っている場合には、VREFがVSENSEを上回ることになり、増幅器は、NMOS454のゲートをHighに駆動することになり、且つ、NMOS454は、DC出力電流が望ましいレベル(例えば、5mA)に落ち着く時点まで、ソースフォロワNMOS320のゲート電圧を低減することになろう。
図5は、本開示の教示内容によるVCSELドライバ501の概略図を示している。図3を参照して上述したVCSELドライバ301と同様に、VCSELドライバ501は、出力段306を含んでもよく、この出力段306は、ソースフォロワ構成において構成されたNMOS320を含んでもよい。従って、VCSELドライバ501は、図3を参照して上述したように、パワー効率の優れた方式により、高周波数においてVCSEL106を変調する能力を有する低インピーダンス出力を含んでもよい。更には、VCSELドライバ501は、第1段505を含んでもよい。第1段505は、PMOS502と、NOMS504と、を含んでもよい。いくつかの実施形態においては、PMOS502及びNMOS504は、インバータとして構成してもよい。例えば、PMOS502は、シングルエンド型入力VINに結合されたゲートと、第1段出力ノードVXに結合されたドレインと、高電圧源VHIに結合されたソースと、を有してもよい。更には、NMOS504は、VINに結合されたゲートと、第1段出力ノードVXに結合されたドレインと、低電圧源VLOに結合されたソースと、を有してもよい。従って、VINがHighに駆動された際に、第1段5050は、VXをVLOの電圧に、即ち、Lowに、駆動することになる。そして、VINがLowに駆動された際には、第1段505は、VXをVHIの電圧に、即ち、Highに、駆動することになろう。又、本開示においては、第1段505は、入力段と呼ばれる場合がある。更には、PMOS502及びNMOS504によって形成されたインバータは、VHI及びVLO電源レールの間のDC利得を有することになるため、第1段505は、本明細書において利得段と呼ばれる場合もある。
HIの電圧は、VCSEL106の論理High状態においてソースフォロワNMOS320のゲートを駆動するべく任意の適切な電圧に設定してもよい。例えば、VHIの電圧は、VDDの電位と等価なものであってもよい。同様に、VLOの電圧は、VCSEL106の論理Low状態においてソースフォロワNMOS320のゲートを駆動するべく任意の適切な電圧に設定してもよい。例えば、VLOの電圧は、VBの電圧又はGNDと等価なものであってもよい。いくつかの実施形態においては、VHI及びVLOの個々の電位は、望ましい変調電流に対応する特定の電圧レベルに調節してもよい。例えば、VHIの電位は、NMOS320がそのゲートにおいてVHIの電圧によって駆動された際にNMOS320が電流源330と合成されてIHIの電流をVCSEL106に供給するようなレベルに調節してもよい。同様に、VLOの電位は、NMOS320がそのゲートにおいてVLOの電圧によって駆動された際にNMOS320が電流源330と合成されて望ましい低電流のILOをVCSEL106に供給するようなレベルに調節してもよい。VCSELドライバ301、401、及び501は、任意の適切な半導体プロセスにおいて実装してもよい。例えば、VCSELドライバ301、401、及び501は、相補型金属酸化物半導体プロセス(CMOS)、バイポーラプロセス、Bi−CMOSプロセス、又は任意のその他の適切なプロセスにおいて実装してもよい。VCSELドライバ301、401、及び501内の様々なトランジスタは、PMOS又はNMOSトランジスタとして示されているが、これらのトランジスタは、バイポーラプロセスによるPタイプのバイポーラ接合トランジスタ(PNPのBJT)及び/又はNタイプのバイポーラ接合トランジスタ(NPNのBJT)によって置換してもよい。例えば、いくつかの実施形態においては、ソースフォロワNMOS320は、NPNのBJTによって置換してもよい。このような実施形態においては、NPNのBJTは、NMOS320のソースフォロワ構成に類似したエミッタフォロワ構成において構成してもよい。エミッタフォロワは、ソースフォロワNMOSトランジスタの低出力インピーダンスに類似した低出力インピーダンスを有しているため、エミッタフォロワNMOSを実装した実施形態は、NMOSソースフォロワを実装したVCSELドライバ301の実施形態と類似した帯域幅及び効率を実現することになろう。VCSELドライバ301、401、及び501は、図3〜図5に示されているようにNMOSソースフォロワによって実装してもよいが、いくつかの実施形態においては、VCSELドライバ301、401、及び501は、PMOSソースフォロワを含んでもよい。例えば、いくつかの実施形態においては、VCSEL106は、高電位電圧源とVCSELドライバの出力の間において結合してもよい。このような実施形態の場合には、VCSELドライバの出力段は、GNDに結合されたドレインと、VCSELドライバの出力に結合されたソースと、を有するPMOSソースフォロワを含んでもよい。同様に、このようなVCSELドライバの出力段は、GNDに結合されたコレクタと、VCSELドライバの出力に結合されたエミッタと、を有するPNPのBJTエミッタフォロワを含んでもよい。PMOSソースフォロワ及びPNPのBJTエミッタフォロワは、低出力インピーダンスを有することになるため、このような実施形態は、NMOSソースフォロワを有するVCSEL301、401、及び501の実施形態と類似した帯域幅及び効率を実現することになろう。本開示は、当業者が想起しうる本明細書の例示用の実施形態に対するあらゆる変更、置換、変形、修正、及び変化を包含している。同様に、適宜、添付の請求項は、当業者が想起しうる本明細書の例示用の実施形態に対するあらゆる変更、置換、変形、修正、及び変化を包含している。更には、特定の機能を実行するように適合され、配列され、能力を有し、構成され、可能にされ、動作可能であり、又は動作する装置又はシステム或いは装置又はシステムのコンポーネントに対する添付の請求項における参照は、その装置、システム、又はコンポーネントがそのように適合され、配列され、能力を有し、構成され、可能にされ、動作可能であり、又は動作する限り、それらが又はその特定の機能が起動され、ターンオンされ、又はアンロックされるかどうかとは無関係に、その装置、システム、コンポーネントを包含している。
本明細書に記述されているすべての例及び条件に関する言語は、本発明の原理と、当技術分野の発展のために本発明者によって提供された概念と、を理解する際に読者を支援するべく教育的目的を意図したものであり、且つ、これらの具体的に記述されている例及び条件への限定を伴うものではないと解釈することを要し、且つ、本明細書におけるそれらの例の体系は、本発明の優等性又は劣等性の説明と関係するものではない。本発明の実施形態について詳細に上述したが、本発明の精神及び範囲を逸脱することなしに、これらに対して様々な変更、置換、及び修正を実施することができることを理解されたい。

