WO2021186716A1 - Electrode, multilayer body and secondary battery - Google Patents

Electrode, multilayer body and secondary battery Download PDF

Info

Publication number
WO2021186716A1
WO2021186716A1 PCT/JP2020/012460 JP2020012460W WO2021186716A1 WO 2021186716 A1 WO2021186716 A1 WO 2021186716A1 JP 2020012460 W JP2020012460 W JP 2020012460W WO 2021186716 A1 WO2021186716 A1 WO 2021186716A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
active material
current collector
insulating layer
containing layer
Prior art date
Application number
PCT/JP2020/012460
Other languages
French (fr)
Japanese (ja)
Inventor
佑磨 菊地
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2020/012460 priority Critical patent/WO2021186716A1/en
Publication of WO2021186716A1 publication Critical patent/WO2021186716A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to electrodes, laminates and secondary batteries.
  • a porous separator is arranged between the positive electrode and the negative electrode in order to avoid contact between the positive electrode and the negative electrode.
  • a free-standing film separate from the positive electrode and the negative electrode is used for the separator.
  • An example of this is a microporous membrane made of a polyolefin resin.
  • Such a separator is produced, for example, by extruding a melt containing a polyolefin-based resin composition into a sheet, extracting and removing a substance other than the polyolefin-based resin, and then stretching the sheet.
  • the separator is thin. This is because the positive electrode and the negative electrode are laminated or wound with a separator interposed therebetween, so that if the separator is thick, the number of layers of the positive electrode and the negative electrode that can be stored per unit volume of the battery is limited. Because.
  • the resin film separator needs to have mechanical strength so as not to break during the production of the battery, it is difficult to make it thinner than a certain level.
  • the separator is made thin, there is a problem that burrs existing on the end face of the current collector or the current collecting tab of the positive electrode or the negative electrode easily break through the separator. When the burr of the electrode current collector breaks through the separator, it comes into contact with the counter electrode to cause a short circuit, and as a result, a high-capacity battery cannot be obtained.
  • an electrode having an improved problem of an internal short circuit that hinders an increase in capacity a laminate containing the electrode, and a secondary battery including the laminate are provided.
  • a first current collector having a front surface and a back surface and a first side surface intersecting the front surface and the back surface, and at least a part of the first side surface of the first current collector in the first direction.
  • An electrode comprising an extended first current collecting tab, a first active material-containing layer, and a first insulating layer containing an inorganic material is provided.
  • the back surface of the first active material-containing layer is supported on the front surface and / or the back surface of the first current collector at an end adjacent to at least the first side surface.
  • the first active material-containing layer includes a first end face adjacent to the first current collecting tab.
  • the first insulating layer covers at least a part of the first end surface of the first active material-containing layer and a portion of the front surface and the back surface of the first current collecting tab adjacent to the first end surface.
  • a laminate including the electrodes of the embodiment is provided.
  • a secondary battery including the laminate of the embodiment is provided.
  • FIG. 2 is a cross-sectional view showing an example of the laminated body of the embodiment.
  • FIG. 3 is a perspective view showing a first electrode included in the laminate shown in FIG.
  • FIG. 5 is a plan view showing a state before being covered with the second insulating layer of the second electrode included in the laminate shown in FIG. 1.
  • FIG. 5 is a perspective view showing a state in which the second electrode shown in FIG. 4 is covered with the second insulating layer.
  • FIG. 2 is a cross-sectional view showing another example of the laminated body of the embodiment.
  • FIG. 2 is a cross-sectional view showing another example of the laminated body of the embodiment.
  • FIG. 3 is a perspective view showing a first electrode included in the laminate shown in FIG.
  • FIG. 5 is a plan view showing a state before being covered
  • FIG. 2 is a cross-sectional view showing another example of the laminated body of the embodiment.
  • FIG. 2 is a cross-sectional view showing another example of the laminated body of the embodiment.
  • FIG. 2 is a cross-sectional view showing another example of the laminated body of the embodiment.
  • FIG. 5 is a plan view showing another example of the first electrode.
  • FIG. 2 is a perspective view of the first electrode shown in FIG.
  • FIG. 5 is a plan view showing another example of the second electrode.
  • FIG. 6 is a perspective view showing a state in which the second electrode shown in FIG. 14 is covered with the second insulating layer.
  • FIG. 2 is a cross-sectional view showing another example of the laminated body of the embodiment.
  • the schematic diagram of one step in the manufacturing method of the laminated body of an embodiment The schematic diagram of one step in the manufacturing method of the laminated body of an embodiment.
  • the schematic diagram of one step in the manufacturing method of the laminated body of an embodiment The schematic diagram of one step in the manufacturing method of the laminated body of an embodiment.
  • FIG. 1 is a cross-sectional view showing an example of the laminated body of the embodiment.
  • the cross-sectional view of FIG. 1 is a cross-sectional view of the laminated body 100 cut in the first direction, which is the extending direction of the current collecting tab.
  • the laminate 100 shown in FIG. 1 includes a first electrode 1, a second electrode 2, and a separator 3.
  • the first electrode 1 includes a first current collector 1a, a first active material-containing layer 1b, and a first current collector tab 1c.
  • the electrode according to the first embodiment is, for example, the first electrode 1.
  • the first active material-containing layer 1b has a first front surface 40 and a first back surface 41.
  • the first current collector tab 1c extends from a part or the whole of one side surface (first side surface) of the first current collector 1a in the first direction 51.
  • the first current collector tab 1c is a plurality of strips protruding from a plurality of locations on one side surface (first side surface) of the first current collector 1a.
  • the first current collector 1a is a conductive sheet having a front surface and a back surface. One main surface of the first current collector 1a is the front surface, and the other main surface is the back surface. Each of the four side surfaces of the first current collector 1a intersects (for example, orthogonally) the front surface and the back surface.
  • the first active material-containing layer 1b is held so as to include at least an end portion of the front surface and / or back surface of the first current collector 1a adjacent to the first side surface. Specifically, the first active material-containing layer 1b is held on the front surface and / or back surface of the first current collector 1a, in addition to the above-mentioned end portion, at least on a portion facing the opposite electrode. .. In a preferred embodiment, the first active material-containing layer 1b is held on the entire surface and / or the back surface of the first current collector 1a. When a battery is manufactured using the first electrode having this form, the volume of the first active material-containing layer 1b per unit volume in the exterior member having a certain volume can be increased.
  • the first active material-containing layer 1b is not supported on each of the front surface and the back surface of the first current collecting tab 1c. Of the first front surface 40 and the first back surface 41 of the first active material-containing layer 1b, the surface in contact with the first current collector 1a is the first back surface 41.
  • the first active material-containing layer 1b has two sets of end faces facing each other. One set of end faces is perpendicular to the first direction 51. One end face of this set of end faces is the first end face 52 adjacent to the first current collecting tab 1c. The first end surface 52 faces the second end surface 53 in the first direction 51.
  • the first electrode 1 includes a first insulating layer 4 containing an inorganic material.
  • the first insulating layer 4 includes at least a portion of the first end surface 52 of the first active material-containing layer 1b adjacent to the first current collecting tab 1c and the first one. Of the front surface and the back surface of the current collecting tab 1c, the first end surface 52 and the adjacent portion 48 are covered.
  • the first insulating layer 4 is formed on the front surface and the back surface of each of the plurality of first current collecting tabs 1c.
  • the second electrode 2 includes a second current collector 2a, a second active material-containing layer 2b, and a second current collector tab 2c.
  • the second active material-containing layer 2b has a second front surface 42 and a second back surface 43.
  • the second current collector tab 2c extends from the second current collector 2a in the second direction 54.
  • the second direction 54 may be in substantially the same direction as the first direction 51, or may be in a direction opposite to that of the first direction 51.
  • the direction in which the first current collecting tab 1c of the first electrode 1 extends and the second current collecting tab 2c of the second electrode 2 extend. The directions are opposite to each other. In FIGS. 7 and 17, which will be described later, the first current collecting tab 1c of the first electrode 1 and the second current collecting tab 2c of the second electrode 2 extend in the same direction. Shows the case.
  • the second current collector tab 2c may be a plurality of strips protruding from a plurality of locations on one side surface of the second current collector 2a.
  • the second current collector 2a is a conductive sheet having a front surface and a back surface. One main surface of the second current collector 2a is the front surface, and the other main surface is the back surface.
  • the second current collector 2a has two sets of end faces facing each other. One set of end faces is perpendicular to the second direction 54. One of the end faces is the end face 44 located on the side where the second current collecting tab 2c extends. The end face 44 faces the end face 45 in the second direction 54. Each of the four sides of the second current collector 2a, including the end faces 44 and 45, intersects (eg, orthogonally) the front and back surfaces of the second current collector 2a.
  • the second active material-containing layer 2b is held on the front surface and the back surface of the second current collector 2a, respectively.
  • the second active material-containing layer 2b is not supported on the front surface and the back surface of the second current collecting tab 2c, respectively.
  • the surface in contact with the second current collector 2a is the second back surface 43.
  • the second active material-containing layer 2b has two sets of end faces facing each other. One set of end faces is perpendicular to the second direction 54. One end face of this set of end faces is the first end face 55 adjacent to the second current collecting tab 2c. The first end surface 55 faces the second end surface 56 in the second direction 54.
  • the separator 3 includes a first insulating layer 4 containing an inorganic material and a second insulating layer 5 containing organic fibers.
  • the first insulating layer 4 covers a portion 48 adjacent to the first end surface 52 of the first active material-containing layer 1b.
  • the first insulating layer 4 is located near the end surface 45 located on the opposite side to the side on which the second current collecting tab 2c of the second electrode 2 extends.
  • the end face 45 of the second current collector 2a may have burrs that are inevitably formed in the manufacturing process. When this burr comes into contact with the first current collecting tab 1c, an internal short circuit occurs, but since the first electrode 1 includes the first insulating layer 4, the first current collecting tab 1c and the second It is possible to reduce an internal short circuit due to contact with the end face 45 of the current collector 2a.
  • How the first insulating layer 4 is fixed to the first active material-containing layer 1b and the first current collecting tab 1c is not particularly limited, but for example, adhesion or heat fusion. Can be mentioned.
  • the second insulating layer 5 includes a second surface 42 of each of the second active material-containing layers 2b, four side surfaces intersecting (for example, orthogonal to) the second surface 42, and a second surface.
  • the front surface and the back surface of the current collecting tab 2c of No. 2 are covered with the end surface 55 of the second active material-containing layer 2b and the adjacent portion 46.
  • the second active material-containing layer 2b faces the first active material-containing layer 1b via the second insulating layer 5.
  • the second insulating layer 5 may be integrated with the second electrode 2, but is not limited to this.
  • the second insulating layer 5 may be integrated with the first electrode 1 as shown in FIGS. 10 and 11 described later.
  • How the second insulating layer 5 is integrated with the second active material-containing layer 2b is not particularly limited, but for example, the organic fibers in the second insulating layer are the second. Examples thereof include a state in which the active material-containing layer is sunk or stuck in the surface.
  • FIG. 6 is a cross-sectional view showing a laminated body according to another example.
  • the first insulating layer 4 included in the first electrode 1 faces the second current collector 2a via the second active material-containing layer 2b, and the first portion 4a and the second current collector. Includes a second portion 4b that does not face body 2a.
  • the second portion 4b included in the first insulating layer 4 protrudes from the position of the end surface 45 of the second current collector 2a toward the first direction 51 where the first current collector tab 1c extends, for example. ing.
  • the end surface 45 of the second current collector 2a has burrs, it is possible to further prevent the burrs from coming into contact with the first current collector tab 1c of the first electrode 1. Therefore, according to the laminated body 100 shown in FIG. 6, the occurrence of an internal short circuit can be suppressed, and a high-capacity battery can be provided.
  • FIG. 7 is a perspective view schematically showing another example of the laminated body according to the embodiment.
  • the laminate 100 includes a first electrode 1 and a second electrode 2.
  • the first electrode 1 is a long electrode described with reference to FIGS. 2 and 3.
  • the second electrode 2 is a long electrode described with reference to FIGS. 4 and 5.
  • the laminated body 100 is formed by winding the first electrode 1 and the second electrode 2 so that the second electrode 2 is located on the outer periphery.
  • the plurality of first current collecting tabs 1c of the first electrode 1 and the plurality of second current collecting tabs 2c of the second electrode 2 extend in the same direction. As shown in FIG. 7, the first electrode 1 and the second electrode 2 are laminated so that the plurality of current collecting tabs they have do not overlap.
  • the plurality of first current collecting tabs 1c are overlapped with each other and electrically connected to each other by welding or the like. Further, the plurality of second current collecting tabs 2c are also overlapped with each other and electrically connected to each other by welding or the like.
  • a second insulating layer 5 is integrated with the second electrode 2, and the second insulating layer 5 functions as a separator. Further, as described below, the first insulating layer 4 can also function as a separator.
  • Each of the plurality of first current collecting tabs 1c has a first insulating layer 4 on the front surface and the back surface.
  • the first insulating layer 4 includes at least a portion of the first active material-containing layer 1b adjacent to the first current collecting tab 1c on the first end surface 52, and a first.
  • the front surface and the back surface of the current collecting tab 1c of No. 1 the first end surface 52 and the adjacent portion 48 are covered.
  • an end surface 44 of the second current collector 2a is a second insulating layer between a second current collector tab 2c and another second current collector tab 2c adjacent thereto.
  • the entire end face 44 of the second current collector 2a may not be covered with the second insulating layer 5. Therefore, in FIG. 7, the end face 44 of the second current collector 2a is exposed between a certain second current collector tab 2c and another second current collector tab 2c adjacent to the second current collector tab 2c.
  • FIG. 8 schematically shows a cross section of the laminated body 100 at a position between a certain second current collecting tab 2c and another second current collecting tab 2c adjacent thereto.
  • the end face 44 of the second current collector 2a may have burrs that are inevitably formed in the manufacturing process. When this burr comes into contact with the first current collecting tab 1c, an internal short circuit occurs, but since the first electrode 1 includes the first insulating layer 4, the first current collecting tab 1c and the second It is possible to reduce an internal short circuit due to contact with the end face 44 of the current collector 2a. Further, the first insulating layer 4 shown in FIG. 8 does not face the first portion 4a facing the second current collector 2a and the second current collector 2a via the second active material-containing layer 2b. It includes the second part 4b.
  • the second portion 4b projects in the first direction from the first portion 4a. Therefore, according to the laminated body 100, it is possible to reduce an internal short circuit due to contact between the burr of the end face 44 of the second current collector 2a and the first current collector 1c.
  • the first insulating layer is formed on at least a part of the first end surface of the first active material-containing layer, the surface of the first current collecting tab, and the surface of the first current collecting tab. It covers a portion of the back surface adjacent to the first end surface. Therefore, in order to obtain a high capacity, when the electrode group (laminated body) is produced by spirally winding or laminating the electrode and the second electrode as a counter electrode, the second electrode is used. Even if the end face of the included second current collector or the second current collector tab has burrs, it is possible to prevent the burrs from coming into contact with the first current collector tab of the first electrode. .. That is, since the burr contacts the first insulating layer instead of contacting the first current collecting tab, the occurrence of an internal short circuit can be suppressed, and a high-capacity battery can be provided.
  • the surface of the first active material-containing layer is not covered with the first insulating layer 4, but the form of the first electrode is not limited to this form.
  • the surface of the first active material-containing layer 1b may be coated with the first insulating layer 4.
  • the first insulating layer 4 further covers the entire surface of the first end surface 52 of the first active material-containing layer 1b, and the front and back surfaces of the first current collecting tab, which are adjacent to the first end surface 52. doing.
  • a first insulating layer 4 and a second insulating layer 5 are present as separators between the first active material-containing layer and the second active material-containing layer. Therefore, the insulation between the first electrode and the second electrode can be made more reliable.
  • the first insulating layer may be formed on both the first electrode and the second electrode.
  • the second insulating layer 5 may be integrated with the first electrode 1.
  • An example showing the laminated body 100 in this case is shown in FIGS. 10 and 11.
  • the first insulating layer 4 covers the first end surface 52 of the first active material-containing layer 1b and the portions of the front surface and the back surface of the first current collecting tab 1c adjacent to the first end surface 52.
  • the second insulating layer 5 includes a surface of the first insulating layer 4, an electrode surface not covered by the first insulating layer 4, that is, a surface of the first active material-containing layer 1b, and a first current collecting tab. 1c covers the three electrode end faces that do not extend.
  • the first insulating layer 4 covers the first active material-containing layer 1b.
  • the second insulating layer 5 includes the surface of the first insulating layer 4 covering the first active material-containing layer 1b and the electrode end face, that is, the first current collector, which is not covered by the first insulating layer 4.
  • the three electrode end faces on which the electric tab 1c does not extend and a portion on the first current collecting tab 1c and adjacent to the first insulating layer 4 are covered.
  • the first insulating layer contains the first active material while ensuring the necessary insulating properties between the first electrode and the second electrode. It is possible to suppress peeling from the layer. Therefore, the capacity of the battery and the life of the charge / discharge cycle can be improved.
  • the shape of the first current collector tab 1c of the first electrode is a plurality of strips protruding from a plurality of locations on one side surface (first side surface) of the first current collector 1a as illustrated in FIG. Not limited to.
  • the first current collector tab 1c may, for example, protrude from the entire surface of one side surface (first side surface) of the first current collector 1a, and the protruding portion may have an uneven structure. An example of this is shown in FIGS. 12 and 13.
  • the first current collector tab 1c is a portion extending in the first direction 51 from the entire one side surface (first side surface) of the first current collector 1a.
  • the extending portion has an uneven shape.
  • a plurality of convex portions project along the first direction 51.
  • the first insulating layer 4 covers the front surface and the back surface (excluding the tip portion of the convex portion) of the first current collecting tab 1c. Therefore, the first insulating layer 4 includes the entire surface of the first end surface 52 of the first active material-containing layer 1b, and the front and back surfaces of the first current collecting tab 1c that are adjacent to the first end surface 52. Is covered.
  • the shape of the second current collector tab 2c of the second electrode is not limited to a plurality of strips protruding from a plurality of locations on one side surface of the second current collector 2a as illustrated in FIG.
  • the second current collector tab 2c may, for example, project from the entire surface of one side surface of the second current collector 2a, and the protruding portion may have an uneven structure. An example of this is shown in FIGS. 14 and 15.
  • the second current collector tab 2c is a portion extending from the entire side surface of the second current collector 2a in the second direction 54.
  • the extending portion has an uneven shape.
  • a plurality of protrusions project along the second direction 54. As shown in FIG.
  • the second insulating layer 5 includes a second surface 42 of each of the second active material-containing layers 2b, four side surfaces intersecting (for example, orthogonal to) the second surface 42, and a second surface.
  • the front surface and the back surface of the current collecting tab 2c are covered with the portion 46 excluding the tip of the convex portion. Therefore, the portion of the front surface and the back surface of the second current collecting tab 2c adjacent to the end surface 55 of the second active material-containing layer 2b is covered with the second insulating layer 5.
  • the second insulating layer may be formed at a portion of the second electrode excluding the tip of the second current collecting tab 2c.
  • all of the two sets of end faces of the second active material-containing layer 2b facing each other are covered with the second insulating layer 5.
  • the embodiment is not limited to this case.
  • At least a part of the two sets of end faces of the second active material-containing layer facing each other may be covered with the second insulating layer. Of these end faces, it is preferable that at least the end face adjacent to the second current collecting tab is covered with the second insulating layer.
  • the first and second insulating layers are directly formed without providing the active material-containing layer on the protruding portions and convex portions of the first and second current collecting tabs, but the present invention is not limited to this.
