WO2021038860A1 - Electrode, laminate, and secondary battery - Google Patents

Electrode, laminate, and secondary battery Download PDF

Info

Publication number
WO2021038860A1
WO2021038860A1 PCT/JP2019/034243 JP2019034243W WO2021038860A1 WO 2021038860 A1 WO2021038860 A1 WO 2021038860A1 JP 2019034243 W JP2019034243 W JP 2019034243W WO 2021038860 A1 WO2021038860 A1 WO 2021038860A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode
film
containing layer
current collector
Prior art date
Application number
PCT/JP2019/034243
Other languages
French (fr)
Japanese (ja)
Inventor
佑磨 菊地
森島 秀明
隆史 小林
一樹 伊勢
好太郎 渡邉
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to JP2021541944A priority Critical patent/JP7254941B2/en
Priority to PCT/JP2019/034243 priority patent/WO2021038860A1/en
Publication of WO2021038860A1 publication Critical patent/WO2021038860A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to electrodes, laminates and secondary batteries.
  • secondary batteries such as lithium secondary batteries
  • the density of electrodes is increased by roll press processing.
  • secondary batteries are also required to reduce manufacturing costs.
  • the roll used in the roll press process wears, not only the maintenance of the roll itself is required, but also the production line needs to be suspended during the maintenance. Therefore, in addition to the maintenance cost, a loss due to the interruption of manufacturing occurs. If the frequency of roll maintenance can be reduced, the manufacturing cost can be reduced, so that high-performance electrodes can be provided at a lower cost.
  • a high-performance electrode, a laminate including the electrode, and a secondary battery are provided.
  • an electrode containing active material particles and containing an active material-containing layer having a front surface and a back surface and a first film having a front surface and a back surface is provided.
  • the back surface of the first film is in contact with at least a part of the surface of the active material-containing layer.
  • the first film contains titanium oxide particles.
  • the surface roughness Ra1 on the surface of the active material-containing layer and the surface roughness Ra2 on the surface of the first film satisfy Ra1> Ra2.
  • a laminate including the electrodes of the embodiment is provided.
  • a secondary battery including the electrodes of the embodiment is provided.
  • FIG. 5 is a cross-sectional view showing another example of the laminate of the embodiment.
  • FIG. 5 is a cross-sectional view showing another example of the laminate of the embodiment.
  • FIG. 5 is a cross-sectional view showing a shape example of an end portion including the first end surface of the first active material-containing layer.
  • FIG. 5 is a cross-sectional view showing a shape example of an end portion including the first end surface of the first active material-containing layer.
  • FIG. 5 is a cross-sectional view showing a shape example of an end portion including the first end surface of the first active material-containing layer.
  • FIG. 5 is a cross-sectional view showing a shape example of an end portion including the first end surface of the first active material-containing layer.
  • FIG. 5 is a cross-sectional view showing a shape example of an end portion including the first end surface of the first active material-containing layer.
  • FIG. 5 is a cross-sectional view showing a shape example of an end portion including the first end surface of the first active material-containing layer.
  • FIG. 5 is a cross-sectional view showing a shape example of an end portion including the first end surface of the first active material-containing layer.
  • FIG. 5 is a cross-sectional view showing a shape example of an end portion including the first end surface of the first active material-containing layer.
  • FIG. 5 is a cross-sectional view showing another example of the laminate of the embodiment.
  • the schematic diagram of one step in the manufacturing method of the laminated body of an embodiment The schematic diagram of one step in the manufacturing method of the laminated body of an embodiment.
  • the schematic diagram of one step in the manufacturing method of the laminated body of an embodiment A partially cutaway perspective view showing an example of the secondary battery of the embodiment. Exploded view of another example of the secondary battery of the embodiment. The figure which shows the relationship between the MSE test time and the wear amount in the electrode of an Example and a comparative example.
  • an active material-containing layer containing active material particles and having a front surface and a back surface, and at least a part of the surface surface of the active material-containing layer having a front surface and a back surface.
  • An electrode is provided that is in contact with and contains a first film containing titanium oxide particles.
  • the surface roughness Ra1 of the surface of the active material-containing layer and the surface roughness Ra2 of the surface of the first film satisfy the following equation (1).
  • the present inventors have stated that the wear on the surface of the roll used in the roll press is due to the active material particles adhering to the surface of the active material-containing layer of the electrode coming into contact with the roll surface and cutting the roll surface.
  • the active material particles adhering to the active material-containing layer are particles that have fallen off from the electrodes or the like for some reason during the manufacturing process. Since the surface of the active material-containing layer can be said to be a soft surface, the active material particles easily bite into it. When the surface in such a state is subjected to the roll press treatment, the active material particles that bite into the surface of the active material-containing layer cut the roll surface, which is a hard surface, and the roll surface is worn. Wear is more pronounced when the active material particles that bite into the surface of the active material-containing layer are positive electrode active material particles.
  • At least a part of the surface of the active material-containing layer is covered with a first film containing titanium oxide particles, and the surface roughness of the surface of the first film is larger than the surface roughness Ra1 of the surface of the active material-containing layer.
  • the wear of the roll surface can be suppressed by reducing Ra2.
  • the frequency of roll maintenance can be reduced, and the electrode manufacturing cost can be reduced.
  • the surface of the first film the outermost surface of the electrode, it is possible to smooth the surface that greatly contributes to the electrode reaction (electrochemical reaction). As a result, the distance between the electrodes of this electrode and the counter electrode can be made more uniform, so that improvement in battery performance such as battery capacity and rate performance can be expected.
  • the surface roughness Ra1 and Ra2 are measured by the following method.
  • the secondary battery is disassembled in an argon gas atmosphere, and the electrode group is taken out from the exterior member of the secondary battery. ..
  • the electrode group is unwound and the measurement sample is cut out to a size of about 10 mm ⁇ 10 mm.
  • the cut sample is placed in a beaker filled with EMC (Ethyl Methyl Carbonate) and stirred, and washed for 30 minutes.
  • the washed sample is dried and cross-sectioned. This sample is cross-section milled using an ion milling device (IM4000PLUS of Hitachi High-Technologies Corporation).
  • the electrodes will be described in detail below.
  • the electrode may further include a current collector and a current collector tab, if necessary.
  • a current collector and a current collector tab, if necessary.
  • each component will be described.
  • Active material-containing layer (first active material-containing layer)
  • the active material-containing layer may be supported on the current collector. In that case, the back surface of the active material-containing layer may face or contact the main surface of the current collector.
  • active material particles examples include positive electrode active material particles and negative electrode active material particles.
  • active material particles include positive electrode active material particles and negative electrode active material particles.
  • an active material-containing layer containing positive electrode active material particles as active material particles, that is, a positive electrode active material-containing layer will be described.
  • positive electrode active material particles include various oxides and sulfides.
  • manganese dioxide (MnO 2 ) iron oxide, copper oxide, nickel oxide, lithium manganese composite oxide (eg Li x Mn 2 O 4 or Li x MnO 2 ), lithium nickel composite oxide (eg Li x NiO 2).
  • lithium-cobalt composite oxide lithium nickel manganese cobalt composite oxide, lithium-nickel-cobalt composite oxide (e.g., Li x Ni 1-yz Co y M z O 2 (M is selected from the group consisting of Al, Cr and Fe that is at least one element, which is 0 ⁇ y ⁇ 0.5,0 ⁇ z ⁇ 0.1)), lithium manganese cobalt composite oxides (e.g., Li x Mn 1-y-z Co y M z O 2 (M is at least one element selected from the group consisting of Al, Cr and Fe, and 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 0.1)), Lithium manganese nickel composite compound ( For example, Li x Mn 1/2 Ni 1/2 O 2 ), spinel type lithium manganese nickel composite oxide (for example, Li x Mn 2-y N y O 4 ), lithium phosphorus oxide having an olivine structure (for example, Li x).
  • FePO 4 such as Li x Fe 1-y Mn y PO 4, Li x CoPO 4), iron sulfate (e.g. Fe 2 (SO 4) 3) , vanadium oxide (e.g. V 2 O 5), Li x Ni 1- ab Co a Mn b M c O 2 (0.9 ⁇ x ⁇ 1.25, 0 ⁇ a ⁇ 0.4, 0 ⁇ b ⁇ 0.45, 0 ⁇ c ⁇ 0.1, M is Mg, Al, It represents at least one element selected from the group consisting of Si, Ti, Zn, Zr, Ca and Sn) and the like.
  • conductive polymer materials such as polyaniline and polypyrrole, disulfide-based polymer materials, organic materials such as sulfur (S) and carbon fluoride, and inorganic materials can also be mentioned.
  • S sulfur
  • x, y and z which are not described in the above-mentioned preferable range, the range is preferably 0 or more and 1 or less.
  • the type of positive electrode active material can be one type or two or more types.
  • Examples of preferable positive electrode active materials include those containing at least one selected from the group consisting of lithium manganese composite oxide particles having a spinel structure, lithium cobalt composite oxide particles, and lithium nickel manganese cobalt composite oxide particles. Be done.
  • the positive electrode containing the positive electrode active material can further enhance the effect of suppressing wear on the roll surface by the first film containing titanium oxide particles.
  • At least one of the lithium manganese composite oxide particles and the lithium nickel manganese cobalt composite oxide particles having a spinel structure hereinafter referred to as positive electrode active material particles A) and the lithium cobalt composite oxide particles (hereinafter referred to as positive electrode active material particles B).
  • positive electrode active material particles A At least one of the lithium manganese composite oxide particles and the lithium nickel manganese cobalt composite oxide particles having a spinel structure
  • positive electrode active material particles B the lithium cobalt composite oxide particles
  • the mixing ratio of the positive electrode active material particles A and the positive electrode active material particles B is such that the ratio of the positive electrode active material particles B is 40% by mass or less when the positive electrode active material particles are 100% by mass. It is preferable to do so. As a result, it is possible to realize a positive electrode having a high capacity and less deterioration due to overcharging.
  • a more preferable range of the ratio of the positive electrode active material particles B is 4% by mass or more and 30% by mass or less.
  • a more preferable range is that the positive electrode active material particles A are 60% by mass or more and 80% by mass or less, and the positive electrode active material particles B are 4% by mass or more and 20% by mass or less.
  • the lithium manganese composite oxide having a spinel structure is preferably represented by the general formula Li w M x Mn 2-x O 4.
  • M is at least one element selected from the group consisting of Mg, Ti, Cr, Fe, Co, Zn, Al, Li and Ga.
  • the molar ratio w in the general formula is preferably in the range of 0 ⁇ w ⁇ 1.1.
  • the molar ratio w can fluctuate due to the insertion and desorption of lithium ions.
  • the molar ratio x is preferably in the range of 0 ⁇ x ⁇ 2, with a more preferred range of 0.22 ⁇ x ⁇ 0.7.
  • Lithium nickel-manganese-cobalt composite oxide is Li 1-x Ni 1-ab Co a Mn b O 2 (-0.2 ⁇ x ⁇ 0.5, 0 ⁇ a ⁇ 0.4, 0 ⁇ b ⁇ 0). It is desirable that it is represented by (satisfying 4).
  • the molar ratio x can vary due to the insertion and desorption of lithium ions. When the molar ratio a of Co is 0.4 or less, thermal stability as an active material can be ensured. When the molar ratio b of Mn is 0.4 or less, the discharge capacity can be secured.
  • the lithium cobalt composite oxide is preferably represented by the general formula Li x CoO 2.
  • Lithium cobalt oxide in which the molar ratio x in the general formula is in the range of 0 ⁇ x ⁇ 1.1 is desirable.
  • the molar ratio x can vary due to the insertion and desorption of lithium ions.
  • the form of the particles of the positive electrode active material is not particularly limited, and may be either primary particles or secondary particles in which the primary particles are aggregated.
  • the positive electrode active material particles may contain both primary particles and secondary particles.
  • the average particle size of the positive electrode active material particles is, for example, 1 ⁇ m or more and 15 ⁇ m or less, preferably 3 ⁇ m or more and 10 ⁇ m or less.
  • the active material-containing layer may contain a binder and a conductive agent in addition to the active material.
  • the conductive agent include acetylene black, carbon black, graphite, or a mixture thereof.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluororubber, styrene-butadiene rubber, and mixtures thereof.
  • the binder has a function of binding the active material and the conductive agent.
  • the contents of the active material, the conductive agent and the binder are 80% by mass or more and 97% by mass or less, 2% by mass or more and 18% by mass or less, and 1% by mass or more and 17% by mass or less, respectively. It is preferable to have.
  • the surface roughness Ra1 of the surface of the positive electrode active material-containing layer can be 1 ⁇ m or less.
  • the positive electrode active material-containing layer satisfying this can have a sufficient specific surface area.
  • a more preferable range is 0.2 ⁇ m or more and 0.8 ⁇ m or less.
  • a carbon material such as graphite, a tin-silicon alloy material, or the like can be used, but lithium titanate is preferably used. Further, titanium oxide containing other metals such as Nb or lithium titanate is also mentioned as a negative electrode active material.
  • lithium titanate include Li 4 + x Ti 5 O 12 (0 ⁇ x ⁇ 3) having a spinel structure and Li 2 + y Ti 3 O 7 (0 ⁇ y ⁇ 3) having a ramsteride structure. Can be mentioned.
  • the negative electrode active material particles can be single primary particles, secondary particles in which primary particles are aggregated, or a mixture of primary particles and secondary particles.
  • the average particle size of the primary particles of the negative electrode active material is preferably in the range of 0.001 or more and 1 ⁇ m or less.
  • the average particle size can be obtained, for example, by observing the negative electrode active material with SEM.
  • the particle shape may be either granular or fibrous. In the case of fibrous form, the fiber diameter is preferably 0.1 ⁇ m or less.
  • the average particle size of the primary particles of the negative electrode active material can be measured from an image observed with an electron microscope (SEM). When lithium titanate having an average particle size of 1 ⁇ m or less is used as the negative electrode active material, a negative electrode active material-containing layer having a highly flat surface can be obtained.
  • the negative electrode potential becomes more noble as compared with a lithium ion secondary battery using a general carbon negative electrode, so that precipitation of lithium metal does not occur in principle. Since the negative electrode active material containing lithium titanate has a small expansion and contraction due to the charge / discharge reaction, it is possible to prevent the crystal structure of the active material from collapsing.
  • the negative electrode active material-containing layer can contain a conductive agent and a binder in addition to the active material.
  • the conductive agent include carbon-containing materials (acetylene black, ketjen black, graphite, etc.) and metal powder.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, styrene-butadiene rubber and the like.
  • the contents of the negative electrode active material, the conductive agent and the binder are 70% by mass or more and 98% by mass or less, 1% by mass or more and 28% by mass or less, and 1% by mass or more and 28% by mass or less, respectively. It is preferable to have.
  • the surface roughness Ra1 of the surface of the negative electrode active material-containing layer can be 0.5 ⁇ m or less. A more preferable range is 0.1 ⁇ m or more and 0.5 ⁇ m or less.
  • the thickness of the positive electrode active material-containing layer and the negative electrode active material-containing layer can be 5 ⁇ m or more and 100 ⁇ m or less, respectively.
  • the current collector can be a conductive sheet. Examples of conductive sheets include foils made of conductive materials. Examples of conductive materials include aluminum and aluminum alloys.
  • the thickness of the current collector can be 5 ⁇ m or more and 40 ⁇ m or less, respectively.
  • Current collection tab (first current collection tab)
  • the current collector tab may be formed of the same material as the current collector, but a current collector tab may be prepared separately from the current collector and connected to the current collector by welding or the like. ..
  • First film The first film contains titanium oxide particles.
  • the first film has an insulating property. It suffices for the first film to cover at least a part of the surface of the first active material-containing layer, but if the entire surface of the first active material-containing layer is covered, the wear suppressing effect can be enhanced. , Can function as a separator.
  • the first membrane can cover at least a part of the current collector and / or the current collector tab. This makes it possible to prevent an internal short circuit in which the current collector or the current collector tab comes into contact with the counter electrode.
  • titanium oxides include lithium titanate having a spinel structure (for example, Li 4 + x Ti 5 O 12 (0 ⁇ x ⁇ 3)), titanium dioxide (Tio 2 ) and the like.
  • the crystal structure of titanium dioxide can be, for example, anatase, rutile, bronze or the like.
  • the rutile-type titanium dioxide particles are suitable because they do not easily aggregate and are easily uniformly dispersed in the first film.
  • Lithium titanate and titanium dioxide having a spinel structure are each excellent in resistance to hydrogen fluoride (HF) and also excellent in oxidation resistance at the positive electrode.
  • HF hydrogen fluoride
  • FIG. 3 shows a potential curve by cyclic voltammetry of an electrode (LTO / Al electrode) containing Li 4 Ti 5 O 12 as an active material and using an Al foil as a current collector.
  • the conditions for carrying out cyclic voltammetry are described below.
  • the applied potential was 1.0V-4.5V (vs. Li / Li +).
  • the environmental temperature was set to 25 ° C.
  • the sweep speed was 0.167 mV / s.
  • lithium titanate having a spinel structure has a current value of almost 0 in a range corresponding to a positive electrode potential of 3-4 V (vs. Li / Li +), and electron transfer does not proceed. Therefore, when an electrode containing the first film is applied to the positive electrode, the first film exhibits oxidation resistance that can withstand practical use.
  • the surface roughness Ra2 of the surface of the first film can be 0.3 ⁇ m or less. Thereby, the smoothness of the surface of the first film can be improved. As a result, the wear suppressing effect can be enhanced.
  • a more preferable range is 0.1 ⁇ m or more and 0.3 ⁇ m or less.
  • the average particle size D50 of the titanium oxide particles can be 1 ⁇ m or less. A more preferable range is 0.3 ⁇ m or more and 0.9 ⁇ m or less.
  • the first membrane can be porous.
  • the porous first membrane can retain the non-aqueous electrolyte.
  • the content of titanium oxide particles in the first film is in the range of 80% by mass or more and 99.9% by mass or less. Thereby, the insulating property of the first film can be improved.
  • the first film may contain a binder.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluororubber, styrene-butadiene rubber, and mixtures thereof.
  • the content of the binder in the first film is preferably in the range of 0.01% by mass or more and 20% by mass or less.
  • the thickness of the first film can be 1 ⁇ m or more and 30 ⁇ m or less.
  • an electrode including an active material-containing layer and a first film containing titanium oxide particles is provided.
  • the surface roughness Ra1 of the surface of the active material-containing layer and the surface roughness Ra2 of the surface of the first film satisfy the equation (1): Ra1> Ra2. Therefore, wear of the roll surface used in the roll press can be suppressed, and improvement of battery performance such as battery capacity and rate performance can be expected.
  • a laminate including the electrodes of the first embodiment (hereinafter, the first electrode) is provided.
  • the laminate can further include a second electrode, which is the counter electrode of the first electrode.
  • the laminate may further contain a separator.
  • the separator may be any as long as it can electrically insulate the first electrode and the second electrode while maintaining ionic conduction.
  • the first film of the first electrode may also serve as a separator.
  • An insulating film other than the second film or the first and second films may be used as the separator.
  • a combination of a plurality of types of films may be used as a separator.
  • the insulating film include a non-woven fabric made of synthetic resin, a porous film made of polyethylene, a porous film made of polyolefin such as a porous film made of polypropylene, and a cellulosic separator.
  • a separator in which these materials are combined for example, a separator made of a porous polyolefin film and cellulose can be used.
  • the insulating membrane preferably has a porous structure.
  • the second electrode includes a second current collector having a front surface and a back surface, and a second active material-containing layer supported or formed on at least one of the front surface and the back surface of the second current collector. ..
  • the surface of the second active material-containing layer can be exposed to the surface of the second electrode, and the back surface faces the front surface or the back surface of the second current collector.
  • Examples of the second current collector and the second active material-containing layer include those similar to those described in the first electrode (first current collector, first active material-containing layer). ..
  • the second electrode may further include a second current collecting tab.
  • the second current collector tab may be formed of the same material as the second current collector, but a second current collector tab is prepared separately from the second current collector, and this is used as the second current collector tab.
  • a current collector connected to the current collector by welding or the like may be used.
  • the laminate can further include a second film.
  • the second film may be formed on the second active material-containing layer, but may also be formed on the first film.
  • a second film may be formed on the surfaces of both the second active material-containing layer and the first film. In either case, one of the front and back surfaces of the second film may be in contact with the surface of the first film.
  • the second film contains organic fibers.
  • the second membrane can be a porous membrane in which organic fibers are deposited in the plane direction.
  • the second film has a front surface and a back surface. One main surface of the second film corresponds to the front surface, and the other main surface corresponds to the back surface.
  • Organic fibers include, for example, at least one organic material selected from the group consisting of polyamideimide, polyamide, polyolefin, polyether, polyimide, polyketone, polysulfone, cellulose, polyvinyl alcohol (PVA) and polyvinylidene fluoride (PVdF). ..
  • the polyolefin include polypropylene (PP) and polyethylene (PE).
  • the type of organic fiber may be one type or two or more types. Preferred is at least one selected from the group consisting of polyimide, polyamide, polyamideimide, cellulose, PVdF, and PVA, and more preferred is selected from the group consisting of polyimide, polyamide, polyamideimide, cellulose, and PVdF. At least one type.
  • Polyimide is insoluble and insoluble even at 250 to 400 ° C. and does not decompose, so that a second film having excellent heat resistance can be obtained.
  • the organic fiber preferably has a length of 1 mm or more and an average diameter of 2 ⁇ m or less, and more preferably an average diameter of 1 ⁇ m or less. Since such a second film has sufficient strength, porosity, air permeability, pore size, electrolyte resistance, oxidation-reduction resistance, and the like, it functions well as a separator.
  • the average diameter of the organic fibers can be measured by observation with a focused ion beam (FIB) device.
  • FIB focused ion beam
  • the length of the organic fiber is obtained based on the length measured by observation with a FIB device.
  • the total volume of the fibers forming the second membrane is organic fibers having an average diameter of 1 ⁇ m or less, and 350 nm or less.
  • the organic fiber of the above is more preferable, and the organic fiber of 50 nm or less is further preferable.
  • the volume of the organic fiber having an average diameter of 1 ⁇ m or less occupies 80% or more of the volume of the entire fiber forming the second film. Such a state can be confirmed by scanning ion microscope (SIM) observation of the second film. It is more preferable that the organic fibers having a thickness of 40 nm or less occupy 40% or more of the total volume of the fibers forming the second film.
  • the small diameter of the organic fiber means that the influence of obstructing the movement of ions is small.
  • a cation exchange group is present on at least a part of the entire surface including the front surface and the back surface of the organic fiber.
  • the cation exchange group promotes the movement of ions such as lithium ions through the separator, thus enhancing the performance of the battery. Specifically, it is possible to perform rapid charging and rapid discharging for a long period of time.
  • the cation exchange group is not particularly limited, and examples thereof include a sulfonic acid group and a carboxylic acid group. Fibers having a cation exchange group on the surface can be formed by, for example, an electrospinning method using a sulfonated organic material.
  • the second film has pores, and the average pore diameter of the pores is preferably 5 nm or more and 10 ⁇ m or less.
  • the porosity is preferably 70% or more and 90% or less. If such pores are provided, a separator having excellent ion permeability and good electrolyte impregnation can be obtained.
  • the porosity is more preferably 80% or more.
  • the average pore diameter and porosity of the pores can be confirmed by the mercury intrusion method, calculation from volume and density, SEM observation, SIM observation, and gas adsorption method.
  • the porosity is preferably calculated from the volume and density of the second membrane. Further, it is desirable to measure the average pore size by a mercury intrusion method or a gas adsorption method. A large porosity in the second membrane means that the effect of interfering with the movement of ions is small.
  • the thickness of the second film is in the range of 12 ⁇ m or less.
  • the lower limit of the thickness is not particularly limited, but may be 1 ⁇ m.
  • the porosity is increased by leaving the contained organic fibers in a sparse state, so it is not difficult to obtain a layer having a porosity of, for example, about 90%. It is extremely difficult to form such a layer with a large porosity with particles.
  • the second membrane is more advantageous than the deposit of inorganic fibers in terms of unevenness, fragility, electrolyte-containing property, adhesion, bending property, porosity, and ion permeability.
  • the second film may contain particles of an organic compound.
  • the particles are made of, for example, the same material as organic fibers.
  • the particles may be formed integrally with the organic fiber.
  • the thickness of the first film and the second film is measured by a method conforming to the JIS standard (JIS B 7503-1997). Specifically, these thicknesses are measured using a contact digital gauge. Use a digital gauge fixed to the stone surface plate. Place the sample on the stone surface plate. Use a flat type with a tip of ⁇ 5.0 mm for the measurement terminal. The measurement terminal is brought closer from a distance of 1.5 mm or more and less than 5.0 mm above the sample, and the distance in contact with the sample is the thickness of the sample. The average of the measured values at any five points in the sample is taken as the desired thickness.
  • FIG. 4 is a cross-sectional view showing an example of the laminated body of the embodiment.
  • the cross-sectional view of FIG. 4 is a cross-sectional view of the laminated body cut in the extending direction of the current collecting tab.
  • the laminate shown in FIG. 4 includes a first electrode 1, a second electrode 2, and a separator 3.
  • the first electrode 1 includes a first current collector 1a, a first active material-containing layer 1b having a first front surface 40 and a first back surface 41, and a first. Includes the current collector tab 1c.
  • the first current collector 1a is a conductive sheet.
  • the first active material-containing layer 1b is held on each part of both main surfaces of the first current collector 1a. On each main surface of the first current collector 1a, the active material-containing layer is not held on one side (for example, long side, short side) and its vicinity.
  • the active material-containing layer non-holding portion formed parallel to one side of the first current collector 1a functions as the first current collector tab 1c.
  • the first current collecting tab 1c projects from the first active material-containing layer 1b in the first direction d1.
  • the surface in contact with the first current collector 1a is the first back surface 41.
  • the second electrode 2 has a second current collector 2a, a second active material-containing layer 2b having a second front surface 42 and a second back surface 43, and a second current collector. Includes tab 2c.
  • the second current collector 2a is a conductive sheet.
  • the second active material-containing layer 2b is held on each part of both main surfaces of the second current collector 2a.
  • On each main surface of the second current collector 2a the active material-containing layer is not held on one side or in the vicinity thereof.
  • the active material-containing layer non-holding portion formed parallel to one side of the second current collector 2a functions as the second current collector tab 2c.
  • the second current collecting tab 2c projects from the second active material-containing layer 2b in the first direction d2.
  • the surface in contact with the second current collector 2a is the second back surface 43.
  • Separator 3 includes a second film 5 containing organic fibers.
  • the first film 4 containing the titanium oxide particles can also function as the separator 3.
  • the first film 4 has a front surface A and a back surface B
  • the second film 5 has a front surface C and a back surface D.
  • the back surface B of the first film 4 covers the first surface 40 of each of the first active material-containing layers 1b.
  • How the first film 4 is fixed to the first active material-containing layer 1b is not particularly limited, and examples thereof include adhesion and heat fusion.
  • the surface roughness Ra2 of the surface A of the first film 4 is smaller than the surface roughness Ra1 of the first surface 40 of the first active material-containing layer 1b.
  • the second film 5 has four side surfaces 44 intersecting the second surface 42 and the second surface 42 of the second active material-containing layer 2b, respectively, and a second current collector. Covers the three end faces 45 exposed on the surface of the second electrode 2 of 2a and the portion 46 including the boundary with the second active material-containing layer 2b on both main faces of the second current collecting tab 2c. doing. Therefore, the first active material-containing layer 1b and the second active material-containing layer 2b face each other via the first film 4 and the second film 5.
  • the laminated body having the structure shown in FIG. 4 it is possible to suppress the wear of the roll surface and realize the laminated body including the electrode having excellent performance.
  • the second film 5 includes an end face 45 of the second current collector 2a and a portion 46 of the surface of the second current collector tab 2c including a boundary between the second active material-containing layer 2b. Since it is coated, internal short circuits due to contact between the first electrode and the second electrode 2 are reduced.
  • the first and second current collector tabs are not limited to one side of the first and second current collectors that does not support the active material-containing layer.
  • a plurality of strips protruding from one side of the first and second current collectors can be used as the first and second current collector tabs.
  • FIG. 7 shows another example of the first electrode 1.
  • a plurality of strips protruding from one side of the first current collector 1a may be used as the first current collector tab 1c.
  • the second film may be formed on the second electrode, but may be formed on the first electrode instead of being formed on the second electrode. An example of this is shown in FIG.
  • the second film 7 covers the surface of the first film 4 and all the end faces of the first electrode.
  • the second film 7 also covers the portions of both main surfaces of the first current collecting tab 1c, including the boundary with the first active material-containing layer 1b.
  • the first film may be formed on both the first electrode and the second electrode.
  • the adhesion between the first film and the electrode can be further improved.
  • the second film can be formed on either or both of the first electrode and the second electrode.
  • the electrode of the first embodiment since the electrode of the first embodiment is included, it is possible to suppress wear of the roll surface and realize a laminated body including the electrode having excellent performance. Is.
  • the electrode of the third embodiment includes a first active material-containing layer, a first current collector and a first film of the electrode of the first embodiment.
  • the back surface of the first active material-containing layer is supported on at least a part of the front surface and the back surface of the first current collector.
  • the first active material-containing layer includes a first end face adjacent to the first current collecting tab and a second end face facing the first end face in the first direction.
  • the thickness defined by the first end surface of the first active material-containing layer is smaller than the thickness defined by the second end surface of the first active material-containing layer.
  • the first film includes at least a part of the surface of the first active material-containing layer, the first end surface of the first active material-containing layer, and the first of the front and back surfaces of the first current collecting tab. It covers the end face and the adjacent portion.
  • a laminate including the electrodes of the third embodiment as the first electrodes is provided.
  • the laminate can further include a second electrode, which is the counter electrode of the first electrode.
  • the laminate may further contain a separator.
  • the separator may be one that can electrically insulate the first electrode and the second electrode while maintaining ionic conduction.
  • the first film of the first electrode may also serve as a separator.
  • An insulating film other than the second film or the first and second films may be used as the separator.
  • a combination of a plurality of types of films may be used as a separator.
  • the type of the insulating film the same ones as described in the second embodiment can be mentioned.
  • FIG. 9 is a cross-sectional view showing an example of the laminated body of the embodiment.
  • the cross-sectional view of FIG. 9 is a cross-sectional view of the laminated body cut in the first direction, which is the extending direction of the current collecting tab.
  • the laminate shown in FIG. 9 includes a first electrode 1, a second electrode 2, and a separator 3 as the electrodes of the third embodiment.
  • the first electrode 1 includes a first current collector 1a, a first active material-containing layer 1b, and a first current collector tab 1c.
  • the first active material-containing layer 1b has a first front surface 40 and a first back surface 41.
  • the first current collector tab 1c extends from the first current collector 1a in the first direction 51.
