JP2015002008A - Electrode including protective layer formed on active material layer - Google Patents

Electrode including protective layer formed on active material layer Download PDF

Info

Publication number
JP2015002008A
JP2015002008A JP2013124482A JP2013124482A JP2015002008A JP 2015002008 A JP2015002008 A JP 2015002008A JP 2013124482 A JP2013124482 A JP 2013124482A JP 2013124482 A JP2013124482 A JP 2013124482A JP 2015002008 A JP2015002008 A JP 2015002008A
Authority
JP
Japan
Prior art keywords
active material
battery
material layer
electrode
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013124482A
Other languages
Japanese (ja)
Inventor
英二 水谷
Eiji Mizutani
英二 水谷
英明 篠田
Hideaki Shinoda
英明 篠田
祐樹 杉本
Yuki Sugimoto
祐樹 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2013124482A priority Critical patent/JP2015002008A/en
Publication of JP2015002008A publication Critical patent/JP2015002008A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an electrode reducing resistance variation for each battery.SOLUTION: An electrode includes: a collector; an active material layer formed on the collector; and a protective layer formed on the active material layer and containing an inorganic compound and a binder at a mass ratio of 5:1-200:1. A surface roughness Raof the active material layer and a surface roughness Raof the protective layer satisfy a relation of Ra>Ra.

Description

本発明は活物質層上に形成された保護層を具備する電極に関する。   The present invention relates to an electrode including a protective layer formed on an active material layer.

一般に、電池は正極及び負極の電極を有する。そして、電池の各電極は、電極に電流を流すための集電体、及び、集電体上に形成された活物質を含む活物質層を有する。そして、近年、電池の用途の拡大に伴い、電池を構成する集電体、活物質層などについての研究が盛んに行われている。また、電池の電圧、容量及び寿命などを増加させるために、正極及び負極を一対有する電池を一単位として、これを直列や並列に複数配置し、複数単位の電池とすることが行われている。   Generally, a battery has a positive electrode and a negative electrode. Each electrode of the battery includes a current collector for passing a current through the electrode, and an active material layer including an active material formed on the current collector. In recent years, with the expansion of battery applications, research on current collectors, active material layers, and the like constituting batteries has been actively conducted. Moreover, in order to increase the voltage, capacity, life, etc. of a battery, a battery having a pair of a positive electrode and a negative electrode is used as a unit, and a plurality of batteries are arranged in series or in parallel to form a battery of a plurality of units. .

ここで、所望の規格となるように電池を設計したとしても、電池毎に大きな抵抗バラツキが生ずるのであれば、規格を逸脱する電池が製造される恐れがある。また、複数単位の電池とした場合には、規格を大きく逸脱するものが製造される恐れがある。すなわち、電池毎に大きな抵抗バラツキが生ずることは好ましくない。   Here, even if the battery is designed to have a desired standard, if a large resistance variation occurs between the batteries, a battery that deviates from the standard may be manufactured. In addition, when a battery of a plurality of units is used, a battery that greatly deviates from the standard may be manufactured. That is, it is not preferable that a large resistance variation occurs between the batteries.

近年、電池の研究に関し、抵抗バラツキを低減することに着目した研究が報告され始めた。例えば、特許文献1には、集電体端子の製造方法を工夫することにより、抵抗バラツキの小さい電池を製造することが開示されている。特許文献2には、集電体端子の形状を工夫した、抵抗バラツキの小さい電池が開示されている。   In recent years, research on batteries has been reported focusing on reducing resistance variation. For example, Patent Document 1 discloses that a battery with small resistance variation is manufactured by devising a method of manufacturing a current collector terminal. Patent Document 2 discloses a battery having a small resistance variation in which the shape of the current collector terminal is devised.

特開2011−170972号公報JP 2011-170972 A 特開2011−159518号公報JP 2011-159518 A

特許文献1及び特許文献2に開示の技術は、電池の抵抗バラツキを低減させるための1方法である。しかし、電池の抵抗バラツキには、集電体端子以外の種々の原因があることが想定され、さらなる抵抗バラツキ低減の余地がある。   The techniques disclosed in Patent Document 1 and Patent Document 2 are one method for reducing the resistance variation of the battery. However, it is assumed that there are various causes other than the current collector terminal in the resistance variation of the battery, and there is room for further resistance variation reduction.

本発明はかかる事情に鑑みて、電池を構成する電極に着目して為されたものであり、電池毎の抵抗バラツキを低減する電極を提供することを目的とする。   In view of such circumstances, the present invention has been made paying attention to an electrode constituting a battery, and an object of the present invention is to provide an electrode that reduces resistance variation for each battery.

本発明者は数多くの試行錯誤を重ねながら鋭意検討を行った。そして、思いがけず本発明者は、表面粗さRaの活物質層上に、Raよりも小さい表面粗さRaの保護層を設けた電極を用いた電池が、電池毎の抵抗バラツキを低減することを見出し、本発明を完成させるに至った。 The present inventor has intensively studied through many trials and errors. Unexpectedly, the present inventor has found that a battery using an electrode in which a protective layer having a surface roughness Ra 2 smaller than Ra 1 is provided on an active material layer having a surface roughness Ra 1 causes resistance variation for each battery. As a result, the present invention has been completed.

本発明の電極は、集電体と、前記集電体上に形成された活物質層と、前記活物質層上に形成され、無機化合物及び結着剤を質量比5:1〜200:1で含む保護層とを具備し、前記活物質層の表面粗さRaと前記保護層の表面粗さRaがRa>Raであることを特徴とする。 The electrode of the present invention is formed on a current collector, an active material layer formed on the current collector, and the active material layer, and an inorganic compound and a binder are mixed in a mass ratio of 5: 1 to 200: 1. The surface roughness Ra 1 of the active material layer and the surface roughness Ra 2 of the protective layer are Ra 1 > Ra 2 .

本発明の電極を用いた電池につき、電池毎の抵抗バラツキが低減される。   About the battery using the electrode of this invention, the resistance variation for every battery is reduced.

本発明の実施例1の電極表面(保護層表面)の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the electrode surface (protective layer surface) of Example 1 of this invention. 比較例1の電極表面(活物質層表面)の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the electrode surface (active material layer surface) of Comparative Example 1. FIG.

以下に、本発明を実施するための形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a〜b」は、下限aおよび上限bをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに数値範囲内から任意に選択した数値を上限、下限の数値とすることができる。   Below, the form for implementing this invention is demonstrated. Unless otherwise specified, the numerical range “ab” described herein includes the lower limit “a” and the upper limit “b”. The numerical range can be configured by arbitrarily combining these upper limit value and lower limit value and the numerical values listed in the examples. Furthermore, numerical values arbitrarily selected from the numerical value range can be used as upper and lower numerical values.