  • the active material-containing layer may be formed on the protruding portion or the convex portion of the first and second current collecting tabs, and the first and second insulating layers may be formed on the active material-containing layer.
  • An example applied to the first electrode is shown in FIG.
  • the first current collector tab 1c is a portion extending in the first direction 51 from a plurality of positions (first side surface) of one side surface (first side surface) of the first current collector 1a, and is composed of a plurality of protruding portions.
  • the first active material-containing layer 101 is formed on a portion of the front surface and the back surface of the first current collecting tab 1c adjacent to the first end surface 52.
  • the first insulating layer 4 is formed so as to cover the top of each of the first active material-containing layers 101 and the end faces of each of the first active material-containing layers 101. Further, although not shown here, the first insulating layer 4 may cover the surface of the first active material-containing layer 1b.
  • Such a structure exemplified in FIG. 16 can be similarly applied to the second electrode.
  • the active material-containing layer formed on the protruding portion or the convex portion of the first and second current collecting tabs has a small contribution to the charge / discharge reaction.
  • the active material-containing layer contains a titanium-containing oxide as the active material, it can function as an insulating layer.
  • the insulating performance can be further improved.
  • first electrode and the second electrode is not limited to the one shown above, and is arbitrary. Any of the first electrode and the second electrode shown above may be combined. Further, in the laminated body, the direction in which the first current collecting tab extends and the direction in which the second current collecting tab extends are not limited to opposite directions, and may be the same direction. An example is shown in FIG.
  • the laminate shown in FIG. 17 includes a first electrode 1 having a structure shown in FIG. 13 and a second electrode 2 having a structure shown in FIG.
  • the first electrode 1 and the second electrode 2 have the same direction 51 in which each of the plurality of first current collecting tabs 1C extends and the direction in which each of the plurality of second current collecting tabs 2c extends. They are stacked so that they face each other.
  • a plurality of second current collecting tabs 2c are not arranged directly under the plurality of first current collecting tabs 1C, and the plurality of second current collecting tabs 2c are used with respect to the plurality of first current collecting tabs 1C. , Are arranged so as to be offset in the direction orthogonal to the direction 51.
  • first electrode 1 and the second electrode 2 are laminated so that the second active material-containing layer 2b protrudes (or protrudes) from each of the four sides of the first active material-containing layer 1b.
  • a second insulating layer 5 is arranged between the first active material-containing layer 1b and the second active material-containing layer 2b.
  • the first insulating layer 4 located on the portion of the front surface and the back surface of the first current collecting tab 1c adjacent to the first end surface 52 is located in the vicinity of the second current collecting tab 2c.
  • the second insulating layer 5 is located on a portion of the front surface and the back surface of the second current collecting tab 2c adjacent to the end surface 55 of the second active material-containing layer 2b.
  • the first insulating layer 4 and the second insulating layer 5 can prevent the burrs from coming into contact with the first electrode 1. Therefore, according to the laminated body 100 shown in FIG. 17, the occurrence of an internal short circuit can be suppressed, and a high-capacity battery can be provided.
  • the second active material-containing layer 2b protrudes or protrudes from each of the four sides of the first active material-containing layer 1b.
  • the relationship between the areas of the first active material-containing layer and the second active material-containing layer is not limited to this, and even if the areas of the first active material-containing layer are the same, the area of the first active material-containing layer is the same. May be larger than the area of the second active material-containing layer.
  • the number of the first electrode 1 and the second electrode 2 constituting the laminated body can be one or more.
  • the number of the first electrode 1 and the second electrode 2 may be the same as or different from each other.
  • the opposite electrode of the first electrode is the second electrode.
  • the first electrode may be a positive electrode and the second electrode may be a negative electrode, or the first electrode may be a negative electrode and the second electrode may be a positive electrode.
  • the first electrode includes a porous first active material-containing layer having a first front surface and a first back surface.
  • the second electrode includes a porous second active material-containing layer having a second front surface and a second back surface.
  • the first electrode may further include a first current collector and a first current collector tab.
  • the second electrode may further include a second current collector and a second current collector tab.
  • the first and second active material-containing layers may be formed on both the front surface and the back surface of the first and second current collectors, respectively, but they can also be formed on only one side. ..
  • a positive electrode active material and a negative electrode active material are used as the active material of the first and second active material-containing layers.
  • the type of active material can be one type or two or more types.
  • a lithium transition metal composite oxide can be used as the positive electrode active material.
  • a lithium transition metal composite oxide can be used.
  • LiCoO 2 LiNi 1-x Co x O 2 (0 ⁇ x ⁇ 0.3), LiMn x Ni y Co z O 2 (0 ⁇ x ⁇ 0.5,0 ⁇ y ⁇ 0.5,0 ⁇ z ⁇ 0.5), LiMn 2-x M x O 4 (M is at least one element selected from the group consisting of Mg, Co, Al and Ni, 0 ⁇ x ⁇ 0.2), LiMPO 4 ( M is at least one element selected from the group consisting of Fe, Co and Ni) and the like.
  • a carbon material such as graphite, a tin-silicon alloy material, or the like can be used, but it is preferable to use a titanium-containing oxide such as lithium titanate.
  • titanium oxide containing other metals such as (niobium) Nb or lithium titanate is also mentioned as a negative electrode active material.
  • lithium titanate include Li 4 + x Ti 5 O 12 (0 ⁇ x ⁇ 3) having a spinel structure and Li 2 + y Ti 3 O 7 (0 ⁇ y ⁇ 3) having a ramsteride structure. Can be mentioned.
  • the first active material-containing layer or the second active material-containing layer contains a titanium-containing oxide as the active material
  • lithium dendrite is precipitated on the first active material-containing layer or the second active material-containing layer. Therefore, the charge / discharge cycle life of the secondary battery can be improved.
  • the active material can be a single primary particle, a secondary particle in which the primary particles are aggregated, or a mixture of the primary particle and the secondary particle.
  • the average particle size of the primary particles of the negative electrode active material is preferably in the range of 0.001 or more and 1 ⁇ m or less.
  • the average particle size can be determined, for example, by observing the negative electrode active material with SEM.
  • the particle shape may be either granular or fibrous. In the case of fibrous form, the fiber diameter is preferably 0.1 ⁇ m or less.
  • the average particle size of the primary particles of the negative electrode active material can be measured from an image observed with an electron microscope (SEM). When lithium titanate having an average particle size of 1 ⁇ m or less is used as the negative electrode active material, a negative electrode active material-containing layer having a highly flat surface can be obtained.
  • the negative electrode potential becomes more noble as compared with a lithium ion secondary battery using a general carbon negative electrode, so that precipitation of lithium metal does not occur in principle. Since the negative electrode active material containing lithium titanate has a small expansion and contraction due to the charge / discharge reaction, it is possible to prevent the crystal structure of the active material from collapsing.
  • the first and second active material-containing layers may contain a binder and a conductive agent in addition to the active material.
  • the conductive agent include acetylene black, carbon black, graphite, or a mixture thereof.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorinated rubber, styrene-butadiene rubber, and mixtures thereof.
  • the binder has a function of binding the active material and the conductive agent.
  • the contents of the active material, the conductive agent and the binder are 80% by mass or more and 97% by mass or less, 2% by mass or more and 18% by mass or less, and 1% by mass or more and 17% by mass or less, respectively. It is preferable to have.
  • the contents of the negative electrode active material, the conductive agent and the binder are 70% by mass or more and 98% by mass or less, 1% by mass or more and 28% by mass or less, and 1% by mass or more and 28% by mass or less, respectively. It is preferable to have.
  • the thickness of the first and second active material-containing layers can be 5 ⁇ m or more and 100 ⁇ m or less, respectively.
  • the first and second current collectors can be conductive sheets.
  • conductive sheets include foils made of conductive materials.
  • conductive materials include aluminum and aluminum alloys.
  • the thickness of the first and second current collectors can be 5 ⁇ m or more and 40 ⁇ m or less, respectively.
  • the first and second current collector tabs may be formed of the same material as the current collector, but a current collector tab is prepared separately from the current collector and welded to at least one end surface of the current collector. You may use the one connected by the above.
  • the first insulating layer has a front surface and a back surface, respectively, and contains an inorganic material.
  • One main surface of the first insulating layer corresponds to the front surface, and the other main surface corresponds to the back surface.
  • inorganic materials include oxides (eg, Li 2 O, BeO, B 2 O 3 , Na 2 O, MgO, Al 2 O 3 , SiO 2 , P 2 O 5 , CaO, Cr 2 O 3 , Fe.
  • M is a metal atom such as Na, K, Ca and Ba
  • n is the charge of the metal cation Mn +.
  • the numbers corresponding to, x and y are the number of moles of SiO 2 and H 2 O, 2 ⁇ x ⁇ 10, 2 ⁇ y), nitrides (for example, BN, AlN, Si 3 N 4 and Ba 3 N 2 and the like). ), Silicon carbide (SiC), zircon (ZrSiO 4 ), carbonates (eg MgCO 3 and CaCO 3 etc.), sulfates (eg CaSO 4 and BaSO 4 etc.) and composites thereof (eg a type of porcelain).
  • steatite MgO ⁇ SiO 2
  • forsterite 2MgO ⁇ SiO 2
  • cordierite 2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO 2
  • lithium titanium oxide such as lithium titanate having a spinel structure (for example, Li 4 + x Ti 5 O 12 , 0 ⁇ x ⁇ 3) can be mentioned.
  • inorganic materials include barium titanate, calcium titanate, lead titanate, ⁇ -LiAlO 2 , LiTIO 3 , solid electrolytes or mixtures thereof.
  • solid electrolytes include solid electrolytes having no or low lithium ion conductivity, solid electrolytes having lithium ion conductivity.
  • oxide particles having no or low lithium ion conductivity include lithium aluminum oxide (for example, LiAlO 2 , Li x Al 2 O 3, where 0 ⁇ x ⁇ 1), lithium silicon oxide, and lithium zirconium oxide. Be done.
  • Examples of solid electrolytes having lithium ion conductivity include oxide solid electrolytes having a garnet-type structure.
  • the garnet-type structure of the oxide solid electrolyte has high reduction resistance and has the advantage of a wide electrochemical window.
  • Examples of solid oxide electrolytes with a garnet-type structure include Li 5 + x A x La 3-x M 2 O 12 (A is at least one element selected from the group consisting of Ca, Sr and Ba, M is Nb and / Or Ta, x is preferably in the range of 0.5 or less (including 0), Li 3 M 2-x L 2 O 12 (M contains Nb and / or Ta, L contains Zr, x is 0 .5 or less (preferably in the range of 0 or less), Li 7-3x Al x La 3 Zr 3 O 12 (x is preferably in the range of 0.5 or less (including 0)), Li 7 La 3 Zr 2 O 12 is included.
  • Li 6.25 Al 0.25 La 3 Zr 3 O 12 , Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12, Li 6.4 La 3 Zr 1.6 Ta 0.6 O 12 , Li 7 La 3 Zr 2 O 12 has high ionic conductivity and is electrochemically stable, so that it is excellent in discharge performance and cycle life performance.
  • an example of the solid electrolyte having lithium ion conductivity includes a lithium phosphate solid electrolyte having a NASICON type structure.
  • An example of a lithium phosphate solid electrolyte having a NASICON type structure is LiM1 2 (PO 4 ) 3 , where M1 is one or more elements selected from the group consisting of Ti, Ge, Sr, Zr, Sn and Al. included.
  • Preferred examples include Li 1 + x Al x Ge 2-x (PO 4 ) 3 , Li 1 + x Al x Zr 2-x (PO 4 ) 3 , and Li 1 + x Al x Ti 2-x (PO 4 ) 3 .
  • x is preferably in the range of 0 or more and 0.5 or less.
  • each of the illustrated solid electrolytes has high ionic conductivity and high electrochemical stability. Both the lithium phosphate solid electrolyte having a NASICON type structure and the oxide solid electrolyte having a garnet type structure may be used as the solid electrolyte having lithium ion conductivity.
  • the first insulating layer containing at least one kind of inorganic material selected from the above is a porous film composed of an aggregate of inorganic material particles.
  • inorganic materials having lithium ion conductivity such as solid electrolytes
  • most of the inorganic materials have low electron conductivity or insulating properties. Therefore, the first insulating layer can function as a partition wall separating the positive electrode and the negative electrode.
  • the conductivity between the first active material-containing layer and the second active material-containing layer facing the first active material-containing layer via the first insulating layer can be suppressed, so that internal short circuit and self-discharge can be suppressed. Can be done.
  • the first insulating layer can retain the non-aqueous electrolyte in the porous portion, it does not hinder the permeation of Li ions.
  • the first insulating layer containing the above-mentioned type of inorganic material has high insulating property while having Li ion permeability.
  • a first insulating layer containing at least one selected from the group consisting of alumina, titanium oxide and lithium titanium oxide is preferable.
  • the rutile-type titanium dioxide particles are suitable because they are difficult to aggregate and easily disperse uniformly in the first insulating layer.
  • Lithium titanate and titanium dioxide having a spinel structure are each excellent in resistance to hydrogen fluoride (HF) and also excellent in oxidation resistance at the positive electrode.
  • the form of the inorganic material can be, for example, granular or fibrous.
  • the average particle size D50 of the inorganic material particles can be 0.5 ⁇ m or more and 2 ⁇ m or less.
  • the content of the inorganic material in the first insulating layer is in the range of 80% by mass or more and 99.9% by mass or less. Thereby, the insulating property of the first insulating layer can be improved.
  • the first insulating layer may contain a binder.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorinated rubber, styrene-butadiene rubber, or a mixture thereof.
  • the content of the binder in the first insulating layer is preferably in the range of 0.01% by mass or more and 20% by mass or less.
  • the thickness of the first insulating layer can be 1 ⁇ m or more and 30 ⁇ m or less.
  • the second insulating layer may contain organic fibers.
  • the second insulating layer can be a porous film in which organic fibers are deposited in the plane direction.
  • the second insulating layer has a front surface and a back surface. One main surface of the second insulating layer corresponds to the front surface, and the other main surface corresponds to the back surface.
  • the second insulating layer may be a porous film containing polyethylene (PE), polypropylene (PP), cellulose, or polyvinylidene fluoride (PVdF), or a non-woven fabric made of synthetic resin.
  • Organic fibers include, for example, at least one organic material selected from the group consisting of polyamideimide, polyamide, polyolefin, polyether, polyimide, polyketone, polysulfone, cellulose, polyvinyl alcohol (PVA) and polyvinylidene fluoride (PVdF). ..
  • the polyolefin include polypropylene (PP) and polyethylene (PE).
  • the type of organic fiber may be one type or two or more types. Preferred is at least one selected from the group consisting of polyimide, polyamide, polyamideimide, cellulose, PVdF, and PVA, and more preferred is selected from the group consisting of polyimide, polyamide, polyamideimide, cellulose, and PVdF. At least one type.
  • the organic fiber preferably has a length of 1 mm or more and an average diameter of 2 ⁇ m or less, and more preferably an average diameter of 1 ⁇ m or less. Since such a second insulating layer has sufficient strength, porosity, air permeability, pore size, electrolyte resistance, oxidation-reduction resistance, and the like, it functions well as a separator.
  • the average diameter of the organic fibers can be measured by observation with a focused ion beam (FIB) device.
  • the length of the organic fiber is obtained based on the length measured by observation with a FIB device.
  • the total volume of the fibers forming the second insulating layer is organic fibers having an average diameter of 1 ⁇ m or less, and 350 nm.
  • the following organic fibers are more preferable, and organic fibers having a diameter of 50 nm or less are further preferable.
  • the volume of the organic fiber having an average diameter of 1 ⁇ m or less occupies 80% or more of the volume of the entire fiber forming the second insulating layer. .. Such a state can be confirmed by scanning ion microscope (SIM) observation of the second insulating layer. It is more preferable that the organic fibers having a thickness of 40 nm or less occupy 40% or more of the total volume of the fibers forming the second insulating layer.
  • the small diameter of the organic fiber means that the influence of obstructing the movement of ions is small.
  • a cation exchange group is present on at least a part of the entire surface including the front surface and the back surface of the organic fiber.
  • the cation exchange group promotes the movement of ions such as lithium ions through the separator, thus enhancing the performance of the battery. Specifically, it is possible to perform rapid charging and rapid discharging for a long period of time.
  • the cation exchange group is not particularly limited, and examples thereof include a sulfonic acid group and a carboxylic acid group. Fibers having a cation exchange group on the surface can be formed by, for example, an electrospinning method using a sulfonated organic material.
  • the second insulating layer has pores, and the average pore diameter of the pores is preferably 5 nm or more and 10 ⁇ m or less.
  • the porosity is preferably 70% or more and 90% or less. If such pores are provided, a separator having excellent ion permeability and good electrolyte impregnation can be obtained.
  • the porosity is more preferably 80% or more.
  • the average pore diameter and porosity of the pores can be confirmed by the mercury intrusion method, calculation from volume and density, SEM observation, SIM observation, and gas desorption method.
  • the porosity is preferably calculated from the volume and density of the second insulating layer. Further, it is desirable to measure the average pore size by a mercury intrusion method or a gas adsorption method. A large porosity in the second insulating layer means that the effect of interfering with the movement of ions is small.
  • the thickness of the second insulating layer is in the range of 12 ⁇ m or less.
  • the lower limit of the thickness is not particularly limited, but may be 1 ⁇ m.
  • the porosity is increased, so that it is not difficult to obtain a layer having a porosity of about 90%, for example. It is extremely difficult to form such a layer with a large porosity with particles.
  • the second insulating layer is more advantageous than the deposit of inorganic fibers in terms of unevenness, fragility, electrolyte-containing property, adhesion, bending property, porosity, and ion permeability.
  • the second insulating layer may contain particles of an organic compound.
  • the particles are made of, for example, the same material as organic fibers.
  • the particles may be formed integrally with the organic fiber.
  • the thickness of the first insulating layer and the second insulating layer is measured by a method conforming to the JIS standard (JIS B 7503-1997). Specifically, these thicknesses are measured using a contact digital gauge. Place the material on the stone surface plate and use the digital gauge fixed to the stone surface plate. A flat type with a tip of ⁇ 5.0 mm is used for the measurement terminal, the measurement terminal is brought closer from a distance of 1.5 mm or more and less than 5.0 mm above the sample, and the distance in contact with the sample is the thickness of the sample.
  • the second insulating layer is formed by, for example, an electrospinning method.
  • the first electrode or the second electrode which is the object of forming the second insulating layer, is grounded to be a ground electrode.
  • the first electrode on which the first insulating layer has been formed is prepared.
  • the voltage applied to the spinning nozzle charges the liquid raw material (for example, the raw material solution), and the volatilization of the solvent from the raw material solution increases the amount of charge per unit volume of the raw material solution. Due to the continuous volatilization of the solvent and the accompanying increase in the amount of charge per unit volume, the raw material solution discharged from the spinning nozzle extends in the longitudinal direction, and as a nano-sized organic fiber, the first ground electrode. Accumulate on the electrode or the second electrode. A Coulomb force is generated between the organic fiber and the ground electrode due to the potential difference between the nozzle and the ground electrode. Therefore, the contact area with the first insulating layer can be increased by the nano-sized organic fiber, and the organic fiber can be deposited on the first electrode or the second electrode by the Coulomb force. It is possible to increase the peel strength of the insulating layer 2 from the electrode. The peel strength can be controlled by adjusting, for example, the solution concentration, the distance between the sample and the nozzle, and the like.
  • FIG. 18 is a perspective view showing a step of forming a second insulating layer on the second electrode.