  • the first current collector 1a is a conductive sheet having a front surface and a back surface. One main surface of the first current collector 1a is the front surface, and the other main surface is the back surface. Each of the four side surfaces of the first current collector 1a is orthogonal to the front surface and the back surface.
  • the first active material-containing layer 1b is held on each of the front surface and the back surface of the first current collector 1a except for the portion serving as the first current collection tab 1c. On each of the front surface and the back surface of the first current collector 1a, the active material-containing layer is not held on one side (for example, the long side and the short side) and its vicinity.
  • the active material-containing layer non-holding portion formed parallel to one side of the first current collector 1a functions as the first current collector tab 1c.
  • the first active material-containing layer 1b has two sets of end faces facing each other. One set of end faces is perpendicular to the first direction 51. One of the end faces is the first end face 52 adjacent to the first current collecting tab 1c. The first end surface 52 faces the second end surface 53 in the first direction 51. Further, the thickness T1 defined by the first end surface 52 of the first active material-containing layer 1b is smaller than the thickness T2 defined by the second end surface 53 of the first active material-containing layer 1b. The method of measuring the thicknesses T1 and T2 will be described below.
  • the electrode group is unwound and the measurement sample is cut out to a size of about 10 mm ⁇ 10 mm.
  • the cut sample is placed in a beaker filled with EMC (Ethyl Methyl Carbonate) and stirred, and washed for 30 minutes. Dry the washed sample.
  • EMC Ethyl Methyl Carbonate
  • This sample is cross-section milled using an ion milling device (IM4000PLUS of Hitachi High-Technologies Corporation).
  • the cross section obtained by cross-section milling is observed with, for example, a scanning electron microscope (TM3030Plus, Hitachi High-Technologies Corporation), and the thicknesses T1 and T2 are measured.
  • FIGS. 11 to 18 show examples of cross-sectional shapes in which the end portion including the first end surface 52 is cut along the first direction 51.
  • the thickness of the first active material-containing layer 1b decreases toward the first direction 51 and becomes the minimum at the first end surface 52.
  • the thickness of the end of the first active material-containing layer 1b gradually decreases to the minimum at the first end surface 52.
  • the end portion including the first end surface 52 has a substantially semi-cylindrical shape extending in a direction orthogonal to the first direction 51. At the ends shown in FIGS.
  • the thickness of the end of the first active material-containing layer 1b is reduced so that the vertical cross-sectional shape is needle-shaped or dome-shaped, and is minimized at the first end surface 52. It has become.
  • the thickness of the end of the first active material-containing layer 1b is reduced so that the vertical cross-sectional shape draws a protrusion, and is minimized at the first end surface 52.
  • the end shapes shown in FIGS. 11, 12, 14, 17, and 18 are desirable.
  • the second electrode 2 includes a second current collector 2a, a second active material-containing layer 2b, and a second current collector tab 2c.
  • the second active material-containing layer 2b has a second front surface 42 and a second back surface 43.
  • the second current collector tab 2c extends from the second current collector 2a in the second direction 54.
  • the second current collector 2a is a conductive sheet having a front surface and a back surface. One main surface of the second current collector 2a is the front surface, and the other main surface is the back surface. Each of the four side surfaces of the second current collector 2a is orthogonal to the front surface and the back surface.
  • the second active material-containing layer 2b is held on each of the front surface and the back surface of the second current collector 2a except for the portion serving as the second current collection tab 2c. On each of the front surface and the back surface of the second current collector 2a, the active material-containing layer is not held on one side or in the vicinity thereof.
  • the active material-containing layer non-holding portion formed parallel to one side of the second current collector 2a functions as the second current collector tab 2c.
  • the surface in contact with the second current collector 2a is the second back surface 43.
  • the second active material-containing layer 2b has two sets of end faces facing each other. One set of end faces is perpendicular to the second direction 54.
  • One of the end faces is the first end face 55 adjacent to the second current collecting tab 2c.
  • the first end surface 55 faces the second end surface 56 in the second direction 54.
  • the thickness T1 defined by the first end surface 55 of the second active material-containing layer 2b may be smaller than the thickness T2 defined by the second end surface 56 of the second active material-containing layer 2b.
  • Separator 3 includes a second film 5 containing organic fibers.
  • the first film 4 can function as a separator 3.
  • the first film 4 has a front surface A and a back surface B
  • the second film 5 has a front surface C and a back surface D.
  • the back surface B of the first film 4 is in contact with and covered with the first surface 40 of each of the first active material-containing layers 1b.
  • the first end surface 52 of the four sides orthogonal to the main surface is covered with the first film 4.
  • the first film 4 is a portion adjacent to the first end surface 52 of the first active material-containing layer 1b on the front surface and the back surface of the first current collecting tab 1c, in other words, the surface of the first current collecting tab 1c. And the boundary portion with the first end surface 52 of each of the back surface is also covered.
  • the portion of the first film 4 adjacent to the first end surface 52 is located near the end surface located on the side opposite to the extending side of the second current collecting tab 2c of the second electrode.
  • the form in which the first film 4 covers the first end surface 52 of the first active material-containing layer 1b and the portion adjacent thereto is not particularly limited, but for example, the examples shown in FIGS. 11 to 18. Can be mentioned.
  • the first film 4 covers an end portion (hereinafter, referred to as an end portion) including the first end surface 52 of the first active material-containing layer 1b so as to follow the outer shape thereof.
  • the first film 4 covers a portion adjacent to the first end surface 52 (hereinafter referred to as an adjacent portion) with a sufficient width, and the thickness thereof decreases along the first direction 51.
  • the first film 4 covers the end portion of the first active material-containing layer 1b including the first end surface 52 so as to follow the outer shape thereof.
  • the first film 4 covers the adjacent portion with a sufficient width and thickness.
  • the first film 4 covers the end portion of the first active material-containing layer 1b so as to follow its outer shape. Further, the first film 4 covers the adjacent portion with a sufficient width, and the thickness thereof decreases along the first direction 51.
  • the first film 4 covers the end portion of the first active material-containing layer 1b so as to follow its outer shape.
  • the first film 4 covers the end of the first active material-containing layer 1b and the adjacent portion with a sufficient width, the thickness of which decreases along the first direction 51. doing.
  • the first film 4 covers the periphery of the end portion of the first active material-containing layer 1b.
  • the first film 4 covers the end portion and the adjacent portion of the first active material-containing layer 1b, but the portion covering the end portion is covered with the adjacent portion. Are not continuous and are independent of each other.
  • the first film 4 covers a part of the end portion of the first active material-containing layer 1b.
  • FIGS. 11 to 14 are desirable.
  • How the first film 4 is fixed to the first active material-containing layer 1b is not particularly limited, and examples thereof include adhesion and heat fusion.
  • the second film 5 has four side surfaces (including end faces 55 and 56) orthogonal to the second surface 42 and the second surface 42 of the second active material-containing layer 2b, respectively. , Three end faces 45 exposed on the surface of the second electrode 2 of the second current collector 2a, and end faces 55 of the second active material-containing layer 2b on the front and back surfaces of the second current collector tab 2c. It covers the adjacent portion 46. Therefore, the first active material-containing layer 1b and the second active material-containing layer 2b face each other via the first film 4 and the second film 5.
  • the second film may be integrated with the second electrode, but is not limited thereto.
  • the second film may be integrated with the surface of the first film.
  • the second film is integrated with the first film or the second active material-containing layer is not particularly limited, but for example, the organic fibers in the second film are the first.
  • the state of being sunk or fitted into the surface of the film or the second active material-containing layer can be mentioned.
  • the laminate of the third embodiment includes the electrodes of the first embodiment, it is possible to suppress wear on the roll surface and include electrodes having excellent performance. It is possible to realize a laminated body. Further, the thickness defined by the first end surface of the first active material-containing layer is smaller than the thickness defined by the second end surface of the first active material-containing layer. Further, the first film is adjacent to the surface and the first end surface of the first active material-containing layer and the first end surface of the first active material-containing layer of the front and back surfaces of the first current collecting tab. It covers the part. According to such a structure, it is possible to prevent the first film from peeling from the first active material-containing layer.
  • the first film becomes the first film when the electrode group is produced by winding the laminate in a spiral shape or when the filling rate of the laminate in the exterior member is increased. Since peeling from the active material-containing layer can be suppressed, the occurrence of an internal short circuit can be suppressed, and a high-capacity battery can be provided. Therefore, it is excellent in practicality.
  • the volume change due to expansion and contraction due to charge / discharge on the first end surface side of the first active material-containing layer can be alleviated. As a result, the first film can easily follow the deformation of the first active material-containing layer, and can suppress peeling from the first active material-containing layer. Therefore, the life such as the charge / discharge cycle life of the battery can be improved.
  • the first and second current collector tabs are not limited to one side of the first and second current collectors without supporting the active material-containing layer.
  • a plurality of strips protruding from one side surface of the first and second current collectors can be used as the first and second current collector tabs.
  • FIG. FIG. 20 shows another example of the first electrode 1.
  • a plurality of strips protruding from one side surface (for example, one side surface along the long side) of the first current collector 1a may be used as the first current collector tab 1c.
  • the first film 4 covers the front surface and the first end surface 52 of the first active material-containing layer 1b, and the portions of the front surface and the back surface of the first current collecting tab 1c adjacent to the first end surface 52. ..
  • the other three end faces of the first active material-containing layer 1b, the four side surfaces 49 of the first current collector 1a, or the two opposite side surfaces 48 of the first current collector tab 1c are formed on the first film 4. It may be covered.
  • the second film 5 may be integrated with the first electrode 1.
  • FIG. 21 the second film 5 includes the surface of the first film 4 and the electrode end faces not covered by the first film 4, that is, the three electrode end faces on which the first current collecting tab 1c does not extend. Is covered.
  • the first film may be formed on both the first electrode and the second electrode.
  • the adhesion between the first film and the electrode can be further improved.
  • the second film can be formed on either or both of the first electrode and the second electrode.
  • the manufacturing method of the first electrode which is an example of the electrodes of the first embodiment and the third embodiment, will be described below.
  • the coating device 30 includes a tank 32 for accommodating the slurry I and a tank 33 for accommodating the slurry II, and is configured to simultaneously apply the slurry I and the slurry II to the base material.
  • the long first current collector 1a before being cut to a predetermined size is conveyed to the slurry discharge port of the coating device 30 by the transfer roller 31.
  • the slurry I discharge port 32a is located on the upstream side of the current collector with respect to the slurry II discharge port 33a. Due to such an arrangement of the discharge port, the slurry I is applied from the coating device 30 onto the first current collector 1a except for both ends in the short side direction.
  • the slurry II is overcoated so as to protrude from the coating area of the slurry I. Since the slurry II is overcoated with the slurry I, the slurry II can easily follow the surface shape of the slurry I. Then, after the slurry is dried, the dried slurry is rolled and pressed to a predetermined size to obtain a first electrode.
  • the difference in surface roughness can be reduced. Further, if the period between the steps is lengthened, the difference in surface roughness increases. The difference in surface roughness can be reduced by shortening the drying time of the slurry. Further, increasing the press pressure can reduce the difference in surface roughness.
  • the timing of applying the slurry I and the slurry II, the drying conditions of the slurry, the pressing conditions, etc. the surface roughness of the surface of the first film is rougher than that of the surface roughness Ra1 of the first active material-containing layer. A first electrode having a small Ra2 is obtained.
  • the viscosity of the slurry II be made larger than the viscosity of the slurry I.
  • the fluidity of the slurry II is lower than that of the slurry I, so that the slurry I diffuses on the surface of the first current collector to reduce the thickness of the end portion of the coating.
  • Slurry II diffuses on slurry I while following the shape of slurry I.
  • the thickness defined by the first end surface of the first active material-containing layer can be made smaller than the thickness defined by the second end surface of the first active material-containing layer.
  • the viscosity of the slurry II is higher than the viscosity of the slurry I over a region of viscosity shear rate of 1.0 (1 / s) or more and 1000 (1 / s) or less.
  • the viscosity of the slurry I is preferably 0.01 Pa ⁇ s or more and 1000 Pa ⁇ s or less in the region where the viscosity shear rate is 1.0 (1 / s) or more and 1000 (1 / s) or less, and among them, 0.1 Pa ⁇ s or more. More preferably 100 Pa ⁇ s or less.
  • the viscosity of the slurry II is preferably 0.1 Pa ⁇ s or more and 1000 Pa ⁇ s or less in the region where the viscosity shear rate is 1.0 (1 / s) or more and 1000 (1 / s) or less, and particularly 1 Pa ⁇ s or more. More preferably 1000 Pa ⁇ s or less.
  • a first electrode (the electrode of the first or third embodiment) is obtained by the first manufacturing method.
  • the slurry is dried, the dried one is roll-pressed, and cut into a predetermined size to obtain a second electrode. ..
  • a second film is formed on the second electrode by an electrospinning method. Then, a press may be applied.
  • a press may be applied.
  • a roll press or a flat plate press may be used.
  • the first electrode and the second electrode are laminated so that they face each other via the first film and the second film to obtain the laminate of the embodiment.
  • a second film is formed on the first electrode produced by the first production method by an electrospinning method. Then, a press may be applied. The pressing conditions are as described in the second manufacturing method.
  • the slurry is dried, the dried one is roll-pressed, and cut into a predetermined size to obtain a second electrode. ..
  • the first electrode and the second electrode are laminated so that they face each other via the first film and the second film to obtain the laminate of the embodiment.
  • the second film is formed, for example, by an electrospinning method.
  • the first electrode or the second electrode which is the object of forming the second film, is grounded to be a ground electrode.
  • the first electrode on which the first film has been formed is prepared.
  • the voltage applied to the spinning nozzle charges the liquid raw material (for example, the raw material solution), and the volatilization of the solvent from the raw material solution increases the charge amount per unit volume of the raw material solution. Due to the continuous volatilization of the solvent and the accompanying increase in the amount of charge per unit volume, the raw material solution discharged from the spinning nozzle extends in the longitudinal direction, and as a nano-sized organic fiber, the first ground electrode. Accumulate on the electrode or the second electrode. A Coulomb force is generated between the organic fiber and the ground electrode due to the potential difference between the nozzle and the ground electrode.
  • the contact area with the first film can be increased by the nano-sized organic fiber, and the organic fiber can be deposited on the first electrode or the second electrode by the Coulomb force, so that the second electrode can be deposited. It is possible to increase the peeling strength of the film from the electrode. The peel strength can be controlled by adjusting, for example, the solution concentration, the distance between the sample and the nozzle, and the like.
  • the second film is not formed on the first and second current collecting tabs, it is preferable to mask the first and second current collecting tabs before forming the second film. An example of this is shown in FIG. FIG. 24 is a perspective view showing a step of forming a second film on the second electrode. As shown in FIG.
  • the second film 5 is directly formed by depositing the raw material solution discharged from the nozzle N on the second active material-containing layer 2b and the second current collecting tab 2c as organic fibers. Will be done. One side of the second current collecting tab 2c and its vicinity are covered with the mask M. Therefore, the second film 5 is deposited so as to straddle the surface of the second active material-containing layer 2b and the portion of the surface of the second current collecting tab 2c adjacent to the second active material-containing layer 2b. It becomes a porous film containing organic fibers.
  • the electrospinning method forms a single continuous fiber, so that the thin film can ensure resistance to breakage due to bending and cracking of the film.
  • the fact that the organic fibers constituting the second film are seamless and continuous has a low probability of fraying or partial loss of the second film, and is advantageous in terms of suppressing self-discharge.
  • the liquid raw material used for electrospinning for example, a raw material solution prepared by dissolving an organic material in a solvent is used.
  • organic materials include those similar to those mentioned for organic materials constituting organic fibers.
  • the organic material is used, for example, dissolved in a solvent at a concentration of about 5 to 60% by mass.
  • the solvent for dissolving the organic material is not particularly limited, and any solvent such as dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), N, N'dimethylformamide (DMF), N-methylpyrrolidone (NMP), water, alcohols and the like can be used.
  • a solvent can be used.
  • electrospinning is performed while melting the sheet-shaped organic material with a laser or the like. In addition, it is permissible to mix a high boiling organic solvent with a low melting point solvent.
  • a second film is formed by discharging the raw material from the spinning nozzle over the surface of a predetermined electrode while applying a voltage to the spinning nozzle using a high-voltage generator.
  • the applied voltage is appropriately determined according to the solvent / solute species, the boiling point / vapor pressure curve of the solvent, the solution concentration, the temperature, the nozzle shape, the distance between the sample and the nozzle, etc.
  • the potential difference between the nozzle and the work is 0.1 to 1. It can be 100 kV.
  • the supply rate of the raw material is also appropriately determined according to the solution concentration, solution viscosity, temperature, pressure, applied voltage, nozzle shape and the like. In the case of the syringe type, for example, it can be about 0.1 to 500 ⁇ l / min per nozzle. Further, in the case of a multi-nozzle or a slit, the supply speed may be determined according to the opening area.
  • the organic fibers are formed directly on the surface of the electrode in a dry state, it is practically avoided that the solvent contained in the raw material penetrates into the electrode.
  • the residual amount of solvent inside the electrode is as low as ppm level or less.
  • the residual solvent inside the electrode causes a redox reaction, causing battery loss and leading to deterioration of battery performance. According to the present embodiment, the possibility of such inconvenience occurring is reduced as much as possible, so that the performance of the battery can be improved.
  • the secondary battery of the fourth embodiment includes the laminate of the above embodiment.
  • the secondary battery may further include an electrolyte and an exterior member capable of accommodating the electrolyte and the laminate.
  • the shape of the electrode group is not limited to this shape, and one or more laminated bodies wound in a spiral or flat spiral shape may be used as the electrode group.
  • the secondary battery may further include a first electrode terminal that is electrically connected to the first current collecting tab and a second electrode terminal that is electrically connected to the second current collecting tab. Is.
  • a non-aqueous electrolyte for example, a non-aqueous electrolyte is used.
  • the non-aqueous electrolyte include a liquid non-aqueous electrolyte prepared by dissolving the electrolyte in an organic solvent, a gel-like non-aqueous electrolyte in which a liquid electrolyte and a polymer material are combined, and the like.
  • the liquid non-aqueous electrolyte can be prepared, for example, by dissolving the electrolyte in an organic solvent at a concentration of 0.5 mol / L or more and 2.5 mol / L or less.
  • Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium arsenic hexafluorophosphate (LiAsF 6 ), and trifluorometh.
  • Lithium salts such as lithium sulfonate (LiCF 3 SO 3 ), bistrifluoromethylsulfonylimide lithium [LiN (CF 3 SO 2 ) 2 ], or mixtures thereof can be mentioned. It is preferable that it is difficult to oxidize even at a high potential, and LiPF 6 is most preferable.
  • organic solvent examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC) and vinylene carbonate, and chain carbonates such as diethyl carbonate (DEC), dimethyl carbonate (DMC) and methyl ethyl carbonate (MEC).
  • Cyclic ethers such as tetrahydrofuran (THF), dimethyltetrahydrofuran (2MeTHF) and dioxolane (DOX), chain ethers such as dimethoxyethane (DME) and diethoxyethane (DEE), ⁇ -butyrolactone (GBL), Examples thereof include acetonitrile (AN) and sulfolane (SL).
  • Such an organic solvent may be used alone or as a mixture of two or more kinds.
  • polymer material examples include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyethylene oxide (PEO) and the like.
  • non-aqueous electrolyte a room temperature molten salt (ionic melt) containing lithium ions, a polymer solid electrolyte, an inorganic solid electrolyte, or the like may be used.
  • the exterior member for example, a metal container, a laminated film container, or the like can be used.
  • the form of the secondary battery is not particularly limited, and can be in various forms such as a cylindrical type, a flat type, a thin type, a square type, and a coin type.
  • FIG. 25 is a partially cutaway perspective view showing an example of the secondary battery according to the embodiment.
  • FIG. 25 is a diagram showing an example of a secondary battery using a laminated film as an exterior member.
  • the secondary battery 10 shown in FIG. 25 includes an exterior member 11 made of a laminated film, an electrode group 12, a first electrode terminal 13, a second electrode terminal 14, and a non-aqueous electrolyte (not shown). ..
  • the electrode group 12 includes a plurality of laminated bodies of the embodiment, and has a structure in which the first electrode and the second electrode are laminated via a separator composed of a first film and a second film. A non-aqueous electrolyte (not shown) is retained or impregnated in the electrode group 12.
  • the first current collecting tab of the first electrode is electrically connected to the first electrode terminal 13.
  • the second current collecting tab of the second electrode is electrically connected to the second electrode terminal 14. As shown in FIG. 25, the tips of the first electrode terminal 13 and the second electrode terminal 14 project outward from one side of the exterior member 11 in a state where they are separated from each other.
  • FIG. 26 is an exploded perspective view showing another example of the secondary battery according to the embodiment.
  • FIG. 26 is a diagram showing an example of a secondary battery using a square metal container as an exterior member.
  • the secondary battery shown in FIG. 26 includes an exterior member 20, a wound electrode group 21, a lid 22, a first electrode terminal 23, a second electrode terminal 24, and a non-aqueous electrolyte (not shown). including.
  • the wound electrode group 21 has a structure in which the laminated body of the embodiment is wound in a flat spiral shape.
  • the first current collecting tab 25 wound in a flat spiral shape is located on one end face in the circumferential direction
  • the second current collecting tab 25 wound in a flat spiral shape is located on one end face.
  • the electric tab 26 is located on the other end face in the circumferential direction.
  • a non-aqueous electrolyte (not shown) is retained or impregnated in the electrode group 21.
  • the first electrode lead 27 is electrically connected to the first current collecting tab 25 and is also electrically connected to the first electrode terminal 23.
  • the second electrode lead 28 is electrically connected to the second current collecting tab 26 and also electrically connected to the second electrode terminal 24.
  • the electrode group 21 is arranged in the exterior member 20 so that the first electrode lead 27 and the second electrode lead 28 face the main surface side of the exterior member 20.
  • the lid 22 is fixed to the opening 20a of the exterior member 20 by welding or the like.
  • the first electrode terminal 23 and the second electrode terminal 24 are respectively attached to the lid 22 via an insulating hermetic seal member (not shown).
  • a secondary battery with the first electrode as the positive electrode and the second electrode as the negative electrode was produced by the following method.
  • Example 1 An insulating layer as a first film on the positive electrode and the positive electrode, and a nanofiber layer as a second film on the negative electrode and the negative electrode were produced by the following methods.
  • NMP n-methylpyrrolidone
  • Lithium titanate (Li 4 Ti 5 O 12 ) particles having an average particle diameter D50 of 1 ⁇ m and PVdF were prepared as insulating inorganic materials. These were mixed at a mass ratio of 100: 4 to obtain a mixture. Next, the obtained mixture was dispersed in NMP, and a titanium oxide-containing slurry was obtained so as to have a viscosity shear rate of 1.0 (1 / s) of 100 Pa ⁇ s and a viscosity shear rate of 1000 (1 / s) of 2 Pa ⁇ s. Was prepared.
  • the viscosity of the titanium oxide-containing slurry (slurry II) is larger than the viscosity of the positive electrode slurry (slurry I) over a region of viscosity shear rate of 1.0 (1 / s) or more and 1000 (1 / s) or less. ..
  • the viscosities of the positive electrode slurry and the titanium oxide-containing slurry were measured using a Thermo Scientific HAAKE MARS III viscosity / viscoelasticity measuring device.
  • a positive electrode slurry was applied to the lower layer, a titanium oxide-containing slurry was applied to the upper layer, and the titanium oxide-containing slurry of the upper layer was overcoated and dried. It was. This was done on both sides of the aluminum foil. Then, it was rolled-pressed and cut into a predetermined size to obtain a positive electrode. As shown in FIG. 9, the insulating inorganic material layer was coated with the front surface and the first end surface of the positive electrode active material-containing layer, and the front surface and the back surface of the positive electrode current collector tab adjacent to the first end surface.
  • each of the positive electrode active material-containing layers is 20 ⁇ m
  • the thickness of the insulating inorganic material layer on the positive electrode active material-containing layer is 3 ⁇ m
  • the insulating inorganic material layer formed on the aluminum foil protruding from the positive electrode active material-containing layer was 20 ⁇ m.
  • the content of titanium oxide in the insulating inorganic material layer was 96% by mass.
  • the thickness T1 of the first end face was 5 ⁇ m
  • the thickness T2 of the second end face was 20 ⁇ m.
  • the shape of the end portion including the first end face is as shown in FIG. That is, the thickness of the positive electrode active material-containing layer 1b containing a large number of particles becomes thinner toward the current collecting tab side.
  • the first film 4 covers the surfaces of the positive electrode active material-containing layer 1b and the positive electrode current collector 1a.
  • the thickness of the first film 4 is such that the portion in contact with the surface of the positive electrode current collector 1a is thicker than the portion in contact with the surface of the positive electrode active material-containing layer 1b.
  • a portion without a positive electrode active material-containing layer was provided on one long side of the current collector, and this portion was used as a positive electrode current collector tab.
  • Lithium titanate particles having an average primary particle size of 0.5 ⁇ m were prepared as the negative electrode active material, carbon black was prepared as the conductive agent, and polyvinylidene fluoride was prepared as the binder. These were mixed at a mass ratio of 90: 5: 5 to obtain a mixture. The resulting mixture was dispersed in an n-methylpyrrolidone (NMP) solvent to prepare a slurry.
  • NMP n-methylpyrrolidone
  • the obtained slurry was applied to both sides of an aluminum foil having a thickness of 15 ⁇ m and dried. Then, the dried coating film was pressed to obtain a negative electrode.
  • the thickness of each of the negative electrode active material-containing layers was 30 ⁇ m. A portion without a negative electrode active material-containing layer was provided on one long side of the current collector, and this portion was used as a negative electrode current collector tab.
  • Organic fibers were deposited on this negative electrode by an electrospinning method to form a nanofiber layer.
  • Polyimide was used as the organic material. This polyimide was dissolved in DMAc as a solvent at a concentration of 20% by mass to prepare a raw material solution as a liquid raw material.
  • the obtained raw material solution was supplied from the spinning nozzle to the surface of the negative electrode at a supply rate of 5 ⁇ l / min using a metering pump.
  • a voltage of 20 kV was applied to the spinning nozzle using a high voltage generator, and a layer of 2 ⁇ m organic fibers was formed on the surface of the negative electrode active material-containing layer while moving the range of 100 ⁇ 200 mm with this spinning nozzle.
  • the negative electrode was subjected to the electrospinning method with the surface of the negative electrode current collecting tab masked, except for the portion 10 mm from the boundary with the negative electrode active material-containing layer on both surfaces (main surfaces) of the negative electrode current collecting tab. Obtained.
  • the organic fiber layer has four side surfaces orthogonal to the respective surfaces and surfaces of the negative electrode active material-containing layer, three end faces exposed on the negative electrode surface of the negative electrode current collector, and a negative electrode current collector.
  • the front surface and the back surface of the tab were covered with the end surface of the negative electrode active material-containing layer and the portion adjacent to the end surface.
  • the obtained positive electrode and negative electrode were wound and pressed so that the first film of the positive electrode and the second film of the negative electrode faced each other as shown in FIG. 9, and an electrode group was obtained as a laminated body.
  • Example 2 A laminate was obtained in the same manner as in Example 1 except that rutile-type titanium dioxide (TiO 2 ) particles having an average particle diameter D50 of 1 ⁇ m were used as the insulating inorganic material.
  • Comparative Example 1 A laminate was obtained in the same manner as in Example 1 except that alumina (Al 2 O 3 ) particles having an average particle diameter D50 of 1 ⁇ m were used as the insulating inorganic material.
  • Example 2 A laminate was obtained in the same manner as in Example 1 except that magnesia (MgO) particles having an average particle diameter D50 of 3 ⁇ m were used as the insulating inorganic material.
  • MgO magnesia
  • Example 3 A laminate was obtained in the same manner as in Example 1 except that the first film was not provided.
  • the surface roughness Ra1 of the positive electrode active material-containing layer and the surface roughness Ra2 of the surface of the first film were measured by the above-mentioned method for measuring the arithmetic mean value Ra of the roughness, and the results were obtained. Is shown in Table 1. As shown in Table 1, the positive electrodes of Examples 1 and 2 satisfied Ra1> Ra2.
  • MSE microslurry erosion
  • the diameter of the nozzle was 3 mm ⁇ 3 mm. After spraying for a certain period of time, the depth of wear was measured with a stylus type roughness meter. The test was carried out at room temperature. The relationship between the MSE test time (minutes) and the amount of wear ( ⁇ m) is shown in FIG.
  • the electrodes of Examples 1 and 2 provided with the first film containing the titanium oxide particles had a wear amount of less than 10 ⁇ m even after the test time of 300 minutes had elapsed.
  • the electrodes of Comparative Examples 1 and 2 provided with the first film containing alumina or magnesia and the electrodes of Comparative Example 3 not provided with the first film all had a wear amount within 120 minutes of the test time. It reached 40 ⁇ m. From the above results, it was confirmed that the wear of the roll surface was suppressed according to the electrodes according to the embodiment.
  • the electrode groups of Examples 1 and 2 were vacuum dried overnight at room temperature and then left in a glove box having a dew point of ⁇ 80 ° C. or lower for one day.
  • the electrolytic solution used was one in which LiPF 6 was dissolved in ethylene carbonate (EC) and dimethyl carbonate (DMC).
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • the positive electrode active material is 80% by mass of lithium manganese composite oxide particles having a spinel structure represented by LiMn 2 O 4 having an average particle size of 7 ⁇ m, and LiCoO 2 particles having an average particle size of 5 ⁇ m. Was changed to 20% by mass, and the same results as in Example 1 were obtained.
  • the electrode according to at least one embodiment and the embodiment described above includes an active material-containing layer and a first film containing titanium oxide particles, and has surface roughness Ra1 and a first surface roughness of the surface of the active material-containing layer.
  • the surface roughness Ra2 of the surface of the film 1 satisfies Eq. (1): Ra1> Ra2. Therefore, wear of the roll surface used in the roll press can be suppressed, and improvement of battery performance such as battery capacity and rate performance can be expected.
  • 2nd electrode lead, 40 ... 1st surface, 41 ... 1st back surface, 42 ... 2nd surface, 43 ... 2nd back surface, 45 ... the end face of the second current collector, 46 ... the portion of the second current collector tab including the boundary with the second active material-containing layer, A ... the surface of the first film, B ... the first film.
  • Back surface, C ... Second surface of film, D ... Back surface of second film, 51 ... First direction, 52, 55 ... First end face, 53, 56 ... Second end face, 54 ... Second direction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The embodiments provide an electrode that includes: an active-material-containing layer that includes active material particles and has a front surface and a back surface; and a first film that has a front surface and a back surface. The back surface of the first film contacts at least a portion of the front surface of the active-material-containing layer. The first film includes titanium oxide particles. The surface roughness Ra1 of the front surface of the active-material-containing layer and the surface roughness Ra2 of the front surface of the first film satisfy Ra1>Ra2.