本発明の電極は、集電体と、前記集電体上に形成された活物質層と、前記活物質層上に形成され、無機化合物及び結着剤を質量比5:1〜200:1で含む保護層とを具備し、前記活物質層の表面粗さRaと前記保護層の表面粗さRaがRa>Raであることを特徴とする。 The electrode of the present invention is formed on a current collector, an active material layer formed on the current collector, and the active material layer, and an inorganic compound and a binder are mixed in a mass ratio of 5: 1 to 200: 1. The surface roughness Ra 1 of the active material layer and the surface roughness Ra 2 of the protective layer are Ra 1 > Ra 2 .

本発明の電極は種々の電池に用いることができる。電池の種類に関し、集電体と活物質層を具備する電池であれば、その種類について制限されない。本発明の電極は、マンガン電池、アルカリマンガン電池、ニッケル電池、酸化銀電池、水銀電池、リチウム電池などの一次電池の電極として用いても良いし、リチウムイオン二次電池、ニッケル水素充電池、ニッケルカドミウム蓄電池などの二次電池の電極として用いても良い。   The electrode of the present invention can be used for various batteries. With respect to the type of battery, the type of battery is not limited as long as the battery includes a current collector and an active material layer. The electrode of the present invention may be used as an electrode of a primary battery such as a manganese battery, an alkaline manganese battery, a nickel battery, a silver oxide battery, a mercury battery, or a lithium battery, or a lithium ion secondary battery, a nickel metal hydride battery, nickel You may use as an electrode of secondary batteries, such as a cadmium storage battery.

以下、本発明の電極が用いられる電池の種類がリチウムイオン二次電池の場合について主に説明するが、本発明の電極はリチウムイオン二次電池に使用されることに限定されるものでない。   Hereinafter, although the case where the kind of battery in which the electrode of the present invention is used is a lithium ion secondary battery will be mainly described, the electrode of the present invention is not limited to being used for a lithium ion secondary battery.

集電体は、電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。集電体の材料としては、銀、銅、金、アルミニウム、マグネシウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、又はステンレス鋼などの金属材料や、黒鉛等の炭素材料を挙げることができる。特に、電気伝導性、加工性、価格の面から、集電体の材料としてはアルミニウム又は銅が好ましい。集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが10μm〜100μmの範囲内であることが好ましい。   A current collector refers to a chemically inert electronic high conductor that continues to pass current through an electrode during battery discharge or charge. As a material of the current collector, at least one selected from silver, copper, gold, aluminum, magnesium, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, or Examples thereof include metal materials such as stainless steel and carbon materials such as graphite. In particular, aluminum or copper is preferable as the current collector material from the viewpoints of electrical conductivity, workability, and cost. The current collector can take the form of a foil, a sheet, a film, a linear shape, a rod shape, a mesh, or the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector. When the current collector is in the form of foil, sheet or film, the thickness is preferably in the range of 10 μm to 100 μm.

活物質層は、集電体上に形成され、活物質を含む層である。   The active material layer is a layer formed on the current collector and containing the active material.

活物質は、電子を送り出す酸化反応及び/又は電子を受け取る還元反応を行う物質である。また、活物質は、上記酸化還元反応に伴い、電解液にイオンを放出する物質又は電解液からイオンを受け取る物質であるとも言える。例えば、リチウムイオン二次電池の活物質とは、リチウムイオンを吸蔵及び放出し得る物質である。正極で用いられる活物質を正極活物質といい、負極で用いられる活物質を負極活物質という。   The active material is a substance that performs an oxidation reaction for sending electrons and / or a reduction reaction for receiving electrons. In addition, it can be said that the active material is a substance that releases ions to the electrolytic solution or a substance that receives ions from the electrolytic solution in accordance with the oxidation-reduction reaction. For example, the active material of a lithium ion secondary battery is a substance that can occlude and release lithium ions. An active material used in the positive electrode is referred to as a positive electrode active material, and an active material used in the negative electrode is referred to as a negative electrode active material.

正極活物質としては、各電池で採用される公知のものを用いれば良い。例えば、リチウムイオン二次電池の正極活物質としては、LiNiCoMn(0.2≦a≦1、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Alから選ばれる少なくとも1の元素、1.7≦f≦2.1)、LiMnO、LiMnO、LiFePO、LiFeSOなどのリチウム含有金属酸化物を挙げることができる。また、リチウムイオン二次電池の正極活物質として、LiMPO、LiMVO又はLiMSiO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種から選択される)で表されるポリアニオン系化合物を挙げることができる。 As the positive electrode active material, a known material employed in each battery may be used. For example, as the positive electrode active material of a lithium ion secondary battery, Li a Ni b Co c Mn d D e O f (0.2 ≦ a ≦ 1, b + c + d + e = 1,0 ≦ e <1, D is Li, Fe , Cr, Cu, Zn, Ca, Mg, S, Si, Na, K, Al, 1.7 ≦ f ≦ 2.1), Li 2 MnO 2 , Li 2 MnO 3 , LiFePO 4 , and lithium-containing metal oxides such as Li 2 FeSO 4 . In addition, the positive electrode active material of the lithium ion secondary battery is represented by LiMPO 4 , LiMVO 4 or Li 2 MSiO 4 (wherein M is selected from at least one of Co, Ni, Mn, and Fe). A polyanionic compound can be mentioned.

リチウムイオン二次電池の正極活物質としては、高容量である点から、層状岩塩構造のLiNiCoMn(0.2≦a≦1、b+c+d+e=1、0<b<1、0<c<1、0<d<1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Alから選ばれる少なくとも1の元素、1.7≦f≦2.1)が好ましく、このうち、0<b<70/100、0<c<50/100、10/100<d<1の範囲内のものが好ましく、1/3≦b≦50/100、20/100≦c≦1/3、1/3≦d<1の範囲内のものがより好ましく、b=1/3、c=1/3、d=1/3、または、b=50/100、c=20/100、d=30/100のものが特に好ましい。 As the positive electrode active material of the lithium ion secondary batteries, from the viewpoint of high capacity, Li a Ni b Co c Mn d D e O f (0.2 ≦ a ≦ 1, b + c + d + e = 1,0 of the layered rock-salt structure < b <1, 0 <c <1, 0 <d <1, 0 ≦ e <1, D is selected from Li, Fe, Cr, Cu, Zn, Ca, Mg, S, Si, Na, K, Al Preferably at least one element, 1.7 ≦ f ≦ 2.1), of which 0 <b <70/100, 0 <c <50/100, 10/100 <d <1 Preferably, those within the ranges of 1/3 ≦ b ≦ 50/100, 20/100 ≦ c ≦ 1/3, 1/3 ≦ d <1, more preferably b = 1/3, c = 1/3, Particularly preferred are those where d = 1/3, or b = 50/100, c = 20/100, and d = 30/100.