  • the second insulating layer 5 is directly formed by depositing the raw material solution discharged from the nozzle N on the second active material-containing layer 2b and the second current collecting tab 2c as organic fibers. It is formed. One side of the second current collecting tab 2c and its vicinity are covered with the mask M.
  • the second insulating layer 5 is deposited so as to straddle the surface of the second active material-containing layer 2b and the portion of the surface of the second current collecting tab 2c adjacent to the second active material-containing layer 2b. It becomes a porous film containing the organic fibers.
  • the electrospinning method By using the electrospinning method, a second insulating layer can be easily formed on the electrode surface.
  • the electrospinning method forms a single continuous fiber, so that the thin film can ensure resistance to breakage due to bending and cracking of the film.
  • the fact that the organic fibers constituting the second insulating layer are seamless and continuous is advantageous in terms of suppressing self-discharge because the probability of fraying or partial loss of the second insulating layer is low.
  • the liquid raw material used for electrospinning for example, a raw material solution prepared by dissolving an organic material in a solvent is used.
  • organic materials include those similar to those mentioned for organic materials constituting organic fibers.
  • the organic material is used by being dissolved in a solvent at a concentration of, for example, about 5 to 60% by mass.
  • the solvent for dissolving the organic material is not particularly limited, and any solvent such as dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), N, N'dimethylformamide (DMF), N-methylpyrrolidone (NMP), water, alcohols and the like can be used.
  • a solvent can be used.
  • electrospinning is performed while melting the sheet-shaped organic material with a laser or the like. In addition, it is permissible to mix a high boiling organic solvent with a low melting point solvent.
  • a second insulating layer is formed by discharging the raw material from the spinning nozzle over the surface of a predetermined electrode while applying a voltage to the spinning nozzle using a high voltage generator.
  • the applied voltage is appropriately determined according to the solvent / solute species, the boiling point / vapor pressure curve of the solvent, the solution concentration, the temperature, the nozzle shape, the distance between the sample and the nozzle, etc.
  • the potential difference between the nozzle and the work is 0.1 to 1. It can be 100 kV.
  • the supply rate of the raw material is also appropriately determined according to the solution concentration, solution viscosity, temperature, pressure, applied voltage, nozzle shape and the like. In the case of the syringe type, for example, it can be about 0.1 to 500 ⁇ l / min per nozzle. Further, in the case of a multi-nozzle or a slit, the supply speed may be determined according to the opening area.
  • the organic fibers are formed directly on the surface of the electrode in a dry state, it is substantially avoided that the solvent contained in the raw material penetrates into the electrode.
  • the residual amount of solvent inside the electrode is as low as ppm level or less.
  • the residual solvent inside the electrode causes a redox reaction and causes a loss of the battery, which leads to a decrease in battery performance. According to the present embodiment, the possibility of such inconvenience occurring is reduced as much as possible, so that the performance of the battery can be improved.
  • a slurry containing the first active material (hereinafter referred to as slurry I) and a slurry containing an inorganic material (hereinafter referred to as slurry II) are simultaneously placed on at least one of the front surface and the back surface of the first current collector. Paint.
  • An example of the coating process is shown in FIGS. 19 and 22. According to this coating example, for example, the first electrode described with reference to FIG. 9 can be manufactured.
  • the coating device 30 includes a tank 32 for accommodating the slurry I and a tank 33 for accommodating the slurry II, and is configured to simultaneously apply the slurry I and the slurry II to the base material.
  • the width orthogonal to the coating direction at the discharge port of the slurry I corresponds to the coating width of the active material-containing layer. Further, the width orthogonal to the coating direction at the discharge port of the slurry I corresponds to the coating width of the first insulating layer.
  • the long first current collector 1a before being cut to a predetermined size is conveyed to the slurry discharge port of the coating device 30 by the transfer roller 31. In FIG.
  • the slurry I discharge port 32a is located on the upstream side of the current collector with respect to the slurry II discharge port 33a.
  • the width orthogonal to the coating direction of the slurry I discharge port 32a is narrower than the width orthogonal to the coating direction of the slurry II discharge port 33a.
  • Slurry I is applied from the coating device 30 onto the first current collector 1a except for both ends in the short side direction.
  • the slurry II is overcoated so as to protrude from the coating area of the slurry I.
  • the first current collector 1a is punched out together with the dried slurry, so that at least a part of one side surface of the first current collector 1a (in the case of FIG.
  • a plurality of first current collecting tabs 1c protruding from the locations) are formed.
  • the punched material is roll-pressed and cut to a predetermined size to obtain a first electrode.
  • the first current collector tab 1c may be formed by cutting the first current collector 1a into a target shape with a laser instead of punching the first current collector 1a from the first current collector 1a using a die or the like.
  • the first electrode described with reference to FIG. 1 or FIG. 2 can be manufactured.
  • the slurry II discharge port 33a is arranged on one end in a direction orthogonal to the coating direction of the slurry I discharge port 32a.
  • Slurry I is applied from the coating device 30 onto the first current collector 1a except for both ends in the short side direction.
  • the slurry II is overcoated on one side of the coating region 1b of the slurry I in the coating direction and on the surface of the first current collector 1a adjacent thereto.
  • at least a part of one side surface of the first current collector 1a is punched out together with the dried slurry.
  • a plurality of first current collecting tabs 1c protruding from the plurality of places) are formed.
  • the punched material is roll-pressed and cut to a predetermined size to obtain a first electrode.
  • the first current collector tab 1c may be formed by cutting the first current collector 1a into a target shape with a laser instead of punching the first current collector 1a from the first current collector 1a using a die or the like.
  • the slurry is dried, and the dried one is roll-pressed and cut to a predetermined size to obtain a second electrode. ..
  • a second insulating layer is formed on the second electrode by an electrospinning method. Then, a press may be applied.
  • the pressing method may be a roll press or a flat plate press.
  • the second current collecting tab can be obtained by, for example, the following method.
  • a second current collector having a second current collector tab is used in advance, and necessary treatments such as application of slurry and drying are applied to the second current collector to obtain a second electrode.
  • the second current collector is cut into a target shape to obtain a second current collector tab.
  • the second current collector is cut into a target shape to obtain a second current collector tab. Cutting is performed, for example, by punching with a die or the like, cutting with a laser, or the like.
  • the first electrode and the second electrode are laminated so that the first active material-containing layer and the second active material-containing layer face each other via the second insulating layer and / or the first insulating layer. To obtain the laminate of the embodiment.
  • a second insulating layer is formed on the first electrode produced by the first manufacturing method by an electrospinning method. Then, a press may be applied.
  • the slurry is dried, and the dried one is roll-pressed and cut to a predetermined size to obtain a second electrode. ..
  • the first electrode and the second electrode are laminated so that the first active material-containing layer and the second active material-containing layer face each other via the second insulating layer and / or the first insulating layer. To obtain the laminate of the embodiment.
  • the laminate obtained by the first or second manufacturing method is used as it is as an electrode group or a stack of a plurality of laminates is used as an electrode group, one set or a plurality of laminates are spirally formed.
  • the wound one may be used as an electrode group.
  • the electrode group may be pressed.
  • the present invention is not limited to this.
  • An insulating film other than the first and second insulating layers may be used as the separator.
  • a combination of a plurality of types may be used as a separator.
  • the insulating film include synthetic resin non-woven fabrics, polyethylene porous films, polyolefin porous films such as polypropylene porous films, and cellulosic separators.
  • a separator in which these materials are combined for example, a separator made of a porous polyolefin film and cellulose can be used.
  • the insulating membrane preferably has a porous structure.
  • the first insulating layer containing the inorganic material is at least a part of the first end surface of the first active material-containing layer and the first current collecting tab. It covers the first end surface and the adjacent portion of the front surface and the back surface of the above. Therefore, in order to obtain a high capacity, when the electrode group (laminated body) is produced by winding the electrode and the second electrode as the counter electrode in a spiral shape, the second electrode included in the second electrode is included. Even if the end face of the current collector or the second current collector tab has burrs, it is possible to prevent the burrs from coming into contact with the first current collector tab of the first electrode.
  • the laminate according to the second embodiment includes the electrodes according to the first embodiment, it is possible to suppress the occurrence of an internal short circuit and realize a high-capacity battery.
  • the secondary battery of the third embodiment includes the laminate of the second embodiment.
  • the secondary battery may further include an electrolyte and an exterior member capable of accommodating the electrolyte and the laminate.
  • a plurality of laminates laminated so that a separator is located between the first active material-containing layer and the second active material-containing layer may be used as an electrode group in a secondary battery.
  • the shape of the electrode group is not limited to this shape, and one or more laminated bodies wound in a spiral or flat spiral shape may be used as the electrode group.
  • the separator include an insulating film other than the first and second insulating layers and the first and second insulating layers.
  • a combination of a plurality of types may be used as a separator. Examples of the insulating film are as described above.
  • the secondary battery may further include a first electrode terminal that is electrically connected to the first current collecting tab and a second electrode terminal that is electrically connected to the second current collecting tab. Is.
  • a non-aqueous electrolyte for example, a non-aqueous electrolyte is used.
  • the non-aqueous electrolyte include a liquid non-aqueous electrolyte prepared by dissolving the electrolyte in an organic solvent, a gel-like non-aqueous electrolyte in which a liquid electrolyte and a polymer material are combined, and the like.
  • the liquid non-aqueous electrolyte can be prepared, for example, by dissolving the electrolyte in an organic solvent at a concentration of 0.5 mol / L or more and 2.5 mol / L or less.
  • Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium arsenic hexafluorophosphate (LiAsF 6 ), and trifluorometh.
  • Lithium salts such as lithium sulfonate (LiCF 3 SO 3 ), bistrifluoromethylsulfonylimide lithium [LiN (CF 3 SO 2 ) 2 ], or mixtures thereof can be mentioned. It is preferable that it is hard to oxidize even at a high potential, and LiPF 6 is most preferable.
  • organic solvent examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC) and vinylene carbonate, and chain carbonates such as diethyl carbonate (DEC), dimethyl carbonate (DMC) and methyl ethyl carbonate (MEC).
  • Cyclic ethers such as tetrahydrofuran (THF), dimethyltetrahydrofuran (2MeTHF), dioxolane (DOX), chain ethers such as dimethoxyethane (DME) and diethoxyethane (DEE), ⁇ -butyrolactone (GBL), Examples thereof include acetonitrile (AN) and sulfolane (SL).
  • Such an organic solvent may be used alone or as a mixture of two or more kinds.
  • polymer material examples include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyethylene oxide (PEO) and the like.
  • non-aqueous electrolyte a room temperature molten salt (ionic melt) containing lithium ions, a polymer solid electrolyte, an inorganic solid electrolyte, or the like may be used.
  • the exterior member for example, a metal container, a laminated film container, or the like can be used.
  • the form of the secondary battery is not particularly limited, and can be, for example, various forms such as a cylindrical type, a flat type, a thin type, a square type, and a coin type.
  • FIG. 20 is a partially cutaway perspective view showing an example of the secondary battery according to the embodiment.
  • FIG. 20 is a diagram showing an example of a secondary battery using a laminated film as an exterior member.
  • the secondary battery 10 shown in FIG. 20 includes an exterior member 20 made of a laminated film, an electrode group 12, a first electrode terminal 13, a second electrode terminal 14, and a non-aqueous electrolyte (not shown). ..
  • the electrode group 12 includes a plurality of laminated bodies of the embodiment, and has a structure in which the first electrode and the second electrode are laminated via a separator. A non-aqueous electrolyte (not shown) is retained or impregnated in the electrode group 12.
  • the first current collecting tab of the first electrode is electrically connected to the first electrode terminal 13.
  • the second current collecting tab of the second electrode is electrically connected to the second electrode terminal 14.
  • the tips of the first electrode terminal 13 and the second electrode terminal 14 project outward from one side of the exterior member 11 in a state where they are
  • FIG. 21 is a schematic cross-sectional view showing another example of the secondary battery according to the embodiment. More specifically, FIG. 21 is a cross section obtained by cutting the first current collector 1a to the first current collector 1c along the extending direction.
  • the secondary battery 10 shown in FIG. 21 includes an exterior member 11, and an electrode group 12 in which a plurality of first electrodes 1 and a plurality of second electrodes 2 are alternately laminated.
  • the electrode group 12 is housed in the exterior member 11.
  • the exterior member 11 is a bag-shaped exterior member made of a laminated film containing two resin layers and a metal layer interposed between them.
  • the electrode group 12 is a laminated electrode group.
  • the laminated electrode group 12 is an example of the aspect of the laminated body according to the second embodiment.
  • the second electrode 2 is regarded as the negative electrode 2
  • the first electrode 1 is regarded as the positive electrode 1.
  • the electrode group 12 includes a plurality of negative electrodes 2.
  • Each of the plurality of negative electrodes 2 includes a negative electrode current collector 2a and a negative electrode active material-containing layer 2b supported on both sides of the negative electrode current collector 2a.
  • the negative electrode current collector 2a of each negative electrode 2 includes a portion 2c on which the negative electrode active material-containing layer 2b is not supported on any surface on one side thereof.
  • the portion 2c functions as a negative electrode current collecting tab 2c.
  • Each negative electrode 2 includes a second insulating layer 5 described with reference to FIG.
  • a plurality of negative electrode current collecting tabs 2c extending from each negative electrode 2 are electrically connected to a band-shaped negative electrode terminal 24. The tip of the strip-shaped negative electrode terminal 24 is pulled out to the outside of the exterior member 11.
  • the electrode group 12 includes a plurality of positive electrodes 1.
  • Each of the plurality of positive electrodes 1 includes a positive electrode current collector 1a and a positive electrode active material-containing layer 1b supported on both surfaces of the positive electrode current collector 1a.
  • the positive electrode active material-containing layer 1b is provided on the entire front surface and the entire back surface of the positive electrode current collector 1a.
  • the positive electrode current collector 1a of each positive electrode 1 includes a portion 1c on which the positive electrode active material-containing layer 1b is not supported on any surface on one side thereof.
  • the portion 1c functions as a positive electrode current collecting tab 1c.
  • the positive electrode current collecting tab 1c extends in the direction opposite to the direction in which the negative electrode current collecting tab 2c extends.
  • the positive electrode active material-containing layer 1b has a first end surface adjacent to the positive electrode current collecting tab 1c. On the front surface and the back surface on the positive electrode current collecting tab 1c, the first end surface of the positive electrode active material-containing layer 1b and the portion adjacent to the end surface are supported by the first insulating layer 4. Therefore, even if a part of the end face of the negative electrode current collector 2a has burrs, it is possible to prevent the burrs from penetrating the second insulating layer 5 and coming into contact with the first current collector tab 1c. Can be done.
  • the secondary battery of the third embodiment since the laminated body of the second embodiment is included, the secondary battery excellent in capacity and life performance by suppressing an internal short circuit which hinders the increase in capacity. Batteries can be provided.
  • a non-aqueous electrolyte battery having the first electrode as the positive electrode and the second electrode as the negative electrode was produced by the following method.
  • Example 1 An insulating inorganic material layer as a first insulating layer included in the positive electrode and a nanofiber layer as a second insulating layer included in the negative electrode were produced by the following methods.
  • LiNi 0.33 Co 0.33 Mn 0.33 O 2 particles were prepared as the positive electrode active material, carbon black was prepared as the conductive agent, and polyvinylidene fluoride (PVdF) was prepared as the binder. These were mixed at a mass ratio of 90: 5: 5 to obtain a mixture. Next, the obtained mixture was dispersed in an n-methylpyrrolidone (NMP) solvent to prepare a positive electrode slurry.
  • NMP n-methylpyrrolidone
  • Al 2 O 3 particles having an average particle size of 1 ⁇ m and PVdF were prepared as insulating inorganic materials. These were mixed at a mass ratio of 100: 4 to obtain a mixture. Next, the obtained mixture was dispersed in NMP to prepare an alumina-containing slurry.
  • the first electrode was produced as follows by the coating method described with reference to FIG. 23.
  • the positive electrode slurry was applied onto an aluminum foil having a thickness of 15 ⁇ m.
  • the alumina-containing slurry was applied in parallel on one side of the coating area of the positive electrode slurry in the coating direction and on the surface of the aluminum foil adjacent thereto.
  • the positive electrode slurry and the alumina-containing slurry were dried to form a positive electrode active material-containing layer and an insulating inorganic material layer. This was done on both sides of the aluminum foil.
  • the obtained first electrode had the structure described with reference to FIG. That is, the insulating inorganic material layer covered the end face of the positive electrode active material-containing layer and the portions adjacent to the end face on each of the front and back surfaces of the plurality of current collector tabs.
  • each of the positive electrode active material-containing layers was 20 ⁇ m, and the thickness of the insulating inorganic material layer formed on the aluminum foil protruding from the positive electrode active material-containing layer was 20 ⁇ m.
  • Lithium titanate particles having an average primary particle size of 0.5 ⁇ m were prepared as the negative electrode active material, carbon black was prepared as the conductive agent, and polyvinylidene fluoride was prepared as the binder. These were mixed at a mass ratio of 90: 5: 5 to obtain a mixture. The resulting mixture was dispersed in an n-methylpyrrolidone (NMP) solvent to prepare a slurry.
  • NMP n-methylpyrrolidone
  • the obtained slurry was applied to both sides of an aluminum foil having a thickness of 15 ⁇ m and dried. Then, the dried coating film was pressed to obtain a negative electrode.
  • the thickness of each of the negative electrode active material-containing layers was 30 ⁇ m. A portion without a negative electrode active material-containing layer was provided on one long side of the current collector, and this portion was used as a negative electrode current collector tab.
  • Organic fibers were deposited on this negative electrode by an electrospinning method to form a nanofiber layer.
  • Polyimide was used as the organic material. This polyimide was dissolved in DMAc as a solvent at a concentration of 20% by mass to prepare a raw material solution as a liquid raw material.
  • the obtained raw material solution was supplied from the spinning nozzle to the surface of the negative electrode at a supply rate of 5 ⁇ l / min using a metering pump.
  • a voltage of 20 kV was applied to the spinning nozzle using a high voltage generator, and a layer of 2 ⁇ m organic fibers was formed on the surface of the negative electrode active material-containing layer while moving the range of 100 ⁇ 200 mm with this spinning nozzle.
  • the negative electrode was subjected to the electrospinning method with the surface of the negative electrode current collecting tab masked, except for the portion 10 mm from the boundary with the negative electrode active material-containing layer on both surfaces (main surfaces) of the negative electrode current collecting tab. Obtained.
  • a negative electrode with an integrated nanofiber layer was obtained by punching with a die so that a plurality of negative electrode current collector tabs protruding from a plurality of locations on one side surface of the negative electrode current collector were formed.
  • the nanofiber layer is a collection of negative electrodes among four side surfaces intersecting (for example, orthogonal) with each surface of the negative electrode active material-containing layer and the front and back surfaces of the negative electrode active material-containing layer.
  • the three side surfaces excluding the surface on which the negative electrode current collecting tab extends from the electric body, the portion adjacent to the negative electrode current collecting tab on the remaining one side surface, and the negative electrode active material-containing layers on the front and back surfaces of the negative electrode current collecting tab. It covered the end face and the adjacent part.
  • the produced positive electrode and negative electrode are laminated via a nanofiber layer so that the positive electrode active material-containing layer and the negative electrode active material-containing layer face each other, and then wound and wound as described with reference to FIG. A mold electrode group was prepared.
  • the obtained electrode group was vacuum-dried at room temperature overnight, and then left in a glove box having a dew point of ⁇ 80 ° C. or lower for one day. This was housed in a metal container together with the electrolytic solution to obtain a non-aqueous electrolyte battery.