Description

電極、積層体及び二次電池Electrodes, laminates and rechargeable batteries
 本発明の実施形態は、電極、積層体及び二次電池に関する。 Embodiments of the present invention relate to electrodes, laminates and secondary batteries.
 リチウム二次電池等の二次電池を高容量化するため、ロールプレス処理により電極の密度を高めることが行われている。また一方で、二次電池には、製造コストの削減も要求されている。例えば、ロールプレス処理で用いられるロールが摩耗すると、ロール自体のメンテナンスが必要になるだけではなく、メンテナンスの間、製造ラインを休止する必要がある。そのため、メンテナンス費用に加え、製造が中断することによる損失が発生する。ロールのメンテナンスの頻度を減らすことができれば、製造コストを削減することができるため、高性能の電極をより安価に提供することができる。 In order to increase the capacity of secondary batteries such as lithium secondary batteries, the density of electrodes is increased by roll press processing. On the other hand, secondary batteries are also required to reduce manufacturing costs. For example, when the roll used in the roll press process wears, not only the maintenance of the roll itself is required, but also the production line needs to be suspended during the maintenance. Therefore, in addition to the maintenance cost, a loss due to the interruption of manufacturing occurs. If the frequency of roll maintenance can be reduced, the manufacturing cost can be reduced, so that high-performance electrodes can be provided at a lower cost.
国際公開第2009/063747号公報International Publication No. 2009/063747 日本国特開2010-97720号公報Japanese Patent Application Laid-Open No. 2010-97720
 実施形態によれば、高性能な電極、該電極を含む積層体及び二次電池が提供される。 According to the embodiment, a high-performance electrode, a laminate including the electrode, and a secondary battery are provided.
 実施形態によれば、活物質粒子を含み、表面及び裏面を有する活物質含有層と、表面及び裏面を有する第1の膜とを含む電極が提供される。第1の膜の裏面が活物質含有層の表面の少なくとも一部と接する。第1の膜は、チタン酸化物粒子を含む。活物質含有層の表面の表面粗さRa1と、第1の膜の表面の表面粗さRa2が、Ra1>Ra2を満たす。 According to the embodiment, an electrode containing active material particles and containing an active material-containing layer having a front surface and a back surface and a first film having a front surface and a back surface is provided. The back surface of the first film is in contact with at least a part of the surface of the active material-containing layer. The first film contains titanium oxide particles. The surface roughness Ra1 on the surface of the active material-containing layer and the surface roughness Ra2 on the surface of the first film satisfy Ra1> Ra2.
 また、他の実施形態によれば、実施形態の電極を含む積層体が提供される。 Further, according to another embodiment, a laminate including the electrodes of the embodiment is provided.
 他の実施形態によれば、実施形態の電極を含む二次電池が提供される。 According to another embodiment, a secondary battery including the electrodes of the embodiment is provided.
粗さの算術平均値Raの算出方法を示す模式図。The schematic diagram which shows the calculation method of the arithmetic mean value Ra of roughness. 粗さの算術平均値Raを算出するための式を示す図。The figure which shows the formula for calculating the arithmetic mean value Ra of roughness. チタン酸リチウム電極のサイクリックボルタンメトリーによる電位曲線を示す図。The figure which shows the potential curve by cyclic voltammetry of a lithium titanate electrode. 実施形態の積層体の一例を示す断面図。The cross-sectional view which shows an example of the laminated body of an embodiment. 図4に示す積層体の第1の電極を示す斜視図。The perspective view which shows the 1st electrode of the laminated body shown in FIG. 図4に示す積層体の第2の電極を示す斜視図。The perspective view which shows the 2nd electrode of the laminated body shown in FIG. 第1の電極の別の例を示す斜視図。The perspective view which shows another example of the 1st electrode. 実施形態の積層体の別の例を示す断面図。FIG. 5 is a cross-sectional view showing another example of the laminate of the embodiment. 実施形態の積層体の別の例を示す断面図。FIG. 5 is a cross-sectional view showing another example of the laminate of the embodiment. 図9に示す積層体の第1の電極を示す斜視図。The perspective view which shows the 1st electrode of the laminated body shown in FIG. 第1の活物質含有層の第1端面を含む端部の形状例を示す断面図。FIG. 5 is a cross-sectional view showing a shape example of an end portion including the first end surface of the first active material-containing layer. 第1の活物質含有層の第1端面を含む端部の形状例を示す断面図。FIG. 5 is a cross-sectional view showing a shape example of an end portion including the first end surface of the first active material-containing layer. 第1の活物質含有層の第1端面を含む端部の形状例を示す断面図。FIG. 5 is a cross-sectional view showing a shape example of an end portion including the first end surface of the first active material-containing layer. 第1の活物質含有層の第1端面を含む端部の形状例を示す断面図。FIG. 5 is a cross-sectional view showing a shape example of an end portion including the first end surface of the first active material-containing layer. 第1の活物質含有層の第1端面を含む端部の形状例を示す断面図。FIG. 5 is a cross-sectional view showing a shape example of an end portion including the first end surface of the first active material-containing layer. 第1の活物質含有層の第1端面を含む端部の形状例を示す断面図。FIG. 5 is a cross-sectional view showing a shape example of an end portion including the first end surface of the first active material-containing layer. 第1の活物質含有層の第1端面を含む端部の形状例を示す断面図。FIG. 5 is a cross-sectional view showing a shape example of an end portion including the first end surface of the first active material-containing layer. 第1の活物質含有層の第1端面を含む端部の形状例を示す断面図。FIG. 5 is a cross-sectional view showing a shape example of an end portion including the first end surface of the first active material-containing layer. 図9に示す積層体の第2の電極を示す斜視図。The perspective view which shows the 2nd electrode of the laminated body shown in FIG. 第1の電極の別の例を示す斜視図。The perspective view which shows another example of the 1st electrode. 実施形態の積層体の別の例を示す断面図。FIG. 5 is a cross-sectional view showing another example of the laminate of the embodiment. 実施形態の積層体の製造方法における一工程の概略図。The schematic diagram of one step in the manufacturing method of the laminated body of an embodiment. 実施形態の積層体の製造方法における一工程の概略図。The schematic diagram of one step in the manufacturing method of the laminated body of an embodiment. 実施形態の積層体の製造方法における一工程の概略図。The schematic diagram of one step in the manufacturing method of the laminated body of an embodiment. 実施形態の二次電池の一例を示す、部分切欠き斜視図。A partially cutaway perspective view showing an example of the secondary battery of the embodiment. 実施形態の二次電池の別の例の分解図。Exploded view of another example of the secondary battery of the embodiment. 実施例及び比較例の電極におけるMSE試験時間と摩耗量との関係を示す図。The figure which shows the relationship between the MSE test time and the wear amount in the electrode of an Example and a comparative example.
 第1の実施形態
 第1の実施形態によれば、活物質粒子を含み、表面及び裏面を有する活物質含有層と、表面及び裏面を有し、裏面が活物質含有層の表面の少なくとも一部と接し、チタン酸化物粒子を含む第1の膜とを含む電極が提供される。活物質含有層の表面の表面粗さRa1と、第1の膜の表面の表面粗さRa2が、下記(1)式を満たす。
First Embodiment According to the first embodiment, there is an active material-containing layer containing active material particles and having a front surface and a back surface, and at least a part of the surface surface of the active material-containing layer having a front surface and a back surface. An electrode is provided that is in contact with and contains a first film containing titanium oxide particles. The surface roughness Ra1 of the surface of the active material-containing layer and the surface roughness Ra2 of the surface of the first film satisfy the following equation (1).
   Ra1>Ra2   (1)
 本発明者らは、ロールプレスに使用されるロールの表面の摩耗が、電極の活物質含有層の表面に付着した活物質粒子が、ロール表面と接触してロール表面を切削するためであることを究明した。活物質含有層に付着する活物質粒子は、製造工程で何らかの原因で電極等から脱落した粒子である。活物質含有層の表面は、軟質面であると言えるので、活物質粒子が食い込みやすい。そのような状態にある表面にロールプレス処理が施されると、活物質含有層表面に食い込んだ活物質粒子が、硬質面であるロール表面を切削し、ロール表面の摩耗が生じる。摩耗は、活物質含有層表面に食い込んだ活物質粒子が正極活物質粒子である時により顕著に生じる。
Ra1> Ra2 (1)
The present inventors have stated that the wear on the surface of the roll used in the roll press is due to the active material particles adhering to the surface of the active material-containing layer of the electrode coming into contact with the roll surface and cutting the roll surface. Was investigated. The active material particles adhering to the active material-containing layer are particles that have fallen off from the electrodes or the like for some reason during the manufacturing process. Since the surface of the active material-containing layer can be said to be a soft surface, the active material particles easily bite into it. When the surface in such a state is subjected to the roll press treatment, the active material particles that bite into the surface of the active material-containing layer cut the roll surface, which is a hard surface, and the roll surface is worn. Wear is more pronounced when the active material particles that bite into the surface of the active material-containing layer are positive electrode active material particles.
 活物質含有層の表面の少なくとも一部を、チタン酸化物粒子を含む第1の膜で被覆し、活物質含有層の表面の表面粗さRa1よりも、第1の膜の表面の表面粗さRa2を小さくすることにより、ロール表面の摩耗が抑制できることを初めて見出した。これにより、ロールのメンテナンスの頻度を下げることができるため、電極の製造コストを削減することが可能となる。また、第1の膜の表面を電極の最表面にすることで、電極反応(電気化学反応)への寄与が大きい面の平滑化が図れる。その結果、この電極と対向電極との極間距離をより均等にすることができるため、電池の容量、レート性能等の電池性能を改善が期待できる。 At least a part of the surface of the active material-containing layer is covered with a first film containing titanium oxide particles, and the surface roughness of the surface of the first film is larger than the surface roughness Ra1 of the surface of the active material-containing layer. For the first time, it was found that the wear of the roll surface can be suppressed by reducing Ra2. As a result, the frequency of roll maintenance can be reduced, and the electrode manufacturing cost can be reduced. Further, by making the surface of the first film the outermost surface of the electrode, it is possible to smooth the surface that greatly contributes to the electrode reaction (electrochemical reaction). As a result, the distance between the electrodes of this electrode and the counter electrode can be made more uniform, so that improvement in battery performance such as battery capacity and rate performance can be expected.
 表面粗さRa1、Ra2は、以下の方法で測定される。二次電池に用いられている活物質含有層、第1の膜の表面粗さを測定する場合、アルゴンガス雰囲気下で二次電池を解体して、二次電池の外装部材から電極群を取り出す。この電極群をほどいて測定サンプルを10mm×10mm程度に切り出す。切り出したサンプルをEMC(EthylMethylCarbonate、エチルメチルカーボネート)を満たして攪拌させたビーカーに入れ、30分間洗浄をする。洗浄を終えたサンプルを乾燥させ、断面出しを行う。このサンプルをイオンミリング装置(株式会社日立ハイテクノロジーズ社のIM4000PLUS)を用いて、断面ミリングを行う。断面ミリングで得られた断面の画像を撮像し、画像処理をし、粗さの算術平均値を求める。これをRaと定義する。粗さの算術平均値Raは、図1に示す通り、粗さ曲線からその平均線の方向に基準長さlを抜き取り、この抜き取り部分lの平均線の方向にx軸を、縦倍率の方向にy軸を取り、粗さ曲線をy=f(x)で表したときに、図2に示す式によって求められる値をマイクロメートル(μm)で表したものである。 The surface roughness Ra1 and Ra2 are measured by the following method. When measuring the surface roughness of the active material-containing layer and the first film used in the secondary battery, the secondary battery is disassembled in an argon gas atmosphere, and the electrode group is taken out from the exterior member of the secondary battery. .. The electrode group is unwound and the measurement sample is cut out to a size of about 10 mm × 10 mm. The cut sample is placed in a beaker filled with EMC (Ethyl Methyl Carbonate) and stirred, and washed for 30 minutes. The washed sample is dried and cross-sectioned. This sample is cross-section milled using an ion milling device (IM4000PLUS of Hitachi High-Technologies Corporation). An image of the cross section obtained by cross-section milling is imaged, image processing is performed, and the arithmetic mean value of roughness is obtained. This is defined as Ra. As shown in FIG. 1, the arithmetic average value Ra of the roughness is obtained by extracting the reference length l from the roughness curve in the direction of the average line, the x-axis in the direction of the average line of the extracted portion l, and the direction of the vertical magnification. When the y-axis is taken and the roughness curve is represented by y = f (x), the value obtained by the formula shown in FIG. 2 is represented by micrometer (μm).
 以下、電極を詳細に説明する。 The electrodes will be described in detail below.
 電極は、必要に応じて集電体、集電タブをさらに含むことができる。以下、構成部材毎に説明する。
(1)活物質含有層(第1の活物質含有層)
 活物質含有層は、集電体に担持されていても良い。その場合、活物質含有層の裏面が、集電体の主面と対向または接し得る。
The electrode may further include a current collector and a current collector tab, if necessary. Hereinafter, each component will be described.
(1) Active material-containing layer (first active material-containing layer)
The active material-containing layer may be supported on the current collector. In that case, the back surface of the active material-containing layer may face or contact the main surface of the current collector.
 活物質粒子の例に、正極活物質粒子、負極活物質粒子が含まれる。まず、活物質粒子として正極活物質粒子を含む活物質含有層、すなわち、正極活物質含有層について説明する。 Examples of active material particles include positive electrode active material particles and negative electrode active material particles. First, an active material-containing layer containing positive electrode active material particles as active material particles, that is, a positive electrode active material-containing layer will be described.
 正極活物質粒子の例に種々の酸化物、硫化物などが挙げられる。例えば、二酸化マンガン(MnO2)、酸化鉄、酸化銅、酸化ニッケル、リチウムマンガン複合酸化物(例えば、LixMn24またはLixMnO2)、リチウムニッケル複合酸化物(例えばLixNiO2)、リチウムコバルト複合酸化物、リチウムニッケルマンガンコバルト複合酸化物、リチウムニッケルコバルト複合酸化物(例えばLixNi1-y-zCoyz2(MはAl,CrおよびFeよりなる群から選択される少なくとも1種類の元素であり、0≦y≦0.5、0≦z≦0.1である))、リチウムマンガンコバルト複合酸化物(例えばLixMn1-y-zCoyz2(MはAl、CrおよびFeよりなる群から選択される少なくとも1種類の元素であり、0≦y≦0.5、0≦z≦0.1である))、リチウムマンガンニッケル複合化合物(例えばLixMn1/2Ni1/22)、スピネル型リチウムマンガンニッケル複合酸化物(例えばLixMn2-yNiy4)、オリビン構造を有するリチウムリン酸化物(例えば、LixFePO4、LixFe1-yMnyPO4、LixCoPO4など)、硫酸鉄(例えばFe2(SO43)、バナジウム酸化物(例えばV25)、LixNi1-a-bCoaMnbc2(0.9<x≦1.25、0<a≦0.4、0≦b≦0.45、0≦c≦0.1、MはMg,Al,Si,Ti,Zn,Zr,Ca及びSnよりなる群から選ばれる少なくとも1種の元素をあらわす)などが挙げられる。また、ポリアニリンやポリピロールなどの導電性ポリマー材料、ジスルフィド系ポリマー材料、イオウ(S)、フッ化カーボンなどの有機材料および無機材料も挙げられる。なお、上記に好ましい範囲の記載がないx、y及びzについては、0以上1以下の範囲であることが好ましい。 Examples of positive electrode active material particles include various oxides and sulfides. For example, manganese dioxide (MnO 2 ), iron oxide, copper oxide, nickel oxide, lithium manganese composite oxide (eg Li x Mn 2 O 4 or Li x MnO 2 ), lithium nickel composite oxide (eg Li x NiO 2). ), lithium-cobalt composite oxide, lithium nickel manganese cobalt composite oxide, lithium-nickel-cobalt composite oxide (e.g., Li x Ni 1-yz Co y M z O 2 (M is selected from the group consisting of Al, Cr and Fe that is at least one element, which is 0 ≦ y ≦ 0.5,0 ≦ z ≦ 0.1)), lithium manganese cobalt composite oxides (e.g., Li x Mn 1-y-z Co y M z O 2 (M is at least one element selected from the group consisting of Al, Cr and Fe, and 0 ≦ y ≦ 0.5, 0 ≦ z ≦ 0.1)), Lithium manganese nickel composite compound ( For example, Li x Mn 1/2 Ni 1/2 O 2 ), spinel type lithium manganese nickel composite oxide (for example, Li x Mn 2-y N y O 4 ), lithium phosphorus oxide having an olivine structure (for example, Li x). FePO 4, such as Li x Fe 1-y Mn y PO 4, Li x CoPO 4), iron sulfate (e.g. Fe 2 (SO 4) 3) , vanadium oxide (e.g. V 2 O 5), Li x Ni 1- ab Co a Mn b M c O 2 (0.9 <x ≦ 1.25, 0 <a ≦ 0.4, 0 ≦ b ≦ 0.45, 0 ≦ c ≦ 0.1, M is Mg, Al, It represents at least one element selected from the group consisting of Si, Ti, Zn, Zr, Ca and Sn) and the like. Further, conductive polymer materials such as polyaniline and polypyrrole, disulfide-based polymer materials, organic materials such as sulfur (S) and carbon fluoride, and inorganic materials can also be mentioned. For x, y and z, which are not described in the above-mentioned preferable range, the range is preferably 0 or more and 1 or less.
 正極活物質の種類は、1種類または2種類以上にすることができる。 The type of positive electrode active material can be one type or two or more types.
 好ましい正極活物質の例に、スピネル構造のリチウムマンガン複合酸化物粒子、リチウムコバルト複合酸化物粒子、及び、リチウムニッケルマンガンコバルト複合酸化物粒子よりなる群から選択される少なくとも1種を含むものが挙げられる。この正極活物質を含む正極は、チタン酸化物粒子を含む第1の膜による、ロール表面の摩耗抑制効果をより高めることができる。スピネル構造のリチウムマンガン複合酸化物粒子及びリチウムニッケルマンガンコバルト複合酸化物粒子のうちの少なくとも一方(以下、正極活物質粒子Aと称す)と、リチウムコバルト複合酸化物粒子(以下、正極活物質粒子Bと称す)とを含む正極活物質によると、第1の膜による摩耗抑制効果をさらに高めることができる。 Examples of preferable positive electrode active materials include those containing at least one selected from the group consisting of lithium manganese composite oxide particles having a spinel structure, lithium cobalt composite oxide particles, and lithium nickel manganese cobalt composite oxide particles. Be done. The positive electrode containing the positive electrode active material can further enhance the effect of suppressing wear on the roll surface by the first film containing titanium oxide particles. At least one of the lithium manganese composite oxide particles and the lithium nickel manganese cobalt composite oxide particles having a spinel structure (hereinafter referred to as positive electrode active material particles A) and the lithium cobalt composite oxide particles (hereinafter referred to as positive electrode active material particles B). According to the positive electrode active material containing (referred to as), the effect of suppressing wear by the first film can be further enhanced.
 正極活物質粒子において、正極活物質粒子Aと、正極活物質粒子Bとの配合割合は、正極活物質粒子を100質量%とした際に、正極活物質粒子Bの割合を40質量%以下にすることが好ましい。これにより、高容量で、かつ過充電による劣化の少ない正極を実現することができる。正極活物質粒子Bの割合のより好ましい範囲は、4質量%以上30質量%以下である。さらに好ましい範囲は、正極活物質粒子Aを60質量%以上80質量%以下とし、かつ正極活物質粒子Bを4質量%以上20質量%以下とするものである。 In the positive electrode active material particles, the mixing ratio of the positive electrode active material particles A and the positive electrode active material particles B is such that the ratio of the positive electrode active material particles B is 40% by mass or less when the positive electrode active material particles are 100% by mass. It is preferable to do so. As a result, it is possible to realize a positive electrode having a high capacity and less deterioration due to overcharging. A more preferable range of the ratio of the positive electrode active material particles B is 4% by mass or more and 30% by mass or less. A more preferable range is that the positive electrode active material particles A are 60% by mass or more and 80% by mass or less, and the positive electrode active material particles B are 4% by mass or more and 20% by mass or less.
 スピネル構造のリチウムマンガン複合酸化物は、一般式LiMn2-xで表されるものであることが望ましい。この一般式において、MはMg,Ti,Cr,Fe,Co,Zn,Al,Li及びGaからなる群より選択される少なくとも1種の元素である。一般式中のモル比wは0<w≦1.1の範囲内にあることが望ましい。モル比wは、リチウムイオンの挿入脱離により変動し得る。モル比xは0≦x<2の範囲内にあることが望ましく、より好ましい範囲は0.22≦x≦0.7である。 The lithium manganese composite oxide having a spinel structure is preferably represented by the general formula Li w M x Mn 2-x O 4. In this general formula, M is at least one element selected from the group consisting of Mg, Ti, Cr, Fe, Co, Zn, Al, Li and Ga. The molar ratio w in the general formula is preferably in the range of 0 <w ≦ 1.1. The molar ratio w can fluctuate due to the insertion and desorption of lithium ions. The molar ratio x is preferably in the range of 0 ≦ x <2, with a more preferred range of 0.22 ≦ x ≦ 0.7.
 リチウムニッケルマンガンコバルト複合酸化物は、Li1-xNi1-a-bCoMn(-0.2≦x≦0.5、0<a≦0.4、0<b≦0.4を満たす)で表されることが望ましい。モル比xは、リチウムイオンの挿入脱離により変動し得る。Coのモル比aが0.4以下であることで、活物質としての熱安定性を確保できる。Mnのモル比bが0.4以下であることで、放電容量を確保できる。 Lithium nickel-manganese-cobalt composite oxide is Li 1-x Ni 1-ab Co a Mn b O 2 (-0.2 ≤ x ≤ 0.5, 0 <a ≤ 0.4, 0 <b ≤ 0). It is desirable that it is represented by (satisfying 4). The molar ratio x can vary due to the insertion and desorption of lithium ions. When the molar ratio a of Co is 0.4 or less, thermal stability as an active material can be ensured. When the molar ratio b of Mn is 0.4 or less, the discharge capacity can be secured.
 リチウムコバルト複合酸化物は、一般式LiCoOで表されることが望ましい。一般式におけるモル比xが0<x≦1.1の範囲内にあるコバルト酸リチウムが望ましい。モル比xは、リチウムイオンの挿入脱離により変動し得る。 The lithium cobalt composite oxide is preferably represented by the general formula Li x CoO 2. Lithium cobalt oxide in which the molar ratio x in the general formula is in the range of 0 <x ≦ 1.1 is desirable. The molar ratio x can vary due to the insertion and desorption of lithium ions.
 正極活物質の粒子の形態は特に制限されず、一次粒子、又は一次粒子が凝集した二次粒子のいずれであっても良い。正極活物質粒子は、一次粒子と二次粒子の双方を含むものであっても良い。 The form of the particles of the positive electrode active material is not particularly limited, and may be either primary particles or secondary particles in which the primary particles are aggregated. The positive electrode active material particles may contain both primary particles and secondary particles.
 正極活物質粒子の平均粒子径は、例えば1μm以上15μm以下であり、好ましくは、3μm以上10μm以下である。 The average particle size of the positive electrode active material particles is, for example, 1 μm or more and 15 μm or less, preferably 3 μm or more and 10 μm or less.
 活物質含有層は、活物質に加え、結着剤及び導電剤を含んでいても良い。導電剤としては、例えばアセチレンブラック、カーボンブラック、黒鉛又はこれらの混合物を挙げることができる。結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、スチレンブタジエンゴム又はこれらの混合物が挙げられる。結着剤は、活物質と導電剤とを結着させる機能を有する。 The active material-containing layer may contain a binder and a conductive agent in addition to the active material. Examples of the conductive agent include acetylene black, carbon black, graphite, or a mixture thereof. Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluororubber, styrene-butadiene rubber, and mixtures thereof. The binder has a function of binding the active material and the conductive agent.
 正極活物質含有層において、活物質、導電剤及び結着剤の含有量は、それぞれ80質量%以上97質量%以下、2質量%以上18質量%以下、及び1質量%以上17質量%以下であることが好ましい。 In the positive electrode active material-containing layer, the contents of the active material, the conductive agent and the binder are 80% by mass or more and 97% by mass or less, 2% by mass or more and 18% by mass or less, and 1% by mass or more and 17% by mass or less, respectively. It is preferable to have.
 正極活物質含有層の表面の表面粗さRa1は、1μm以下にすることができる。これを満たす正極活物質含有層は、十分な比表面積を有することができる。より好ましい範囲は、0.2μm以上0.8μm以下である。 The surface roughness Ra1 of the surface of the positive electrode active material-containing layer can be 1 μm or less. The positive electrode active material-containing layer satisfying this can have a sufficient specific surface area. A more preferable range is 0.2 μm or more and 0.8 μm or less.
 次いで、負極活物質含有層について説明する。 Next, the negative electrode active material-containing layer will be described.
 負極活物質としては、グラファイトをはじめとした炭素材料、スズ・シリコン系合金材料等を用いることができるが、チタン酸リチウムを用いることが好ましい。また、Nbなど他金属を含むチタン酸化物あるいはチタン酸リチウムも負極活物質として挙げられる。チタン酸リチウムとしては、例えば、スピネル構造を有するLi4+xTi512(0≦x≦3)や、ラムステライド構造を有するLi2+yTi37(0≦y≦3)が挙げられる。 As the negative electrode active material, a carbon material such as graphite, a tin-silicon alloy material, or the like can be used, but lithium titanate is preferably used. Further, titanium oxide containing other metals such as Nb or lithium titanate is also mentioned as a negative electrode active material. Examples of lithium titanate include Li 4 + x Ti 5 O 12 (0 ≦ x ≦ 3) having a spinel structure and Li 2 + y Ti 3 O 7 (0 ≦ y ≦ 3) having a ramsteride structure. Can be mentioned.
 負極活物質粒子は、単独の一次粒子、一次粒子が凝集した二次粒子、あるいは一次粒子と二次粒子の混合物であり得る。 The negative electrode active material particles can be single primary particles, secondary particles in which primary particles are aggregated, or a mixture of primary particles and secondary particles.