負極活物質としては、各電池で採用される公知のものを用いれば良い。例えば、リチウムイオン二次電池の負極活物質としては、リチウムを吸蔵及び放出可能な炭素系材料、リチウムと合金化可能な元素、リチウムと合金化可能な元素を有する化合物、あるいは高分子材料を例示することができる。炭素系材料としては、難黒鉛化性炭素、人造黒鉛、天然黒鉛、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭あるいはカーボンブラック類を例示できる。ここで、有機高分子化合物焼成体とは、フェノール類やフラン類などの高分子材料を適当な温度で焼成して炭素化したものをいう。リチウムと合金化可能な元素としては、具体的にNa、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biを例示でき、特に、SiまたはSnが好ましい。リチウムと合金化可能な元素を有する化合物としては、具体的にZnLiAl、AlSb、SiB、SiB、MgSi、MgSn、NiSi、TiSi、MoSi、 CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、SnO(0<w≦2)、SnSiO、LiSiO あるいはLiSnOを例示でき、特に、SiO(0.5≦x≦1.5)が好ましい。また、リチウムと合金化反応可能な元素を有する化合物として、スズ合金(Cu−Sn合金、Co−Sn合金等)を例示できる。高分子材料としては、具体的にポリアセチレン、ポリピロールを例示できる。 As the negative electrode active material, a known material employed in each battery may be used. For example, as a negative electrode active material of a lithium ion secondary battery, a carbon-based material that can occlude and release lithium, an element that can be alloyed with lithium, a compound that has an element that can be alloyed with lithium, or a polymer material is exemplified. can do. Examples of the carbon-based material include non-graphitizable carbon, artificial graphite, natural graphite, cokes, graphites, glassy carbons, organic polymer compound fired bodies, carbon fibers, activated carbon, and carbon blacks. Here, the organic polymer compound fired body refers to a material obtained by firing and carbonizing a polymer material such as phenols and furans at an appropriate temperature. Specific elements that can be alloyed with lithium include Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si. , Ge, Sn, Pb, Sb, Bi can be exemplified, and Si or Sn is particularly preferable. Specific examples of compounds having elements that can be alloyed with lithium include ZnLiAl, AlSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2, CrSi 2, Cu 5 Si, FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO v (0 <v ≦ 2), SnO w (0 <w ≦ 2), SnSiO 3 , LiSiO 2 or LiSnO, and SiO x (0.5 ≦ x ≦ 1.5) is particularly preferable. Moreover, tin compounds (Cu-Sn alloy, Co-Sn alloy, etc.) can be illustrated as a compound which has an element which can be alloyed with lithium. Specific examples of the polymer material include polyacetylene and polypyrrole.

活物質の形状には特に制限は無い。活物質の凝集体の平均粒子径は1〜100μmの範囲内が好ましく、2〜50μmの範囲内がより好ましく、5〜30μmの範囲内が特に好ましい。なお、平均粒子径は、レーザー回折式粒度分布測定装置などの一般的な粒度分布測定装置にて測定すればよい。   There is no restriction | limiting in particular in the shape of an active material. The average particle diameter of the active material aggregate is preferably in the range of 1 to 100 μm, more preferably in the range of 2 to 50 μm, and particularly preferably in the range of 5 to 30 μm. In addition, what is necessary is just to measure an average particle diameter with general particle size distribution measuring apparatuses, such as a laser diffraction type particle size distribution measuring apparatus.

活物質層は必要に応じて結着剤及び/又は導電助剤を含む。   The active material layer includes a binder and / or a conductive aid as necessary.

結着剤は活物質を集電体の表面に繋ぎ止める役割を果たすものである。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、カルボキシメチルセルロース、メチルセルロース、スチレンブタジエンゴム、アルコキシシリル基含有樹脂などの公知のものを用いることができる。これらの結着剤を単独または二種以上組み合わせて活物質層に添加することができる。結着剤の使用量については特に制限はないが、活物質100質量部に対して結着剤1〜50質量部の範囲が好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。   The binder plays a role of binding the active material to the surface of the current collector. As binders, fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, carboxymethylcellulose, methylcellulose and styrene-butadiene rubber Well-known materials such as alkoxysilyl group-containing resins can be used. These binders can be added to the active material layer alone or in combination of two or more. Although there is no restriction | limiting in particular about the usage-amount of a binder, The range of 1-50 mass parts of binders with respect to 100 mass parts of active materials is preferable. This is because when the amount of the binder is too small, the moldability of the electrode is lowered, and when the amount of the binder is too large, the energy density of the electrode is lowered.

導電助剤は導電性を高めるために添加される。導電助剤としては、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック、ケッチェンブラック(登録商標)、気相法炭素繊維(Vapor Grown Carbon Fiber)が例示される。これらの導電助剤を単独または二種以上組み合わせて活物質層に添加することができる。導電助剤の使用量については特に制限はないが、例えば、活物質100質量部に対して導電助剤1〜30質量部とすることができる。   A conductive additive is added to increase conductivity. Examples of the conductive assistant include carbon black, graphite, acetylene black, ketjen black (registered trademark), and vapor grown carbon fiber (Vapor Grown Carbon Fiber) which are carbonaceous fine particles. These conductive assistants can be added to the active material layer alone or in combination of two or more. Although there is no restriction | limiting in particular about the usage-amount of a conductive support agent, For example, it can be set as 1-30 mass parts of conductive support agents with respect to 100 mass parts of active materials.

集電体の表面に活物質層を形成するには、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に活物質を直接塗布すればよい。具体的には、活物質、並びに必要に応じて結着剤及び/又は導電助剤を含む活物質層形成用組成物を調製し、この組成物に適当な溶媒を加えてペースト状の液とする。あらかじめ結着剤を溶媒に溶解させた溶液又は分散させた懸濁液を用いても良い。上記溶媒としては、N−メチル−2−ピロリドン、メタノール、エタノール、メチルイソブチルケトン、水を例示できる。上記ペースト状の液を集電体の表面に塗布後、乾燥する。乾燥は、常圧条件で行っても良いし、真空乾燥機を用いた減圧条件下で行っても良い。乾燥温度は適宜設定すればよく、上記溶媒の沸点以上の温度が好ましい。乾燥時間は塗布量及び乾燥温度に応じ適宜設定すればよい。活物質層の密度を高めるべく、活物質層を形成させた乾燥後の集電体に対し、圧縮工程を加えても良い。   In order to form an active material layer on the surface of the current collector, the surface of the current collector can be formed using a conventionally known method such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method. The active material may be directly applied to the surface. Specifically, a composition for forming an active material layer containing an active material and, if necessary, a binder and / or a conductive aid is prepared, and an appropriate solvent is added to the composition to obtain a paste-like liquid. To do. A solution in which a binder is dissolved in a solvent in advance or a dispersed suspension may be used. Examples of the solvent include N-methyl-2-pyrrolidone, methanol, ethanol, methyl isobutyl ketone, and water. The paste-like liquid is applied to the surface of the current collector and then dried. Drying may be performed under normal pressure conditions or under reduced pressure conditions using a vacuum dryer. What is necessary is just to set drying temperature suitably, and the temperature beyond the boiling point of the said solvent is preferable. What is necessary is just to set drying time suitably according to an application quantity and drying temperature. In order to increase the density of the active material layer, a compression step may be added to the dried current collector on which the active material layer is formed.