  • the electrolytic solution used was a solution of LiPF 6 in ethylene carbonate (EC) and dimethyl carbonate (DMC).
  • Example 2 A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that lithium titanate particles having an average particle diameter D50 of 0.5 ⁇ m were used as the insulating inorganic material constituting the first insulating layer.
  • Example 3 A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that rutile-type titanium dioxide (TiO 2 ) having an average particle diameter D50 of 1 ⁇ m was used as the insulating inorganic material constituting the first insulating layer. bottom.
  • TiO 2 rutile-type titanium dioxide
  • Example 4 As the positive electrode slurry, the same slurry as that prepared in Example 1 was prepared. As the alumina-containing slurry, the same slurry as that prepared in Example 1 was prepared.
  • the first electrode was produced as follows by the coating method described with reference to FIG. 22.
  • the aluminum foil having a thickness of 15 ⁇ m was overcoated with a positive electrode slurry in the lower layer and an alumina-containing slurry in the upper layer, and the alumina-containing slurry in the upper layer protruded, and dried. This was done on both sides of the aluminum foil.
  • After performing a roll press it was punched out with a die to obtain a first electrode having a plurality of current collector tabs protruding from one side surface of the current collector.
  • the obtained first electrode had the same structure as the first electrode 1 shown in FIG.
  • the insulating inorganic material layer covered the end face of the positive electrode active material-containing layer and the portions adjacent to the end face on each of the front and back surfaces of the plurality of current collector tabs. Further, the insulating inorganic material layer covered the surface of each of the positive electrode active material-containing layers.
  • each of the positive electrode active material-containing layers is 20 ⁇ m
  • the thickness of the insulating inorganic material layer on the positive electrode active material-containing layer is 3 ⁇ m
  • the insulating inorganic material layer formed on the aluminum foil protruding from the positive electrode active material-containing layer was 20 ⁇ m.
  • Example 1 a negative electrode was prepared in the same manner as in Example 1. Then, a non-aqueous electrolyte battery was produced in the same manner as in Example 1.
  • Example 5 A non-aqueous electrolyte battery was produced in the same manner as in Example 4 except that lithium titanate particles having an average particle diameter D50 of 0.5 ⁇ m were used as the insulating inorganic material constituting the first insulating layer.
  • Example 6 A non-aqueous electrolyte battery was produced in the same manner as in Example 4, except that rutile-type titanium dioxide (TiO 2 ) having an average particle diameter D50 of 1 ⁇ m was used as the insulating inorganic material constituting the first insulating layer. bottom.
  • TiO 2 rutile-type titanium dioxide
  • Example 2 A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that the formation of the insulating inorganic material layer was omitted when the first electrode was produced.
  • the insulating inorganic material layer covers the end face of the positive electrode active material-containing layer and a part on the positive electrode current collecting tab adjacent to the end face. Therefore, it is considered that the burr on the end face of the negative electrode current collector and the positive electrode current collector tab could be suppressed from coming into direct contact with each other, and an internal short circuit could be suppressed.
  • the first insulating layer is at least a part of the first end face of the first active material-containing layer and the first in the first current collecting tab. It covers the end face and the adjacent portion. Therefore, in order to obtain a high capacity, when the electrode group (laminated body) is produced by spirally winding or laminating the electrode and the second electrode as a counter electrode, the second electrode is used. Even if the end face of the containing second current collector or the second current collector tab has burrs, it is possible to prevent the burrs from coming into contact with the first current collector tab of the first electrode. .. As a result, it is possible to suppress an internal short circuit that is a factor that hinders the increase in capacity.
  • second current collector 46 ... portion of the second current collection tab including the boundary with the second active material-containing layer, 51. ... 1st direction, 52, 55 ... 1st end face, 53, 56 ... 2nd end face, 54 ... 2nd direction, 100 ... Laminated body.

Abstract

One embodiment of the present invention provides an electrode which comprises: a first current collector; a first current collection tab that extends in a first direction from at least a part of a first lateral surface of the first current collector; a first active material-containing layer; and a first insulating layer that contains an inorganic material. The back surface of the first active material-containing layer is supported by at least an edge of the front surface and/or the back surface of the first current collector, said edge being adjacent to the first lateral surface. The first active material-containing layer comprises a first end face that is adjacent to the first current collection tab. The first insulating layer covers at least a part of the first end face of the first active material-containing layer and portions of the front surface and the back surface of the first current collection tab, said portions being adjacent to the first end face.

Description

電極、積層体及び二次電池Electrodes, laminates and rechargeable batteries
 本発明の実施形態は、電極、積層体及び二次電池に関する。 Embodiments of the present invention relate to electrodes, laminates and secondary batteries.
 リチウム二次電池等の二次電池においては、正極と負極との接触を回避するために正極と負極の間に多孔質のセパレータが配置されている。セパレータには、正極および負極とは別個の自立膜が使用されている。この一例として、ポリオレフィン系樹脂製微多孔膜が挙げられる。こうしたセパレータは、例えば、ポリオレフィン系樹脂組成物を含む溶融物をシート状に押出成形し、ポリオレフィン系樹脂以外の物質を抽出除去した後、そのシートを延伸することによって製造される。 In a secondary battery such as a lithium secondary battery, a porous separator is arranged between the positive electrode and the negative electrode in order to avoid contact between the positive electrode and the negative electrode. A free-standing film separate from the positive electrode and the negative electrode is used for the separator. An example of this is a microporous membrane made of a polyolefin resin. Such a separator is produced, for example, by extruding a melt containing a polyolefin-based resin composition into a sheet, extracting and removing a substance other than the polyolefin-based resin, and then stretching the sheet.
 電池の体積エネルギー密度を向上させるためには、セパレータは薄いことが望ましい。これは、正極及び負極は、その間にセパレータを介在させつつ、積層または捲回されているので、セパレータが厚いと、電池の単位容積あたりに収納可能な正極及び負極の層数が制限されてしまうためである。しかしながら、樹脂フィルム製のセパレータは、電池の作製時に破断しないよう機械的強度を有する必要があるため、ある程度を超えて薄くすることが難しい。セパレータを薄くすると、正極又は負極が有する集電体または集電タブの端面に存在するバリが、セパレータを突き破りやすくなるという問題がある。電極集電体のバリがセパレータを突き破ると、それが対極と接触して短絡を生じるため、結果として高容量な電池が得られない。 In order to improve the volumetric energy density of the battery, it is desirable that the separator is thin. This is because the positive electrode and the negative electrode are laminated or wound with a separator interposed therebetween, so that if the separator is thick, the number of layers of the positive electrode and the negative electrode that can be stored per unit volume of the battery is limited. Because. However, since the resin film separator needs to have mechanical strength so as not to break during the production of the battery, it is difficult to make it thinner than a certain level. When the separator is made thin, there is a problem that burrs existing on the end face of the current collector or the current collecting tab of the positive electrode or the negative electrode easily break through the separator. When the burr of the electrode current collector breaks through the separator, it comes into contact with the counter electrode to cause a short circuit, and as a result, a high-capacity battery cannot be obtained.
日本国特開2017-188371号公報Japanese Patent Application Laid-Open No. 2017-188371
 実施形態によれば、高容量化の妨げになる内部短絡の問題が改善された電極、該電極を含む積層体、及び、該積層体を含む二次電池が提供される。 According to the embodiment, an electrode having an improved problem of an internal short circuit that hinders an increase in capacity, a laminate containing the electrode, and a secondary battery including the laminate are provided.
 実施形態によれば、表面及び裏面と、表面及び裏面と交差する第1側面とを有する第1の集電体と、第1の集電体の第1側面の少なくとも一部から第1方向に延出した第1の集電タブと、第1の活物質含有層と、無機材料を含む第1の絶縁層とを含む電極が提供される。第1の活物質含有層は、裏面が、第1の集電体の表面及び/又は裏面のうちの少なくとも第1側面と隣接する端部に担持される。第1の活物質含有層は、第1の集電タブと隣接する第1端面を含む。第1の絶縁層が、少なくとも、第1の活物質含有層の第1端面の少なくとも一部と、第1の集電タブの表面及び裏面のうちの第1端面と隣接する部分とを被覆している。 According to the embodiment, a first current collector having a front surface and a back surface and a first side surface intersecting the front surface and the back surface, and at least a part of the first side surface of the first current collector in the first direction. An electrode comprising an extended first current collecting tab, a first active material-containing layer, and a first insulating layer containing an inorganic material is provided. The back surface of the first active material-containing layer is supported on the front surface and / or the back surface of the first current collector at an end adjacent to at least the first side surface. The first active material-containing layer includes a first end face adjacent to the first current collecting tab. The first insulating layer covers at least a part of the first end surface of the first active material-containing layer and a portion of the front surface and the back surface of the first current collecting tab adjacent to the first end surface. ing.
 他の実施形態によれば、実施形態の電極を含む積層体が提供される。 According to another embodiment, a laminate including the electrodes of the embodiment is provided.
 他の実施形態によれば、実施形態の積層体を含む二次電池が提供される。 According to another embodiment, a secondary battery including the laminate of the embodiment is provided.
実施形態の積層体の一例を示す断面図。FIG. 2 is a cross-sectional view showing an example of the laminated body of the embodiment. 図1に示す積層体が含む第1の電極を示す斜視図。FIG. 3 is a perspective view showing a first electrode included in the laminate shown in FIG. 図2に示す第1の電極を示す平面図。The plan view which shows the 1st electrode shown in FIG. 図1に示す積層体が含む第2の電極の第2の絶縁層で被覆される前の状態を示す平面図。FIG. 5 is a plan view showing a state before being covered with the second insulating layer of the second electrode included in the laminate shown in FIG. 1. 図4に示す第2の電極が第2の絶縁層で被覆されている状態を示す斜視図。FIG. 5 is a perspective view showing a state in which the second electrode shown in FIG. 4 is covered with the second insulating layer. 実施形態の積層体の別の例を示す断面図。FIG. 2 is a cross-sectional view showing another example of the laminated body of the embodiment. 実施形態の積層体の別の例を示す斜視図。The perspective view which shows another example of the laminated body of an embodiment. 実施形態の積層体の別の例を示す断面図。FIG. 2 is a cross-sectional view showing another example of the laminated body of the embodiment. 実施形態の積層体の別の例を示す断面図。FIG. 2 is a cross-sectional view showing another example of the laminated body of the embodiment. 実施形態の積層体の別の例を示す断面図。FIG. 2 is a cross-sectional view showing another example of the laminated body of the embodiment. 実施形態の積層体の別の例を示す断面図。FIG. 2 is a cross-sectional view showing another example of the laminated body of the embodiment. 第1の電極の別の例を示す平面図。FIG. 5 is a plan view showing another example of the first electrode. 図12に示す第1の電極の斜視図。FIG. 2 is a perspective view of the first electrode shown in FIG. 第2の電極の別の例を示す平面図。FIG. 5 is a plan view showing another example of the second electrode. 図14に示す第2の電極の第2の絶縁層で被覆された状態を示す斜視図。FIG. 6 is a perspective view showing a state in which the second electrode shown in FIG. 14 is covered with the second insulating layer. 第1の電極の別の例を示す斜視図。The perspective view which shows another example of the 1st electrode. 実施形態の積層体の別の例を示す断面図。FIG. 2 is a cross-sectional view showing another example of the laminated body of the embodiment. 実施形態の積層体の製造方法における一工程の概略図。The schematic diagram of one step in the manufacturing method of the laminated body of an embodiment. 実施形態の積層体の製造方法における一工程の概略図。The schematic diagram of one step in the manufacturing method of the laminated body of an embodiment. 実施形態の二次電池の一例を示す、部分切欠き斜視図。A partially cutaway perspective view showing an example of the secondary battery of the embodiment. 実施形態の二次電池の別の例の分解図。Exploded view of another example of the secondary battery of the embodiment. 実施形態の積層体の製造方法における一工程の概略図。The schematic diagram of one step in the manufacturing method of the laminated body of an embodiment. 実施形態の積層体の製造方法における一工程の概略図。The schematic diagram of one step in the manufacturing method of the laminated body of an embodiment.
 (第1の実施形態及び第2の実施形態)
 第1の実施形態に係る電極、及び、第2の実施形態に係る積層体を、図面を参照して説明する。
(1st embodiment and 2nd embodiment)
The electrodes according to the first embodiment and the laminate according to the second embodiment will be described with reference to the drawings.
 図1は、実施形態の積層体の一例を示す断面図である。図1の断面図は、積層体100を集電タブの延出方向である第一方向に切断した断面図である。図1に示す積層体100は、第1の電極1、第2の電極2及びセパレータ3を含む。第1の電極1は、図1及び図2に示す通り、第1の集電体1a、第1の活物質含有層1b、及び第1の集電タブ1cを含む。第1の実施形態に係る電極は、例えば、第1の電極1である。第1の活物質含有層1bは、第1の表面40及び第1の裏面41を有する。第1の集電タブ1cは、第1の集電体1aの一側面(第1側面)の一部または全体から第1方向51に延出したものである。図2と図3の場合、第1の集電タブ1cは、第1の集電体1aの一側面(第1側面)の複数個所から突出した複数の帯状部である。第1の集電体1aは、表面及び裏面を有する導電性のシートである。第1の集電体1aの一方の主面が表面であり、他方の主面が裏面である。第1の集電体1aの4つの側面それぞれが、表面及び裏面と交差(例えば直交)する。 FIG. 1 is a cross-sectional view showing an example of the laminated body of the embodiment. The cross-sectional view of FIG. 1 is a cross-sectional view of the laminated body 100 cut in the first direction, which is the extending direction of the current collecting tab. The laminate 100 shown in FIG. 1 includes a first electrode 1, a second electrode 2, and a separator 3. As shown in FIGS. 1 and 2, the first electrode 1 includes a first current collector 1a, a first active material-containing layer 1b, and a first current collector tab 1c. The electrode according to the first embodiment is, for example, the first electrode 1. The first active material-containing layer 1b has a first front surface 40 and a first back surface 41. The first current collector tab 1c extends from a part or the whole of one side surface (first side surface) of the first current collector 1a in the first direction 51. In the case of FIGS. 2 and 3, the first current collector tab 1c is a plurality of strips protruding from a plurality of locations on one side surface (first side surface) of the first current collector 1a. The first current collector 1a is a conductive sheet having a front surface and a back surface. One main surface of the first current collector 1a is the front surface, and the other main surface is the back surface. Each of the four side surfaces of the first current collector 1a intersects (for example, orthogonally) the front surface and the back surface.
 第1の活物質含有層1bは、第1の集電体1aの表面及び/又は裏面のうちの少なくとも第1側面と隣接する端部を含むように保持されている。具体的には、第1の活物質含有層1bは、第1の集電体1aの表面及び/又は裏面のうち、前述の端部に加え、少なくとも反対極と対向する部分に保持されている。好ましい形態は、第1の活物質含有層1bが第1の集電体1aの表面の全面及び/又は裏面の全面に保持されているものである。この形態を有する第1の電極を用いて電池を作製する場合に、或る容積を有する外装部材内の単位容積当たりの第1の活物質含有層1bの容積を高めることができる。即ち、電池の体積エネルギー密度を高めることができる。第1の集電タブ1cの表面及び裏面のそれぞれにおいて、第1の活物質含有層1bは担持されていない。第1の活物質含有層1bが有する第1の表面40及び第1の裏面41のうち、第1の集電体1aと接している面は第1の裏面41である。 The first active material-containing layer 1b is held so as to include at least an end portion of the front surface and / or back surface of the first current collector 1a adjacent to the first side surface. Specifically, the first active material-containing layer 1b is held on the front surface and / or back surface of the first current collector 1a, in addition to the above-mentioned end portion, at least on a portion facing the opposite electrode. .. In a preferred embodiment, the first active material-containing layer 1b is held on the entire surface and / or the back surface of the first current collector 1a. When a battery is manufactured using the first electrode having this form, the volume of the first active material-containing layer 1b per unit volume in the exterior member having a certain volume can be increased. That is, the volumetric energy density of the battery can be increased. The first active material-containing layer 1b is not supported on each of the front surface and the back surface of the first current collecting tab 1c. Of the first front surface 40 and the first back surface 41 of the first active material-containing layer 1b, the surface in contact with the first current collector 1a is the first back surface 41.
 第1の活物質含有層1bは、互いに向き合う二組の端面を有する。そのうちの一組の端面は、第1方向51に対して垂直である。この一組の端面のうちの一つの端面が、第1の集電タブ1cと隣接する第1端面52である。第1端面52は、第1方向51において第2端面53と向き合っている。 The first active material-containing layer 1b has two sets of end faces facing each other. One set of end faces is perpendicular to the first direction 51. One end face of this set of end faces is the first end face 52 adjacent to the first current collecting tab 1c. The first end surface 52 faces the second end surface 53 in the first direction 51.
 図2及び図3に示す通り、第1の電極1は、無機材料を含む第1の絶縁層4を含む。図2に示しているように、第1の絶縁層4は、少なくとも、第1の活物質含有層1bの第1端面52のうち第1の集電タブ1cと隣接する部分と、第1の集電タブ1cの表面及び裏面のうちの第1端面52と隣接する部分48とを被覆している。第1の絶縁層4は、複数の第1の集電タブ1cのそれぞれについて、その表面及び裏面上に形成されている。 As shown in FIGS. 2 and 3, the first electrode 1 includes a first insulating layer 4 containing an inorganic material. As shown in FIG. 2, the first insulating layer 4 includes at least a portion of the first end surface 52 of the first active material-containing layer 1b adjacent to the first current collecting tab 1c and the first one. Of the front surface and the back surface of the current collecting tab 1c, the first end surface 52 and the adjacent portion 48 are covered. The first insulating layer 4 is formed on the front surface and the back surface of each of the plurality of first current collecting tabs 1c.
 第2の電極2は、図5に示す通り、第2の集電体2a、第2の活物質含有層2b及び、第2の集電タブ2cを含む。第2の活物質含有層2bは第2の表面42及び第2の裏面43を有する。第2の集電タブ2cは、第2の集電体2aから第2方向54に延出したものである。第2方向54は、第1方向51と略同一の方向であってもよく、第1方向51と反対方向であってもよい。例えば、図1に示す積層体100では、第1の電極1が有する第1の集電タブ1cが延出している方向と、第2の電極2が有する第2の集電タブ2cが延出している方向とは、互いに反対方向である。後述する図7及び図17では、第1の電極1が有する第1の集電タブ1cと、第2の電極2が有する第2の集電タブ2cとが同一方向に沿って延出している場合を示している。 As shown in FIG. 5, the second electrode 2 includes a second current collector 2a, a second active material-containing layer 2b, and a second current collector tab 2c. The second active material-containing layer 2b has a second front surface 42 and a second back surface 43. The second current collector tab 2c extends from the second current collector 2a in the second direction 54. The second direction 54 may be in substantially the same direction as the first direction 51, or may be in a direction opposite to that of the first direction 51. For example, in the laminated body 100 shown in FIG. 1, the direction in which the first current collecting tab 1c of the first electrode 1 extends and the second current collecting tab 2c of the second electrode 2 extend. The directions are opposite to each other. In FIGS. 7 and 17, which will be described later, the first current collecting tab 1c of the first electrode 1 and the second current collecting tab 2c of the second electrode 2 extend in the same direction. Shows the case.
 図4に示す通り、第2の集電タブ2cは、第2の集電体2aの一側面の複数個所から突出した複数の帯状部でありうる。第2の集電体2aは、表面及び裏面を有する導電性のシートである。第2の集電体2aの一方の主面が表面であり、他方の主面が裏面である。 As shown in FIG. 4, the second current collector tab 2c may be a plurality of strips protruding from a plurality of locations on one side surface of the second current collector 2a. The second current collector 2a is a conductive sheet having a front surface and a back surface. One main surface of the second current collector 2a is the front surface, and the other main surface is the back surface.