 負極活物質の一次粒子の平均粒径は、0.001以上1μm以下の範囲内であることが好ましい。平均粒径は,例えば負極活物質をSEMで観察することで求めることができる。粒子形状は、粒状、繊維状のいずれであってもよい。繊維状の場合は、繊維径が0.1μm以下であることが好ましい。負極活物質の一次粒子の平均粒径は、具体的には、電子顕微鏡(SEM)で観察した像から測長することができる。平均粒径1μm以下のチタン酸リチウムが負極活物質して用いられる場合には、表面の平坦性の高い負極活物質含有層が得られる。また、チタン酸リチウムが用いられると、一般的なカーボン負極を用いるリチウムイオン二次電池と比較して負極電位が貴なものとなるので、リチウム金属の析出は原理的に生じない。チタン酸リチウムを含む負極活物質は、充放電反応に伴う膨張収縮が、小さいため、活物質の結晶構造の崩壊を防止することができる。 The average particle size of the primary particles of the negative electrode active material is preferably in the range of 0.001 or more and 1 μm or less. The average particle size can be obtained, for example, by observing the negative electrode active material with SEM. The particle shape may be either granular or fibrous. In the case of fibrous form, the fiber diameter is preferably 0.1 μm or less. Specifically, the average particle size of the primary particles of the negative electrode active material can be measured from an image observed with an electron microscope (SEM). When lithium titanate having an average particle size of 1 μm or less is used as the negative electrode active material, a negative electrode active material-containing layer having a highly flat surface can be obtained. Further, when lithium titanate is used, the negative electrode potential becomes more noble as compared with a lithium ion secondary battery using a general carbon negative electrode, so that precipitation of lithium metal does not occur in principle. Since the negative electrode active material containing lithium titanate has a small expansion and contraction due to the charge / discharge reaction, it is possible to prevent the crystal structure of the active material from collapsing.
 負極活物質含有層は、活物質以外に、導電剤及び結着剤を含むことができる。導電剤としては、例えば炭素含有材料(アセチレンブラック、ケッチェンブラック、黒鉛等)、金属粉末を挙げることができる。結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、スチレンブタジエンゴムなどが挙げられる。 The negative electrode active material-containing layer can contain a conductive agent and a binder in addition to the active material. Examples of the conductive agent include carbon-containing materials (acetylene black, ketjen black, graphite, etc.) and metal powder. Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, styrene-butadiene rubber and the like.
 負極活物質含有層において、負極活物質、導電剤及び結着剤の含有量は、それぞれ70質量%以上98質量%以下、1質量%以上28質量%以下、1質量%以上28質量%以下であることが好ましい。 In the negative electrode active material-containing layer, the contents of the negative electrode active material, the conductive agent and the binder are 70% by mass or more and 98% by mass or less, 1% by mass or more and 28% by mass or less, and 1% by mass or more and 28% by mass or less, respectively. It is preferable to have.
 負極活物質含有層の表面の表面粗さRa1は、0.5μm以下にすることができる。より好ましい範囲は、0.1μm以上0.5μm以下である。 The surface roughness Ra1 of the surface of the negative electrode active material-containing layer can be 0.5 μm or less. A more preferable range is 0.1 μm or more and 0.5 μm or less.
 正極活物質含有層、負極活物質含有層の厚さは、それぞれ、5μm以上100μm以下にすることができる。
(2)集電体(第1の集電体)
 集電体は、導電性シートであり得る。導電性シートの例には、導電性材料からなる箔が含まれる。導電性材料の例には、アルミニウム、及びアルミニウム合金が含まれる。
The thickness of the positive electrode active material-containing layer and the negative electrode active material-containing layer can be 5 μm or more and 100 μm or less, respectively.
(2) Current collector (first current collector)
The current collector can be a conductive sheet. Examples of conductive sheets include foils made of conductive materials. Examples of conductive materials include aluminum and aluminum alloys.
 集電体の厚さは、それぞれ、5μm以上40μm以下にすることができる。
(3)集電タブ(第1の集電タブ)
 集電タブは、集電体と同じ材料から形成されていても良いが、集電体とは別に集電タブを用意し、これを集電体に溶接等で接続したものを用いてもよい。
(4)第1の膜
 第1の膜は、チタン酸化物粒子を含む。第1の膜は絶縁性を有する。第1の膜は、第1の活物質含有層の表面の少なくとも一部を被覆すれば足りるが、第1の活物質含有層の表面全体を被覆すると、摩耗抑制効果を高くすることができると共に、セパレータとして機能し得る。また、第1の膜は、集電体及び/または集電タブの少なくとも一部を被覆することができる。これにより、集電体または集電タブが対向電極と接する内部短絡を防止することができる。
The thickness of the current collector can be 5 μm or more and 40 μm or less, respectively.
(3) Current collection tab (first current collection tab)
The current collector tab may be formed of the same material as the current collector, but a current collector tab may be prepared separately from the current collector and connected to the current collector by welding or the like. ..
(4) First film The first film contains titanium oxide particles. The first film has an insulating property. It suffices for the first film to cover at least a part of the surface of the first active material-containing layer, but if the entire surface of the first active material-containing layer is covered, the wear suppressing effect can be enhanced. , Can function as a separator. In addition, the first membrane can cover at least a part of the current collector and / or the current collector tab. This makes it possible to prevent an internal short circuit in which the current collector or the current collector tab comes into contact with the counter electrode.
 チタン酸化物の例に、スピネル構造を有するチタン酸リチウム(例えばLi4+xTi512(0≦x≦3))、二酸化チタン(TiO)等が含まれる。二酸化チタンの結晶構造は、例えば、アナターゼ、ルチル、ブロンズ等にすることができる。ルチル型の二酸化チタン粒子は、凝集し難く、第1の膜内に均一に分散しやすく、好適である。
 スピネル構造を有するチタン酸リチウム、二酸化チタンは、それぞれ、フッ化水素(HF)に対する耐性に優れ、また、正極での耐酸化性にも優れている。図3に、Li4Ti512を活物質として含み、集電体にAl箔を使用した電極(LTO/Al電極)のサイクリックボルタンメトリー(cyclic voltammetry)による電位曲線を示す。サイクリックボルタンメトリーの実施条件を以下に記載する。印加電位は、1.0V-4.5V(vs.Li/Li)であった。環境温度は25℃に設定した。掃引速度は、0.167mV/sとした。図3に示す通り、スピネル構造を有するチタン酸リチウムは、3-4V(vs.Li/Li)の正極電位に相当する範囲において、電流値がほぼ0であり、電子移動が進行しない。よって、第1の膜を含む電極を正極に適用した場合、第1の膜は実用に耐え得る耐酸化性を示す。
Examples of titanium oxides include lithium titanate having a spinel structure (for example, Li 4 + x Ti 5 O 12 (0 ≦ x ≦ 3)), titanium dioxide (Tio 2 ) and the like. The crystal structure of titanium dioxide can be, for example, anatase, rutile, bronze or the like. The rutile-type titanium dioxide particles are suitable because they do not easily aggregate and are easily uniformly dispersed in the first film.
Lithium titanate and titanium dioxide having a spinel structure are each excellent in resistance to hydrogen fluoride (HF) and also excellent in oxidation resistance at the positive electrode. FIG. 3 shows a potential curve by cyclic voltammetry of an electrode (LTO / Al electrode) containing Li 4 Ti 5 O 12 as an active material and using an Al foil as a current collector. The conditions for carrying out cyclic voltammetry are described below. The applied potential was 1.0V-4.5V (vs. Li / Li +). The environmental temperature was set to 25 ° C. The sweep speed was 0.167 mV / s. As shown in FIG. 3, lithium titanate having a spinel structure has a current value of almost 0 in a range corresponding to a positive electrode potential of 3-4 V (vs. Li / Li +), and electron transfer does not proceed. Therefore, when an electrode containing the first film is applied to the positive electrode, the first film exhibits oxidation resistance that can withstand practical use.
 第1の膜の表面の表面粗さRa2は、0.3μm以下にすることができる。これにより、第1の膜の表面の平滑性を高めることができる。その結果、摩耗抑制効果を高くすることができる。より好ましい範囲は、0.1μm以上0.3μm以下である。 The surface roughness Ra2 of the surface of the first film can be 0.3 μm or less. Thereby, the smoothness of the surface of the first film can be improved. As a result, the wear suppressing effect can be enhanced. A more preferable range is 0.1 μm or more and 0.3 μm or less.
 チタン酸化物粒子の平均粒径D50は、1μm以下にすることができる。より好ましい範囲は、0.3μm以上0.9μm以下である。 The average particle size D50 of the titanium oxide particles can be 1 μm or less. A more preferable range is 0.3 μm or more and 0.9 μm or less.
 第1の膜は、多孔質であり得る。多孔質の第1の膜は、非水電解質を保持することができる。 The first membrane can be porous. The porous first membrane can retain the non-aqueous electrolyte.
 第1の膜中のチタン酸化物粒子の含有量は80質量%以上99.9質量%以下の範囲にすることが望ましい。これにより、第1の膜の絶縁性を高くすることができる。 It is desirable that the content of titanium oxide particles in the first film is in the range of 80% by mass or more and 99.9% by mass or less. Thereby, the insulating property of the first film can be improved.
 第1の膜は、バインダーを含み得る。バインダーとして、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、スチレンブタジエンゴム又はこれらの混合物が挙げられる。第1の膜中のバインダーの含有量は0.01質量%以上20質量%以下の範囲にすることが望ましい。 The first film may contain a binder. Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluororubber, styrene-butadiene rubber, and mixtures thereof. The content of the binder in the first film is preferably in the range of 0.01% by mass or more and 20% by mass or less.
 第1の膜の厚さは1μm以上30μm以下にすることができる。 The thickness of the first film can be 1 μm or more and 30 μm or less.
 第1の実施形態によれば、活物質含有層と、チタン酸化物粒子を含む第1の膜とを含む電極が提供される。活物質含有層の表面の表面粗さRa1と、第1の膜の表面の表面粗さRa2が、(1)式:Ra1>Ra2を満たす。そのため、ロールプレスで用いるロール表面の摩耗を抑制することができると共に、電池の容量、レート性能等の電池性能を改善が期待できる。 According to the first embodiment, an electrode including an active material-containing layer and a first film containing titanium oxide particles is provided. The surface roughness Ra1 of the surface of the active material-containing layer and the surface roughness Ra2 of the surface of the first film satisfy the equation (1): Ra1> Ra2. Therefore, wear of the roll surface used in the roll press can be suppressed, and improvement of battery performance such as battery capacity and rate performance can be expected.
 第2の実施形態
 第2の実施形態によれば、第1の実施形態の電極(以下、第1の電極)を含む積層体が提供される。積層体は、第1の電極の対向電極である第2の電極をさらに含むことができる。また、積層体は、セパレータをさらに含んでいても良い。セパレータは、第1の電極と第2の電極を、イオン伝導を保ちつつ、電気的に絶縁し得るものであれば良い。
Second Embodiment According to the second embodiment, a laminate including the electrodes of the first embodiment (hereinafter, the first electrode) is provided. The laminate can further include a second electrode, which is the counter electrode of the first electrode. Further, the laminate may further contain a separator. The separator may be any as long as it can electrically insulate the first electrode and the second electrode while maintaining ionic conduction.
 第1の電極の第1の膜がセパレータを兼ねても良い。第2の膜あるいは第1,第2の膜以外の絶縁性膜をセパレータとして使用しても良い。複数種類の膜を組合わせたものをセパレータとしても良い。絶縁性膜の例には、合成樹脂製不織布、ポリエチレン製多孔質フィルムやポリプロピレン製多孔質フィルムを一例とするポリオレフィン製多孔質フィルム、およびセルロース系のセパレータが含まれる。また、これらの材料を複合したセパレータ、例えば、ポリオレフィン製多孔質フィルムとセルロースとからなるセパレータを用いることができる。絶縁性膜は、多孔質構造を有することが好ましい。 The first film of the first electrode may also serve as a separator. An insulating film other than the second film or the first and second films may be used as the separator. A combination of a plurality of types of films may be used as a separator. Examples of the insulating film include a non-woven fabric made of synthetic resin, a porous film made of polyethylene, a porous film made of polyolefin such as a porous film made of polypropylene, and a cellulosic separator. Further, a separator in which these materials are combined, for example, a separator made of a porous polyolefin film and cellulose can be used. The insulating membrane preferably has a porous structure.
 第2の電極は、表面及び裏面を有する第2の集電体と、第2の集電体の表面及び裏面のうちの少なくとも一方に担持または形成される第2の活物質含有層とを含む。第2の活物質含有層の表面が第2の電極の表面に露出し得、裏面が第2の集電体の表面または裏面と対向する。第2の集電体、第2の活物質含有層には、第1の電極で説明したのと同様なもの(第1の集電体、第1の活物質含有層)を挙げることができる。第2の電極は、第2の集電タブをさらに含んでいても良い。第2の集電タブは、第2の集電体と同じ材料から形成されていても良いが、第2の集電体とは別に第2の集電タブを用意し、これを第2の集電体に溶接等で接続したものを用いてもよい。 The second electrode includes a second current collector having a front surface and a back surface, and a second active material-containing layer supported or formed on at least one of the front surface and the back surface of the second current collector. .. The surface of the second active material-containing layer can be exposed to the surface of the second electrode, and the back surface faces the front surface or the back surface of the second current collector. Examples of the second current collector and the second active material-containing layer include those similar to those described in the first electrode (first current collector, first active material-containing layer). .. The second electrode may further include a second current collecting tab. The second current collector tab may be formed of the same material as the second current collector, but a second current collector tab is prepared separately from the second current collector, and this is used as the second current collector tab. A current collector connected to the current collector by welding or the like may be used.
 積層体は、第2の膜をさらに含むことができる。第2の膜は、第2の活物質含有層に形成されていても良いが、第1の膜上に形成されていても良い。あるいは、第2の活物質含有層と第1の膜の双方の表面に第2の膜を形成しても良い。いずれの場合でも、第2の膜の表面及び裏面のうちの一方の面が、第1の膜の表面と接し得る。 The laminate can further include a second film. The second film may be formed on the second active material-containing layer, but may also be formed on the first film. Alternatively, a second film may be formed on the surfaces of both the second active material-containing layer and the first film. In either case, one of the front and back surfaces of the second film may be in contact with the surface of the first film.
 第2の膜は有機繊維を含む。第2の膜は、有機繊維を面方向に堆積させた多孔質膜であり得る。第2の膜は、表面及び裏面を有する。第2の膜の一方の主面が表面で、他方の主面が裏面に相当する。 The second film contains organic fibers. The second membrane can be a porous membrane in which organic fibers are deposited in the plane direction. The second film has a front surface and a back surface. One main surface of the second film corresponds to the front surface, and the other main surface corresponds to the back surface.
 有機繊維は、例えば、ポリアミドイミド、ポリアミド、ポリオレフィン、ポリエーテル、ポリイミド、ポリケトン、ポリスルホン、セルロース、ポリビニルアルコール(PVA)及びポリフッ化ビニリデン(PVdF)からなる群から選択される少なくとも1つの有機材料を含む。ポリオレフィンとしては、例えば、ポリプロピレン(PP)およびポリエチレン(PE)などが挙げられる。有機繊維の種類は1種類又は2種類以上にすることができる。好ましいのは、ポリイミド、ポリアミド、ポリアミドイミド、セルロース、PVdF、及びPVAからなる群より選ばれる少なくとも1種類であり、より好ましいのは、ポリイミド、ポリアミド、ポリアミドイミド、セルロース、及びPVdFからなる群より選ばれる少なくとも1種類である。 Organic fibers include, for example, at least one organic material selected from the group consisting of polyamideimide, polyamide, polyolefin, polyether, polyimide, polyketone, polysulfone, cellulose, polyvinyl alcohol (PVA) and polyvinylidene fluoride (PVdF). .. Examples of the polyolefin include polypropylene (PP) and polyethylene (PE). The type of organic fiber may be one type or two or more types. Preferred is at least one selected from the group consisting of polyimide, polyamide, polyamideimide, cellulose, PVdF, and PVA, and more preferred is selected from the group consisting of polyimide, polyamide, polyamideimide, cellulose, and PVdF. At least one type.
 ポリイミドは、250~400℃においても不溶・不融であって分解もしないので、耐熱性に優れた第2の膜を得ることができる。 Polyimide is insoluble and insoluble even at 250 to 400 ° C. and does not decompose, so that a second film having excellent heat resistance can be obtained.
 有機繊維は、長さ1mm以上、平均直径2μm以下であることが好ましく、平均直径1μm以下であることがより好ましい。こうした第2の膜は、十分な強度、気孔率、透気度、孔径、耐電解質性、耐酸化還元性等を有するので、セパレータとして良好に機能する。有機繊維の平均直径は、集束イオンビーム(FIB)装置での観察により測定することができる。また、有機繊維の長さは、FIB装置での観察での測長に基づいて得られる。 The organic fiber preferably has a length of 1 mm or more and an average diameter of 2 μm or less, and more preferably an average diameter of 1 μm or less. Since such a second film has sufficient strength, porosity, air permeability, pore size, electrolyte resistance, oxidation-reduction resistance, and the like, it functions well as a separator. The average diameter of the organic fibers can be measured by observation with a focused ion beam (FIB) device. In addition, the length of the organic fiber is obtained based on the length measured by observation with a FIB device.
 イオン透過性および電解質保持性の確保が必要であることから、第2の膜を形成している繊維全体の体積の30%以上は、平均直径1μm以下の有機繊維であることが好ましく、350nm以下の有機繊維であることがより好ましく、50nm以下の有機繊維であることが更に好ましい。 Since it is necessary to ensure ion permeability and electrolyte retention, it is preferable that 30% or more of the total volume of the fibers forming the second membrane is organic fibers having an average diameter of 1 μm or less, and 350 nm or less. The organic fiber of the above is more preferable, and the organic fiber of 50 nm or less is further preferable.
 また、平均直径1μm以下(より好ましくは350nm以下、さらに好ましくは50nm以下)の有機繊維の体積は、第2の膜を形成している繊維全体の体積の80%以上を占めることがより好ましい。こうした状態は、第2の膜の走査イオン顕微鏡(SIM)観察によって確認することができる。太さ40nm以下の有機繊維が、第2の膜を形成している繊維全体の体積の40%以上を占めることがより好ましい。有機繊維の径が小さいことは、イオンの移動を妨害する影響が小さいことになる。 Further, it is more preferable that the volume of the organic fiber having an average diameter of 1 μm or less (more preferably 350 nm or less, further preferably 50 nm or less) occupies 80% or more of the volume of the entire fiber forming the second film. Such a state can be confirmed by scanning ion microscope (SIM) observation of the second film. It is more preferable that the organic fibers having a thickness of 40 nm or less occupy 40% or more of the total volume of the fibers forming the second film. The small diameter of the organic fiber means that the influence of obstructing the movement of ions is small.
 有機繊維の表面及び裏面を含む全表面の少なくとも一部には、カチオン交換基が存在することが好ましい。カチオン交換基によって、セパレータを通過するリチウムイオンなどのイオンの移動が促進されるので、電池の性能が高められる。具体的には、長期にわたって急速充電、急速放電を行なうことが可能となる。カチオン交換基は特に限定されないが、例えばスルホン酸基およびカルボン酸基が挙げられる。カチオン交換基を表面に有する繊維は、例えば、スルホン化された有機材料を用いてエレクトロスピニング法により形成することができる。 It is preferable that a cation exchange group is present on at least a part of the entire surface including the front surface and the back surface of the organic fiber. The cation exchange group promotes the movement of ions such as lithium ions through the separator, thus enhancing the performance of the battery. Specifically, it is possible to perform rapid charging and rapid discharging for a long period of time. The cation exchange group is not particularly limited, and examples thereof include a sulfonic acid group and a carboxylic acid group. Fibers having a cation exchange group on the surface can be formed by, for example, an electrospinning method using a sulfonated organic material.
 第2の膜は空孔を有し、空孔の平均孔径5nm以上10μm以下であることが好ましい。また、気孔率は70%以上90%以下であることが好ましい。こうした空孔を備えていれば、イオンの透過性に優れ、電解質の含浸性も良好なセパレータが得られる。気孔率は、80%以上であることがより好ましい。空孔の平均孔径および気孔率は、水銀圧入法、体積と密度からの算出、SEM観察、SIM観察、ガス吸着法によって確認することができる。気孔率は、第2の膜の体積と密度から算出することが望ましい。また、平均孔径は、水銀圧入法かガス吸着法により測定することが望ましい。第2の膜における気孔率が大きいことは、イオンの移動を妨害する影響が小さいことになる。 The second film has pores, and the average pore diameter of the pores is preferably 5 nm or more and 10 μm or less. The porosity is preferably 70% or more and 90% or less. If such pores are provided, a separator having excellent ion permeability and good electrolyte impregnation can be obtained. The porosity is more preferably 80% or more. The average pore diameter and porosity of the pores can be confirmed by the mercury intrusion method, calculation from volume and density, SEM observation, SIM observation, and gas adsorption method. The porosity is preferably calculated from the volume and density of the second membrane. Further, it is desirable to measure the average pore size by a mercury intrusion method or a gas adsorption method. A large porosity in the second membrane means that the effect of interfering with the movement of ions is small.
 第2の膜の厚さは12μm以下の範囲にすることが望ましい。厚さの下限値は、特に限定されないが、1μmでありえる。 It is desirable that the thickness of the second film is in the range of 12 μm or less. The lower limit of the thickness is not particularly limited, but may be 1 μm.
 第2の膜においては、含まれる有機繊維を疎の状態とすれば気孔率が高められるので、例えば気孔率が90%程度の層を得るのも困難ではない。そのような気孔率の大きな層を粒子で形成するのは、極めて困難である。 In the second film, the porosity is increased by leaving the contained organic fibers in a sparse state, so it is not difficult to obtain a layer having a porosity of, for example, about 90%. It is extremely difficult to form such a layer with a large porosity with particles.
 第2の膜は、凹凸、割れやすさ、含電解質性、密着性、曲げ特性、気孔率、及びイオン透過性の点で、無機繊維の堆積物より有利である。 The second membrane is more advantageous than the deposit of inorganic fibers in terms of unevenness, fragility, electrolyte-containing property, adhesion, bending property, porosity, and ion permeability.
 第2の膜は、有機化合物の粒子を含んでいてもよい。この粒子は、例えば、有機繊維と同じ材料からなる。この粒子は、有機繊維と一体的に形成されていてもよい。 The second film may contain particles of an organic compound. The particles are made of, for example, the same material as organic fibers. The particles may be formed integrally with the organic fiber.
 第1の膜及び第2の膜の厚さは、JIS規格(JIS B 7503-1997)に準拠した方法で測定される。具体的には、これらの厚さは、接触式デジタルゲージを用いて測定される。石定盤に固定されたデジタルゲージを使用する。石定盤上に試料をのせる。測定端子に先端がφ5.0mmの平型を用いる。測定端子を試料の上方1.5mm以上5.0mm未満の距離から近づけ、試料と接触した距離が試料の厚さとなる。試料における任意の5箇所の測定値の平均を、求める厚さとする。 The thickness of the first film and the second film is measured by a method conforming to the JIS standard (JIS B 7503-1997). Specifically, these thicknesses are measured using a contact digital gauge. Use a digital gauge fixed to the stone surface plate. Place the sample on the stone surface plate. Use a flat type with a tip of φ5.0 mm for the measurement terminal. The measurement terminal is brought closer from a distance of 1.5 mm or more and less than 5.0 mm above the sample, and the distance in contact with the sample is the thickness of the sample. The average of the measured values at any five points in the sample is taken as the desired thickness.
 実施形態の電極を含む積層体を、図4を例にして説明する。図4は、実施形態の積層体の一例を示す断面図である。図4の断面図は、積層体を集電タブの延出方向に切断した断面図である。 The laminate including the electrodes of the embodiment will be described by taking FIG. 4 as an example. FIG. 4 is a cross-sectional view showing an example of the laminated body of the embodiment. The cross-sectional view of FIG. 4 is a cross-sectional view of the laminated body cut in the extending direction of the current collecting tab.
 図4に示す積層体は、第1の電極1、第2の電極2及びセパレータ3を含む。第1の電極1は、図4及び図5に示す通り、第1の集電体1a、第1の表面40及び第1の裏面41を有する第1の活物質含有層1b、及び、第1の集電タブ1cを含む。第1の集電体1aは、導電性のシートである。第1の活物質含有層1bは、第1の集電体1aの両方の主面それぞれの一部に保持されている。第1の集電体1aの各主面において、一辺(例えば、長辺、短辺)及びその近傍に活物質含有層が保持されていない。第1の集電体1aの一辺に平行に形成された活物質含有層非保持部は、第1の集電タブ1cとして機能する。第1の集電タブ1cは、第1の活物質含有層1bから第1方向d1に突出している。第1の活物質含有層1bの表面のうち、第1の集電体1aと接している面が第1の裏面41である。 The laminate shown in FIG. 4 includes a first electrode 1, a second electrode 2, and a separator 3. As shown in FIGS. 4 and 5, the first electrode 1 includes a first current collector 1a, a first active material-containing layer 1b having a first front surface 40 and a first back surface 41, and a first. Includes the current collector tab 1c. The first current collector 1a is a conductive sheet. The first active material-containing layer 1b is held on each part of both main surfaces of the first current collector 1a. On each main surface of the first current collector 1a, the active material-containing layer is not held on one side (for example, long side, short side) and its vicinity. The active material-containing layer non-holding portion formed parallel to one side of the first current collector 1a functions as the first current collector tab 1c. The first current collecting tab 1c projects from the first active material-containing layer 1b in the first direction d1. Of the surface of the first active material-containing layer 1b, the surface in contact with the first current collector 1a is the first back surface 41.
 第2の電極2は、図6に示す通り、第2の集電体2a、第2の表面42及び第2の裏面43を有する第2の活物質含有層2b、及び、第2の集電タブ2cを含む。第2の集電体2aは、導電性のシートである。第2の活物質含有層2bは、第2の集電体2aの両方の主面それぞれの一部に保持されている。第2の集電体2aの各主面において、一辺及びその近傍に活物質含有層が保持されていない。第2の集電体2aの一辺に平行に形成された活物質含有層非保持部は、第2の集電タブ2cとして機能する。第2の集電タブ2cは、第2の活物質含有層2bから第1方向d2に突出している。第2の活物質含有層2bの表面のうち、第2の集電体2aと接している面が第2の裏面43である。 As shown in FIG. 6, the second electrode 2 has a second current collector 2a, a second active material-containing layer 2b having a second front surface 42 and a second back surface 43, and a second current collector. Includes tab 2c. The second current collector 2a is a conductive sheet. The second active material-containing layer 2b is held on each part of both main surfaces of the second current collector 2a. On each main surface of the second current collector 2a, the active material-containing layer is not held on one side or in the vicinity thereof. The active material-containing layer non-holding portion formed parallel to one side of the second current collector 2a functions as the second current collector tab 2c. The second current collecting tab 2c projects from the second active material-containing layer 2b in the first direction d2. Of the surface of the second active material-containing layer 2b, the surface in contact with the second current collector 2a is the second back surface 43.