Claims (20)

  1. 光トランスミッタであって、
    垂直キャビティ面発光レーザー(VCSEL)と、
    VCSELドライバと、
    を有し、
    前記VCSELドライバは、
    電圧信号を受信するように構成された入力段と、
    低インピーダンス出力段と、
    を有し、
    前記低インピーダンス出力段は、
    前記入力段に結合された入力と、
    前記VCSELに結合され、且つ、変調された出力電流を前記VCSELに供給するように構成された低インピーダンス出力と、
    を有する、光トランスミッタ。
  2. 前記出力段は、ソースフォロワ構成において金属酸化物半導体電界効果トランジスタ(MOSFET)を有する請求項1に記載の光トランスミッタ。
  3. 前記MOSFETは、NタイプのMOSFETである請求項2に記載の光トランスミッタ。
  4. 前記出力段は、エミッタフォロワ構成においてバイポーラ接合トランジスタ(BJT)を有する請求項1に記載の光トランスミッタ。
  5. 前記出力段の出力インピーダンスは、約5〜約120Ωの範囲である請求項1に記載の光トランスミッタ。
  6. 前記出力段の出力インピーダンスは、前記VCSELのインピーダンスと整合している請求項1に記載の光トランスミッタ。
  7. 前記VCSELドライバは、少なくとも約15GHzの周波数において前記出力電流を変調するように構成されている請求項1に記載の光トランスミッタ。
  8. 前記入力段は、制御された電圧範囲にわたって前記MOSFETのゲートにおける電圧を変調するように構成されている請求項2に記載の光トランスミッタ。
  9. 前記出力段は、変調された前記出力電流の平均電流を制御するように構成されたフィードバックループを更に有する請求項1に記載の光トランスミッタ。
  10. 前記入力段は、前記電圧信号を受信すると共に前記出力段の入力を駆動するように構成されたインバータを有する請求項1に記載の光トランスミッタ。
  11. 垂直キャビティ面発光レーザー(VCSEL)ドライバであって、
    電圧信号を受信するように構成された入力段と、
    低インピーダンス出力段と、
    を有し、
    前記低インピーダンス出力段は、
    前記入力段に結合された入力と、
    前記VCSELに結合された際に変調された出力電流をVCSELに供給するように構成された低インピーダンス出力と、
    を有する、VCSELドライバ。
  12. 前記出力段は、ソースフォロワ構成において金属酸化物半導体電界効果トランジスタ(MOSFET)を有する請求項11のVCSELドライバ。
  13. 前記MOSFETは、NタイプのMOSFETである請求項12に記載のVCSELドライバ。
  14. 前記出力段は、エミッタフォロワ構成においてバイポーラ接合トランジスタ(BJT)を有する請求項11に記載のVCSELドライバ。
  15. 前記BJTは、NタイプのBJTである請求項14に記載のVCSELドライバ。
  16. 前記出力段の出力インピーダンスは、約5〜約120Ωの範囲である請求項11に記載のVCSELドライバ。
  17. 前記VCSELドライバは、少なくとも約15GHzの周波数において前記出力電流を変調するように構成されている請求項11に記載のVCSELドライバ。
  18. 前記入力段は、制御された電圧範囲にわたって前記MOSFETのゲートにおける電圧を変調するように構成されている請求項12に記載のVCSELドライバ。
  19. 前記出力段は、変調された前記出力電流の平均電流を制御するように構成されたフィードバックループを更に有する請求項11に記載のVCSELドライバ。
  20. 前記入力段は、前記電圧信号を受信すると共に前記出力段の入力を駆動するように構成されたインバータを有する請求項11に記載のVCSELドライバ。
JP2014087213A 2013-06-20 2014-04-21 垂直キャビティ面発光レーザー用の電力効率の優れた高速ドライバ Active JP6405681B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/922,793 US9153936B2 (en) 2013-06-20 2013-06-20 Power-efficient high-speed driver for a vertical-cavity surface-emitting laser
US13/922,793 2013-06-20