 第2の集電体2aは、互いに向き合う二組の端面を有する。そのうちの一組の端面は、第2方向54に対して垂直である。そのうちの一つの端面が、第2の集電タブ2cが延出している側に位置する端面44である。端面44は、第2方向54において端面45と向き合っている。端面44及び45を含め、第2の集電体2aの4つの側面それぞれが、第2の集電体2aの表面及び裏面と交差(例えば直交)する。 The second current collector 2a has two sets of end faces facing each other. One set of end faces is perpendicular to the second direction 54. One of the end faces is the end face 44 located on the side where the second current collecting tab 2c extends. The end face 44 faces the end face 45 in the second direction 54. Each of the four sides of the second current collector 2a, including the end faces 44 and 45, intersects (eg, orthogonally) the front and back surfaces of the second current collector 2a.
 第2の活物質含有層2bは、第2の集電体2aの表面及び裏面のそれぞれに保持されている。第2の集電タブ2cの表面及び裏面のそれぞれにおいて、第2の活物質含有層2bは担持されていない。第2の活物質含有層2bの第2の表面42及び第2の裏面43のうち、第2の集電体2aと接している面が第2の裏面43である。第2の活物質含有層2bは、互いに向き合う二組の端面を有する。そのうちの一組の端面は、第2方向54に対して垂直である。この一組の端面のうちの一つの端面が、第2の集電タブ2cと隣接する第1端面55である。第1端面55は、第2方向54において、第2端面56と向き合っている。 The second active material-containing layer 2b is held on the front surface and the back surface of the second current collector 2a, respectively. The second active material-containing layer 2b is not supported on the front surface and the back surface of the second current collecting tab 2c, respectively. Of the second front surface 42 and the second back surface 43 of the second active material-containing layer 2b, the surface in contact with the second current collector 2a is the second back surface 43. The second active material-containing layer 2b has two sets of end faces facing each other. One set of end faces is perpendicular to the second direction 54. One end face of this set of end faces is the first end face 55 adjacent to the second current collecting tab 2c. The first end surface 55 faces the second end surface 56 in the second direction 54.
 図1に示すように、セパレータ3は、無機材料を含む第1の絶縁層4と、有機繊維を含む第2の絶縁層5とを含む。二つの第1の活物質含有層1bそれぞれについて、主面に対して交差(例えば直交)する四側面のうちの第1端面52の集電タブ1cと隣接する部分が第1の絶縁層4で被覆されている。図2に示すように、第1の絶縁層4は、第1の活物質含有層1bの第1端面52と隣接する部分48を被覆する。また、図1に示すように、第1の絶縁層4は、第2の電極2の第2の集電タブ2cが延出している側の反対側に位置する端面45に近い位置にある。第2の集電体2aが有する端面45は、製造工程において不可避的に形成されるバリを有していることがある。このバリが第1の集電タブ1cと接触すると内部短絡を生じてしまうが、第1の電極1が第1の絶縁層4を備えているため、第1の集電タブ1cと、第2の集電体2aが有する端面45とが接触することによる内部短絡を低減することができる。第1の絶縁層4が、第1の活物質含有層1b及び第1の集電タブ1cにどのようにして固定されているかは特に限定されるものではないが、例えば、接着、熱融着が挙げられる。 As shown in FIG. 1, the separator 3 includes a first insulating layer 4 containing an inorganic material and a second insulating layer 5 containing organic fibers. For each of the two first active material-containing layers 1b, the portion adjacent to the current collecting tab 1c of the first end surface 52 of the four side surfaces intersecting (for example, orthogonal to) the main surface is the first insulating layer 4. It is covered. As shown in FIG. 2, the first insulating layer 4 covers a portion 48 adjacent to the first end surface 52 of the first active material-containing layer 1b. Further, as shown in FIG. 1, the first insulating layer 4 is located near the end surface 45 located on the opposite side to the side on which the second current collecting tab 2c of the second electrode 2 extends. The end face 45 of the second current collector 2a may have burrs that are inevitably formed in the manufacturing process. When this burr comes into contact with the first current collecting tab 1c, an internal short circuit occurs, but since the first electrode 1 includes the first insulating layer 4, the first current collecting tab 1c and the second It is possible to reduce an internal short circuit due to contact with the end face 45 of the current collector 2a. How the first insulating layer 4 is fixed to the first active material-containing layer 1b and the first current collecting tab 1c is not particularly limited, but for example, adhesion or heat fusion. Can be mentioned.
 一方、第2の絶縁層5は、図5に示す通り、第2の活物質含有層2bそれぞれの第2の表面42と、第2の表面42に交差(例えば直交)する四側面と、第2の集電タブ2cの表面及び裏面における第2の活物質含有層2bの端面55と隣接する部分46とを被覆している。第2の活物質含有層2bは、第2の絶縁層5を介して第1の活物質含有層1bと対向している。 On the other hand, as shown in FIG. 5, the second insulating layer 5 includes a second surface 42 of each of the second active material-containing layers 2b, four side surfaces intersecting (for example, orthogonal to) the second surface 42, and a second surface. The front surface and the back surface of the current collecting tab 2c of No. 2 are covered with the end surface 55 of the second active material-containing layer 2b and the adjacent portion 46. The second active material-containing layer 2b faces the first active material-containing layer 1b via the second insulating layer 5.
 第2の絶縁層5は、図5に示すように、第2の電極2に一体化されていても良いが、これに限られるものではない。例えば、第2の絶縁層5は、後述する図10及び図11に示すように、第1の電極1に一体化されていても良い。第2の絶縁層5が、第2の活物質含有層2bにどのように一体化されているかは特に限定されるものではないが、例えば、第2の絶縁層中の有機繊維が第2の活物質含有層の表面にめり込む、あるいははまり込む状態が挙げられる。 As shown in FIG. 5, the second insulating layer 5 may be integrated with the second electrode 2, but is not limited to this. For example, the second insulating layer 5 may be integrated with the first electrode 1 as shown in FIGS. 10 and 11 described later. How the second insulating layer 5 is integrated with the second active material-containing layer 2b is not particularly limited, but for example, the organic fibers in the second insulating layer are the second. Examples thereof include a state in which the active material-containing layer is sunk or stuck in the surface.
 図6は、他の例に係る積層体を示す断面図である。図6では、第1の電極1が含む第1の絶縁層4が、第2の活物質含有層2bを介して第2の集電体2aと向き合う第1部分4aと、第2の集電体2aと向き合わない第2部分4bとを含む。第1の絶縁層4が含む第2部分4bは、例えば、第1の集電タブ1cが延出する第1方向51に向かって、第2の集電体2aの端面45の位置よりも突出している。この場合、第2の集電体2aの端面45がバリを有していたとしても、バリが第1の電極1の第1の集電タブ1cに接触することをより抑制することができる。それ故、図6に示す積層体100によると、内部短絡の発生を抑えることができ、高容量な電池を提供することができる。 FIG. 6 is a cross-sectional view showing a laminated body according to another example. In FIG. 6, the first insulating layer 4 included in the first electrode 1 faces the second current collector 2a via the second active material-containing layer 2b, and the first portion 4a and the second current collector. Includes a second portion 4b that does not face body 2a. The second portion 4b included in the first insulating layer 4 protrudes from the position of the end surface 45 of the second current collector 2a toward the first direction 51 where the first current collector tab 1c extends, for example. ing. In this case, even if the end surface 45 of the second current collector 2a has burrs, it is possible to further prevent the burrs from coming into contact with the first current collector tab 1c of the first electrode 1. Therefore, according to the laminated body 100 shown in FIG. 6, the occurrence of an internal short circuit can be suppressed, and a high-capacity battery can be provided.
 図7は、実施形態に係る積層体の他の例を模式的に示す斜視図である。積層体100は、第1の電極1と、第2の電極2とを含む。第1の電極1は、図2及び図3を参照しながら説明した長尺の電極である。第2の電極2は、図4及び図5を参照しながら説明した長尺の電極である。積層体100は、第2の電極2が外周に位置するようにして、第1の電極1及び第2の電極2が捲回されてなる。第1の電極1が有する複数の第1の集電タブ1cと、第2の電極2が有する複数の第2の集電タブ2cとは、同一方向に沿って延出している。図7に示しているように、第1の電極1と、第2の電極2とは、それらが有する複数の集電タブが重ならないようにして積層されている。なお、積層体100において、複数の第1の集電タブ1cは互いに重ね合わされて溶接等により互いに電気的に接続されている。また、複数の第2の集電タブ2cについても、互いに重ね合わされて溶接等により互いに電気的に接続されている。第2の電極2には、第2の絶縁層5が一体化されており、第2の絶縁層5がセパレータとして機能する。更に、以下に説明するように、第1の絶縁層4もセパレータとして機能し得る。 FIG. 7 is a perspective view schematically showing another example of the laminated body according to the embodiment. The laminate 100 includes a first electrode 1 and a second electrode 2. The first electrode 1 is a long electrode described with reference to FIGS. 2 and 3. The second electrode 2 is a long electrode described with reference to FIGS. 4 and 5. The laminated body 100 is formed by winding the first electrode 1 and the second electrode 2 so that the second electrode 2 is located on the outer periphery. The plurality of first current collecting tabs 1c of the first electrode 1 and the plurality of second current collecting tabs 2c of the second electrode 2 extend in the same direction. As shown in FIG. 7, the first electrode 1 and the second electrode 2 are laminated so that the plurality of current collecting tabs they have do not overlap. In the laminated body 100, the plurality of first current collecting tabs 1c are overlapped with each other and electrically connected to each other by welding or the like. Further, the plurality of second current collecting tabs 2c are also overlapped with each other and electrically connected to each other by welding or the like. A second insulating layer 5 is integrated with the second electrode 2, and the second insulating layer 5 functions as a separator. Further, as described below, the first insulating layer 4 can also function as a separator.
 複数の第1の集電タブ1cのそれぞれは、表面及び裏面が、第1の絶縁層4を備えている。これら第1の絶縁層4は、図2を参照しながら説明したように、少なくとも、第1の活物質含有層1bの第1端面52における第1の集電タブ1cと隣接する部分と、第1の集電タブ1cの表面及び裏面のうち、第1端面52と隣接する部分48とを被覆している。 Each of the plurality of first current collecting tabs 1c has a first insulating layer 4 on the front surface and the back surface. As described with reference to FIG. 2, the first insulating layer 4 includes at least a portion of the first active material-containing layer 1b adjacent to the first current collecting tab 1c on the first end surface 52, and a first. Of the front surface and the back surface of the current collecting tab 1c of No. 1, the first end surface 52 and the adjacent portion 48 are covered.
 図5は、或る第2の集電タブ2cと、これと隣り合った他の第2の集電タブ2cとの間において、第2の集電体2aの端面44が第2の絶縁層5で被覆されている状態を示しているが、第2の集電体2aの端面44全体が第2の絶縁層5で被覆されていなくても良い。よって、図7において、或る第2の集電タブ2cと、これと隣り合った他の第2の集電タブ2cとの間では、第2の集電体2aの端面44が露出した状態であり得る。図8に、或る第2の集電タブ2cと、これと隣り合った他の第2の集電タブ2cとの間の位置における積層体100の断面を模式的に示す。図8は、図7におけるVI-VI線に沿って積層体100を切断した場合の断面を模式的に示す図である。第2の集電体2aが有する端面44は、製造工程において不可避的に形成されるバリを有していることがある。このバリが第1の集電タブ1cと接触すると内部短絡を生じてしまうが、第1の電極1が第1の絶縁層4を備えているため、第1の集電タブ1cと、第2の集電体2aが有する端面44とが接触することによる内部短絡を低減することができる。更に、図8に示す第1の絶縁層4は、第2の活物質含有層2bを介して第2の集電体2aと向き合う第1部分4aと、第2の集電体2aと向き合わない第2部分4bとを含んでいる。言い換えれば、第2部分4bは、第1部分4aから第1方向に突出している。それ故、この積層体100によれば、第2の集電体2aが有する端面44が有するバリと、第1の集電体1cとが接触することによる内部短絡を低減することができる。 In FIG. 5, an end surface 44 of the second current collector 2a is a second insulating layer between a second current collector tab 2c and another second current collector tab 2c adjacent thereto. Although the state of being covered with 5, the entire end face 44 of the second current collector 2a may not be covered with the second insulating layer 5. Therefore, in FIG. 7, the end face 44 of the second current collector 2a is exposed between a certain second current collector tab 2c and another second current collector tab 2c adjacent to the second current collector tab 2c. Can be. FIG. 8 schematically shows a cross section of the laminated body 100 at a position between a certain second current collecting tab 2c and another second current collecting tab 2c adjacent thereto. FIG. 8 is a diagram schematically showing a cross section when the laminate 100 is cut along the lines VI-VI in FIG. 7. The end face 44 of the second current collector 2a may have burrs that are inevitably formed in the manufacturing process. When this burr comes into contact with the first current collecting tab 1c, an internal short circuit occurs, but since the first electrode 1 includes the first insulating layer 4, the first current collecting tab 1c and the second It is possible to reduce an internal short circuit due to contact with the end face 44 of the current collector 2a. Further, the first insulating layer 4 shown in FIG. 8 does not face the first portion 4a facing the second current collector 2a and the second current collector 2a via the second active material-containing layer 2b. It includes the second part 4b. In other words, the second portion 4b projects in the first direction from the first portion 4a. Therefore, according to the laminated body 100, it is possible to reduce an internal short circuit due to contact between the burr of the end face 44 of the second current collector 2a and the first current collector 1c.
 以上説明した例に示す通り、第1の実施形態の電極では、第1の絶縁層が、第1の活物質含有層の第1端面の少なくとも一部と、第1の集電タブの表面及び裏面のうちの第1端面と隣接する部分とを被覆している。それ故、高容量を得るために、当該電極及び対極としての第2の電極を渦巻き状に捲回するか又は積層させることにより電極群(積層体)を作製する際に、第2の電極が含む第2の集電体又は第2の集電タブの端面がバリを有していたとしても、このバリが第1の電極の第1の集電タブに接触することを抑制することができる。つまり、このバリが、第1の集電タブに接触するのではなく、第1の絶縁層に接触するため、内部短絡の発生を抑えることができ、高容量な電池を提供することができる。 As shown in the examples described above, in the electrode of the first embodiment, the first insulating layer is formed on at least a part of the first end surface of the first active material-containing layer, the surface of the first current collecting tab, and the surface of the first current collecting tab. It covers a portion of the back surface adjacent to the first end surface. Therefore, in order to obtain a high capacity, when the electrode group (laminated body) is produced by spirally winding or laminating the electrode and the second electrode as a counter electrode, the second electrode is used. Even if the end face of the included second current collector or the second current collector tab has burrs, it is possible to prevent the burrs from coming into contact with the first current collector tab of the first electrode. .. That is, since the burr contacts the first insulating layer instead of contacting the first current collecting tab, the occurrence of an internal short circuit can be suppressed, and a high-capacity battery can be provided.
 図1では、第1の活物質含有層の表面を第1の絶縁層4で被覆していないが、第1の電極の形態は、この形態に限定されるものではない。図9に示すように、第1の活物質含有層1bの表面を、第1の絶縁層4で被覆してもよい。第1の絶縁層4は、第1の活物質含有層1bの第1端面52の全面と、第1の集電タブの表面及び裏面のうち、第1端面52と隣接する部分とを更に被覆している。この場合、第1の活物質含有層と、第2の活物質含有層との間に、セパレータとして、第1の絶縁層4及び第2の絶縁層5が存在する。それ故、第1の電極と第2の電極の間の絶縁をより確実なものにすることができる。また、第1の電極及び第2の電極の双方に第1の絶縁層を形成しても良い。 In FIG. 1, the surface of the first active material-containing layer is not covered with the first insulating layer 4, but the form of the first electrode is not limited to this form. As shown in FIG. 9, the surface of the first active material-containing layer 1b may be coated with the first insulating layer 4. The first insulating layer 4 further covers the entire surface of the first end surface 52 of the first active material-containing layer 1b, and the front and back surfaces of the first current collecting tab, which are adjacent to the first end surface 52. doing. In this case, a first insulating layer 4 and a second insulating layer 5 are present as separators between the first active material-containing layer and the second active material-containing layer. Therefore, the insulation between the first electrode and the second electrode can be made more reliable. Further, the first insulating layer may be formed on both the first electrode and the second electrode.
 第2の絶縁層5は、第1の電極1に一体化させても良い。この場合の積層体100を示す例を図10及び図11に示す。図10では、第1の絶縁層4は、第1の活物質含有層1bの第1端面52と、第1の集電タブ1cの表面及び裏面における第1端面52と隣接する部分とを被覆している。第2の絶縁層5は、第1の絶縁層4の表面と、第1の絶縁層4で覆われていない電極表面すなわち第1の活物質含有層1bの表面と、第1の集電タブ1cが延出していない3つの電極端面とを被覆している。 The second insulating layer 5 may be integrated with the first electrode 1. An example showing the laminated body 100 in this case is shown in FIGS. 10 and 11. In FIG. 10, the first insulating layer 4 covers the first end surface 52 of the first active material-containing layer 1b and the portions of the front surface and the back surface of the first current collecting tab 1c adjacent to the first end surface 52. doing. The second insulating layer 5 includes a surface of the first insulating layer 4, an electrode surface not covered by the first insulating layer 4, that is, a surface of the first active material-containing layer 1b, and a first current collecting tab. 1c covers the three electrode end faces that do not extend.
 一方、図11では、第1の絶縁層4が第1の活物質含有層1b上を被覆している。第2の絶縁層5は、第1の活物質含有層1b上を被覆している第1の絶縁層4の表面と、第1の絶縁層4で覆われていない電極端面すなわち第1の集電タブ1cが延出していない3つの電極端面と、第1の集電タブ1c上であり且つ第1の絶縁層4と隣接した部分とを被覆している。 On the other hand, in FIG. 11, the first insulating layer 4 covers the first active material-containing layer 1b. The second insulating layer 5 includes the surface of the first insulating layer 4 covering the first active material-containing layer 1b and the electrode end face, that is, the first current collector, which is not covered by the first insulating layer 4. The three electrode end faces on which the electric tab 1c does not extend and a portion on the first current collecting tab 1c and adjacent to the first insulating layer 4 are covered.
 図10及び図11を参照しながら説明した積層体の構成によると、第1の電極と第2の電極間に必要な絶縁性を確保しつつ、第1の絶縁層が第1の活物質含有層から剥離するのを抑制することができる。そのため、電池の容量及び充放電サイクル寿命を向上することができる。 According to the structure of the laminate described with reference to FIGS. 10 and 11, the first insulating layer contains the first active material while ensuring the necessary insulating properties between the first electrode and the second electrode. It is possible to suppress peeling from the layer. Therefore, the capacity of the battery and the life of the charge / discharge cycle can be improved.