 セパレータ3は、有機繊維を含む第2の膜5を含む。チタン酸化物粒子を含む第1の膜4もセパレータ3として機能し得る。第1の膜4は、表面A及び裏面Bを有し、第2の膜5は、表面C及び裏面Dを有する。図4及び図5に示す通り、第1の膜4の裏面Bは、第1の活物質含有層1bそれぞれの第1の表面40を被覆している。第1の膜4が第1の活物質含有層1bにどのようにして固定されているかは特に限定されるものではないが、例えば、接着、熱融着が挙げられる。第1の活物質含有層1bの第1の表面40の表面粗さRa1よりも、第1の膜4の表面Aの表面粗さRa2が小さい。一方、第2の膜5は、図6に示す通り、第2の活物質含有層2bそれぞれの第2の表面42及び第2の表面42に交差する四側面44と、第2の集電体2aの第2の電極2表面に露出している3つの端面45と、第2の集電タブ2cの両方の主面における第2の活物質含有層2bとの境界を含む部分46とを被覆している。そのため、第1の膜4及び第2の膜5を介して第1の活物質含有層1bと第2の活物質含有層2bが対向している。 Separator 3 includes a second film 5 containing organic fibers. The first film 4 containing the titanium oxide particles can also function as the separator 3. The first film 4 has a front surface A and a back surface B, and the second film 5 has a front surface C and a back surface D. As shown in FIGS. 4 and 5, the back surface B of the first film 4 covers the first surface 40 of each of the first active material-containing layers 1b. How the first film 4 is fixed to the first active material-containing layer 1b is not particularly limited, and examples thereof include adhesion and heat fusion. The surface roughness Ra2 of the surface A of the first film 4 is smaller than the surface roughness Ra1 of the first surface 40 of the first active material-containing layer 1b. On the other hand, as shown in FIG. 6, the second film 5 has four side surfaces 44 intersecting the second surface 42 and the second surface 42 of the second active material-containing layer 2b, respectively, and a second current collector. Covers the three end faces 45 exposed on the surface of the second electrode 2 of 2a and the portion 46 including the boundary with the second active material-containing layer 2b on both main faces of the second current collecting tab 2c. doing. Therefore, the first active material-containing layer 1b and the second active material-containing layer 2b face each other via the first film 4 and the second film 5.
 図4に示す構造の積層体によると、ロール表面の摩耗を抑制することができ、かつ優れた性能の電極を含む積層体を実現することが可能である。また、第2の膜5が、第2の集電体2aの端面45と、第2の集電タブ2cの表面のうちの第2の活物質含有層2bとの境界を含む部分46とを被覆しているため、第1の電極と第2の電極2との接触による内部短絡が低減される。 According to the laminated body having the structure shown in FIG. 4, it is possible to suppress the wear of the roll surface and realize the laminated body including the electrode having excellent performance. Further, the second film 5 includes an end face 45 of the second current collector 2a and a portion 46 of the surface of the second current collector tab 2c including a boundary between the second active material-containing layer 2b. Since it is coated, internal short circuits due to contact between the first electrode and the second electrode 2 are reduced.
 なお、第1,第2の集電タブは、第1,第2の集電体における活物質含有層無担持の一辺に限られない。例えば、第1,第2の集電体の一辺から突出した複数の帯状部を第1,第2の集電タブとして使用可能である。この一例を図7に示す。図7は、第1の電極1の別の例を示す。図7に示す通り、第1の集電体1aの一辺から突出した複数の帯状部を第1の集電タブ1cとして用いても良い。 The first and second current collector tabs are not limited to one side of the first and second current collectors that does not support the active material-containing layer. For example, a plurality of strips protruding from one side of the first and second current collectors can be used as the first and second current collector tabs. An example of this is shown in FIG. FIG. 7 shows another example of the first electrode 1. As shown in FIG. 7, a plurality of strips protruding from one side of the first current collector 1a may be used as the first current collector tab 1c.
 第2の膜は、第2の電極に形成しても良いが、第2の電極に形成する代わりに、第1の電極に形成しても良い。この一例を図8に示す。第2の膜7は、第1の膜4の表面と、第1の電極の全ての端面とを被覆している。また、第2の膜7は、第1の集電タブ1cの両方の主面それぞれにおける、第1の活物質含有層1bとの境界を含む部分も被覆する。 The second film may be formed on the second electrode, but may be formed on the first electrode instead of being formed on the second electrode. An example of this is shown in FIG. The second film 7 covers the surface of the first film 4 and all the end faces of the first electrode. The second film 7 also covers the portions of both main surfaces of the first current collecting tab 1c, including the boundary with the first active material-containing layer 1b.
 また、第1の電極及び第2の電極の双方に第1の膜を形成しても良い。これにより、第1の膜と電極との密着性をより高くすることができる。また、この場合、第1の電極及び第2の電極の間に第2の膜を介在させることが可能である。この構成により、第1の電極と第2の電極の間の絶縁をより確実なものにすることができる。第2の膜は、第1の電極、第2の電極のいずれかあるいは双方に形成することができる。 Further, the first film may be formed on both the first electrode and the second electrode. Thereby, the adhesion between the first film and the electrode can be further improved. Further, in this case, it is possible to interpose a second film between the first electrode and the second electrode. With this configuration, the insulation between the first electrode and the second electrode can be made more reliable. The second film can be formed on either or both of the first electrode and the second electrode.
 第2の実施形態の積層体によれば、第1の実施形態の電極を含むため、ロール表面の摩耗を抑制することができ、かつ優れた性能の電極を含む積層体を実現することが可能である。 According to the laminated body of the second embodiment, since the electrode of the first embodiment is included, it is possible to suppress wear of the roll surface and realize a laminated body including the electrode having excellent performance. Is.
 第3の実施形態
 第3の実施形態の電極は、第1の実施形態の電極の第1の活物質含有層、第1の集電体及び第1の膜を含む。第1の活物質含有層は、裏面が第1の集電体の表面及び裏面のうちの少なくとも一部に担持される。第1の活物質含有層は、第1の集電タブと隣接する第1端面と第1方向において第1端面と向き合う第2端面とを含む。第1の活物質含有層の第1端面で規定される厚さは、第1の活物質含有層の第2端面で規定される厚さよりも小さい。第1の膜は、第1の活物質含有層の表面の少なくとも一部に加え、第1の活物質含有層の第1端面と、第1の集電タブの表面及び裏面のうちの第1端面と隣接する部分とを被覆している。
Third Embodiment The electrode of the third embodiment includes a first active material-containing layer, a first current collector and a first film of the electrode of the first embodiment. The back surface of the first active material-containing layer is supported on at least a part of the front surface and the back surface of the first current collector. The first active material-containing layer includes a first end face adjacent to the first current collecting tab and a second end face facing the first end face in the first direction. The thickness defined by the first end surface of the first active material-containing layer is smaller than the thickness defined by the second end surface of the first active material-containing layer. The first film includes at least a part of the surface of the first active material-containing layer, the first end surface of the first active material-containing layer, and the first of the front and back surfaces of the first current collecting tab. It covers the end face and the adjacent portion.
 第3の実施形態によれば、第3の実施形態の電極を第1の電極として含む積層体が提供される。積層体は、第1の電極の対向電極である第2の電極をさらに含むことができる。また、積層体は、セパレータをさらに含んでいても良い。セパレータは、第1の電極と第2の電極を、イオン伝導を保ちつつ、電気的に絶縁し得るものであれば良い。 According to the third embodiment, a laminate including the electrodes of the third embodiment as the first electrodes is provided. The laminate can further include a second electrode, which is the counter electrode of the first electrode. Further, the laminate may further contain a separator. The separator may be one that can electrically insulate the first electrode and the second electrode while maintaining ionic conduction.
 第1の電極の第1の膜がセパレータを兼ねても良い。第2の膜あるいは第1,第2の膜以外の絶縁性膜をセパレータとして使用しても良い。複数種類の膜を組合わせたものをセパレータとしても良い。絶縁性膜の種類については、第2の実施形態で説明したのと同様なものを挙げることができる。 The first film of the first electrode may also serve as a separator. An insulating film other than the second film or the first and second films may be used as the separator. A combination of a plurality of types of films may be used as a separator. As the type of the insulating film, the same ones as described in the second embodiment can be mentioned.
 第3の実施形態の電極を含む積層体を図面を参照して説明する。 The laminate including the electrodes of the third embodiment will be described with reference to the drawings.
 図9は、実施形態の積層体の一例を示す断面図である。図9の断面図は、積層体を集電タブの延出方向である第一方向に切断した断面図である。図9に示す積層体は、第3実施形態の電極として第1の電極1、第2の電極2及びセパレータ3を含む。第1の電極1は、図9及び図10に示す通り、第1の集電体1a、第1の活物質含有層1b、及び第1の集電タブ1cを含む。第1の活物質含有層1bは、第1の表面40及び第1の裏面41を有する。第1の集電タブ1cは、第1の集電体1aから第1方向51に延出したものである。第1の集電体1aは、表面及び裏面を有する導電性のシートである。第1の集電体1aの一方の主面が表面であり、他方の主面が裏面である。第1の集電体1aの4つの側面それぞれが、表面及び裏面と直交する。第1の活物質含有層1bは、第1の集電体1aのうちの第1の集電タブ1cとなる部分を除いた箇所における表面及び裏面それぞれに保持されている。第1の集電体1aの表面及び裏面のそれぞれにおいて、一辺(例えば、長辺、短辺)及びその近傍に活物質含有層が保持されていない。第1の集電体1aの一辺に平行に形成された活物質含有層非保持部は、第1の集電タブ1cとして機能する。第1の活物質含有層1bの表面のうち、第1の集電体1aと接している面が第1の裏面41である。第1の活物質含有層1bは、互いに向き合う二組の端面を有する。そのうちの一組の端面は、第1方向51に対して垂直である。そのうちの一つの端面が、第1の集電タブ1cと隣接する第1端面52である。第1端面52は、第1方向51において、第2端面53と向き合っている。また、第1の活物質含有層1bの第1端面52で規定される厚さT1は、第1の活物質含有層1bの第2端面53で規定される厚さT2よりも小さい。厚さT1及びT2の測定方法を以下に説明する。 FIG. 9 is a cross-sectional view showing an example of the laminated body of the embodiment. The cross-sectional view of FIG. 9 is a cross-sectional view of the laminated body cut in the first direction, which is the extending direction of the current collecting tab. The laminate shown in FIG. 9 includes a first electrode 1, a second electrode 2, and a separator 3 as the electrodes of the third embodiment. As shown in FIGS. 9 and 10, the first electrode 1 includes a first current collector 1a, a first active material-containing layer 1b, and a first current collector tab 1c. The first active material-containing layer 1b has a first front surface 40 and a first back surface 41. The first current collector tab 1c extends from the first current collector 1a in the first direction 51. The first current collector 1a is a conductive sheet having a front surface and a back surface. One main surface of the first current collector 1a is the front surface, and the other main surface is the back surface. Each of the four side surfaces of the first current collector 1a is orthogonal to the front surface and the back surface. The first active material-containing layer 1b is held on each of the front surface and the back surface of the first current collector 1a except for the portion serving as the first current collection tab 1c. On each of the front surface and the back surface of the first current collector 1a, the active material-containing layer is not held on one side (for example, the long side and the short side) and its vicinity. The active material-containing layer non-holding portion formed parallel to one side of the first current collector 1a functions as the first current collector tab 1c. Of the surface of the first active material-containing layer 1b, the surface in contact with the first current collector 1a is the first back surface 41. The first active material-containing layer 1b has two sets of end faces facing each other. One set of end faces is perpendicular to the first direction 51. One of the end faces is the first end face 52 adjacent to the first current collecting tab 1c. The first end surface 52 faces the second end surface 53 in the first direction 51. Further, the thickness T1 defined by the first end surface 52 of the first active material-containing layer 1b is smaller than the thickness T2 defined by the second end surface 53 of the first active material-containing layer 1b. The method of measuring the thicknesses T1 and T2 will be described below.
 アルゴンガス雰囲気下で二次電池を解体して、二次電池の外装部材から電極群を取り出す。この電極群をほどいて測定サンプルを10mm×10mm程度に切り出す。切り出したサンプルをEMC(EthylMethylCarbonate、エチルメチルカーボネート)を満たして攪拌させたビーカーに入れ、30分間洗浄をする。洗浄を終えたサンプルを乾燥させる。このサンプルをイオンミリング装置(株式会社日立ハイテクノロジーズ社のIM4000PLUS)を用いて、断面ミリングを行う。断面ミリングで得られた断面を例えば走査電子顕微鏡(日立ハイテクノロジーズ社のTM3030Plus)で観察し、厚さT1及びT2を測定する。 Disassemble the secondary battery in an argon gas atmosphere, and take out the electrode group from the exterior member of the secondary battery. The electrode group is unwound and the measurement sample is cut out to a size of about 10 mm × 10 mm. The cut sample is placed in a beaker filled with EMC (Ethyl Methyl Carbonate) and stirred, and washed for 30 minutes. Dry the washed sample. This sample is cross-section milled using an ion milling device (IM4000PLUS of Hitachi High-Technologies Corporation). The cross section obtained by cross-section milling is observed with, for example, a scanning electron microscope (TM3030Plus, Hitachi High-Technologies Corporation), and the thicknesses T1 and T2 are measured.
 第1端面52を含む端部を第1方向51に沿って切断した断面形状の例を図11~図18に示す。図11~図18に示す端部は、いずれも、第1の活物質含有層1bの厚さが第1方向51に向かって減少して第1端面52で最小になっている。図11,12,14,17,18に示す端部では、第1の活物質含有層1bの端部の厚さが、徐々に減少して第1端面52で最小になっている。第1端面52を含む端部は、第1方向51と直交する方向に延びた略半円柱状の形状をしている。図13及び図16に示す端部では、第1の活物質含有層1bの端部の厚さが、縦断面形状が針状またはドーム状を描くように減少して第1端面52で最小になっている。一方、図15に示す端部では、第1の活物質含有層1bの端部の厚さが、縦断面形状が突起を描くように減少して第1端面52で最小になっている。集電体との接触面積を大きくするため、図11,12,14,17,18に示す端部形状が望ましい。 11 to 18 show examples of cross-sectional shapes in which the end portion including the first end surface 52 is cut along the first direction 51. At each of the ends shown in FIGS. 11 to 18, the thickness of the first active material-containing layer 1b decreases toward the first direction 51 and becomes the minimum at the first end surface 52. At the ends shown in FIGS. 11, 12, 14, 17, and 18, the thickness of the end of the first active material-containing layer 1b gradually decreases to the minimum at the first end surface 52. The end portion including the first end surface 52 has a substantially semi-cylindrical shape extending in a direction orthogonal to the first direction 51. At the ends shown in FIGS. 13 and 16, the thickness of the end of the first active material-containing layer 1b is reduced so that the vertical cross-sectional shape is needle-shaped or dome-shaped, and is minimized at the first end surface 52. It has become. On the other hand, at the end shown in FIG. 15, the thickness of the end of the first active material-containing layer 1b is reduced so that the vertical cross-sectional shape draws a protrusion, and is minimized at the first end surface 52. In order to increase the contact area with the current collector, the end shapes shown in FIGS. 11, 12, 14, 17, and 18 are desirable.
 第2の電極2は、図19に示す通り、第2の集電体2a、第2の活物質含有層2b及び、第2の集電タブ2cを含む。第2の活物質含有層2bは第2の表面42及び第2の裏面43を有する。第2の集電タブ2cは、第2の集電体2aから第2方向54に延出したものである。第2の集電体2aは、表面及び裏面を有する導電性のシートである。第2の集電体2aの一方の主面が表面であり、他方の主面が裏面である。第2の集電体2aの4つの側面それぞれが、表面及び裏面と直交する。第2の活物質含有層2bは、第2の集電体2aのうちの第2の集電タブ2cとなる部分を除いた箇所における表面及び裏面それぞれのに保持されている。第2の集電体2aの表面及び裏面のそれぞれにおいて、一辺及びその近傍に活物質含有層が保持されていない。第2の集電体2aの一辺に平行に形成された活物質含有層非保持部は、第2の集電タブ2cとして機能する。第2の活物質含有層2bの表面のうち、第2の集電体2aと接している面が第2の裏面43である。第2の活物質含有層2bは、互いに向き合う二組の端面を有する。そのうちの一組の端面は、第2方向54に対して垂直である。そのうちの一つの端面が、第2の集電タブ2cと隣接する第1端面55である。第1端面55は、第2方向54において、第2端面56と向き合っている。第2の活物質含有層2bの第1端面55で規定される厚さT1は、第2の活物質含有層2bの第2端面56で規定される厚さT2よりも小さくても良い。 As shown in FIG. 19, the second electrode 2 includes a second current collector 2a, a second active material-containing layer 2b, and a second current collector tab 2c. The second active material-containing layer 2b has a second front surface 42 and a second back surface 43. The second current collector tab 2c extends from the second current collector 2a in the second direction 54. The second current collector 2a is a conductive sheet having a front surface and a back surface. One main surface of the second current collector 2a is the front surface, and the other main surface is the back surface. Each of the four side surfaces of the second current collector 2a is orthogonal to the front surface and the back surface. The second active material-containing layer 2b is held on each of the front surface and the back surface of the second current collector 2a except for the portion serving as the second current collection tab 2c. On each of the front surface and the back surface of the second current collector 2a, the active material-containing layer is not held on one side or in the vicinity thereof. The active material-containing layer non-holding portion formed parallel to one side of the second current collector 2a functions as the second current collector tab 2c. Of the surface of the second active material-containing layer 2b, the surface in contact with the second current collector 2a is the second back surface 43. The second active material-containing layer 2b has two sets of end faces facing each other. One set of end faces is perpendicular to the second direction 54. One of the end faces is the first end face 55 adjacent to the second current collecting tab 2c. The first end surface 55 faces the second end surface 56 in the second direction 54. The thickness T1 defined by the first end surface 55 of the second active material-containing layer 2b may be smaller than the thickness T2 defined by the second end surface 56 of the second active material-containing layer 2b.
 セパレータ3は、有機繊維を含む第2の膜5を含む。第1の膜4は、セパレータ3として機能し得る。第1の膜4は、表面A及び裏面Bを有し、第2の膜5は、表面C及び裏面Dを有する。図9及び図10に示す通り、第1の膜4の裏面Bは、第1の活物質含有層1bそれぞれの第1の表面40と接して被覆している。二つの第1の活物質含有層1bそれぞれについて、主面に対して直交する四側面のうちの第1端面52が第1の膜4で被覆されている。第1の膜4は、第1の集電タブ1cの表面及び裏面それぞれの第1の活物質含有層1bの第1端面52と隣接する部分、言い換えれば、第1の集電タブ1cの表面及び裏面それぞれの第1端面52との境界部分も被覆している。第1の膜4の第1端面52と隣接する部分は、第2の電極の第2の集電タブ2cが延出している側の反対側に位置する端面に近い位置にある。第1の膜4を設けることにより、第1の電極の第1の集電タブ1cと第2の電極の端面とが接触することによる内部短絡を低減することができる。第1の活物質含有層1bの第1端面52及びこれと隣接する部分を第1の膜4が被覆する形態は、特に限定されるものではないが、例えば、図11~図18に示す例を挙げることができる。図11では、第1の膜4が、第1の活物質含有層1bの第1端面52を含む端部(以下、端部とする)をその外形に沿うように被覆している。また、第1の膜4は、第1端面52と隣接する部分(以下、隣接部とする)を十分な幅で被覆し、その厚さが第一方向51に沿って減少している。図12では、第1の膜4が、第1の活物質含有層1bの第1端面52を含む端部をその外形に沿うように被覆している。また、第1の膜4は、隣接部を十分な幅と厚さで被覆している。図13では、第1の膜4が、第1の活物質含有層1bの端部をその外形に沿うように被覆している。また、第1の膜4は、隣接部を十分な幅で被覆し、その厚さが第一方向51に沿って減少している。図14では、第1の膜4が、第1の活物質含有層1bの端部をその外形に沿うように被覆している。図15では、第1の膜4が、第1の活物質含有層1bの端部を被覆し、また、隣接部を十分な幅で被覆し、その厚さが第一方向51に沿って減少している。図16では、第1の膜4が、第1の活物質含有層1bの端部の周囲を覆っている。図17では、第1の膜4が、第1の活物質含有層1bの端部及び隣接部を被覆しているが、端部を被覆している部分に、隣接部を被覆している部分が連続しておらず、互いに独立している。図18では、第1の膜4が、第1の活物質含有層1bの端部の一部を被覆している。 Separator 3 includes a second film 5 containing organic fibers. The first film 4 can function as a separator 3. The first film 4 has a front surface A and a back surface B, and the second film 5 has a front surface C and a back surface D. As shown in FIGS. 9 and 10, the back surface B of the first film 4 is in contact with and covered with the first surface 40 of each of the first active material-containing layers 1b. For each of the two first active material-containing layers 1b, the first end surface 52 of the four sides orthogonal to the main surface is covered with the first film 4. The first film 4 is a portion adjacent to the first end surface 52 of the first active material-containing layer 1b on the front surface and the back surface of the first current collecting tab 1c, in other words, the surface of the first current collecting tab 1c. And the boundary portion with the first end surface 52 of each of the back surface is also covered. The portion of the first film 4 adjacent to the first end surface 52 is located near the end surface located on the side opposite to the extending side of the second current collecting tab 2c of the second electrode. By providing the first film 4, it is possible to reduce an internal short circuit due to contact between the first current collecting tab 1c of the first electrode and the end face of the second electrode. The form in which the first film 4 covers the first end surface 52 of the first active material-containing layer 1b and the portion adjacent thereto is not particularly limited, but for example, the examples shown in FIGS. 11 to 18. Can be mentioned. In FIG. 11, the first film 4 covers an end portion (hereinafter, referred to as an end portion) including the first end surface 52 of the first active material-containing layer 1b so as to follow the outer shape thereof. Further, the first film 4 covers a portion adjacent to the first end surface 52 (hereinafter referred to as an adjacent portion) with a sufficient width, and the thickness thereof decreases along the first direction 51. In FIG. 12, the first film 4 covers the end portion of the first active material-containing layer 1b including the first end surface 52 so as to follow the outer shape thereof. Further, the first film 4 covers the adjacent portion with a sufficient width and thickness. In FIG. 13, the first film 4 covers the end portion of the first active material-containing layer 1b so as to follow its outer shape. Further, the first film 4 covers the adjacent portion with a sufficient width, and the thickness thereof decreases along the first direction 51. In FIG. 14, the first film 4 covers the end portion of the first active material-containing layer 1b so as to follow its outer shape. In FIG. 15, the first film 4 covers the end of the first active material-containing layer 1b and the adjacent portion with a sufficient width, the thickness of which decreases along the first direction 51. doing. In FIG. 16, the first film 4 covers the periphery of the end portion of the first active material-containing layer 1b. In FIG. 17, the first film 4 covers the end portion and the adjacent portion of the first active material-containing layer 1b, but the portion covering the end portion is covered with the adjacent portion. Are not continuous and are independent of each other. In FIG. 18, the first film 4 covers a part of the end portion of the first active material-containing layer 1b.
 第1の膜4が第1の活物質含有層1bから剥離するのを抑制する効果を高めるには、図11~図14に示す構造が望ましい。 In order to enhance the effect of suppressing the first film 4 from peeling from the first active material-containing layer 1b, the structures shown in FIGS. 11 to 14 are desirable.
 第1の膜4が第1の活物質含有層1bにどのようにして固定されているかは特に限定されるものではないが、例えば、接着、熱融着が挙げられる。 How the first film 4 is fixed to the first active material-containing layer 1b is not particularly limited, and examples thereof include adhesion and heat fusion.
 一方、第2の膜5は、図19に示す通り、第2の活物質含有層2bそれぞれの第2の表面42及び第2の表面42に直交する四側面(端面55,56を含む)と、第2の集電体2aの第2の電極2表面に露出している3つの端面45と、第2の集電タブ2cの表面及び裏面における第2の活物質含有層2bの端面55と隣接する部分46とを被覆している。そのため、第1の膜4及び第2の膜5を介して第1の活物質含有層1bと第2の活物質含有層2bが対向している。第2の膜は、第2の電極に一体化されていても良いが、これに限られるものではない。例えば、第2の膜は、第1の膜の表面に一体化されていても良い。第2の膜が、第1の膜又は第2の活物質含有層にどのように一体化されているかは特に限定されるものではないが、例えば、第2の膜中の有機繊維が第1の膜又は第2の活物質含有層の表面にめり込む、あるいははまり込む状態が挙げられる。 On the other hand, as shown in FIG. 19, the second film 5 has four side surfaces (including end faces 55 and 56) orthogonal to the second surface 42 and the second surface 42 of the second active material-containing layer 2b, respectively. , Three end faces 45 exposed on the surface of the second electrode 2 of the second current collector 2a, and end faces 55 of the second active material-containing layer 2b on the front and back surfaces of the second current collector tab 2c. It covers the adjacent portion 46. Therefore, the first active material-containing layer 1b and the second active material-containing layer 2b face each other via the first film 4 and the second film 5. The second film may be integrated with the second electrode, but is not limited thereto. For example, the second film may be integrated with the surface of the first film. How the second film is integrated with the first film or the second active material-containing layer is not particularly limited, but for example, the organic fibers in the second film are the first. The state of being sunk or fitted into the surface of the film or the second active material-containing layer can be mentioned.