保護層は、活物質層上に形成され、無機化合物及び結着剤を質量比5:1〜200:1で含む層である。保護層は、本発明の電極を用いて電池とした際に、活物質層と電解液、又は活物質層とセパレータとの直接の接触を低減し、活物質層を保護するものである。保護層は、正極活物質層上に形成されていても良いし、負極活物質層上に形成されていても良い。また、保護層は正負の両極活物質層上に形成されていても良い。   The protective layer is a layer formed on the active material layer and containing an inorganic compound and a binder at a mass ratio of 5: 1 to 200: 1. The protective layer protects the active material layer by reducing direct contact between the active material layer and the electrolytic solution or between the active material layer and the separator when a battery is formed using the electrode of the present invention. The protective layer may be formed on the positive electrode active material layer or may be formed on the negative electrode active material layer. The protective layer may be formed on the positive and negative bipolar active material layers.

無機化合物としては、Al、SiO、TiO、ZrO、MgO、SiC、AlN、BN、CaCO、MgCO、BaCO、タルク、マイカ、カオリナイト、CaSO、MgSO、BaSO、CaO、ZnO、ゼオライトを例示することができる。保護層には、これらの無機化合物から選択される1種若しくは複数を用いることができる。 Inorganic compounds include Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2 , MgO, SiC, AlN, BN, CaCO 3 , MgCO 3 , BaCO 3 , talc, mica, kaolinite, CaSO 4 , MgSO 4 , BaSO 4 , CaO, ZnO and zeolite can be exemplified. In the protective layer, one or more selected from these inorganic compounds can be used.

本発明の電極においては、活物質層の表面粗さRaと保護層の表面粗さRaがRa>Raの関係を有することから、無機化合物の平均粒子径としては、活物質層で用いられる活物質の平均粒子径よりも小さいことが求められる。無機化合物の好ましい平均粒子径について示すと、0.1〜10μmのものが好ましく、0.2〜5μmのものがより好ましく、0.4〜3μmのものが特に好ましい。平均粒子径が小さすぎると、保護層が密になりすぎる場合が想定される。その結果として、正極及び負極間のイオンの移動経路の距離が増加すること、及び移動経路が閉塞されて移動経路自体の数が減少することになり、電池の抵抗が増加する恐れがある。なお、上述したように、平均粒子径は、レーザー回折式粒度分布測定装置などの一般的な粒度分布測定装置にて測定すればよい。 In the electrode of the present invention, since the surface roughness Ra 2 of the surface roughness Ra 1 and the protective layer of the active material layer has a relation of Ra 1> Ra 2, the average particle diameter of the inorganic compound, the active material layer Is required to be smaller than the average particle size of the active material used. When it shows about the preferable average particle diameter of an inorganic compound, a 0.1-10 micrometers thing is preferable, a 0.2-5 micrometers thing is more preferable, and a 0.4-3 micrometers thing is especially preferable. When the average particle diameter is too small, a case where the protective layer becomes too dense is assumed. As a result, the distance of the ion movement path between the positive electrode and the negative electrode is increased, and the movement path is blocked to decrease the number of movement paths themselves, which may increase the resistance of the battery. As described above, the average particle size may be measured with a general particle size distribution measuring device such as a laser diffraction particle size distribution measuring device.

保護層に用いる結着剤としては、活物質層についての説明で述べた結着剤を単独で採用又は複数を併用すれば良い。保護層に用いる結着剤としては、電気化学的な安定性などの面から、ポリフッ化ビニリデンが特に好ましい。   As the binder used for the protective layer, the binder described in the description of the active material layer may be employed alone or in combination. As the binder used for the protective layer, polyvinylidene fluoride is particularly preferable from the viewpoint of electrochemical stability.

本発明の保護層は、無機化合物及び結着剤を質量比5:1〜200:1で含む。無機化合物及び結着剤の質量比は、10:1〜100:1の範囲内がより好ましく、15:1〜50:1の範囲内がさらに好ましく、20:1〜30:1の範囲内が特に好ましい。保護層において結着剤の配合量が少なすぎると、活物質層に対する保護層の結着力の低下、又は、保護層中の無機化合物間の結着力の低下による保護層の崩壊の恐れがあるので好ましくない。また、保護層において結着剤の配合量が少なすぎると、保護層全体の柔軟性が失われ、電極に加わる圧力で保護層が割れる恐れがあるので好ましくない。保護層において結着剤の配合量が多すぎると、保護層自体の硬度が低下する懸念があるし、正極及び負極間のイオンの移動経路の距離が増加すること、及び移動経路が閉塞されて移動経路自体の数が減少することも懸念されるので好ましくない。   The protective layer of the present invention contains an inorganic compound and a binder at a mass ratio of 5: 1 to 200: 1. The mass ratio of the inorganic compound and the binder is more preferably within the range of 10: 1 to 100: 1, more preferably within the range of 15: 1 to 50: 1, and within the range of 20: 1 to 30: 1. Particularly preferred. If the blending amount of the binder in the protective layer is too small, the protective layer may lose its binding force to the active material layer, or the protective layer may collapse due to a decrease in the binding force between inorganic compounds in the protective layer. It is not preferable. Further, if the amount of the binder in the protective layer is too small, the flexibility of the entire protective layer is lost, and the protective layer may be broken by the pressure applied to the electrode, which is not preferable. If the compounding amount of the binder in the protective layer is too large, there is a concern that the hardness of the protective layer itself is lowered, the distance of the ion movement path between the positive electrode and the negative electrode is increased, and the movement path is blocked. This is not preferable because there is a concern that the number of movement paths themselves may decrease.

保護層の厚みは特に制限が無いが、0.1〜10μmが好ましく、0.5〜8μmがより好ましく、1〜7μmが特に好ましい。   Although there is no restriction | limiting in particular in the thickness of a protective layer, 0.1-10 micrometers is preferable, 0.5-8 micrometers is more preferable, and 1-7 micrometers is especially preferable.

本発明の電極は、活物質層の表面粗さRaと保護層の表面粗さRaがRa>Raであることを特徴とする。ここで、各表面粗さRaは、JIS B 0601に準じ、レーザー顕微鏡にて非接触方式で試料における長さl(エル)の直線上の粗さを測定したものである。詳細には、表面粗さRaは、レーザー顕微鏡にて試料における長さlの直線上の任意の位置xにおける高さZ(x)を計測し、基準長さにおけるZ(x)の絶対値の平均を算出したものであって、下記の式で表現することができる。 The electrode of the present invention, the surface roughness Ra 2 of the surface roughness Ra 1 and the protective layer of the active material layer is characterized by a Ra 1> Ra 2. Here, each surface roughness Ra is obtained by measuring the roughness on a straight line of a length l (el) in a sample by a non-contact method with a laser microscope in accordance with JIS B 0601. Specifically, the surface roughness Ra is obtained by measuring a height Z (x) at an arbitrary position x on a straight line having a length l in a sample with a laser microscope, and calculating an absolute value of Z (x) at a reference length. The average is calculated and can be expressed by the following equation.