 第1の電極の第1の集電タブ1cの形状は、図2に例示されるような、第1の集電体1aの一側面(第1側面)の複数個所から突出した複数の帯状部に限られない。第1の集電タブ1cは、例えば、第1の集電体1aの一側面(第1側面)の全面から突出し、突出した部分が凹凸構造を有するものにすることができる。この例を図12及び図13に示す。第1の集電タブ1cは、第1の集電体1aの一側面(第1側面)の全体から第1方向51に延出した部分である。延出部分は、凹凸形状を有する。複数の凸部が第1方向51に沿って突出している。第1の絶縁層4は、第1の集電タブ1cの表面及び裏面(凸部先端部を除く)を被覆している。よって、第1の絶縁層4は、第1の活物質含有層1bの第1端面52の全面と、第1の集電タブ1cの表面及び裏面のうちの第1端面52と隣接する部分とを被覆している。 The shape of the first current collector tab 1c of the first electrode is a plurality of strips protruding from a plurality of locations on one side surface (first side surface) of the first current collector 1a as illustrated in FIG. Not limited to. The first current collector tab 1c may, for example, protrude from the entire surface of one side surface (first side surface) of the first current collector 1a, and the protruding portion may have an uneven structure. An example of this is shown in FIGS. 12 and 13. The first current collector tab 1c is a portion extending in the first direction 51 from the entire one side surface (first side surface) of the first current collector 1a. The extending portion has an uneven shape. A plurality of convex portions project along the first direction 51. The first insulating layer 4 covers the front surface and the back surface (excluding the tip portion of the convex portion) of the first current collecting tab 1c. Therefore, the first insulating layer 4 includes the entire surface of the first end surface 52 of the first active material-containing layer 1b, and the front and back surfaces of the first current collecting tab 1c that are adjacent to the first end surface 52. Is covered.
 第2の電極の第2の集電タブ2cの形状は、図4に例示されるような、第2の集電体2aの一側面の複数個所から突出した複数の帯状部に限られない。第2の集電タブ2cは、例えば、第2の集電体2aの一側面の全面から突出し、突出した部分が凹凸構造を有するものにすることができる。この例を図14及び図15に示す。第2の集電タブ2cは、第2の集電体2aの一側面の全体から第2方向54に延出した部分である。延出部分は、凹凸形状を有する。複数の凸部が第2方向54に沿って突出している。第2の絶縁層5は、図15に示す通り、第2の活物質含有層2bそれぞれの第2の表面42と、第2の表面42に交差(例えば直交)する四側面と、第2の集電タブ2cの表面及び裏面における凸部先端部を除いた部分46とを被覆している。よって、第2の集電タブ2cの表面及び裏面のうちの第2の活物質含有層2bの端面55と隣接する部分は、第2の絶縁層5で被覆されている。 The shape of the second current collector tab 2c of the second electrode is not limited to a plurality of strips protruding from a plurality of locations on one side surface of the second current collector 2a as illustrated in FIG. The second current collector tab 2c may, for example, project from the entire surface of one side surface of the second current collector 2a, and the protruding portion may have an uneven structure. An example of this is shown in FIGS. 14 and 15. The second current collector tab 2c is a portion extending from the entire side surface of the second current collector 2a in the second direction 54. The extending portion has an uneven shape. A plurality of protrusions project along the second direction 54. As shown in FIG. 15, the second insulating layer 5 includes a second surface 42 of each of the second active material-containing layers 2b, four side surfaces intersecting (for example, orthogonal to) the second surface 42, and a second surface. The front surface and the back surface of the current collecting tab 2c are covered with the portion 46 excluding the tip of the convex portion. Therefore, the portion of the front surface and the back surface of the second current collecting tab 2c adjacent to the end surface 55 of the second active material-containing layer 2b is covered with the second insulating layer 5.
 第2の絶縁層は、図5及び図15に例示されるように、第2の電極における第2の集電タブ2cの先端部を除いた部分に形成しても良い。この場合、第2の活物質含有層2bの互いに向き合う二組の端面全てが第2の絶縁層5で被覆される。しかし、実施形態は、この場合に限られない。第2の活物質含有層の互いに向き合う二組の端面の少なくとも一部が第2の絶縁層で被覆されていても良い。これら端面のうち、少なくとも、第2の集電タブと隣接する端面が第2の絶縁層で被覆されていると良い。 As illustrated in FIGS. 5 and 15, the second insulating layer may be formed at a portion of the second electrode excluding the tip of the second current collecting tab 2c. In this case, all of the two sets of end faces of the second active material-containing layer 2b facing each other are covered with the second insulating layer 5. However, the embodiment is not limited to this case. At least a part of the two sets of end faces of the second active material-containing layer facing each other may be covered with the second insulating layer. Of these end faces, it is preferable that at least the end face adjacent to the second current collecting tab is covered with the second insulating layer.
 上述の実施形態では、第1、第2の集電タブの突出部及び凸部に活物質含有層を設けずに第1,第2の絶縁層を直接形成したが、これに限られない。第1、第2の集電タブの突出部上または凸部上に活物質含有層を形成し、この活物質含有層上に第1,第2の絶縁層を形成しても良い。第1の電極に適用した例を図16に示す。第1の集電タブ1cは、第1の集電体1aの一側面(第1側面)の複数個所から第1方向51に延出した部分であり、複数の突出部からなる。第1の活物質含有層101は、第1の集電タブ1cの表面及び裏面のうちの第1端面52と隣接する部分に形成されている。第1の絶縁層4は、第1の活物質含有層101それぞれの上と、第1の活物質含有層101それぞれの端面とを覆うように形成されている。また、ここでは図示しないが、第1の絶縁層4は、第1の活物質含有層1bの表面を被覆していても良い。このような図16に例示される構造は、第2の電極にも同様に適用できる。第1、第2の集電タブの突出部上または凸部上に形成された活物質含有層は、充放電反応への寄与が小さい。そのため、活物質含有層が活物質としてチタン含有酸化物を含む場合、絶縁層として機能し得る。この活物質含有層上に第1絶縁層または第2絶縁層を設けることにより、絶縁性能をより向上することができる。 In the above-described embodiment, the first and second insulating layers are directly formed without providing the active material-containing layer on the protruding portions and convex portions of the first and second current collecting tabs, but the present invention is not limited to this. The active material-containing layer may be formed on the protruding portion or the convex portion of the first and second current collecting tabs, and the first and second insulating layers may be formed on the active material-containing layer. An example applied to the first electrode is shown in FIG. The first current collector tab 1c is a portion extending in the first direction 51 from a plurality of positions (first side surface) of one side surface (first side surface) of the first current collector 1a, and is composed of a plurality of protruding portions. The first active material-containing layer 101 is formed on a portion of the front surface and the back surface of the first current collecting tab 1c adjacent to the first end surface 52. The first insulating layer 4 is formed so as to cover the top of each of the first active material-containing layers 101 and the end faces of each of the first active material-containing layers 101. Further, although not shown here, the first insulating layer 4 may cover the surface of the first active material-containing layer 1b. Such a structure exemplified in FIG. 16 can be similarly applied to the second electrode. The active material-containing layer formed on the protruding portion or the convex portion of the first and second current collecting tabs has a small contribution to the charge / discharge reaction. Therefore, when the active material-containing layer contains a titanium-containing oxide as the active material, it can function as an insulating layer. By providing the first insulating layer or the second insulating layer on the active material-containing layer, the insulating performance can be further improved.
 第1の電極と第2の電極の組合せは、上記に示したものに限られず、任意である。上記に示した第1の電極と第2の電極のいずれを組合わせても良い。また、積層体において、第1の集電タブが延出している方向と、第2の集電タブが延出している方向は、互いに逆向きに限らず、同じ向きでも良い。一例を図17に示す。 The combination of the first electrode and the second electrode is not limited to the one shown above, and is arbitrary. Any of the first electrode and the second electrode shown above may be combined. Further, in the laminated body, the direction in which the first current collecting tab extends and the direction in which the second current collecting tab extends are not limited to opposite directions, and may be the same direction. An example is shown in FIG.
 図17に示す積層体は、図13に示す構造の第1の電極1と、図15に示す構造の第2の電極2を含む。第1の電極1と第2の電極2は、複数の第1の集電タブ1Cそれぞれが延出している方向51と、複数の第2の集電タブ2cそれぞれが延出している方向が同じ向きになるように積層されている。複数の第1の集電タブ1Cの直下に複数の第2の集電タブ2cは配置されておらず、複数の第2の集電タブ2cは、複数の第1の集電タブ1Cに対し、方向51に直交する方向にずれて配置されている。また、第1の活物質含有層1bの四辺それぞれから第2の活物質含有層2bが突出する(あるいははみ出す)ように、第1の電極1と第2の電極2が積層されている。第1の活物質含有層1bと第2の活物質含有層2bとの間には、第2の絶縁層5が配置されている。第1の集電タブ1cの表面及び裏面のうちの第1端面52と隣接する部分上に位置する第1の絶縁層4は、第2の集電タブ2cの近傍に位置している。第2の集電タブ2cの表面及び裏面のうちの第2の活物質含有層2bの端面55と隣接する部分上に第2の絶縁層5が位置している。第2の集電タブ2cがバリを有していたとしても、第1の絶縁層4と第2の絶縁層5によりバリが第1の電極1に接触することを抑制することができる。それ故、図17に示す積層体100によると、内部短絡の発生を抑えることができ、高容量な電池を提供することができる。 The laminate shown in FIG. 17 includes a first electrode 1 having a structure shown in FIG. 13 and a second electrode 2 having a structure shown in FIG. The first electrode 1 and the second electrode 2 have the same direction 51 in which each of the plurality of first current collecting tabs 1C extends and the direction in which each of the plurality of second current collecting tabs 2c extends. They are stacked so that they face each other. A plurality of second current collecting tabs 2c are not arranged directly under the plurality of first current collecting tabs 1C, and the plurality of second current collecting tabs 2c are used with respect to the plurality of first current collecting tabs 1C. , Are arranged so as to be offset in the direction orthogonal to the direction 51. Further, the first electrode 1 and the second electrode 2 are laminated so that the second active material-containing layer 2b protrudes (or protrudes) from each of the four sides of the first active material-containing layer 1b. A second insulating layer 5 is arranged between the first active material-containing layer 1b and the second active material-containing layer 2b. The first insulating layer 4 located on the portion of the front surface and the back surface of the first current collecting tab 1c adjacent to the first end surface 52 is located in the vicinity of the second current collecting tab 2c. The second insulating layer 5 is located on a portion of the front surface and the back surface of the second current collecting tab 2c adjacent to the end surface 55 of the second active material-containing layer 2b. Even if the second current collecting tab 2c has burrs, the first insulating layer 4 and the second insulating layer 5 can prevent the burrs from coming into contact with the first electrode 1. Therefore, according to the laminated body 100 shown in FIG. 17, the occurrence of an internal short circuit can be suppressed, and a high-capacity battery can be provided.
 図17に示す積層体では、第1の活物質含有層1bの四辺それぞれから第2の活物質含有層2bが突出する、あるいははみ出している。これにより、第1の活物質含有層中に未充電領域が生じるのを防止できるため、第1の電極に含まれる活物質の溶出に起因する内部短絡を防止することができる。なお、第1の活物質含有層と第2の活物質含有層の面積の関係はこれに限定されるものではなく、互いの面積が同じであっても、第1の活物質含有層の面積が第2の活物質含有層の面積よりも大きくても良い。 In the laminate shown in FIG. 17, the second active material-containing layer 2b protrudes or protrudes from each of the four sides of the first active material-containing layer 1b. As a result, it is possible to prevent an uncharged region from being generated in the first active material-containing layer, and thus it is possible to prevent an internal short circuit due to elution of the active material contained in the first electrode. The relationship between the areas of the first active material-containing layer and the second active material-containing layer is not limited to this, and even if the areas of the first active material-containing layer are the same, the area of the first active material-containing layer is the same. May be larger than the area of the second active material-containing layer.
 積層体を構成する第1の電極1と第2の電極2の数は、1つまたは複数にすることができる。第1の電極1と第2の電極2の数は、互いに同じでも互いに異なっていても良い。 The number of the first electrode 1 and the second electrode 2 constituting the laminated body can be one or more. The number of the first electrode 1 and the second electrode 2 may be the same as or different from each other.
 以下、第1,第2の電極、第1の絶縁層、第2の絶縁層について説明する。 Hereinafter, the first and second electrodes, the first insulating layer, and the second insulating layer will be described.
 (第1,第2の電極)
 第1の電極の反対極が、第2の電極である。第1の電極が正極で、第2の電極が負極であっても、第1の電極が負極で、第2の電極が正極であっても良い。
(1st and 2nd electrodes)
The opposite electrode of the first electrode is the second electrode. The first electrode may be a positive electrode and the second electrode may be a negative electrode, or the first electrode may be a negative electrode and the second electrode may be a positive electrode.
 第1の電極は、第1の表面及び第1の裏面を有する多孔質の第1の活物質含有層を含む。一方、第2の電極は、第2の表面及び第2の裏面を有する多孔質の第2の活物質含有層を含む。 The first electrode includes a porous first active material-containing layer having a first front surface and a first back surface. On the other hand, the second electrode includes a porous second active material-containing layer having a second front surface and a second back surface.
 第1の電極は、第1の集電体及び第1の集電タブをさらに含んでいても良い。一方、第2の電極は、第2の集電体及び第2の集電タブをさらに含んでいても良い。この場合、第1,第2の活物質含有層は、それぞれ、第1,第2の集電体の表面及び裏面の双方に形成しても良いが、片面のみに形成することも可能である。 The first electrode may further include a first current collector and a first current collector tab. On the other hand, the second electrode may further include a second current collector and a second current collector tab. In this case, the first and second active material-containing layers may be formed on both the front surface and the back surface of the first and second current collectors, respectively, but they can also be formed on only one side. ..
 第1,第2の活物質含有層の活物質には、正極活物質、負極活物質が用いられる。活物質の種類は1種類または2種類以上にすることができる。 A positive electrode active material and a negative electrode active material are used as the active material of the first and second active material-containing layers. The type of active material can be one type or two or more types.
 正極活物質としては、例えばリチウム遷移金属複合酸化物を用いることができる。例えば、LiCoO2、LiNi1-xCox2(0<x<0.3)、LiMnxNiyCoz2(0<x<0.5、0<y<0.5、0≦z<0.5)、LiMn2-xx4(MはMg、Co、Al及びNiからなる群より選択される少なくとも1種類の元素、0<x<0.2)、LiMPO4(MはFe,Co及びNiからなる群より選択される少なくとも1種類の元素)などである。 As the positive electrode active material, for example, a lithium transition metal composite oxide can be used. For example, LiCoO 2, LiNi 1-x Co x O 2 (0 <x <0.3), LiMn x Ni y Co z O 2 (0 <x <0.5,0 <y <0.5,0 ≦ z <0.5), LiMn 2-x M x O 4 (M is at least one element selected from the group consisting of Mg, Co, Al and Ni, 0 <x <0.2), LiMPO 4 ( M is at least one element selected from the group consisting of Fe, Co and Ni) and the like.
 負極活物質としては、グラファイトをはじめとした炭素材料、スズ・シリコン系合金材料等を用いることができるが、チタン酸リチウムなどのチタン含有酸化物を用いることが好ましい。また、(ニオブ)Nbなど他金属を含むチタン酸化物あるいはチタン酸リチウムも負極活物質として挙げられる。チタン酸リチウムとしては、例えば、スピネル構造を有するLi4+xTi512(0≦x≦3)や、ラムステライド構造を有するLi2+yTi37(0≦y≦3)が挙げられる。 As the negative electrode active material, a carbon material such as graphite, a tin-silicon alloy material, or the like can be used, but it is preferable to use a titanium-containing oxide such as lithium titanate. Further, titanium oxide containing other metals such as (niobium) Nb or lithium titanate is also mentioned as a negative electrode active material. Examples of lithium titanate include Li 4 + x Ti 5 O 12 (0 ≦ x ≦ 3) having a spinel structure and Li 2 + y Ti 3 O 7 (0 ≦ y ≦ 3) having a ramsteride structure. Can be mentioned.
 第1の活物質含有層または第2の活物質含有層が、活物質としてチタン含有酸化物を含むことにより、第1の活物質含有層または第2の活物質含有層にリチウムデンドライトが析出するのを回避することができるため、二次電池の充放電サイクル寿命を向上することができる。 When the first active material-containing layer or the second active material-containing layer contains a titanium-containing oxide as the active material, lithium dendrite is precipitated on the first active material-containing layer or the second active material-containing layer. Therefore, the charge / discharge cycle life of the secondary battery can be improved.
 活物質は、単独の一次粒子、一次粒子が凝集した二次粒子、あるいは一次粒子と二次粒子の混合物であり得る。 The active material can be a single primary particle, a secondary particle in which the primary particles are aggregated, or a mixture of the primary particle and the secondary particle.
 負極活物質の一次粒子の平均粒径は、0.001以上1μm以下の範囲内であることが好ましい。平均粒径は,例えば負極活物質をSEMで観察することで求めることができる。粒子形状は、粒状、繊維状のいずれであってもよい。繊維状の場合は、繊維径が0.1μm以下であることが好ましい。負極活物質の一次粒子の平均粒径は、具体的には、電子顕微鏡(SEM)で観察した像から測長することができる。平均粒径1μm以下のチタン酸リチウムが負極活物質として用いられる場合には、表面の平坦性の高い負極活物質含有層が得られる。また、チタン酸リチウムが用いられると、一般的なカーボン負極を用いるリチウムイオン二次電池と比較して負極電位が貴なものとなるので、リチウム金属の析出は原理的に生じない。チタン酸リチウムを含む負極活物質は、充放電反応に伴う膨張収縮が、小さいため、活物質の結晶構造の崩壊を防止することができる。 The average particle size of the primary particles of the negative electrode active material is preferably in the range of 0.001 or more and 1 μm or less. The average particle size can be determined, for example, by observing the negative electrode active material with SEM. The particle shape may be either granular or fibrous. In the case of fibrous form, the fiber diameter is preferably 0.1 μm or less. Specifically, the average particle size of the primary particles of the negative electrode active material can be measured from an image observed with an electron microscope (SEM). When lithium titanate having an average particle size of 1 μm or less is used as the negative electrode active material, a negative electrode active material-containing layer having a highly flat surface can be obtained. Further, when lithium titanate is used, the negative electrode potential becomes more noble as compared with a lithium ion secondary battery using a general carbon negative electrode, so that precipitation of lithium metal does not occur in principle. Since the negative electrode active material containing lithium titanate has a small expansion and contraction due to the charge / discharge reaction, it is possible to prevent the crystal structure of the active material from collapsing.
 第1,第2の活物質含有層は、活物質以外に、結着剤、及び導電剤を含んでいても良い。導電剤としては、例えばアセチレンブラック、カーボンブラック、黒鉛又はこれらの混合物を挙げることができる。結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、スチレンブタジエンゴム又はこれらの混合物が挙げられる。結着剤は、活物質と導電剤とを結着させる機能を有する。 The first and second active material-containing layers may contain a binder and a conductive agent in addition to the active material. Examples of the conductive agent include acetylene black, carbon black, graphite, or a mixture thereof. Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorinated rubber, styrene-butadiene rubber, and mixtures thereof. The binder has a function of binding the active material and the conductive agent.
 正極活物質含有層において、活物質、導電剤及び結着剤の含有量は、それぞれ80質量%以上97質量%以下、2質量%以上18質量%以下、及び1質量%以上17質量%以下であることが好ましい。負極活物質含有層において、負極活物質、導電剤及び結着剤の含有量は、それぞれ70質量%以上98質量%以下、1質量%以上28質量%以下、1質量%以上28質量%以下であることが好ましい。 In the positive electrode active material-containing layer, the contents of the active material, the conductive agent and the binder are 80% by mass or more and 97% by mass or less, 2% by mass or more and 18% by mass or less, and 1% by mass or more and 17% by mass or less, respectively. It is preferable to have. In the negative electrode active material-containing layer, the contents of the negative electrode active material, the conductive agent and the binder are 70% by mass or more and 98% by mass or less, 1% by mass or more and 28% by mass or less, and 1% by mass or more and 28% by mass or less, respectively. It is preferable to have.