Publications (2)

Publication Number Publication Date
JP2015005971A true JP2015005971A (ja) 2015-01-08
JP6405681B2 JP6405681B2 (ja) 2018-10-17

Family

ID=52110891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014087213A Active JP6405681B2 (ja) 2013-06-20 2014-04-21 垂直キャビティ面発光レーザー用の電力効率の優れた高速ドライバ

Country Status (2)

Country Link
US (1) US9153936B2 (ja)
JP (1) JP6405681B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6046288B1 (ja) * 2016-01-14 2016-12-14 株式会社東芝 電流出力回路及び光送信器
JP2018085708A (ja) * 2016-08-19 2018-05-31 富士通株式会社 周波数特性調整回路、これを用いた光送信モジュール、及び光トランシーバ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9641170B2 (en) 2015-04-03 2017-05-02 Cosemi Technologies, Inc. Pass device with boost voltage regulation and current gain for VCSEL driving applications
US10720996B2 (en) * 2016-08-19 2020-07-21 Fujitsu Limited Frequency characteristic adjustment circuit, optical transmission module using the same, and optical transceiver
KR102346718B1 (ko) * 2017-04-10 2021-12-31 에스케이하이닉스 주식회사 광 송수신기
WO2020056699A1 (en) * 2018-09-20 2020-03-26 Source Photonics (Chengdu) Company Limited Impedance matching circuit for optical transmitters and methods of making and using the same
EP3984129A1 (en) * 2019-06-25 2022-04-20 Huawei Technologies Co., Ltd. Amplifier with a converting circuit with reduced intrinsic time constant

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5170403A (en) * 1991-05-31 1992-12-08 Digital Equipment Corporation Modulation circuit for grayscale laser printing
WO1995005027A1 (fr) * 1993-08-10 1995-02-16 Fujitsu Limited Amplificateur a basse intensite de courant
JP2002367208A (ja) * 2001-06-08 2002-12-20 Sony Corp 半導体レーザー駆動回路
US20040047376A1 (en) * 2002-07-02 2004-03-11 Shapiro Philip D. System for controlling bias current in laser diodes with improved switching rates
JP2005236617A (ja) * 2004-02-19 2005-09-02 Asahi Kasei Microsystems Kk 信号処理回路
JP2005533379A (ja) * 2002-07-15 2005-11-04 トリクイント テクノロジー ホールディング カンパニー 多段レーザ・ドライバ回路を使用してレーザ・ダイオードを直接変調する方法と装置
JP2008112943A (ja) * 2006-10-31 2008-05-15 Sumitomo Electric Ind Ltd レーザダイオード駆動回路
JP2008219283A (ja) * 2007-03-01 2008-09-18 Matsushita Electric Ind Co Ltd 差動電流モード伝送回路
JP2010251429A (ja) * 2009-04-13 2010-11-04 Sony Corp レーザ駆動装置
US20100295617A1 (en) * 2009-04-23 2010-11-25 Texas Instruments Deutschland Gmbh Apparatus and method for driving an led
US20120213237A1 (en) * 2011-02-21 2012-08-23 Tyco Electronics Corporation driver for supplying modulated current to a laser