 以上説明した例に示す通り、第3の実施形態の積層体は、第1の実施形態の電極を備えているため、ロール表面の摩耗を抑制することができ、かつ優れた性能の電極を含む積層体を実現することが可能である。また、第1の活物質含有層の第1端面で規定される厚さが、第1の活物質含有層の第2端面で規定される厚さよりも小さい。また、第1の膜が、第1の活物質含有層の表面並びに第1端面と、第1の集電タブの表面及び裏面のうちの第1の活物質含有層の第1端面と隣接する部分とを被覆している。このような構造によると、第1の膜が第1の活物質含有層から剥離するのを抑制することができる。その結果、高容量を得るため、積層体を渦巻き状に捲回する等により電極群を作製する際や、外装部材への積層体の充填率を高くした際に、第1の膜が第1の活物質含有層から剥離するのを抑制することができるため、内部短絡の発生を抑えることができ、高容量な電池を提供することができる。そのため、実用性に優れている。また、第1の活物質含有層の第1端面側における充放電に伴う膨張収縮による体積変化を、緩和することができる。その結果、第1の膜が、第1の活物質含有層の変形に追従しやすくなり、第1の活物質含有層からの剥離を抑制することができる。そのため、電池の充放電サイクル寿命等の寿命を向上することができる。 As shown in the examples described above, since the laminate of the third embodiment includes the electrodes of the first embodiment, it is possible to suppress wear on the roll surface and include electrodes having excellent performance. It is possible to realize a laminated body. Further, the thickness defined by the first end surface of the first active material-containing layer is smaller than the thickness defined by the second end surface of the first active material-containing layer. Further, the first film is adjacent to the surface and the first end surface of the first active material-containing layer and the first end surface of the first active material-containing layer of the front and back surfaces of the first current collecting tab. It covers the part. According to such a structure, it is possible to prevent the first film from peeling from the first active material-containing layer. As a result, in order to obtain a high capacity, the first film becomes the first film when the electrode group is produced by winding the laminate in a spiral shape or when the filling rate of the laminate in the exterior member is increased. Since peeling from the active material-containing layer can be suppressed, the occurrence of an internal short circuit can be suppressed, and a high-capacity battery can be provided. Therefore, it is excellent in practicality. In addition, the volume change due to expansion and contraction due to charge / discharge on the first end surface side of the first active material-containing layer can be alleviated. As a result, the first film can easily follow the deformation of the first active material-containing layer, and can suppress peeling from the first active material-containing layer. Therefore, the life such as the charge / discharge cycle life of the battery can be improved.
 なお、第1,第2の集電タブは、第1,第2の集電体における活物質含有層無担持の一辺に限られない。例えば、第1,第2の集電体の一側面から突出した複数の帯状部を第1,第2の集電タブとして使用可能である。この一例を図20に示す。図20は、第1の電極1の別の例を示す。図20に示す通り、第1の集電体1aの一側面(例えば長辺に沿った一側面)から突出した複数の帯状部を第1の集電タブ1cとして用いても良い。第1の膜4は、第1の活物質含有層1bの表面並びに第1端面52と、第1の集電タブ1cの表面及び裏面における第1端面52と隣接する部分とを被覆している。第1の活物質含有層1bの他の3つの端面、第1の集電体1aの四側面49、あるいは、第1の集電タブ1cの対向する二側面48が、第1の膜4で被覆されていても良い。 The first and second current collector tabs are not limited to one side of the first and second current collectors without supporting the active material-containing layer. For example, a plurality of strips protruding from one side surface of the first and second current collectors can be used as the first and second current collector tabs. An example of this is shown in FIG. FIG. 20 shows another example of the first electrode 1. As shown in FIG. 20, a plurality of strips protruding from one side surface (for example, one side surface along the long side) of the first current collector 1a may be used as the first current collector tab 1c. The first film 4 covers the front surface and the first end surface 52 of the first active material-containing layer 1b, and the portions of the front surface and the back surface of the first current collecting tab 1c adjacent to the first end surface 52. .. The other three end faces of the first active material-containing layer 1b, the four side surfaces 49 of the first current collector 1a, or the two opposite side surfaces 48 of the first current collector tab 1c are formed on the first film 4. It may be covered.
 また、第2の膜5は、第1の電極1に一体化させても良い。この一例を図21に示す。図21では、第2の膜5は、第1の膜4の表面と、第1の膜4で覆われていない電極端面すなわち第1の集電タブ1cが延出していない3つの電極端面とを被覆している。図21の構成によると、第1の電極と第2の電極間に必要な絶縁性を確保しつつ、第1の膜が第1の活物質含有層から剥離するのを抑制することができる。そのため、電池の容量及び充放電サイクル寿命を向上することができる。 Further, the second film 5 may be integrated with the first electrode 1. An example of this is shown in FIG. In FIG. 21, the second film 5 includes the surface of the first film 4 and the electrode end faces not covered by the first film 4, that is, the three electrode end faces on which the first current collecting tab 1c does not extend. Is covered. According to the configuration of FIG. 21, it is possible to prevent the first film from peeling from the first active material-containing layer while ensuring the necessary insulating property between the first electrode and the second electrode. Therefore, the capacity of the battery and the life of the charge / discharge cycle can be improved.
 また、第1の電極及び第2の電極の双方に第1の膜を形成しても良い。これにより、第1の膜と電極との密着性をより高くすることができる。また、この場合、第1の電極及び第2の電極の間に第2の膜を介在させることが可能である。この構成により、第1の電極と第2の電極の間の絶縁をより確実なものにすることができる。第2の膜は、第1の電極、第2の電極のいずれかあるいは双方に形成することができる。 Further, the first film may be formed on both the first electrode and the second electrode. Thereby, the adhesion between the first film and the electrode can be further improved. Further, in this case, it is possible to interpose a second film between the first electrode and the second electrode. With this configuration, the insulation between the first electrode and the second electrode can be made more reliable. The second film can be formed on either or both of the first electrode and the second electrode.
 第1の実施形態及び第3実施形態の電極の一例である第1の電極の製造方法を以下に説明する。 The manufacturing method of the first electrode, which is an example of the electrodes of the first embodiment and the third embodiment, will be described below.
 第1の製造方法
 第1の集電体の少なくとも一方の主面に、第1の活物質を含むスラリー(以下、スラリーIとする)と、チタン酸化物粒子を含むスラリー(以下、スラリーIIとする)を同時に塗工する。塗工工程の一例を図22及び図23に示す。塗工装置30は、スラリーIを収容するタンク32と、スラリーIIを収容するタンク33とを備え、基材にスラリーI及びスラリーIIを同時に塗布する構成になっている。所定の寸法に裁断される前の長尺状の第1の集電体1aを、搬送ローラ31によって、塗工装置30のスラリー吐出口に搬送する。図23において、スラリーI吐出口32aがスラリーII吐出口33aよりも集電体の上流側に位置している。このような吐出口配置のため、塗工装置30から第1の集電体1a上に、短辺方向の両端部を除き、スラリーIが塗布される。次いで、スラリーIが乾く前にスラリーIIがスラリーIの塗布領域からはみ出すように重ね塗りされる。スラリーIにスラリーIIが重ね塗りされているため、スラリーIの表面形状にスラリーIIが追従しやすくなる。その後、スラリーを乾燥させた後、乾燥後のものにロールプレスを施し、所定のサイズに裁断して第1の電極を得る。スラリーIを塗布する工程とスラリーIIを塗布する工程とをほぼ同時期に行うと、表面粗さの差を小さくすることができる。また、工程間の期間を長くすると、表面粗さの差が拡大する。スラリーの乾燥時間を短くする方が、表面粗さの差を小さくすることができる。さらに、プレス圧を大きくする方が、表面粗さの差を小さくすることができる。スラリーI及びスラリーIIを塗布するタイミング、スラリーの乾燥条件、プレス条件等を調整することにより、第1の活物質含有層の表面の表面粗さRa1よりも、第1の膜の表面の表面粗さRa2が小さい第1の電極が得られる。
 なお、スラリーIIの粘度をスラリーIの粘度に比して大きくすることが望ましい。これにより、スラリーIIの流動性がスラリーIに比して低くなるため、スラリーIが第1の集電体の表面上を拡散して塗工の末端部分の厚さが薄くなったところに、スラリーIIがスラリーIの形状に追従しつつスラリーI上を拡散する。その結果、第1の活物質含有層の第1端面で規定される厚さを、第1の活物質含有層の第2端面で規定される厚さよりも小さくすることができる。スラリーIIの粘度は、粘度せん断速度1.0(1/s)以上1000(1/s)以下の領域に亘ってスラリーIの粘度よりも大きいことが望ましい。スラリーIの粘度は、粘度せん断速度1.0(1/s)以上1000(1/s)以下の領域で0.01Pa・s以上1000Pa・s以下が好ましい、その中でも特に0.1Pa・s以上100Pa・s以下がより好ましい。一方、スラリーIIの粘度は、粘度せん断速度1.0(1/s)以上1000(1/s)以下の領域で0.1Pa・s以上1000Pa・s以下が好ましい、その中でも特に1Pa・s以上1000Pa・s以下がより好ましい。
First Production Method A slurry containing a first active material (hereinafter referred to as slurry I) and a slurry containing titanium oxide particles (hereinafter referred to as slurry II) on at least one main surface of the first current collector ) At the same time. An example of the coating process is shown in FIGS. 22 and 23. The coating device 30 includes a tank 32 for accommodating the slurry I and a tank 33 for accommodating the slurry II, and is configured to simultaneously apply the slurry I and the slurry II to the base material. The long first current collector 1a before being cut to a predetermined size is conveyed to the slurry discharge port of the coating device 30 by the transfer roller 31. In FIG. 23, the slurry I discharge port 32a is located on the upstream side of the current collector with respect to the slurry II discharge port 33a. Due to such an arrangement of the discharge port, the slurry I is applied from the coating device 30 onto the first current collector 1a except for both ends in the short side direction. Next, before the slurry I dries, the slurry II is overcoated so as to protrude from the coating area of the slurry I. Since the slurry II is overcoated with the slurry I, the slurry II can easily follow the surface shape of the slurry I. Then, after the slurry is dried, the dried slurry is rolled and pressed to a predetermined size to obtain a first electrode. If the step of applying the slurry I and the step of applying the slurry II are performed at substantially the same time, the difference in surface roughness can be reduced. Further, if the period between the steps is lengthened, the difference in surface roughness increases. The difference in surface roughness can be reduced by shortening the drying time of the slurry. Further, increasing the press pressure can reduce the difference in surface roughness. By adjusting the timing of applying the slurry I and the slurry II, the drying conditions of the slurry, the pressing conditions, etc., the surface roughness of the surface of the first film is rougher than that of the surface roughness Ra1 of the first active material-containing layer. A first electrode having a small Ra2 is obtained.
It is desirable that the viscosity of the slurry II be made larger than the viscosity of the slurry I. As a result, the fluidity of the slurry II is lower than that of the slurry I, so that the slurry I diffuses on the surface of the first current collector to reduce the thickness of the end portion of the coating. Slurry II diffuses on slurry I while following the shape of slurry I. As a result, the thickness defined by the first end surface of the first active material-containing layer can be made smaller than the thickness defined by the second end surface of the first active material-containing layer. It is desirable that the viscosity of the slurry II is higher than the viscosity of the slurry I over a region of viscosity shear rate of 1.0 (1 / s) or more and 1000 (1 / s) or less. The viscosity of the slurry I is preferably 0.01 Pa · s or more and 1000 Pa · s or less in the region where the viscosity shear rate is 1.0 (1 / s) or more and 1000 (1 / s) or less, and among them, 0.1 Pa · s or more. More preferably 100 Pa · s or less. On the other hand, the viscosity of the slurry II is preferably 0.1 Pa · s or more and 1000 Pa · s or less in the region where the viscosity shear rate is 1.0 (1 / s) or more and 1000 (1 / s) or less, and particularly 1 Pa · s or more. More preferably 1000 Pa · s or less.
 第1の実施形態または第3の実施形態の電極を含む積層体の製造方法を以下に説明する。 The method for manufacturing the laminate including the electrodes of the first embodiment or the third embodiment will be described below.
 第2の製造方法
 第1の製造方法により、第1の電極(第1または第3の実施形態の電極)を得る。
Second Manufacturing Method A first electrode (the electrode of the first or third embodiment) is obtained by the first manufacturing method.
 一方、第2の集電体に第2の活物質を含むスラリーを塗布した後、スラリーを乾燥させ、乾燥後のものにロールプレスを施し、所定のサイズに裁断して第2の電極を得る。第2の電極にエレクトロスピニング法により第2の膜を形成する。次いで、プレスを施しても良い。プレス方法としては、ロールプレスでもよく、平板プレスでもよい。 On the other hand, after applying the slurry containing the second active material to the second current collector, the slurry is dried, the dried one is roll-pressed, and cut into a predetermined size to obtain a second electrode. .. A second film is formed on the second electrode by an electrospinning method. Then, a press may be applied. As the pressing method, a roll press or a flat plate press may be used.
 第1の電極と第2の電極を、これらが第1の膜と第2の膜を介して対向するように積層して実施形態の積層体を得る。 The first electrode and the second electrode are laminated so that they face each other via the first film and the second film to obtain the laminate of the embodiment.
 第3の製造方法
 第1の製造方法により作製した第1の電極に、エレクトロスピニング法により第2の膜を形成する。次いで、プレスを施しても良い。プレス条件は、第2の製造方法で説明した通りである。
Third Production Method A second film is formed on the first electrode produced by the first production method by an electrospinning method. Then, a press may be applied. The pressing conditions are as described in the second manufacturing method.
 一方、第2の集電体に第2の活物質を含むスラリーを塗布した後、スラリーを乾燥させ、乾燥後のものにロールプレスを施し、所定のサイズに裁断して第2の電極を得る。 On the other hand, after applying the slurry containing the second active material to the second current collector, the slurry is dried, the dried one is roll-pressed, and cut into a predetermined size to obtain a second electrode. ..
 第1の電極と第2の電極を、これらが第1の膜と第2の膜を介して対向するように積層して実施形態の積層体を得る。 The first electrode and the second electrode are laminated so that they face each other via the first film and the second film to obtain the laminate of the embodiment.
 次いで、エレクトロスピニング法について説明する。第2の膜は、例えば、エレクトロスピニング法により形成される。エレクトロスピニング法では、第2の膜の形成対象である、第1の電極または第2の電極をアースしてアース電極とする。第1の電極に形成する場合、第1の膜を形成済みの第1の電極を用意する。 Next, the electrospinning method will be described. The second film is formed, for example, by an electrospinning method. In the electrospinning method, the first electrode or the second electrode, which is the object of forming the second film, is grounded to be a ground electrode. When forming on the first electrode, the first electrode on which the first film has been formed is prepared.
 紡糸ノズルに印加された電圧により液状の原料(例えば原料溶液)が帯電すると共に、原料溶液からの溶媒の揮発により原料溶液の単位体積当たりの帯電量が増加する。溶媒の揮発とそれに伴う単位体積あたりの帯電量の増加が連続して生じることで、紡糸ノズルから吐出された原料溶液は長手方向に延び、ナノサイズの有機繊維として、アース電極である第1の電極または第2の電極に堆積する。有機繊維とアース電極間には、ノズルとアース電極間の電位差によりクーロン力が生じる。よって、ナノサイズの有機繊維により第1の膜との接触面積を増加させることができ、この有機繊維をクーロン力により第1の電極または第2の電極上に堆積することができるため、第2の膜の電極からの剥離強度を高めることが可能となる。剥離強度は、例えば、溶液濃度、サンプル-ノズル間距離等を調節することにより制御することが可能である。なお、第1,第2の集電タブに第2の膜を形成しない場合、第1,第2の集電タブをマスクしてから第2の膜を形成すると良い。この例を図24に示す。図24は、第2の電極に第2の膜を形成する工程を示す斜視図である。図24に示す通り、第2の膜5は、ノズルNから吐出される原料溶液が第2の活物質含有層2b及び第2の集電タブ2c上に、有機繊維として堆積することで直接形成される。第2の集電タブ2cの一辺及びその近傍がマスクMで被覆されている。そのため、第2の膜5は、第2の活物質含有層2bの表面と、第2の集電タブ2c表面における第2の活物質含有層2bと隣接する部分に跨がるように堆積された有機繊維を含む多孔質膜となる。 The voltage applied to the spinning nozzle charges the liquid raw material (for example, the raw material solution), and the volatilization of the solvent from the raw material solution increases the charge amount per unit volume of the raw material solution. Due to the continuous volatilization of the solvent and the accompanying increase in the amount of charge per unit volume, the raw material solution discharged from the spinning nozzle extends in the longitudinal direction, and as a nano-sized organic fiber, the first ground electrode. Accumulate on the electrode or the second electrode. A Coulomb force is generated between the organic fiber and the ground electrode due to the potential difference between the nozzle and the ground electrode. Therefore, the contact area with the first film can be increased by the nano-sized organic fiber, and the organic fiber can be deposited on the first electrode or the second electrode by the Coulomb force, so that the second electrode can be deposited. It is possible to increase the peeling strength of the film from the electrode. The peel strength can be controlled by adjusting, for example, the solution concentration, the distance between the sample and the nozzle, and the like. When the second film is not formed on the first and second current collecting tabs, it is preferable to mask the first and second current collecting tabs before forming the second film. An example of this is shown in FIG. FIG. 24 is a perspective view showing a step of forming a second film on the second electrode. As shown in FIG. 24, the second film 5 is directly formed by depositing the raw material solution discharged from the nozzle N on the second active material-containing layer 2b and the second current collecting tab 2c as organic fibers. Will be done. One side of the second current collecting tab 2c and its vicinity are covered with the mask M. Therefore, the second film 5 is deposited so as to straddle the surface of the second active material-containing layer 2b and the portion of the surface of the second current collecting tab 2c adjacent to the second active material-containing layer 2b. It becomes a porous film containing organic fibers.
 エレクトロスピニング法を用いることによって、第2の膜を電極表面に容易に形成することができる。エレクトロスピニング法は、原理的には連続した1本の繊維を形成するので、曲げによる破断、膜の割れへの耐性を薄膜で確保できる。第2の膜を構成する有機繊維が継ぎ目のない連続したものであることは、第2の膜のほつれや一部欠損の確率が低く、自己放電の抑制の点で有利である。 By using the electrospinning method, a second film can be easily formed on the electrode surface. In principle, the electrospinning method forms a single continuous fiber, so that the thin film can ensure resistance to breakage due to bending and cracking of the film. The fact that the organic fibers constituting the second film are seamless and continuous has a low probability of fraying or partial loss of the second film, and is advantageous in terms of suppressing self-discharge.
 エレクトロスピニングに用いられる液状の原料には、例えば、有機材料を溶媒に溶解して調製された原料溶液が用いられる。有機材料の例は、有機繊維を構成する有機材料で挙げたものと同様なものを挙げることができる。有機材料は、例えば5~60質量%程度の濃度で溶媒に溶解して用いられる。有機材料を溶解する溶媒は特に限定されず、ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、N,N‘ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)、水、アルコール類等、任意の溶媒を用いることができる。また、溶解性の低い有機材料に対しては、レーザー等でシート状の有機材料を溶融しながらエレクトロスピニングする。加えて、高沸点有機溶剤と低融点の溶剤とを混合することも許容される。 As the liquid raw material used for electrospinning, for example, a raw material solution prepared by dissolving an organic material in a solvent is used. Examples of organic materials include those similar to those mentioned for organic materials constituting organic fibers. The organic material is used, for example, dissolved in a solvent at a concentration of about 5 to 60% by mass. The solvent for dissolving the organic material is not particularly limited, and any solvent such as dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), N, N'dimethylformamide (DMF), N-methylpyrrolidone (NMP), water, alcohols and the like can be used. A solvent can be used. For organic materials with low solubility, electrospinning is performed while melting the sheet-shaped organic material with a laser or the like. In addition, it is permissible to mix a high boiling organic solvent with a low melting point solvent.
 高圧発生器を用いて紡糸ノズルに電圧を印加しつつ、紡糸ノズルから所定の電極の表面にわたって原料を吐出することによって、第2の膜が形成される。印加電圧は、溶媒・溶質種、溶媒の沸点・蒸気圧曲線、溶液濃度、温度、ノズル形状、サンプル-ノズル間距離等に応じて適宜決定され、例えばノズルとワーク間の電位差を0.1~100kVとすることができる。原料の供給速度もまた、溶液濃度、溶液粘度、温度、圧力、印加電圧、ノズル形状等に応じて適宜決定される。シリンジタイプの場合には、例えば、1ノズルあたり0.1~500μl/min程度とすることができる。また、多ノズルやスリットの場合には、その開口面積に応じて供給速度を決定すればよい。 A second film is formed by discharging the raw material from the spinning nozzle over the surface of a predetermined electrode while applying a voltage to the spinning nozzle using a high-voltage generator. The applied voltage is appropriately determined according to the solvent / solute species, the boiling point / vapor pressure curve of the solvent, the solution concentration, the temperature, the nozzle shape, the distance between the sample and the nozzle, etc. For example, the potential difference between the nozzle and the work is 0.1 to 1. It can be 100 kV. The supply rate of the raw material is also appropriately determined according to the solution concentration, solution viscosity, temperature, pressure, applied voltage, nozzle shape and the like. In the case of the syringe type, for example, it can be about 0.1 to 500 μl / min per nozzle. Further, in the case of a multi-nozzle or a slit, the supply speed may be determined according to the opening area.
 有機繊維が乾燥状態で電極の表面に直接形成されるので、電極内部に原料に含まれる溶媒が浸み込むことは実質的に避けられる。電極内部の溶媒残留量は、ppmレベル以下と極めて低いものとなる。電極内部の残留溶媒は、酸化還元反応を生じて電池のロスを引き起こし、電池性能の低下につながる。本実施形態によれば、こうした不都合が生じるおそれは極力低減されることから、電池の性能を高めることができる。 Since the organic fibers are formed directly on the surface of the electrode in a dry state, it is practically avoided that the solvent contained in the raw material penetrates into the electrode. The residual amount of solvent inside the electrode is as low as ppm level or less. The residual solvent inside the electrode causes a redox reaction, causing battery loss and leading to deterioration of battery performance. According to the present embodiment, the possibility of such inconvenience occurring is reduced as much as possible, so that the performance of the battery can be improved.
 第4の実施形態
 第4の実施形態の二次電池は、上記実施形態の積層体を含む。二次電池は、電解質と、電解質及び積層体を収容可能な外装部材とをさらに含んでいても良い。
Fourth Embodiment The secondary battery of the fourth embodiment includes the laminate of the above embodiment. The secondary battery may further include an electrolyte and an exterior member capable of accommodating the electrolyte and the laminate.
 複数の積層体を、第1の活物質含有層と第2の活物質含有層の間に第1の膜及び/または第2の膜が位置するように積層したものを電極群として二次電池に使用しても良い。電極群の形状は、この形状に限られず、一以上の積層体を渦巻きあるいは扁平の渦巻状に捲回したものを電極群として使用しても良い。 A secondary battery in which a plurality of laminates are laminated so that the first film and / or the second film is located between the first active material-containing layer and the second active material-containing layer as an electrode group. May be used for. The shape of the electrode group is not limited to this shape, and one or more laminated bodies wound in a spiral or flat spiral shape may be used as the electrode group.
 二次電池は、第1の集電タブと電気的に接続される第1の電極端子と、第2の集電タブと電気的に接続される第2の電極端子とをさらに備えることも可能である。 The secondary battery may further include a first electrode terminal that is electrically connected to the first current collecting tab and a second electrode terminal that is electrically connected to the second current collecting tab. Is.
 電解質としては、例えば、非水電解質が用いられる。非水電解質としては、電解質を有機溶媒に溶解することにより調整される液状非水電解質、液状電解質と高分子材料を複合化したゲル状非水電解質等が挙げられる。液状非水電解質は、例えば電解質を0.5mol/L以上、2.5mol/L以下の濃度で有機溶媒に溶解することによって、調製することができる。 As the electrolyte, for example, a non-aqueous electrolyte is used. Examples of the non-aqueous electrolyte include a liquid non-aqueous electrolyte prepared by dissolving the electrolyte in an organic solvent, a gel-like non-aqueous electrolyte in which a liquid electrolyte and a polymer material are combined, and the like. The liquid non-aqueous electrolyte can be prepared, for example, by dissolving the electrolyte in an organic solvent at a concentration of 0.5 mol / L or more and 2.5 mol / L or less.