本発明の電極の製造方法に関し、活物質層上に保護層を設けるには、例えば、保護層の構成成分を溶媒に分散させて保護層形成用組成物を調製する工程、及び、当該保護層形成用組成物を活物質層上に塗布する工程を実施した後、乾燥工程を実施すれば良い。保護層形成用組成物における保護層の構成成分の配合量は10〜50質量%の範囲内が好ましい。上記保護層形成用組成物の調製に用いる溶媒としては、無機化合物が溶解しないものが好ましく、例えば、N−メチル−2−ピロリドン、メタノール、エタノール、メチルイソブチルケトン、水から適宜選択すればよい。塗布工程では、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いればよい。乾燥工程は、常圧条件で行っても良いし、真空乾燥機を用いた減圧条件下で行っても良い。乾燥温度は結着剤が分解しない範囲内で適宜設定すればよく、上記溶媒の沸点以上の温度が好ましい。乾燥時間は塗布量及び乾燥温度に応じ適宜設定すればよい。   In order to provide a protective layer on an active material layer in the method for producing an electrode of the present invention, for example, a step of preparing a protective layer forming composition by dispersing constituent components of the protective layer in a solvent, and the protective layer What is necessary is just to implement a drying process, after implementing the process of apply | coating the composition for formation on an active material layer. The blending amount of the constituent components of the protective layer in the protective layer forming composition is preferably within the range of 10 to 50% by mass. The solvent used for the preparation of the composition for forming a protective layer is preferably a solvent that does not dissolve the inorganic compound, and may be appropriately selected from, for example, N-methyl-2-pyrrolidone, methanol, ethanol, methyl isobutyl ketone, and water. In the coating process, a conventionally known method such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method may be used. The drying step may be performed under normal pressure conditions or under reduced pressure conditions using a vacuum dryer. The drying temperature may be appropriately set within a range where the binder does not decompose, and a temperature equal to or higher than the boiling point of the solvent is preferable. What is necessary is just to set drying time suitably according to an application quantity and drying temperature.

本発明の電極はリチウムイオン二次電池を構成できる。本発明のリチウムイオン二次電池は、電極に加えて、セパレータ及び電解液を有する。   The electrode of the present invention can constitute a lithium ion secondary battery. The lithium ion secondary battery of this invention has a separator and electrolyte solution in addition to an electrode.

セパレータは、正極と負極とを隔離し、両極の接触による電流の短絡を防止しつつ、イオンを通過させるものである。セパレータとしては、各電池で採用される公知のものを用いれば良く、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリエステル、ポリアミドなどの合成樹脂を1種又は複数用いた多孔質膜を例示できる。セパレータは、単一の材料を用いた単層構造でも良いし、複数の材料の層を重ねた積層構造でも良い。セパレータの厚みは特に制限されないが、5μm〜100μmの範囲が好ましく、10μm〜50μmの範囲がより好ましく、20μm〜30μmの範囲が特に好ましい。   The separator separates the positive electrode and the negative electrode, and allows ions to pass through while preventing a short circuit of current due to contact between the two electrodes. As the separator, a known one used in each battery may be used. For example, a porous film using one or more synthetic resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyester, and polyamide can be exemplified. The separator may have a single-layer structure using a single material or a stacked structure in which layers of a plurality of materials are stacked. The thickness of the separator is not particularly limited, but is preferably in the range of 5 μm to 100 μm, more preferably in the range of 10 μm to 50 μm, and particularly preferably in the range of 20 μm to 30 μm.

電解液は溶媒と該溶媒に溶解された電解質とを含む液である。電解液としては、各電池で採用される公知のものを用いれば良い。   The electrolytic solution is a solution containing a solvent and an electrolyte dissolved in the solvent. As the electrolytic solution, a known one used in each battery may be used.

リチウムイオン二次電池の電解液に用いられる溶媒としては、環状エステル類、鎖状エステル類、エーテル類等の非水系溶媒を挙げることができる。環状エステル類としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2−メチル−ガンマブチロラクトン、アセチル−ガンマブチロラクトン、ガンマバレロラクトンを例示できる。鎖状エステル類としては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステルを例示できる。エーテル類としては、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジブトキシエタンを例示できる。電解液の溶媒として、上述のものを複数併用してもよい。特に、エチレンカーボネート、メチルエチルカーボネート、ジメチルカーボネートの3種を併用するのが好ましい。   Examples of the solvent used for the electrolyte solution of the lithium ion secondary battery include non-aqueous solvents such as cyclic esters, chain esters, and ethers. Examples of cyclic esters include ethylene carbonate, propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone. Examples of chain esters include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester. Examples of ethers include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane. A plurality of the above-described solvents may be used in combination as the solvent for the electrolytic solution. In particular, it is preferable to use three types of ethylene carbonate, methyl ethyl carbonate, and dimethyl carbonate in combination.

リチウムイオン二次電池の電解質としては、LiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(CFSO等のリチウム塩を挙げることができる。電解液中の電解質の濃度は、0.5〜1.7mol/Lの範囲が好ましい。 Examples of the electrolyte of the lithium ion secondary battery include lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2 . The concentration of the electrolyte in the electrolytic solution is preferably in the range of 0.5 to 1.7 mol / L.

リチウムイオン二次電池の形状は特に限定されるものでなく、円筒型、積層型、コイン型、ラミネート型等、種々の形状を採用することができる。   The shape of the lithium ion secondary battery is not particularly limited, and various shapes such as a cylindrical shape, a laminated shape, a coin shape, and a laminated shape can be employed.

リチウムイオン二次電池は、車両に搭載してもよい。車両は、その動力源の全部あるいは一部にリチウムイオン二次電池による電気エネルギーを使用している車両であればよく、たとえば、電気車両、ハイブリッド車両などであるとよい。車両にリチウムイオン二次電池を搭載する場合には、リチウムイオン二次電池を複数直列に接続して組電池とするとよい。リチウムイオン二次電池は、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。   The lithium ion secondary battery may be mounted on a vehicle. The vehicle may be a vehicle that uses electric energy from a lithium ion secondary battery for all or a part of its power source, and may be, for example, an electric vehicle or a hybrid vehicle. When a lithium ion secondary battery is mounted on a vehicle, a plurality of lithium ion secondary batteries may be connected in series to form an assembled battery. Examples of the lithium ion secondary battery include various home electric appliances, office equipment, industrial equipment, and the like driven by batteries, such as personal computers and portable communication devices, in addition to vehicles.

以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.

以下に実施例を示し、本発明をより具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited to a following example.

(実施例1)
本発明の電極を以下のとおり製造した。
Example 1
The electrode of the present invention was manufactured as follows.