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10065838C2 (de) 2000-12-29 2003-06-26 Infineon Technologies Ag Elektronische Treiberschaltung für einen direkt modulierten Halbleiterlaser
US6980575B1 (en) 2001-03-08 2005-12-27 Cypress Semiconductor Corp. Topology on VCSEL driver
US8073030B2 (en) * 2009-07-23 2011-12-06 Sumitomo Electric Industries, Ltd. Shunt driver circuit for semiconductor laser diode

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5170403A (en) * 1991-05-31 1992-12-08 Digital Equipment Corporation Modulation circuit for grayscale laser printing
WO1995005027A1 (fr) * 1993-08-10 1995-02-16 Fujitsu Limited Amplificateur a basse intensite de courant
JP2002367208A (ja) * 2001-06-08 2002-12-20 Sony Corp 半導体レーザー駆動回路
US20040047376A1 (en) * 2002-07-02 2004-03-11 Shapiro Philip D. System for controlling bias current in laser diodes with improved switching rates
JP2005533379A (ja) * 2002-07-15 2005-11-04 トリクイント テクノロジー ホールディング カンパニー 多段レーザ・ドライバ回路を使用してレーザ・ダイオードを直接変調する方法と装置
JP2005236617A (ja) * 2004-02-19 2005-09-02 Asahi Kasei Microsystems Kk 信号処理回路
JP2008112943A (ja) * 2006-10-31 2008-05-15 Sumitomo Electric Ind Ltd レーザダイオード駆動回路
JP2008219283A (ja) * 2007-03-01 2008-09-18 Matsushita Electric Ind Co Ltd 差動電流モード伝送回路
JP2010251429A (ja) * 2009-04-13 2010-11-04 Sony Corp レーザ駆動装置
US20100295617A1 (en) * 2009-04-23 2010-11-25 Texas Instruments Deutschland Gmbh Apparatus and method for driving an led
US20120213237A1 (en) * 2011-02-21 2012-08-23 Tyco Electronics Corporation driver for supplying modulated current to a laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6046288B1 (ja) * 2016-01-14 2016-12-14 株式会社東芝 電流出力回路及び光送信器
US9749059B2 (en) 2016-01-14 2017-08-29 Kabushiki Kaisha Toshiba Current outputting circuit and optical transmitter
JP2018085708A (ja) * 2016-08-19 2018-05-31 富士通株式会社 周波数特性調整回路、これを用いた光送信モジュール、及び光トランシーバ

Also Published As

Publication number Publication date
US9153936B2 (en) 2015-10-06
US20140376582A1 (en) 2014-12-25
JP6405681B2 (ja) 2018-10-17

Similar Documents

Publication Publication Date Title
JP6405681B2 (ja) 垂直キャビティ面発光レーザー用の電力効率の優れた高速ドライバ
EP2112727B1 (en) DC coupled driver with active termination
US9746864B1 (en) Fast transient low drop-out voltage regulator for a voltage-mode driver
JP2016021458A (ja) 駆動回路及びそれを含む光通信装置
US8861560B2 (en) Vertical-cavity surface-emitting laser driver with improved output impedance
US20170025816A1 (en) Laser driver with variable resistor and variable capacitance element, and optical transmitter including the same
US9467310B2 (en) Wide common-mode range receiver
US20130121356A1 (en) Driver circuit and optical transmitter
JP2012243891A (ja) 半導体レーザー駆動回路及び半導体レーザー装置
JP2013020173A (ja) 外部変調型レーザ素子の駆動回路
US11894655B2 (en) H-bridge integrated laser driver
US9614351B1 (en) Low-power, direct-drive driver circuit for driving an externally modulated laser (EML), and methods
US8897652B2 (en) Optical transmission circuit and optical transmission/reception circuit module
JP6046288B1 (ja) 電流出力回路及び光送信器
US9673815B2 (en) Driver circuit
KR100810328B1 (ko) 전류 구동형 광원 구동 회로
JP5948817B2 (ja) 駆動回路、及び、光送信装置
JP6507980B2 (ja) 光受信回路、光トランシーバ、および光受信回路の制御方法
CN113872045B (zh) 光学器件驱动电路、阻抗匹配方法、光组件及电子设备
CN113972558B (zh) 光学器件驱动电路、光组件及电子设备
Vokic et al. 10 Gb/s 4-PAM ring modulator driver
Ito et al. 10Gb/s burst-mode driver circuit with on-chip bias switch for in-Vehicle optical networks
Li et al. An improved push-pull driver using 0.13 μm CMOS
Belfiore et al. 25 Gbit/s adaptive 3-tap FFE VCSEL driver in 28-nm CMOS for data center communications
US10511274B2 (en) Driver circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R150 Certificate of patent or registration of utility model

Ref document number: 6405681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150