 電解質としては、例えば、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CF3SO22]等のリチウム塩、あるいはこれらの混合物を挙げることができる。高電位でも酸化し難いものであることが好ましく、LiPF6が最も好ましい。 Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium arsenic hexafluorophosphate (LiAsF 6 ), and trifluorometh. Lithium salts such as lithium sulfonate (LiCF 3 SO 3 ), bistrifluoromethylsulfonylimide lithium [LiN (CF 3 SO 2 ) 2 ], or mixtures thereof can be mentioned. It is preferable that it is difficult to oxidize even at a high potential, and LiPF 6 is most preferable.
 有機溶媒としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ビニレンカーボネート等の環状カーボネートや、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)等の鎖状カーボネートや、テトラヒドロフラン(THF)、2メチルテトラヒドロフラン(2MeTHF)、ジオキソラン(DOX)等の環状エーテルや、ジメトキシエタン(DME)、ジエトキシエタン(DEE)等の鎖状エーテルや、γ-ブチロラクトン(GBL)、アセトニトリル(AN)、およびスルホラン(SL)等が挙げられる。こうした有機溶媒は、単独でも2種以上の混合物として用いてもよい。 Examples of the organic solvent include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC) and vinylene carbonate, and chain carbonates such as diethyl carbonate (DEC), dimethyl carbonate (DMC) and methyl ethyl carbonate (MEC). Cyclic ethers such as tetrahydrofuran (THF), dimethyltetrahydrofuran (2MeTHF) and dioxolane (DOX), chain ethers such as dimethoxyethane (DME) and diethoxyethane (DEE), γ-butyrolactone (GBL), Examples thereof include acetonitrile (AN) and sulfolane (SL). Such an organic solvent may be used alone or as a mixture of two or more kinds.
 高分子材料としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリアクリロニトリル(PAN)、ポリエチレンオキサイド(PEO)等を挙げることができる。 Examples of the polymer material include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyethylene oxide (PEO) and the like.
 なお、非水電解質として、リチウムイオンを含有した常温溶融塩(イオン性融体)、高分子固体電解質、無機固体電解質等を用いてもよい。 As the non-aqueous electrolyte, a room temperature molten salt (ionic melt) containing lithium ions, a polymer solid electrolyte, an inorganic solid electrolyte, or the like may be used.
 外装部材としては、例えば、金属製容器、又はラミネートフィルム製容器などを用いることができる。 As the exterior member, for example, a metal container, a laminated film container, or the like can be used.
 二次電池の形態は、特に限定されず、例えば、円筒型、扁平型、薄型、角型、コイン型等の様々な形態にすることができる。 The form of the secondary battery is not particularly limited, and can be in various forms such as a cylindrical type, a flat type, a thin type, a square type, and a coin type.
 図25は、実施形態に係る二次電池の一例を示す部分切欠斜視図である。図25は、外装部材としてラミネートフィルムを用いた二次電池の一例を示す図である。図25に示す二次電池10は、ラミネートフィルム製の外装部材11と、電極群12と、第1の電極端子13と、第2の電極端子14と、非水電解質(図示しない)とを含む。電極群12は、実施形態の積層体を複数含み、第1の電極と第2の電極が第1の膜及び第2の膜からなるセパレータを介して積層された構造を有する。非水電解質(図示しない)は、電極群12に保持あるいは含浸されている。第1の電極端子13には、第1の電極の第1の集電タブが電気的に接続されている。第2の電極端子14には、第2の電極の第2の集電タブが電気的に接続されている。図25に示すように、第1の電極端子13と第2の電極端子14とは、互いに距離を隔てた状態でそれぞれの先端が外装部材11の一辺から外部に突出している。 FIG. 25 is a partially cutaway perspective view showing an example of the secondary battery according to the embodiment. FIG. 25 is a diagram showing an example of a secondary battery using a laminated film as an exterior member. The secondary battery 10 shown in FIG. 25 includes an exterior member 11 made of a laminated film, an electrode group 12, a first electrode terminal 13, a second electrode terminal 14, and a non-aqueous electrolyte (not shown). .. The electrode group 12 includes a plurality of laminated bodies of the embodiment, and has a structure in which the first electrode and the second electrode are laminated via a separator composed of a first film and a second film. A non-aqueous electrolyte (not shown) is retained or impregnated in the electrode group 12. The first current collecting tab of the first electrode is electrically connected to the first electrode terminal 13. The second current collecting tab of the second electrode is electrically connected to the second electrode terminal 14. As shown in FIG. 25, the tips of the first electrode terminal 13 and the second electrode terminal 14 project outward from one side of the exterior member 11 in a state where they are separated from each other.
 図26は、実施形態に係る二次電池の他の例を示す分解斜視図である。図26は、外装部材として角型の金属製容器を用いた二次電池の一例を示す図である。図26に示す二次電池は、外装部材20と、捲回型電極群21と、蓋22と、第1の電極端子23と、第2の電極端子24と、非水電解質(図示しない)とを含む。捲回型電極群21は、実施形態の積層体が扁平の渦巻き状に捲回された構造を有する。捲回型電極群21において、扁平の渦巻き状に捲回された第1の集電タブ25が一方の周方向の端面に位置し、また、扁平の渦巻き状に捲回された第2の集電タブ26が他方の周方向の端面に位置している。非水電解質(図示しない)は、電極群21に保持あるいは含浸されている。第1の電極リード27は、第1の集電タブ25と電気的に接続され、かつ第1の電極端子23とも電気的に接続されている。また、第2の電極リード28は、第2の集電タブ26と電気的に接続され、かつ第2の電極端子24とも電気的に接続されている。電極群21は、第1の電極リード27及び第2の電極リード28が外装部材20の主面側と対向するように外装部材20内に配置される。蓋22は、外装部材20の開口部20aに溶接等により固定されている。第1の電極端子23と第2の電極端子24とは、絶縁性のハーメチックシール部材(図示せず)を介して蓋22にそれぞれ取り付けられている。 FIG. 26 is an exploded perspective view showing another example of the secondary battery according to the embodiment. FIG. 26 is a diagram showing an example of a secondary battery using a square metal container as an exterior member. The secondary battery shown in FIG. 26 includes an exterior member 20, a wound electrode group 21, a lid 22, a first electrode terminal 23, a second electrode terminal 24, and a non-aqueous electrolyte (not shown). including. The wound electrode group 21 has a structure in which the laminated body of the embodiment is wound in a flat spiral shape. In the wound electrode group 21, the first current collecting tab 25 wound in a flat spiral shape is located on one end face in the circumferential direction, and the second current collecting tab 25 wound in a flat spiral shape is located on one end face. The electric tab 26 is located on the other end face in the circumferential direction. A non-aqueous electrolyte (not shown) is retained or impregnated in the electrode group 21. The first electrode lead 27 is electrically connected to the first current collecting tab 25 and is also electrically connected to the first electrode terminal 23. Further, the second electrode lead 28 is electrically connected to the second current collecting tab 26 and also electrically connected to the second electrode terminal 24. The electrode group 21 is arranged in the exterior member 20 so that the first electrode lead 27 and the second electrode lead 28 face the main surface side of the exterior member 20. The lid 22 is fixed to the opening 20a of the exterior member 20 by welding or the like. The first electrode terminal 23 and the second electrode terminal 24 are respectively attached to the lid 22 via an insulating hermetic seal member (not shown).
 以上説明した第4の実施形態の二次電池によれば、上記いずれかの実施形態の電極及び/または積層体を含むため、プレスロール表面の摩耗を抑制することができると共に、電池性能を改善し得る。 According to the secondary battery of the fourth embodiment described above, since the electrode and / or the laminate of any of the above embodiments is included, wear of the press roll surface can be suppressed and battery performance is improved. Can be done.
 第1の電極を正極、第2の電極を負極とした二次電池を以下の方法で作製した。 A secondary battery with the first electrode as the positive electrode and the second electrode as the negative electrode was produced by the following method.
 (実施例1)
 正極及び正極上の第1の膜としての絶縁性層、負極及び負極上の第2の膜としてのナノファイバ層を以下の方法で作製した。
(Example 1)
An insulating layer as a first film on the positive electrode and the positive electrode, and a nanofiber layer as a second film on the negative electrode and the negative electrode were produced by the following methods.
 正極活物質として平均粒径が6μmのLiNi0.33Co0.33Mn0.33粒子及び平均粒径が5μmのLiCoO粒子、導電剤としてカーボンブラック、バインダーとしてポリフッ化ビニリデン(PVdF)を用意した。これらを、80:20:5:5の質量比で混合して混合物を得た。次に、得られた混合物をn-メチルピロリドン(NMP)溶媒中に分散して、粘度せん断速度1.0(1/s)で10Pa・s、粘度せん断速度1000(1/s)で0.5Pa・sとなるように正極スラリーを調製した。 Average particle size 6μm LiNi 0.33 Co 0.33 Mn 0.33 O 2 particles and an average particle size 5μm of LiCoO 2 particles as a positive electrode active material, carbon black as a conductive agent, polyvinylidene fluoride (PVdF) Prepared. These were mixed at a mass ratio of 80:20: 5: 5 to obtain a mixture. Next, the obtained mixture was dispersed in an n-methylpyrrolidone (NMP) solvent, and the viscosity shear rate was 1.0 (1 / s) at 10 Pa · s, and the viscosity shear rate was 1000 (1 / s). A positive electrode slurry was prepared so as to have a concentration of 5 Pa · s.
 絶縁性無機材料として平均粒径D50が1μmのチタン酸リチウム(Li4Ti512)粒子とPVdFを用意した。これらを、100:4の質量比で混合して混合物を得た。次に得られた混合物をNMPに分散させ、粘度せん断速度1.0(1/s)で100Pa・s、粘度せん断速度1000(1/s)で2Pa・sとなるようにチタン酸化物含有スラリーを調製した。 Lithium titanate (Li 4 Ti 5 O 12 ) particles having an average particle diameter D50 of 1 μm and PVdF were prepared as insulating inorganic materials. These were mixed at a mass ratio of 100: 4 to obtain a mixture. Next, the obtained mixture was dispersed in NMP, and a titanium oxide-containing slurry was obtained so as to have a viscosity shear rate of 1.0 (1 / s) of 100 Pa · s and a viscosity shear rate of 1000 (1 / s) of 2 Pa · s. Was prepared.
 よって、チタン酸化物含有スラリー(スラリーII)の粘度は、粘度せん断速度1.0(1/s)以上1000(1/s)以下の領域に亘って正極スラリー(スラリーI)の粘度よりも大きい。 Therefore, the viscosity of the titanium oxide-containing slurry (slurry II) is larger than the viscosity of the positive electrode slurry (slurry I) over a region of viscosity shear rate of 1.0 (1 / s) or more and 1000 (1 / s) or less. ..
 正極スラリーおよびチタン酸化物含有スラリーの粘度は、Thermo Scientific社HAAKE MARS III 粘度・粘弾性測定装置を用いて測定した。 The viscosities of the positive electrode slurry and the titanium oxide-containing slurry were measured using a Thermo Scientific HAAKE MARS III viscosity / viscoelasticity measuring device.
 次に、厚さ15μmのアルミニウム箔上に、下層に正極スラリー、上層にチタン酸化物含有スラリーとなるように、かつ、上層のチタン酸化物含有スラリーがはみ出すように重ね塗りをし、乾燥を行った。これをアルミニウム箔の両面で行った。その後、ロールプレスを施し、所定のサイズに裁断して正極を得た。絶縁性無機材料層は、図9に示す通り、正極活物質含有層の表面及び第1端面、正極集電タブの表面及び裏面における第1端面と隣接する部分と被覆していた。 Next, on an aluminum foil having a thickness of 15 μm, a positive electrode slurry was applied to the lower layer, a titanium oxide-containing slurry was applied to the upper layer, and the titanium oxide-containing slurry of the upper layer was overcoated and dried. It was. This was done on both sides of the aluminum foil. Then, it was rolled-pressed and cut into a predetermined size to obtain a positive electrode. As shown in FIG. 9, the insulating inorganic material layer was coated with the front surface and the first end surface of the positive electrode active material-containing layer, and the front surface and the back surface of the positive electrode current collector tab adjacent to the first end surface.
 正極活物質含有層それぞれの厚さは20μm、正極活物質含有層上の絶縁性無機材料層の厚さは3μm、正極活物質含有層からはみ出してアルミニウム箔上に形成された絶縁性無機材料層の厚さは、20μmであった。絶縁性無機材料層中のチタン酸化物の含有量は96質量%であった。第1端面の厚さT1は、5μm、第2端面の厚さT2は20μmであった。第1端面を含む端部の形状は図11に示すものであった。すなわち、多数の粒子を含む正極活物質含有層1bの厚さが集電タブ側に向かって薄くなっている。第1の膜4は、正極活物質含有層1b及び正極集電体1aの表面を被覆している。第1の膜4の厚さは、正極集電体1aの表面と接している部分が、正極活物質含有層1bの表面と接している部分よりも厚くなっている。 The thickness of each of the positive electrode active material-containing layers is 20 μm, the thickness of the insulating inorganic material layer on the positive electrode active material-containing layer is 3 μm, and the insulating inorganic material layer formed on the aluminum foil protruding from the positive electrode active material-containing layer. The thickness of was 20 μm. The content of titanium oxide in the insulating inorganic material layer was 96% by mass. The thickness T1 of the first end face was 5 μm, and the thickness T2 of the second end face was 20 μm. The shape of the end portion including the first end face is as shown in FIG. That is, the thickness of the positive electrode active material-containing layer 1b containing a large number of particles becomes thinner toward the current collecting tab side. The first film 4 covers the surfaces of the positive electrode active material-containing layer 1b and the positive electrode current collector 1a. The thickness of the first film 4 is such that the portion in contact with the surface of the positive electrode current collector 1a is thicker than the portion in contact with the surface of the positive electrode active material-containing layer 1b.
 なお、集電体の一方の長辺に正極活物質含有層無担持の部分を設け、この箇所を正極集電タブとした。 A portion without a positive electrode active material-containing layer was provided on one long side of the current collector, and this portion was used as a positive electrode current collector tab.
 負極活物質として一次粒子の平均粒径が0.5μmのチタン酸リチウム粒子と、導電剤としてカーボンブラック、バインダーとしてポリフッ化ビニリデンを用意した。これらを、90:5:5の質量比で混合して混合物を得た。得られた混合物をn-メチルピロリドン(NMP)溶媒中に分散して、スラリーを調製した。 Lithium titanate particles having an average primary particle size of 0.5 μm were prepared as the negative electrode active material, carbon black was prepared as the conductive agent, and polyvinylidene fluoride was prepared as the binder. These were mixed at a mass ratio of 90: 5: 5 to obtain a mixture. The resulting mixture was dispersed in an n-methylpyrrolidone (NMP) solvent to prepare a slurry.
 得られたスラリーを、厚さ15μmのアルミニウム箔の両面に塗布し、乾燥させた。次いで、乾燥させた塗膜をプレスして負極を得た。負極活物質含有層それぞれの厚さは30μmであった。なお、集電体の一方の長辺に負極活物質含有層無担持の部分を設け、この箇所を負極集電タブとした。 The obtained slurry was applied to both sides of an aluminum foil having a thickness of 15 μm and dried. Then, the dried coating film was pressed to obtain a negative electrode. The thickness of each of the negative electrode active material-containing layers was 30 μm. A portion without a negative electrode active material-containing layer was provided on one long side of the current collector, and this portion was used as a negative electrode current collector tab.
 この負極上に、エレクトロスピニング法によって有機繊維を堆積させてナノファイバ層を形成した。有機材料としては、ポリイミドを用いた。このポリイミドを、溶媒としてのDMAcに20質量%の濃度で溶解して、液体原料として原料溶液を調製した。得られた原料溶液を、定量ポンプを使用して5μl/minの供給速度で紡糸ノズルから負極の表面に供給した。高電圧発生器を用いて、紡糸ノズルに20kVの電圧を印加し、この紡糸ノズル1本で100×200mmの範囲を動かしながら負極活物質含有層表面に2μmの有機繊維の層を形成した。なお、負極集電タブの両方の表面(主面)における負極活物質含有層との境界から10mmの部分を除き、負極集電タブの表面をマスクした状態でエレクトロスピニング法を実施して負極を得た。有機繊維の層は、図19に示す通り、負極活物質含有層のそれぞれの表面及び表面に直交する四側面と、負極集電体の負極表面に露出している3つの端面と、負極集電タブの表面及び裏面における負極活物質含有層の端面と隣接する部分とを被覆していた。 Organic fibers were deposited on this negative electrode by an electrospinning method to form a nanofiber layer. Polyimide was used as the organic material. This polyimide was dissolved in DMAc as a solvent at a concentration of 20% by mass to prepare a raw material solution as a liquid raw material. The obtained raw material solution was supplied from the spinning nozzle to the surface of the negative electrode at a supply rate of 5 μl / min using a metering pump. A voltage of 20 kV was applied to the spinning nozzle using a high voltage generator, and a layer of 2 μm organic fibers was formed on the surface of the negative electrode active material-containing layer while moving the range of 100 × 200 mm with this spinning nozzle. The negative electrode was subjected to the electrospinning method with the surface of the negative electrode current collecting tab masked, except for the portion 10 mm from the boundary with the negative electrode active material-containing layer on both surfaces (main surfaces) of the negative electrode current collecting tab. Obtained. As shown in FIG. 19, the organic fiber layer has four side surfaces orthogonal to the respective surfaces and surfaces of the negative electrode active material-containing layer, three end faces exposed on the negative electrode surface of the negative electrode current collector, and a negative electrode current collector. The front surface and the back surface of the tab were covered with the end surface of the negative electrode active material-containing layer and the portion adjacent to the end surface.
 得られた正極及び負極を、正極の第1の膜と負極の第2の膜とが図9に示す通りに対向するよう捲回してプレスを施すことにより、積層体として電極群を得た。 The obtained positive electrode and negative electrode were wound and pressed so that the first film of the positive electrode and the second film of the negative electrode faced each other as shown in FIG. 9, and an electrode group was obtained as a laminated body.
 (実施例2)
 絶縁性無機材料として平均粒径D50が1μmのルチル型の二酸化チタン(TiO)粒子を用いること以外は、実施例1と同様にして積層体を得た。
 (比較例1)
 絶縁性無機材料として平均粒径D50が1μmのアルミナ(Al)粒子を用いること以外は、実施例1と同様にして積層体を得た。
(Example 2)
A laminate was obtained in the same manner as in Example 1 except that rutile-type titanium dioxide (TiO 2 ) particles having an average particle diameter D50 of 1 μm were used as the insulating inorganic material.
(Comparative Example 1)
A laminate was obtained in the same manner as in Example 1 except that alumina (Al 2 O 3 ) particles having an average particle diameter D50 of 1 μm were used as the insulating inorganic material.
 (比較例2)
 絶縁性無機材料として平均粒径D50が3μmのマグネシア(MgO)粒子を用いること以外は、実施例1と同様にして積層体を得た。
(Comparative Example 2)
A laminate was obtained in the same manner as in Example 1 except that magnesia (MgO) particles having an average particle diameter D50 of 3 μm were used as the insulating inorganic material.
 (比較例3)
 第1の膜を設けないこと以外は、実施例1と同様にして積層体を得た。
(Comparative Example 3)
A laminate was obtained in the same manner as in Example 1 except that the first film was not provided.
 実施例及び比較例の正極について、上述した粗さの算術平均値Raの測定方法で正極活物質含有層の表面粗さRa1、第1の膜の表面の表面粗さRa2を測定し、その結果を表1に示す。表1に示す通り、実施例1,2の正極は、Ra1>Ra2を満たしていた。 For the positive electrodes of Examples and Comparative Examples, the surface roughness Ra1 of the positive electrode active material-containing layer and the surface roughness Ra2 of the surface of the first film were measured by the above-mentioned method for measuring the arithmetic mean value Ra of the roughness, and the results were obtained. Is shown in Table 1. As shown in Table 1, the positive electrodes of Examples 1 and 2 satisfied Ra1> Ra2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、実施例及び比較例の正極について、マイクロスラリーエロージョン(MSE)試験(摩耗剤と溶媒で作製したスラリーを試験片に噴射し、表面を浸食させる試験)を実施した。試験手順は、次の通りである。まず、摩耗剤粒子の固形分比が10質量%で、溶媒として水を含むスラリーを作製し、試験機内のタンクに入れた。スラリーをミキサーで撹拌しながら吸い上げた。吸い上げたスラリーを高圧で試験片である各電極の表面にノズルを用いて流速300m/sで吹き付けた。ノズルの口径は3mm×3mmとした。一定時間吹き付けた後に触針式粗さ計で摩耗の深さを測定した。なお、試験は室温で実施した。MSE試験時間(分)と、摩耗量(μm)との関係を図27に示す。 In addition, the positive electrodes of Examples and Comparative Examples were subjected to a microslurry erosion (MSE) test (a test in which a slurry prepared with an abrasion agent and a solvent was sprayed onto a test piece to erode the surface). The test procedure is as follows. First, a slurry having a solid content ratio of the abrasion agent particles of 10% by mass and containing water as a solvent was prepared and placed in a tank in the testing machine. The slurry was sucked up while stirring with a mixer. The sucked slurry was sprayed at a high pressure on the surface of each electrode, which is a test piece, at a flow velocity of 300 m / s using a nozzle. The diameter of the nozzle was 3 mm × 3 mm. After spraying for a certain period of time, the depth of wear was measured with a stylus type roughness meter. The test was carried out at room temperature. The relationship between the MSE test time (minutes) and the amount of wear (μm) is shown in FIG.
 図27から明らかな通り、チタン酸化物粒子を含む第1の膜を備えた実施例1,2の電極は、試験時間300分経過後も、摩耗量が10μmよりも小さいままであった。一方、アルミナまたはマグネシアを含む第1の膜を備えた比較例1,2の電極、第1の膜を設けない比較例3の電極は、いずれも、試験時間120分以内のうちに摩耗量が40μmに達した。以上の結果から、実施形態に係る電極によると、ロール表面の摩耗が抑制されることを確認することができた。また、実施例1,2の電極群を室温で一晩真空乾燥した後、露点-80℃以下のグローブボックス内に1日放置した。これを、電解液とともに金属製容器に収容して、非水電解質電池を得た。用いた電解液は、エチレンカーボネート(EC)とジメチルカーボネート(DMC)にLiPFを溶解させたものであった。得られた実施例1,2の電池は、初期容量として設計容量と同じ1Ahを示した。 As is clear from FIG. 27, the electrodes of Examples 1 and 2 provided with the first film containing the titanium oxide particles had a wear amount of less than 10 μm even after the test time of 300 minutes had elapsed. On the other hand, the electrodes of Comparative Examples 1 and 2 provided with the first film containing alumina or magnesia and the electrodes of Comparative Example 3 not provided with the first film all had a wear amount within 120 minutes of the test time. It reached 40 μm. From the above results, it was confirmed that the wear of the roll surface was suppressed according to the electrodes according to the embodiment. The electrode groups of Examples 1 and 2 were vacuum dried overnight at room temperature and then left in a glove box having a dew point of −80 ° C. or lower for one day. This was housed in a metal container together with the electrolytic solution to obtain a non-aqueous electrolyte battery. The electrolytic solution used was one in which LiPF 6 was dissolved in ethylene carbonate (EC) and dimethyl carbonate (DMC). The obtained batteries of Examples 1 and 2 showed the same initial capacity of 1 Ah as the design capacity.
 実施例1の正極において、正極活物質を、平均粒径が7μmのLiMnで表されるスピネル構造のリチウムマンガン複合酸化物粒子を80質量%と、平均粒径が5μmのLiCoO粒子を20質量%とからなるものに変更したところ、実施例1と同様な結果を得られた。 In the positive electrode of Example 1, the positive electrode active material is 80% by mass of lithium manganese composite oxide particles having a spinel structure represented by LiMn 2 O 4 having an average particle size of 7 μm, and LiCoO 2 particles having an average particle size of 5 μm. Was changed to 20% by mass, and the same results as in Example 1 were obtained.
 以上に説明した少なくとも一つの実施形態及び実施例に係る電極は、活物質含有層と、チタン酸化物粒子を含む第1の膜とを含み、活物質含有層の表面の表面粗さRa1と第1の膜の表面の表面粗さRa2が(1)式:Ra1>Ra2を満たす。そのため、ロールプレスで用いるロール表面の摩耗を抑制することができると共に、電池の容量、レート性能等の電池性能を改善が期待できる。 The electrode according to at least one embodiment and the embodiment described above includes an active material-containing layer and a first film containing titanium oxide particles, and has surface roughness Ra1 and a first surface roughness of the surface of the active material-containing layer. The surface roughness Ra2 of the surface of the film 1 satisfies Eq. (1): Ra1> Ra2. Therefore, wear of the roll surface used in the roll press can be suppressed, and improvement of battery performance such as battery capacity and rate performance can be expected.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.
 1…第1の電極、1a…第1の集電体、1b…第1の活物質含有層、1c…第1の集電タブ、2…第2の電極、2a…第2の集電体、2b…第2の活物質含有層、2c…第2の集電タブ、3…セパレータ、4…第1の膜、5…第2の膜、10…二次電池、11…外装部材、12…電極群、13,23…第1の電極端子、14,24…第2の電極端子、20…外装部材、21…電極群、22…蓋、25…第1の集電タブ、26…第2の集電タブ、27…第1の電極リード、28…第2の電極リード、40…第1の表面、41…第1の裏面、42…第2の表面、43…第2の裏面、45…第2の集電体の端面、46…第2の集電タブの第2の活物質含有層との境界を含む部分、A…第1の膜の表面、B…第1の膜の裏面、C…第2の膜の表面、D…第2の膜の裏面、51…第1方向、52、55…第1端面、53、56…第2端面、54…第2方向。 1 ... 1st electrode, 1a ... 1st current collector, 1b ... 1st active material-containing layer, 1c ... 1st current collection tab, 2 ... 2nd electrode, 2a ... 2nd current collector , 2b ... 2nd active material-containing layer, 2c ... 2nd current collecting tab, 3 ... Separator, 4 ... 1st film, 5 ... 2nd film, 10 ... Secondary battery, 11 ... Exterior member, 12 ... Electrode group, 13, 23 ... 1st electrode terminal, 14, 24 ... 2nd electrode terminal, 20 ... Exterior member, 21 ... Electrode group, 22 ... Lid, 25 ... 1st current collecting tab, 26 ... 2 current collecting tabs, 27 ... 1st electrode lead, 28 ... 2nd electrode lead, 40 ... 1st surface, 41 ... 1st back surface, 42 ... 2nd surface, 43 ... 2nd back surface, 45 ... the end face of the second current collector, 46 ... the portion of the second current collector tab including the boundary with the second active material-containing layer, A ... the surface of the first film, B ... the first film. Back surface, C ... Second surface of film, D ... Back surface of second film, 51 ... First direction, 52, 55 ... First end face, 53, 56 ... Second end face, 54 ... Second direction.