 第1,第2の活物質含有層の厚さは、それぞれ、5μm以上100μm以下にすることができる。 The thickness of the first and second active material-containing layers can be 5 μm or more and 100 μm or less, respectively.
 第1,第2の集電体は、導電性シートであり得る。導電性シートの例には、導電性材料からなる箔が含まれる。導電性材料の例には、アルミニウム、及びアルミニウム合金が含まれる。 The first and second current collectors can be conductive sheets. Examples of conductive sheets include foils made of conductive materials. Examples of conductive materials include aluminum and aluminum alloys.
 第1,第2の集電体の厚さは、それぞれ、5μm以上40μm以下にすることができる。 The thickness of the first and second current collectors can be 5 μm or more and 40 μm or less, respectively.
 第1,第2の集電タブは、集電体と同じ材料から形成されていても良いが、集電体とは別に集電タブを用意し、これを集電体の少なくとも一端面に溶接等で接続したものを用いてもよい。 The first and second current collector tabs may be formed of the same material as the current collector, but a current collector tab is prepared separately from the current collector and welded to at least one end surface of the current collector. You may use the one connected by the above.
 (第1の絶縁層)
 第1の絶縁層は、それぞれ、表面及び裏面を有し、無機材料を含む。第1の絶縁層の一方の主面が表面で、他方の主面が裏面に相当する。無機材料の例としては、酸化物(例えば、Li2O、BeO、B23 、Na2O、MgO、Al23、SiO2、P25、CaO、Cr23、Fe23 、ZnO、ZrO2、二酸化チタン(例えばアナターゼ、ルチルまたはブロンズ型のTiO2)、酸化マグネシウム、酸化ケイ素、アルミナ、ジルコニア、酸化チタン等のIIA~VA族、遷移金属、IIIB、IVBの酸化物)、ゼオライト(M2/nO・Al23・xSiO2・yH2O(式中、MはNa、K、Ca及びBa等の金属原子、nは金属陽イオンMn+の電荷に相当する数、x及びyはSiO2及びH2Oのモル数であり2≦x≦10、2≦y)、窒化物(例えば、BN、AlN、Si34及びBa32等)、炭化ケイ素(SiC)、ジルコン(ZrSiO4)、炭酸塩(例えば、MgCO3及びCaCO3等)、硫酸塩(例えば、CaSO4及びBaSO4等)及びこれらの複合体(例えば磁器の一種である、ステアタイト(MgO・SiO2)、フォルステライト(2MgO・SiO2)及び、コージェライト(2MgO・2Al23・5SiO2))、酸化タングステン又はこれらの混合物を挙げることができる。酸化物の他の例として、スピネル構造を有するチタン酸リチウム(例えば、Li4+xTi512、0≦x≦3)等のリチウムチタン酸化物を挙げることができる。
(First insulating layer)
The first insulating layer has a front surface and a back surface, respectively, and contains an inorganic material. One main surface of the first insulating layer corresponds to the front surface, and the other main surface corresponds to the back surface. Examples of inorganic materials include oxides (eg, Li 2 O, BeO, B 2 O 3 , Na 2 O, MgO, Al 2 O 3 , SiO 2 , P 2 O 5 , CaO, Cr 2 O 3 , Fe. 2 O 3 , ZnO, ZrO 2 , titanium dioxide (eg anatase, rutile or bronze type TiO 2 ), magnesium oxide, silicon oxide, alumina, zirconia, titanium oxide and other IIA-VA groups, transition metals, IIIB, IVB Oxide), zeolite (M 2 / n O, Al 2 O 3 , xSiO 2 , yH 2 O (in the formula, M is a metal atom such as Na, K, Ca and Ba, n is the charge of the metal cation Mn +. The numbers corresponding to, x and y are the number of moles of SiO 2 and H 2 O, 2 ≦ x ≦ 10, 2 ≦ y), nitrides (for example, BN, AlN, Si 3 N 4 and Ba 3 N 2 and the like). ), Silicon carbide (SiC), zircon (ZrSiO 4 ), carbonates (eg MgCO 3 and CaCO 3 etc.), sulfates (eg CaSO 4 and BaSO 4 etc.) and composites thereof (eg a type of porcelain). there, steatite (MgO · SiO 2), forsterite (2MgO · SiO 2) and, cordierite (2MgO · 2Al 2 O 3 · 5SiO 2)), it can be mentioned tungsten oxide or mixtures thereof. oxides As another example, lithium titanium oxide such as lithium titanate having a spinel structure (for example, Li 4 + x Ti 5 O 12 , 0 ≦ x ≦ 3) can be mentioned.
 その他の無機材料の例としては、チタン酸バリウム、チタン酸カルシウム、チタン酸鉛、γ-LiAlO2、LiTiO3、固体電解質又はこれらの混合物を挙げることができる。 Examples of other inorganic materials include barium titanate, calcium titanate, lead titanate, γ-LiAlO 2 , LiTIO 3 , solid electrolytes or mixtures thereof.
 固体電解質の例には、リチウムイオン伝導性が無いまたは低い固体電解質、リチウムイオン伝導性を有する固体電解質が含まれる。リチウムイオン伝導性が無いまたは低い酸化物粒子としては、リチウムアルミニウム酸化物(例えば、LiAlO,LiAlここで0<x≦1)、リチウムシリコン酸化物、リチウムジルコニウム酸化物が挙げられる。 Examples of solid electrolytes include solid electrolytes having no or low lithium ion conductivity, solid electrolytes having lithium ion conductivity. Examples of oxide particles having no or low lithium ion conductivity include lithium aluminum oxide (for example, LiAlO 2 , Li x Al 2 O 3, where 0 <x ≦ 1), lithium silicon oxide, and lithium zirconium oxide. Be done.
 リチウムイオン伝導性を有する固体電解質の例に、ガーネット型構造の酸化物固体電解質が含まれる。ガーネット型構造の酸化物固体電解質は耐還元性が高く、電気化学窓が広い利点がある。ガーネット型構造の酸化物固体電解質の例には、Li5+xLa3-x12(AはCa,Sr及びBaよりなる群から選択される少なくとも一種類の元素、MはNb及び/またはTa、xは0.5以下(0を含む)の範囲が好ましい。),Li2-x12(MはNb及び/またはTa、LはZrを含む、xは0.5以下(0を含む)の範囲が好ましい)、Li7-3xAlLaZr12(xは0.5以下(0を含む)の範囲が好ましい)、LiLaZr12が含まれる。中でも、Li6.25Al0.25LaZr12、Li6.4LaZr1.4Ta0.612、Li6.4LaZr1.6Ta0.612、LiLaZr12は、イオン伝導性が高く、電気化学的に安定なため、放電性能とサイクル寿命性能に優れる。 Examples of solid electrolytes having lithium ion conductivity include oxide solid electrolytes having a garnet-type structure. The garnet-type structure of the oxide solid electrolyte has high reduction resistance and has the advantage of a wide electrochemical window. Examples of solid oxide electrolytes with a garnet-type structure include Li 5 + x A x La 3-x M 2 O 12 (A is at least one element selected from the group consisting of Ca, Sr and Ba, M is Nb and / Or Ta, x is preferably in the range of 0.5 or less (including 0), Li 3 M 2-x L 2 O 12 (M contains Nb and / or Ta, L contains Zr, x is 0 .5 or less (preferably in the range of 0 or less), Li 7-3x Al x La 3 Zr 3 O 12 (x is preferably in the range of 0.5 or less (including 0)), Li 7 La 3 Zr 2 O 12 is included. Among them, Li 6.25 Al 0.25 La 3 Zr 3 O 12 , Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12, Li 6.4 La 3 Zr 1.6 Ta 0.6 O 12 , Li 7 La 3 Zr 2 O 12 has high ionic conductivity and is electrochemically stable, so that it is excellent in discharge performance and cycle life performance.
 また、リチウムイオン伝導性を有する固体電解質の例に、NASICON型構造を有するリチウムリン酸固体電解質が含まれる。NASICON型構造のリチウムリン酸固体電解質の例には、LiM1(PO、ここでM1は、Ti,Ge,Sr,Zr,Sn及びAlよりなる群から選ばれる一種以上の元素、が含まれる。好ましい例として、Li1+xAlGe2-x(PO、Li1+xAlZr2-x(PO、Li1+xAlTi2-x(PO、が挙げられる。ここで、それぞれにおいて、xは0以上0.5以下の範囲が好ましい。また、例示した固体電解質は、それぞれ、イオン伝導性が高く、電気化学的安定性が高い。NASICON型構造を有するリチウムリン酸固体電解質と、ガーネット型構造の酸化物固体電解質の双方をリチウムイオン伝導性を有する固体電解質として使用しても良い。 Further, an example of the solid electrolyte having lithium ion conductivity includes a lithium phosphate solid electrolyte having a NASICON type structure. An example of a lithium phosphate solid electrolyte having a NASICON type structure is LiM1 2 (PO 4 ) 3 , where M1 is one or more elements selected from the group consisting of Ti, Ge, Sr, Zr, Sn and Al. included. Preferred examples include Li 1 + x Al x Ge 2-x (PO 4 ) 3 , Li 1 + x Al x Zr 2-x (PO 4 ) 3 , and Li 1 + x Al x Ti 2-x (PO 4 ) 3 . Here, in each case, x is preferably in the range of 0 or more and 0.5 or less. In addition, each of the illustrated solid electrolytes has high ionic conductivity and high electrochemical stability. Both the lithium phosphate solid electrolyte having a NASICON type structure and the oxide solid electrolyte having a garnet type structure may be used as the solid electrolyte having lithium ion conductivity.
 上記から選択される少なくとも1種類の無機材料を含む第1の絶縁層は、無機材料粒子の集合体からなる多孔質膜である。例えば固体電解質のようにリチウムイオン導電性を有する無機材料は存在するものの、無機材料の多くは電子伝導性が低いか、絶縁性を有する。そのため、第1の絶縁層は、正極と負極を隔てる隔壁として機能し得る。その結果、第1の活物質含有層と、これと第1の絶縁層を介して対向する第2の活物質含有層との導電を抑えることができるため、内部短絡及び自己放電を抑制することができる。 The first insulating layer containing at least one kind of inorganic material selected from the above is a porous film composed of an aggregate of inorganic material particles. Although there are inorganic materials having lithium ion conductivity such as solid electrolytes, most of the inorganic materials have low electron conductivity or insulating properties. Therefore, the first insulating layer can function as a partition wall separating the positive electrode and the negative electrode. As a result, the conductivity between the first active material-containing layer and the second active material-containing layer facing the first active material-containing layer via the first insulating layer can be suppressed, so that internal short circuit and self-discharge can be suppressed. Can be done.
 また、第1の絶縁層は、多孔質の部分に非水電解質を保持することができるため、Liイオンの透過を阻害することはない。 Further, since the first insulating layer can retain the non-aqueous electrolyte in the porous portion, it does not hinder the permeation of Li ions.
 上記種類の無機材料を含む第1の絶縁層は、Liイオン透過性を持ちつつ、高い絶縁性を有する。実用面等を考慮すると、アルミナ、チタン酸化物及びリチウムチタン酸化物よりなる群から選択される少なくとも1種を含む第1の絶縁層が好ましい。ルチル型の二酸化チタン粒子は、凝集し難く、第1の絶縁層中に均一に分散しやすく、好適である。スピネル構造を有するチタン酸リチウム、二酸化チタンは、それぞれ、フッ化水素(HF)に対する耐性に優れ、また、正極での耐酸化性にも優れている。チタン酸化物及び/またはリチウムチタン酸化物を含む第1の絶縁層を、活物質含有層の表面の少なくとも一部に形成すると、後述するロールプレスで用いるロールの摩耗を抑制することができる。 The first insulating layer containing the above-mentioned type of inorganic material has high insulating property while having Li ion permeability. In consideration of practical use, a first insulating layer containing at least one selected from the group consisting of alumina, titanium oxide and lithium titanium oxide is preferable. The rutile-type titanium dioxide particles are suitable because they are difficult to aggregate and easily disperse uniformly in the first insulating layer. Lithium titanate and titanium dioxide having a spinel structure are each excellent in resistance to hydrogen fluoride (HF) and also excellent in oxidation resistance at the positive electrode. When the first insulating layer containing titanium oxide and / or lithium titanium oxide is formed on at least a part of the surface of the active material-containing layer, wear of the roll used in the roll press described later can be suppressed.
 無機材料の形態は、例えば、粒状、繊維状等であり得る。 The form of the inorganic material can be, for example, granular or fibrous.
 無機材料粒子の平均粒径D50は、0.5μm以上2μm以下にすることができる。 The average particle size D50 of the inorganic material particles can be 0.5 μm or more and 2 μm or less.
 第1の絶縁層中の無機材料の含有量は80質量%以上99.9質量%以下の範囲にすることが望ましい。これにより、第1の絶縁層の絶縁性を高くすることができる。 It is desirable that the content of the inorganic material in the first insulating layer is in the range of 80% by mass or more and 99.9% by mass or less. Thereby, the insulating property of the first insulating layer can be improved.
 第1の絶縁層は、バインダーを含み得る。バインダーとして、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、スチレンブタジエンゴム又はこれらの混合物が挙げられる。第1の絶縁層中のバインダーの含有量は0.01質量%以上20質量%以下の範囲にすることが望ましい。 The first insulating layer may contain a binder. Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorinated rubber, styrene-butadiene rubber, or a mixture thereof. The content of the binder in the first insulating layer is preferably in the range of 0.01% by mass or more and 20% by mass or less.
 第1の絶縁層の厚さは1μm以上30μm以下にすることができる。 The thickness of the first insulating layer can be 1 μm or more and 30 μm or less.
 (第2の絶縁層)
 第2の絶縁層は有機繊維を含み得る。第2の絶縁層は、有機繊維を面方向に堆積させた多孔質膜であり得る。第2の絶縁層は、表面及び裏面を有する。第2の絶縁層の一方の主面が表面で、他方の主面が裏面に相当する。第2の絶縁層は、ポリエチレン(polyethylene;PE)、ポリプロピレン(polypropylene;PP)、セルロース、若しくはポリフッ化ビニリデン(polyvinylidene fluoride;PVdF)を含む多孔質フィルム、又は合成樹脂製不織布であってもよい。
(Second insulating layer)
The second insulating layer may contain organic fibers. The second insulating layer can be a porous film in which organic fibers are deposited in the plane direction. The second insulating layer has a front surface and a back surface. One main surface of the second insulating layer corresponds to the front surface, and the other main surface corresponds to the back surface. The second insulating layer may be a porous film containing polyethylene (PE), polypropylene (PP), cellulose, or polyvinylidene fluoride (PVdF), or a non-woven fabric made of synthetic resin.
 有機繊維は、例えば、ポリアミドイミド、ポリアミド、ポリオレフィン、ポリエーテル、ポリイミド、ポリケトン、ポリスルホン、セルロース、ポリビニルアルコール(PVA)及びポリフッ化ビニリデン(PVdF)からなる群から選択される少なくとも1つの有機材料を含む。ポリオレフィンとしては、例えば、ポリプロピレン(PP)およびポリエチレン(PE)などが挙げられる。有機繊維の種類は1種類又は2種類以上にすることができる。好ましいのは、ポリイミド、ポリアミド、ポリアミドイミド、セルロース、PVdF、及びPVAからなる群より選ばれる少なくとも1種類であり、より好ましいのは、ポリイミド、ポリアミド、ポリアミドイミド、セルロース、及びPVdFからなる群より選ばれる少なくとも1種類である。 Organic fibers include, for example, at least one organic material selected from the group consisting of polyamideimide, polyamide, polyolefin, polyether, polyimide, polyketone, polysulfone, cellulose, polyvinyl alcohol (PVA) and polyvinylidene fluoride (PVdF). .. Examples of the polyolefin include polypropylene (PP) and polyethylene (PE). The type of organic fiber may be one type or two or more types. Preferred is at least one selected from the group consisting of polyimide, polyamide, polyamideimide, cellulose, PVdF, and PVA, and more preferred is selected from the group consisting of polyimide, polyamide, polyamideimide, cellulose, and PVdF. At least one type.
 ポリイミドは、250~400℃においても不溶・不融であって分解もしないので、耐熱性に優れた第2の絶縁層を得ることができる。 Since polyimide is insoluble and insoluble even at 250 to 400 ° C. and does not decompose, a second insulating layer having excellent heat resistance can be obtained.
 有機繊維は、長さ1mm以上、平均直径2μm以下であることが好ましく、平均直径1μm以下であることがより好ましい。こうした第2の絶縁層は、十分な強度、気孔率、透気度、孔径、耐電解質性、耐酸化還元性等を有するので、セパレータとして良好に機能する。有機繊維の平均直径は、集束イオンビーム(FIB)装置での観察により測定することができる。また、有機繊維の長さは、FIB装置での観察での測長に基づいて得られる。 The organic fiber preferably has a length of 1 mm or more and an average diameter of 2 μm or less, and more preferably an average diameter of 1 μm or less. Since such a second insulating layer has sufficient strength, porosity, air permeability, pore size, electrolyte resistance, oxidation-reduction resistance, and the like, it functions well as a separator. The average diameter of the organic fibers can be measured by observation with a focused ion beam (FIB) device. In addition, the length of the organic fiber is obtained based on the length measured by observation with a FIB device.
 イオン透過性および電解質保持性の確保が必要であることから、第2の絶縁層を形成している繊維全体の体積の30%以上は、平均直径1μm以下の有機繊維であることが好ましく、350nm以下の有機繊維であることがより好ましく、50nm以下の有機繊維であることが更に好ましい。 Since it is necessary to ensure ion permeability and electrolyte retention, it is preferable that 30% or more of the total volume of the fibers forming the second insulating layer is organic fibers having an average diameter of 1 μm or less, and 350 nm. The following organic fibers are more preferable, and organic fibers having a diameter of 50 nm or less are further preferable.
 また、平均直径1μm以下(より好ましくは350nm以下、さらに好ましくは50nm以下)の有機繊維の体積は、第2の絶縁層を形成している繊維全体の体積の80%以上を占めることがより好ましい。こうした状態は、第2の絶縁層の走査イオン顕微鏡(SIM)観察によって確認することができる。太さ40nm以下の有機繊維が、第2の絶縁層を形成している繊維全体の体積の40%以上を占めることがより好ましい。有機繊維の径が小さいことは、イオンの移動を妨害する影響が小さいことになる。 Further, it is more preferable that the volume of the organic fiber having an average diameter of 1 μm or less (more preferably 350 nm or less, further preferably 50 nm or less) occupies 80% or more of the volume of the entire fiber forming the second insulating layer. .. Such a state can be confirmed by scanning ion microscope (SIM) observation of the second insulating layer. It is more preferable that the organic fibers having a thickness of 40 nm or less occupy 40% or more of the total volume of the fibers forming the second insulating layer. The small diameter of the organic fiber means that the influence of obstructing the movement of ions is small.
 有機繊維の表面及び裏面を含む全表面の少なくとも一部には、カチオン交換基が存在することが好ましい。カチオン交換基によって、セパレータを通過するリチウムイオンなどのイオンの移動が促進されるので、電池の性能が高められる。具体的には、長期にわたって急速充電、急速放電を行なうことが可能となる。カチオン交換基は特に限定されないが、例えばスルホン酸基およびカルボン酸基が挙げられる。カチオン交換基を表面に有する繊維は、例えば、スルホン化された有機材料を用いてエレクトロスピニング法により形成することができる。 It is preferable that a cation exchange group is present on at least a part of the entire surface including the front surface and the back surface of the organic fiber. The cation exchange group promotes the movement of ions such as lithium ions through the separator, thus enhancing the performance of the battery. Specifically, it is possible to perform rapid charging and rapid discharging for a long period of time. The cation exchange group is not particularly limited, and examples thereof include a sulfonic acid group and a carboxylic acid group. Fibers having a cation exchange group on the surface can be formed by, for example, an electrospinning method using a sulfonated organic material.