平均粒子径0.5μmのAl96質量部及びポリフッ化ビニリデン4質量部を混合し、混合物を調製した。当該混合物にN−メチル−2−ピロリドンを加え、前記混合物を32質量%含む保護層形成用組成物を調整した。 96 parts by mass of Al 2 O 3 having an average particle diameter of 0.5 μm and 4 parts by mass of polyvinylidene fluoride were mixed to prepare a mixture. N-methyl-2-pyrrolidone was added to the mixture to prepare a protective layer forming composition containing 32% by mass of the mixture.

負極活物質である平均粒子径20μmの天然黒鉛98質量部、並びに結着剤であるスチレンブタジエンゴム1質量部及びカルボキシメチルセルロース1質量部を混合した。この混合物を適量のイオン交換水に分散させて、スラリーを作製した。負極集電体として厚み20μmの銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を乾燥して水を除去し、その後、銅箔をプレスし、接合物を得た。得られた接合物を真空乾燥機で120℃、6時間加熱乾燥して、負極活物質層が形成された銅箔を得た。銅箔の負極活物質層上に、ドクターブレードを用いて、上記保護層形成用組成物を膜状に塗布した。これを120℃で6時間乾燥して、負極活物質層上に膜厚4μmの保護層が形成された銅箔を得た。これを実施例1の負極とした。   98 parts by mass of natural graphite having an average particle diameter of 20 μm, which is a negative electrode active material, and 1 part by mass of styrene butadiene rubber, which is a binder, were mixed with 1 part by mass of carboxymethyl cellulose. This mixture was dispersed in an appropriate amount of ion-exchanged water to prepare a slurry. A copper foil having a thickness of 20 μm was prepared as a negative electrode current collector. The slurry was applied in a film form on the surface of the copper foil using a doctor blade. The copper foil coated with the slurry was dried to remove water, and then the copper foil was pressed to obtain a bonded product. The obtained joined product was heat-dried at 120 ° C. for 6 hours with a vacuum dryer to obtain a copper foil on which a negative electrode active material layer was formed. The said protective layer formation composition was apply | coated to the film form on the negative electrode active material layer of copper foil using the doctor blade. This was dried at 120 ° C. for 6 hours to obtain a copper foil in which a protective layer having a thickness of 4 μm was formed on the negative electrode active material layer. This was used as the negative electrode of Example 1.

(比較例1)
負極活物質層上に保護層を形成させなかったこと以外は、実施例1と同様の方法で、比較例1の負極を得た。
(Comparative Example 1)
A negative electrode of Comparative Example 1 was obtained in the same manner as in Example 1 except that the protective layer was not formed on the negative electrode active material layer.

<電極の評価>
レーザー顕微鏡を用いて、実施例1及び比較例1の電極の表面粗さRaを測定した。実施例1の電極の表面粗さRa(保護層の表面粗さ)はRa=581nmであった。比較例1の電極の表面粗さRa(負極活物質層の表面粗さ)はRa=888nmであった。実施例1の電極表面(保護層表面)の走査型電子顕微鏡写真を図1に示す。また、比較例1の電極表面(活物質層表面)の走査型電子顕微鏡写真を図2に示す。
<Evaluation of electrode>
The surface roughness Ra of the electrodes of Example 1 and Comparative Example 1 was measured using a laser microscope. The surface roughness Ra 2 (surface roughness of the protective layer) of the electrode of Example 1 was Ra 2 = 581 nm. Comparative Example 1 the surface of the electrode roughness Ra 1 (the surface roughness of the negative electrode active material layer) was Ra 1 = 888nm. A scanning electron micrograph of the electrode surface (protective layer surface) of Example 1 is shown in FIG. Moreover, the scanning electron micrograph of the electrode surface (active material layer surface) of the comparative example 1 is shown in FIG.

レーザー顕微鏡での測定結果及び走査型電子顕微鏡写真の観察から、活物質層の表面粗さRaと保護層の表面粗さRaとの関係が、Ra>Raであることは明らかである。 From the measurement results and scanning electron microscope photograph of observation of a laser microscope, the relationship between the surface roughness Ra 2 of the surface roughness Ra 1 and the protective layer of the active material layer, Ra 1> Ra is it clear 2 is there.

(応用例)
実施例1の負極を用いて、以下のとおり、リチウムイオン二次電池を製造した。
(Application examples)
Using the negative electrode of Example 1, a lithium ion secondary battery was produced as follows.

正極活物質である平均粒子径10μmのLiNi5/10Co2/10Mn3/10で表される層状岩塩構造のリチウム含有金属酸化物94質量部、導電助剤であるアセチレンブラック3質量部、および結着剤であるポリフッ化ビニリデン3質量部を混合した。この混合物を適量のN−メチル−2−ピロリドンに分散させて、スラリーを作製した。正極集電体として厚み20μmのアルミニウム箔を準備した。このアルミニウム箔の表面に、ドクターブレードを用いて上記スラリーが膜状になるように塗布した。スラリーが塗布されたアルミニウム箔を80℃で20分間乾燥することでN−メチル−2−ピロリドンを揮発により除去し、正極活物質層が形成されたアルミニウム箔を得た。この正極活物質層が形成されたアルミニウム箔を正極とした。 94 parts by mass of a lithium-containing metal oxide having a layered rock salt structure represented by LiNi 5/10 Co 2/10 Mn 3/10 O 2 having an average particle diameter of 10 μm as a positive electrode active material, and 3 parts by mass of acetylene black as a conductive auxiliary agent Part and 3 parts by mass of polyvinylidene fluoride as a binder were mixed. This mixture was dispersed in an appropriate amount of N-methyl-2-pyrrolidone to prepare a slurry. An aluminum foil having a thickness of 20 μm was prepared as a positive electrode current collector. The slurry was applied to the surface of the aluminum foil using a doctor blade so as to form a film. The aluminum foil coated with the slurry was dried at 80 ° C. for 20 minutes to remove N-methyl-2-pyrrolidone by volatilization to obtain an aluminum foil on which a positive electrode active material layer was formed. The aluminum foil on which this positive electrode active material layer was formed was used as the positive electrode.

セパレータとしてポリエチレン樹脂膜からなる矩形状シート(27×32mm、厚さ25μm)を準備した。   A rectangular sheet (27 × 32 mm, thickness 25 μm) made of a polyethylene resin film was prepared as a separator.

負極の保護層の上にセパレータを設置し、次いで、正極を設置して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに電解液を注入した。電解液としては、エチレンカーボネート30容量部、メチルエチルカーボネート30容量部及びジメチルカーボネート40容量部を混合した溶媒にLiPF6を1mol/Lとなるよう溶解した溶液を用いた。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉されたリチウムイオン二次電池を得た。なお、このリチウムイオン二次電池の正極および負極は外部と電気的に接続可能なタブを備え、このタブの一部はリチウムイオン二次電池の外側に延出している。同様の方法で、実施例1の負極を用いたリチウムイオン二次電池を合計10個製造した。 A separator was installed on the protective layer of the negative electrode, and then a positive electrode was installed to form an electrode plate group. The electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then an electrolyte solution was injected into the bag-like laminated film. As an electrolytic solution, a solution in which LiPF 6 was dissolved to 1 mol / L in a solvent obtained by mixing 30 parts by volume of ethylene carbonate, 30 parts by volume of methyl ethyl carbonate, and 40 parts by volume of dimethyl carbonate was used. Thereafter, the remaining one side was sealed to obtain a lithium ion secondary battery in which the four sides were hermetically sealed and the electrode plate group and the electrolyte were sealed. In addition, the positive electrode and negative electrode of this lithium ion secondary battery are provided with a tab that can be electrically connected to the outside, and a part of this tab extends outside the lithium ion secondary battery. In the same manner, a total of ten lithium ion secondary batteries using the negative electrode of Example 1 were manufactured.