Claims (11)

  1.  活物質粒子を含み、表面及び裏面を有する活物質含有層と、
     表面及び裏面を有し、前記裏面が前記活物質含有層の前記表面の少なくとも一部と接し、チタン酸化物粒子を含む第1の膜とを含み、
     前記活物質含有層の前記表面の表面粗さRa1と、前記第1の膜の前記表面の表面粗さRa2が、Ra1>Ra2を満たす、電極。
    An active material-containing layer containing active material particles and having front and back surfaces,
    It has a front surface and a back surface, the back surface of which is in contact with at least a part of the surface of the active material-containing layer, and includes a first film containing titanium oxide particles.
    An electrode in which the surface roughness Ra1 of the surface of the active material-containing layer and the surface roughness Ra2 of the surface of the first film satisfy Ra1> Ra2.
  2.  前記チタン酸化物粒子は、スピネル構造のリチウムチタン酸化物粒子及び二酸化チタン粒子のうちの少なくとも一方を含む、請求項1に記載の電極。 The electrode according to claim 1, wherein the titanium oxide particles include at least one of a spinel-structured lithium titanium oxide particles and titanium dioxide particles.
  3.  前記活物質粒子は、スピネル構造のリチウムマンガン複合酸化物粒子、リチウムコバルト複合酸化物粒子、及び、リチウムニッケルマンガンコバルト複合酸化物粒子よりなる群から選択される少なくとも1種を含む、請求項1または2に記載の電極。 The active material particles include at least one selected from the group consisting of lithium manganese composite oxide particles having a spinel structure, lithium cobalt composite oxide particles, and lithium nickel manganese cobalt composite oxide particles, according to claim 1 or 2. The electrode according to 2.
  4.  前記活物質粒子は、スピネル構造のリチウムマンガン複合酸化物粒子及びリチウムニッケルマンガンコバルト複合酸化物粒子のうちの少なくとも一方と、リチウムコバルト複合酸化物粒子とを含む、請求項1または2に記載の電極。 The electrode according to claim 1 or 2, wherein the active material particles include at least one of a spinel-structured lithium manganese composite oxide particle and a lithium nickel manganese cobalt cobalt composite oxide particle, and the lithium cobalt composite oxide particle. ..
  5.  表面及び裏面を有する集電体と、
     前記集電体から第1方向に延出した集電タブとをさらに含み、
     前記活物質含有層の前記裏面が前記集電体の前記表面及び前記裏面のうちの少なくとも一部に担持され、前記活物質含有層が、前記集電タブと隣接する第1端面と、前記第1方向において前記第1端面と向き合う第2端面とを有し、
     前記活物質含有層の前記第1端面で規定される厚さは、前記活物質含有層の前記第2端面で規定される厚さよりも小さく、
     前記第1の膜が、少なくとも、前記活物質含有層の前記第1端面と、前記集電タブの前記表面及び前記裏面のうちの前記第1端面と隣接する部分とを被覆している、請求項1~4のいずれか1項に記載の電極。
    A current collector with front and back surfaces and
    Further including a current collector tab extending in the first direction from the current collector.
    The back surface of the active material-containing layer is supported on at least a part of the front surface and the back surface of the current collector, and the active material-containing layer has a first end surface adjacent to the current collector tab and the first end surface. It has a second end face facing the first end face in one direction.
    The thickness of the active material-containing layer defined by the first end surface is smaller than the thickness of the active material-containing layer defined by the second end surface.
    A claim that the first film covers at least the first end surface of the active material-containing layer and a portion of the front surface and the back surface of the current collecting tab adjacent to the first end surface. Item 2. The electrode according to any one of Items 1 to 4.
  6.  前記活物質含有層の厚さは、前記第1方向に沿って減少し、前記第1端面で規定される厚さが最少となる、請求項5に記載の電極。 The electrode according to claim 5, wherein the thickness of the active material-containing layer decreases along the first direction, and the thickness defined by the first end face is minimized.
  7.  請求項1~6のいずれか1項に記載の電極からなる第1の電極と、
     第2の電極と、
     セパレータと
    を含む、積層体。
    A first electrode comprising the electrode according to any one of claims 1 to 6 and a first electrode.
    With the second electrode
    Laminated body including a separator.
  8.  前記第1の電極は正極である、請求項7に記載の積層体。 The laminate according to claim 7, wherein the first electrode is a positive electrode.
  9.  前記第1の膜が前記セパレータを兼ねる、請求項7または8に記載の積層体。 The laminate according to claim 7 or 8, wherein the first film also serves as the separator.
  10.  前記セパレータは、前記第1の膜とは異なる絶縁性膜を含む、請求項7または8に記載の積層体。 The laminate according to claim 7 or 8, wherein the separator contains an insulating film different from the first film.
  11.  請求項1~6のいずれか1項に記載の電極を含む、二次電池。 A secondary battery including the electrode according to any one of claims 1 to 6.
PCT/JP2019/034243 2019-08-30 2019-08-30 Electrode, laminate, and secondary battery WO2021038860A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021541944A JP7254941B2 (en) 2019-08-30 2019-08-30 Electrodes, laminates and secondary batteries
PCT/JP2019/034243 WO2021038860A1 (en) 2019-08-30 2019-08-30 Electrode, laminate, and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/034243 WO2021038860A1 (en) 2019-08-30 2019-08-30 Electrode, laminate, and secondary battery

Publications (1)

Publication Number Publication Date
WO2021038860A1 true WO2021038860A1 (en) 2021-03-04

Family

ID=74685004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034243 WO2021038860A1 (en) 2019-08-30 2019-08-30 Electrode, laminate, and secondary battery

Country Status (2)

Country Link
JP (1) JP7254941B2 (en)
WO (1) WO2021038860A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210066705A1 (en) * 2019-09-02 2021-03-04 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021189467A1 (en) * 2020-03-27 2021-09-30 宁德新能源科技有限公司 Electrode assembly and electrochemical device comprising same, and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171250A (en) * 2010-02-22 2011-09-01 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2014041817A (en) * 2012-07-24 2014-03-06 Toshiba Corp Secondary battery
JP2015002008A (en) * 2013-06-13 2015-01-05 株式会社豊田自動織機 Electrode including protective layer formed on active material layer
JP2019021805A (en) * 2017-07-19 2019-02-07 Jsr株式会社 Electrode body and electric storage device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050300A (en) * 1996-07-30 1998-02-20 Yamauchi Corp Press roll for manufacturing thin electrode, press device for manufacturing thin electrode using the roll, and manufacture of thin electrode
JP2010272494A (en) * 2008-08-18 2010-12-02 Sumitomo Electric Ind Ltd Nonaqueous electrolyte secondary battery and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171250A (en) * 2010-02-22 2011-09-01 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2014041817A (en) * 2012-07-24 2014-03-06 Toshiba Corp Secondary battery
JP2015002008A (en) * 2013-06-13 2015-01-05 株式会社豊田自動織機 Electrode including protective layer formed on active material layer
JP2019021805A (en) * 2017-07-19 2019-02-07 Jsr株式会社 Electrode body and electric storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210066705A1 (en) * 2019-09-02 2021-03-04 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery
US11552285B2 (en) * 2019-09-02 2023-01-10 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP7254941B2 (en) 2023-04-10
JPWO2021038860A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
US10700327B2 (en) Secondary battery
JP6219113B2 (en) Secondary battery
US11411284B2 (en) Laminate and secondary battery
EP3591735B1 (en) Electrode structure and secondary battery
JP6808667B2 (en) Laminated body, manufacturing method of laminated body and secondary battery
JP6848051B2 (en) Electrode structure and rechargeable battery
JP7254941B2 (en) Electrodes, laminates and secondary batteries
WO2021186716A1 (en) Electrode, multilayer body and secondary battery
JP6377586B2 (en) Electrode, electrode manufacturing method, and nonaqueous electrolyte battery
JP6702903B2 (en) Secondary battery
JP6924047B2 (en) Rechargeable battery
JP7242490B2 (en) Battery unit and secondary battery
JP6373461B2 (en) Method for producing electrode for secondary battery with organic fiber layer and method for producing secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021541944

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942987

Country of ref document: EP

Kind code of ref document: A1