さらに、同様の方法で、比較例1の負極を用いたリチウムイオン二次電池を10個製造した。   Furthermore, ten lithium ion secondary batteries using the negative electrode of Comparative Example 1 were manufactured in the same manner.

<電池の評価>
実施例1又は比較例1の電極を用いた電池10個のそれぞれにつき、以下の試験を行い、放電抵抗と充電抵抗を測定した。放電抵抗(Ω)の結果を表1に、充電抵抗(Ω)の結果を表2にそれぞれ示す。
<Battery evaluation>
For each of the 10 batteries using the electrode of Example 1 or Comparative Example 1, the following test was performed to measure the discharge resistance and the charge resistance. The results of the discharge resistance (Ω) are shown in Table 1, and the results of the charge resistance (Ω) are shown in Table 2, respectively.

<放電抵抗>
充電率が20%の電池に対し、2.5Cレートで10秒間の放電を行う。放電抵抗(Ω)は以下の式で求める。
放電抵抗(Ω)=|放電前の電圧−放電後の電圧|/電流値
<充電抵抗>
充電率が80%の電池に対し、2.5Cレートで10秒間の充電を行う。充電抵抗(Ω)は以下の式で求める。
充電抵抗(Ω)=|充電前の電圧−充電後の電圧|/電流値
<Discharge resistance>
A battery having a charging rate of 20% is discharged at a 2.5C rate for 10 seconds. The discharge resistance (Ω) is obtained by the following formula.
Discharge resistance (Ω) = | Voltage before discharge−Voltage after discharge | / Current value <Charge resistance>
A battery with a charging rate of 80% is charged for 10 seconds at a 2.5C rate. The charging resistance (Ω) is obtained by the following formula.
Charging resistance (Ω) = | Voltage before charging−Voltage after charging | / Current value

表1及び表2の結果から、活物質層の表面粗さRaと保護層の表面粗さRaとの関係が、Ra>Raである電極を用いた電池は、放電抵抗及び充電抵抗ともにバラツキが著しく低減することがわかる。 From the results of Table 1 and Table 2, the relationship between the surface roughness Ra 2 of the surface roughness Ra 1 and the protective layer of the active material layer, the battery using the electrode is Ra 1> Ra 2, the discharge resistance and charge It can be seen that the variation in both the resistance is remarkably reduced.

この結果について以下のとおり考察する。   This result is considered as follows.

電池製造時に、負極、セパレータ及び正極を積層した極板群には、層の厚みの方向に一定の圧力が加わる。この圧力により、両電極の活物質層の表面がセパレータを圧縮する。ここで、活物質層の表面形状に従い、セパレータは変形する。表面粗さRaの大きな活物質層表面には、大きな凸部と大きな凹部が存在する。ここで、例えば、正極活物質層表面の大きな凸部と負極活物質層表面の大きな凸部とがセパレータを介して対面した場合、上記圧力は当該両凸部に集中し、それに伴うセパレータの変形の程度が当該両凸部間で顕著になる(この現象を以下「セパレータの変形の局在化」という。)。セパレータの変形の局在化が生じた箇所においては、正極活物質層と負極活物質層との間隔が著しく短くなり、この間隔を流れるイオンの抵抗は他の間隔を流れるイオンの抵抗と比較して著しく小さくなる。そして、セパレータの変形の局在化が多く生じた電池の抵抗は、他の電池の抵抗と比較して低下する。その結果、電池毎の抵抗のバラツキが大きくなる。   At the time of manufacturing the battery, a certain pressure is applied to the plate group in which the negative electrode, the separator, and the positive electrode are stacked in the direction of the layer thickness. Due to this pressure, the surfaces of the active material layers of both electrodes compress the separator. Here, the separator is deformed according to the surface shape of the active material layer. Large convex portions and large concave portions exist on the surface of the active material layer having a large surface roughness Ra. Here, for example, when a large convex portion on the surface of the positive electrode active material layer and a large convex portion on the surface of the negative electrode active material layer face each other through the separator, the pressure is concentrated on both the convex portions, and the deformation of the separator accompanying it. (The phenomenon is hereinafter referred to as “localization of deformation of the separator”). At locations where the deformation of the separator has been localized, the distance between the positive electrode active material layer and the negative electrode active material layer is remarkably shortened, and the resistance of ions flowing through this distance is compared with the resistance of ions flowing through other intervals. Become significantly smaller. And the resistance of the battery in which the localization of the deformation of the separator has occurred is lower than the resistance of other batteries. As a result, the resistance variation among the batteries increases.

しかしながら、活物質層の表面粗さRaと保護層の表面粗さRaとの関係がRa>Raである保護層が形成された本発明の電極においては、保護層表面の凸部が小さいため、圧力の集中が生じにくく、セパレータの変形の局在化が一定程度抑制される。そうすると、本発明の電極を用いた電池においては、正極活物質層と負極活物質層との間隔が著しく短くなる箇所が存在せず、電池毎の抵抗バラツキが低減される。 However, in the electrode of the present invention the relationship between the surface roughness Ra 2 of the surface roughness Ra 1 and the protective layer of the active material layer is Ra 1> Ra 2 protective layer is formed, the convex portion of the surface of the protective layer Therefore, pressure concentration is less likely to occur, and localization of deformation of the separator is suppressed to a certain extent. If it does so, in the battery using the electrode of this invention, the location where the space | interval of a positive electrode active material layer and a negative electrode active material layer becomes remarkably short does not exist, and the resistance variation for every battery is reduced.

逆に、活物質層の表面粗さRaと保護層の表面粗さRaとの関係がRa≦Raである保護層が形成された電極を用いた電池においては、セパレータの変形の局在化は抑制されず、電池毎の抵抗のバラツキは大きくなると考えられる。 Conversely, in the batteries relationship using an electrode protective layer is formed is Ra 1 ≦ Ra 2 between the surface roughness Ra 2 of the surface roughness Ra 1 and the protective layer of the active material layer, the deformation of the separator Localization is not suppressed, and it is considered that the variation in resistance between batteries increases.

Claims (7)

集電体と、
前記集電体上に形成された活物質層と、
前記活物質層上に形成され、無機化合物及び結着剤を質量比5:1〜200:1で含む保護層とを具備し、
前記活物質層の表面粗さRaと前記保護層の表面粗さRaがRa>Raであることを特徴とする電極。
A current collector,
An active material layer formed on the current collector;
A protective layer formed on the active material layer and containing an inorganic compound and a binder in a mass ratio of 5: 1 to 200: 1;
An electrode characterized in that the surface roughness Ra 1 of the active material layer and the surface roughness Ra 2 of the protective layer satisfy Ra 1 > Ra 2 .
前記無機化合物がAl、SiO、TiO、ZrO、MgO、SiC、AlN、BN、CaCO、MgCO、BaCO、タルク、マイカ、カオリナイト、CaSO、MgSO、BaSO、CaO、ZnO、ゼオライトから選択される請求項1に記載の電極。 The inorganic compound is Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2 , MgO, SiC, AlN, BN, CaCO 3 , MgCO 3 , BaCO 3 , talc, mica, kaolinite, CaSO 4 , MgSO 4 , BaSO 4. The electrode according to claim 1, selected from CaO, ZnO, and zeolite. 前記結着剤がポリフッ化ビニリデンを含む請求項1又は2に記載の電極。   The electrode according to claim 1, wherein the binder contains polyvinylidene fluoride. 前記電極が負極である請求項1〜3のいずれかに記載の電極。   The electrode according to claim 1, wherein the electrode is a negative electrode. 請求項1〜4のいずれかに記載の電極を含む電池。   A battery comprising the electrode according to claim 1. 前記電池が二次電池である請求項5に記載の電池。   The battery according to claim 5, wherein the battery is a secondary battery. 前記電池がリチウムイオン二次電池である請求項5又は6に記載の電池。   The battery according to claim 5 or 6, wherein the battery is a lithium ion secondary battery.
JP2013124482A 2013-06-13 2013-06-13 Electrode including protective layer formed on active material layer Pending JP2015002008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013124482A JP2015002008A (en) 2013-06-13 2013-06-13 Electrode including protective layer formed on active material layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013124482A JP2015002008A (en) 2013-06-13 2013-06-13 Electrode including protective layer formed on active material layer

Publications (1)

Publication Number Publication Date
JP2015002008A true JP2015002008A (en) 2015-01-05

Family

ID=52296447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013124482A Pending JP2015002008A (en) 2013-06-13 2013-06-13 Electrode including protective layer formed on active material layer

Country Status (1)

Country Link
JP (1) JP2015002008A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018160420A (en) * 2017-03-23 2018-10-11 株式会社東芝 Electrode composite, secondary battery, battery pack, and vehicle
WO2019027210A3 (en) * 2017-08-01 2019-04-11 주식회사 엘지화학 Electrode for lithium secondary battery comprising protective layer and lithium secondary battery comprising same
CN109923704A (en) * 2017-08-01 2019-06-21 株式会社Lg化学 Electrode for lithium secondary battery including protective layer and including the lithium secondary battery of the electrode
WO2019187127A1 (en) * 2018-03-30 2019-10-03 株式会社 東芝 Electrode composite, battery and battery pack
WO2021038860A1 (en) * 2019-08-30 2021-03-04 株式会社 東芝 Electrode, laminate, and secondary battery
US11081731B2 (en) * 2017-10-18 2021-08-03 International Business Machines Corporation High-capacity rechargeable batteries

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063902A1 (en) * 2007-11-12 2009-05-22 Hitachi Maxell, Ltd. Electrode for nonaqueous secondary battery, nonaqueous secondary battery using the same, and method for producing electrode
JP2011171250A (en) * 2010-02-22 2011-09-01 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063902A1 (en) * 2007-11-12 2009-05-22 Hitachi Maxell, Ltd. Electrode for nonaqueous secondary battery, nonaqueous secondary battery using the same, and method for producing electrode
JP2011171250A (en) * 2010-02-22 2011-09-01 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018160420A (en) * 2017-03-23 2018-10-11 株式会社東芝 Electrode composite, secondary battery, battery pack, and vehicle
WO2019027210A3 (en) * 2017-08-01 2019-04-11 주식회사 엘지화학 Electrode for lithium secondary battery comprising protective layer and lithium secondary battery comprising same
CN109923704A (en) * 2017-08-01 2019-06-21 株式会社Lg化学 Electrode for lithium secondary battery including protective layer and including the lithium secondary battery of the electrode
US11205779B2 (en) 2017-08-01 2021-12-21 Lg Chem, Ltd. Electrode for lithium secondary battery comprising protective layer and lithium secondary battery comprising the same
US11081731B2 (en) * 2017-10-18 2021-08-03 International Business Machines Corporation High-capacity rechargeable batteries
WO2019187127A1 (en) * 2018-03-30 2019-10-03 株式会社 東芝 Electrode composite, battery and battery pack
JPWO2019187127A1 (en) * 2018-03-30 2021-01-07 株式会社東芝 Electrode composites, batteries, and battery packs
WO2021038860A1 (en) * 2019-08-30 2021-03-04 株式会社 東芝 Electrode, laminate, and secondary battery
JPWO2021038860A1 (en) * 2019-08-30 2021-03-04
JP7254941B2 (en) 2019-08-30 2023-04-10 株式会社東芝 Electrodes, laminates and secondary batteries

Similar Documents

Publication Publication Date Title
JP2015056208A (en) Electrode having protective layer formed on active material layer
JP2015002008A (en) Electrode including protective layer formed on active material layer
JP6044427B2 (en) Current collector for positive electrode of lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6327011B2 (en) Electrode for power storage device, power storage device, and method for manufacturing electrode for power storage device
JP5656093B2 (en) Batteries having an electrolyte solution holding layer
JP2015176856A (en) Negative electrode, method of manufacturing the same, and power storage device
JP5643996B1 (en) Lithium ion secondary battery having a positive electrode comprising a thermal runaway suppression layer on a positive electrode active material layer
JP6597267B2 (en) Lithium ion secondary battery
JP6136809B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2015090785A (en) Compound for adding to electrolyte
JP2015005353A (en) Power storage device
JP2016115403A (en) Lithium ion secondary battery and method for manufacturing the same
JP2015053288A (en) Battery provided with electrolyte holding layer
JP6600938B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP6300021B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
WO2015198519A1 (en) Electricity storage device electrode, electricity storage device and electricity storage device electrode production method
JP6841156B2 (en) Power storage device and its manufacturing method and manufacturing method of ionic conductive material
JP6460381B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP6344470B2 (en) Lithium ion secondary battery
JP6263968B2 (en) Current collector manufacturing method
WO2021124651A1 (en) Non-aqueous electrolyte power storage element and manufacturing method therefor
JP2016115402A (en) Positive electrode including positive electrode active material and binder, and manufacturing method of the same
JP2016091935A (en) Nonaqueous secondary battery and method of manufacturing the same
JP5857943B2 (en) Nonaqueous electrolyte secondary battery
JP6124076B2 (en) Method for forming protective layer on aluminum foil, current collector for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170110