 第2の絶縁層は空孔を有し、空孔の平均孔径5nm以上10μm以下であることが好ましい。また、気孔率は70%以上90%以下であることが好ましい。こうした空孔を備えていれば、イオンの透過性に優れ、電解質の含浸性も良好なセパレータが得られる。気孔率は、80%以上であることがより好ましい。空孔の平均孔径および気孔率は、水銀圧入法、体積と密度からの算出、SEM観察、SIM観察、ガス脱吸着法によって確認することができる。気孔率は、第2の絶縁層の体積と密度から算出することが望ましい。また、平均孔径は、水銀圧入法かガス吸着法により測定することが望ましい。第2の絶縁層における気孔率が大きいことは、イオンの移動を妨害する影響が小さいことになる。 The second insulating layer has pores, and the average pore diameter of the pores is preferably 5 nm or more and 10 μm or less. The porosity is preferably 70% or more and 90% or less. If such pores are provided, a separator having excellent ion permeability and good electrolyte impregnation can be obtained. The porosity is more preferably 80% or more. The average pore diameter and porosity of the pores can be confirmed by the mercury intrusion method, calculation from volume and density, SEM observation, SIM observation, and gas desorption method. The porosity is preferably calculated from the volume and density of the second insulating layer. Further, it is desirable to measure the average pore size by a mercury intrusion method or a gas adsorption method. A large porosity in the second insulating layer means that the effect of interfering with the movement of ions is small.
 第2の絶縁層の厚さは12μm以下の範囲にすることが望ましい。厚さの下限値は、特に限定されないが、1μmでありえる。 It is desirable that the thickness of the second insulating layer is in the range of 12 μm or less. The lower limit of the thickness is not particularly limited, but may be 1 μm.
 第2の絶縁層においては、含まれる有機繊維を疎の状態とすれば気孔率が高められるので、例えば気孔率が90%程度の層を得るのも困難ではない。そのような気孔率の大きな層を粒子で形成するのは、極めて困難である。 In the second insulating layer, if the contained organic fibers are in a sparse state, the porosity is increased, so that it is not difficult to obtain a layer having a porosity of about 90%, for example. It is extremely difficult to form such a layer with a large porosity with particles.
 第2の絶縁層は、凹凸、割れやすさ、含電解質性、密着性、曲げ特性、気孔率、及びイオン透過性の点で、無機繊維の堆積物より有利である。 The second insulating layer is more advantageous than the deposit of inorganic fibers in terms of unevenness, fragility, electrolyte-containing property, adhesion, bending property, porosity, and ion permeability.
 第2の絶縁層は、有機化合物の粒子を含んでいてもよい。この粒子は、例えば、有機繊維と同じ材料からなる。この粒子は、有機繊維と一体的に形成されていてもよい。 The second insulating layer may contain particles of an organic compound. The particles are made of, for example, the same material as organic fibers. The particles may be formed integrally with the organic fiber.
 第1の絶縁層及び第2の絶縁層の厚さは、JIS規格(JIS B 7503-1997)に準拠した方法で測定される。具体的には、これらの厚さは、接触式デジタルゲージを用いて測定される。石定盤上に資料をのせ、石定盤に固定されたデジタルゲージを使用する。測定端子に先端がφ5.0mmの平型を用い、測定端子を試料の上方1.5mm以上5.0mm未満の距離から近づけ、試料と接触した距離が試料の厚さとなる。 The thickness of the first insulating layer and the second insulating layer is measured by a method conforming to the JIS standard (JIS B 7503-1997). Specifically, these thicknesses are measured using a contact digital gauge. Place the material on the stone surface plate and use the digital gauge fixed to the stone surface plate. A flat type with a tip of φ5.0 mm is used for the measurement terminal, the measurement terminal is brought closer from a distance of 1.5 mm or more and less than 5.0 mm above the sample, and the distance in contact with the sample is the thickness of the sample.
 第2の絶縁層は、例えば、エレクトロスピニング法により形成される。エレクトロスピニング法では、第2の絶縁層の形成対象である、第1の電極または第2の電極をアースしてアース電極とする。第1の電極に形成する場合、第1の絶縁層を形成済みの第1の電極を用意する。 The second insulating layer is formed by, for example, an electrospinning method. In the electrospinning method, the first electrode or the second electrode, which is the object of forming the second insulating layer, is grounded to be a ground electrode. When forming on the first electrode, the first electrode on which the first insulating layer has been formed is prepared.
 紡糸ノズルに印加された電圧により液状の原料(例えば原料溶液)が帯電すると共に、原料溶液からの溶媒の揮発により原料溶液の単位体積当たりの帯電量が増加する。溶媒の揮発とそれに伴う単位体積あたりの帯電量の増加が連続して生じることで、紡糸ノズルから吐出された原料溶液は長手方向に延び、ナノサイズの有機繊維として、アース電極である第1の電極または第2の電極に堆積する。有機繊維とアース電極間には、ノズルとアース電極間の電位差によりクーロン力が生じる。よって、ナノサイズの有機繊維により第1の絶縁層との接触面積を増加させることができ、この有機繊維をクーロン力により第1の電極または第2の電極上に堆積することができるため、第2の絶縁層の電極からの剥離強度を高めることが可能となる。剥離強度は、例えば、溶液濃度、サンプル-ノズル間距離等を調節することにより制御することが可能である。 The voltage applied to the spinning nozzle charges the liquid raw material (for example, the raw material solution), and the volatilization of the solvent from the raw material solution increases the amount of charge per unit volume of the raw material solution. Due to the continuous volatilization of the solvent and the accompanying increase in the amount of charge per unit volume, the raw material solution discharged from the spinning nozzle extends in the longitudinal direction, and as a nano-sized organic fiber, the first ground electrode. Accumulate on the electrode or the second electrode. A Coulomb force is generated between the organic fiber and the ground electrode due to the potential difference between the nozzle and the ground electrode. Therefore, the contact area with the first insulating layer can be increased by the nano-sized organic fiber, and the organic fiber can be deposited on the first electrode or the second electrode by the Coulomb force. It is possible to increase the peel strength of the insulating layer 2 from the electrode. The peel strength can be controlled by adjusting, for example, the solution concentration, the distance between the sample and the nozzle, and the like.
 なお、第1,第2の集電タブに第2の絶縁層を形成しない場合、第1,第2の集電タブをマスクしてから第2の絶縁層を形成すると良い。この例を図18に示す。図18は、第2の電極に第2の絶縁層を形成する工程を示す斜視図である。図18に示す通り、第2の絶縁層5は、ノズルNから吐出される原料溶液が第2の活物質含有層2b及び第2の集電タブ2c上に、有機繊維として堆積することで直接形成される。第2の集電タブ2cの一辺及びその近傍がマスクMで被覆されている。そのため、第2の絶縁層5は、第2の活物質含有層2bの表面と、第2の集電タブ2c表面における第2の活物質含有層2bと隣接する部分に跨がるように堆積された有機繊維を含む多孔質膜となる。 When the second insulating layer is not formed on the first and second current collecting tabs, it is preferable to mask the first and second current collecting tabs before forming the second insulating layer. An example of this is shown in FIG. FIG. 18 is a perspective view showing a step of forming a second insulating layer on the second electrode. As shown in FIG. 18, the second insulating layer 5 is directly formed by depositing the raw material solution discharged from the nozzle N on the second active material-containing layer 2b and the second current collecting tab 2c as organic fibers. It is formed. One side of the second current collecting tab 2c and its vicinity are covered with the mask M. Therefore, the second insulating layer 5 is deposited so as to straddle the surface of the second active material-containing layer 2b and the portion of the surface of the second current collecting tab 2c adjacent to the second active material-containing layer 2b. It becomes a porous film containing the organic fibers.
 エレクトロスピニング法を用いることによって、第2の絶縁層を電極表面に容易に形成することができる。エレクトロスピニング法は、原理的には連続した1本の繊維を形成するので、曲げによる破断、膜の割れへの耐性を薄膜で確保できる。第2の絶縁層を構成する有機繊維が継ぎ目のない連続したものであることは、第2の絶縁層のほつれや一部欠損の確率が低く、自己放電の抑制の点で有利である。 By using the electrospinning method, a second insulating layer can be easily formed on the electrode surface. In principle, the electrospinning method forms a single continuous fiber, so that the thin film can ensure resistance to breakage due to bending and cracking of the film. The fact that the organic fibers constituting the second insulating layer are seamless and continuous is advantageous in terms of suppressing self-discharge because the probability of fraying or partial loss of the second insulating layer is low.
 エレクトロスピニングに用いられる液状の原料には、例えば、有機材料を溶媒に溶解して調製された原料溶液が用いられる。有機材料の例は、有機繊維を構成する有機材料で挙げたものと同様なものを挙げることができる。有機材料は、例えば5~60質量%程度の濃度で溶媒に溶解して用いられる。有機材料を溶解する溶媒は特に限定されず、ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、N,N‘ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)、水、アルコール類等、任意の溶媒を用いることができる。また、溶解性の低い有機材料に対しては、レーザー等でシート状の有機材料を溶融しながらエレクトロスピニングする。加えて、高沸点有機溶剤と低融点の溶剤とを混合することも許容される。 As the liquid raw material used for electrospinning, for example, a raw material solution prepared by dissolving an organic material in a solvent is used. Examples of organic materials include those similar to those mentioned for organic materials constituting organic fibers. The organic material is used by being dissolved in a solvent at a concentration of, for example, about 5 to 60% by mass. The solvent for dissolving the organic material is not particularly limited, and any solvent such as dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), N, N'dimethylformamide (DMF), N-methylpyrrolidone (NMP), water, alcohols and the like can be used. A solvent can be used. For organic materials with low solubility, electrospinning is performed while melting the sheet-shaped organic material with a laser or the like. In addition, it is permissible to mix a high boiling organic solvent with a low melting point solvent.
 高圧発生器を用いて紡糸ノズルに電圧を印加しつつ、紡糸ノズルから所定の電極の表面にわたって原料を吐出することによって、第2の絶縁層が形成される。印加電圧は、溶媒・溶質種、溶媒の沸点・蒸気圧曲線、溶液濃度、温度、ノズル形状、サンプル-ノズル間距離等に応じて適宜決定され、例えばノズルとワーク間の電位差を0.1~100kVとすることができる。原料の供給速度もまた、溶液濃度、溶液粘度、温度、圧力、印加電圧、ノズル形状等に応じて適宜決定される。シリンジタイプの場合には、例えば、1ノズルあたり0.1~500μl/min程度とすることができる。また、多ノズルやスリットの場合には、その開口面積に応じて供給速度を決定すればよい。 A second insulating layer is formed by discharging the raw material from the spinning nozzle over the surface of a predetermined electrode while applying a voltage to the spinning nozzle using a high voltage generator. The applied voltage is appropriately determined according to the solvent / solute species, the boiling point / vapor pressure curve of the solvent, the solution concentration, the temperature, the nozzle shape, the distance between the sample and the nozzle, etc. For example, the potential difference between the nozzle and the work is 0.1 to 1. It can be 100 kV. The supply rate of the raw material is also appropriately determined according to the solution concentration, solution viscosity, temperature, pressure, applied voltage, nozzle shape and the like. In the case of the syringe type, for example, it can be about 0.1 to 500 μl / min per nozzle. Further, in the case of a multi-nozzle or a slit, the supply speed may be determined according to the opening area.
 有機繊維が乾燥状態で電極の表面に直接形成されるので、電極内部に原料に含まれる溶媒が浸み込むことは実質的に避けられる。電極内部の溶媒残留量は、ppmレベル以下と極めて低いものとなる。電極内部の残留溶媒は、酸化還元反応を生じて電池のロスを引き起こし、電池性能の低下につながる。本実施形態によれば、こうした不都合が生じるおそれは極力低減されることから、電池の性能を高めることができる。 Since the organic fibers are formed directly on the surface of the electrode in a dry state, it is substantially avoided that the solvent contained in the raw material penetrates into the electrode. The residual amount of solvent inside the electrode is as low as ppm level or less. The residual solvent inside the electrode causes a redox reaction and causes a loss of the battery, which leads to a decrease in battery performance. According to the present embodiment, the possibility of such inconvenience occurring is reduced as much as possible, so that the performance of the battery can be improved.
 実施形態に係る電極、及び、積層体の製造方法を以下に説明する。 The method of manufacturing the electrodes and the laminate according to the embodiment will be described below.
 (第1の製造方法)
 第1の集電体の表面及び裏面のうちの少なくとも一方に、第1の活物質を含むスラリー(以下、スラリーIとする)と、無機材料を含むスラリー(以下、スラリーIIとする)を同時に塗工する。塗工工程の一例を図19及び図22に示す。この塗工例によると、例えば、図9を参照しながら説明した第1の電極を製造することができる。
(First manufacturing method)
A slurry containing the first active material (hereinafter referred to as slurry I) and a slurry containing an inorganic material (hereinafter referred to as slurry II) are simultaneously placed on at least one of the front surface and the back surface of the first current collector. Paint. An example of the coating process is shown in FIGS. 19 and 22. According to this coating example, for example, the first electrode described with reference to FIG. 9 can be manufactured.
 塗工装置30は、スラリーIを収容するタンク32と、スラリーIIを収容するタンク33とを備え、基材にスラリーI及びスラリーIIを同時に塗布する構成になっている。スラリーIの吐出口における塗工方向と直交する幅は、活物質含有層の塗工幅と対応している。また、スラリーIの吐出口における塗工方向と直交する幅は、第1の絶縁層の塗工幅と対応している。所定の寸法に裁断される前の長尺状の第1の集電体1aを、搬送ローラ31によって、塗工装置30のスラリー吐出口に搬送する。図22において、スラリーI吐出口32aは、スラリーII吐出口33aよりも集電体の上流側に位置している。スラリーI吐出口32aの塗工方向と直交する幅は、スラリーII吐出口33aの塗工方向と直交する幅よりも狭くなっている。塗工装置30から第1の集電体1a上に、短辺方向の両端部を除き、スラリーIが塗布される。これとほぼ同時期に、スラリーIIがスラリーIの塗布領域からはみ出すように重ね塗りされる。次いで、スラリーを乾燥させた後、第1の集電体1aを乾燥後のスラリーと共に打ち抜くことにより、第1の集電体1aの一側面の少なくとも一部(図9の場合、一側面の複数個所)から突出した複数の第1の集電タブ1cを形成する。打ち抜かれたものにロールプレスを施し、所定のサイズに裁断して第1の電極を得る。なお、第1の集電タブ1cの形成は、第1の集電体1aからダイス等を用いて打ち抜く代わりに、レーザで第1の集電体1aを目的形状に裁断しても良い。 The coating device 30 includes a tank 32 for accommodating the slurry I and a tank 33 for accommodating the slurry II, and is configured to simultaneously apply the slurry I and the slurry II to the base material. The width orthogonal to the coating direction at the discharge port of the slurry I corresponds to the coating width of the active material-containing layer. Further, the width orthogonal to the coating direction at the discharge port of the slurry I corresponds to the coating width of the first insulating layer. The long first current collector 1a before being cut to a predetermined size is conveyed to the slurry discharge port of the coating device 30 by the transfer roller 31. In FIG. 22, the slurry I discharge port 32a is located on the upstream side of the current collector with respect to the slurry II discharge port 33a. The width orthogonal to the coating direction of the slurry I discharge port 32a is narrower than the width orthogonal to the coating direction of the slurry II discharge port 33a. Slurry I is applied from the coating device 30 onto the first current collector 1a except for both ends in the short side direction. At about the same time, the slurry II is overcoated so as to protrude from the coating area of the slurry I. Next, after the slurry is dried, the first current collector 1a is punched out together with the dried slurry, so that at least a part of one side surface of the first current collector 1a (in the case of FIG. 9, a plurality of one side surface). A plurality of first current collecting tabs 1c protruding from the locations) are formed. The punched material is roll-pressed and cut to a predetermined size to obtain a first electrode. The first current collector tab 1c may be formed by cutting the first current collector 1a into a target shape with a laser instead of punching the first current collector 1a from the first current collector 1a using a die or the like.
 なお、スラリーII吐出口33aの配置を変更することにより、第1の活物質含有層の第1端面と第1の集電タブの表面のうちの第1端面と隣接する部分のみを第1の絶縁層で被覆することができる。この例を図23に示す。この塗工例によると、例えば、図1又は図2を参照しながら説明した第1の電極を製造することができる。 By changing the arrangement of the slurry II discharge port 33a, only the portion of the surface of the first active material-containing layer and the surface of the first current collecting tab that is adjacent to the first end surface is the first. It can be coated with an insulating layer. An example of this is shown in FIG. According to this coating example, for example, the first electrode described with reference to FIG. 1 or FIG. 2 can be manufactured.
 図23に示す通り、スラリーII吐出口33aは、スラリーI吐出口32aの塗工方向と直交する方向の一端部上に配置されている。塗工装置30から第1の集電体1a上に、短辺方向の両端部を除き、スラリーIが塗布される。これとほぼ同時期に、スラリーIIがスラリーIの塗布領域1bの塗工方向の一辺及びこれと隣接する第1の集電体1a表面上に重ね塗りされる。次いで、スラリーを乾燥させた後、第1の集電体1aを乾燥後のスラリーと共に打ち抜くことにより、第1の集電体1aの一側面の少なくとも一部(図1,2の場合、一側面の複数個所)から突出した複数の第1の集電タブ1cを形成する。打ち抜かれたものにロールプレスを施し、所定のサイズに裁断して第1の電極を得る。なお、第1の集電タブ1cの形成は、第1の集電体1aからダイス等を用いて打ち抜く代わりに、レーザで第1の集電体1aを目的形状に裁断しても良い。 As shown in FIG. 23, the slurry II discharge port 33a is arranged on one end in a direction orthogonal to the coating direction of the slurry I discharge port 32a. Slurry I is applied from the coating device 30 onto the first current collector 1a except for both ends in the short side direction. At about the same time, the slurry II is overcoated on one side of the coating region 1b of the slurry I in the coating direction and on the surface of the first current collector 1a adjacent thereto. Next, after the slurry is dried, at least a part of one side surface of the first current collector 1a (one side surface in the case of FIGS. 1 and 2) is punched out together with the dried slurry. A plurality of first current collecting tabs 1c protruding from the plurality of places) are formed. The punched material is roll-pressed and cut to a predetermined size to obtain a first electrode. The first current collector tab 1c may be formed by cutting the first current collector 1a into a target shape with a laser instead of punching the first current collector 1a from the first current collector 1a using a die or the like.
 一方、第2の集電体に第2の活物質を含むスラリーを塗布した後、スラリーを乾燥させ、乾燥後のものにロールプレスを施し、所定のサイズに裁断して第2の電極を得る。第2の電極にエレクトロスピニング法により第2の絶縁層を形成する。次いで、プレスを施しても良い。プレス方法としては、ロールプレスでもよく、平板プレスでもよい。 On the other hand, after applying the slurry containing the second active material to the second current collector, the slurry is dried, and the dried one is roll-pressed and cut to a predetermined size to obtain a second electrode. .. A second insulating layer is formed on the second electrode by an electrospinning method. Then, a press may be applied. The pressing method may be a roll press or a flat plate press.
 第2の集電タブは、例えば、次の方法により得られる。第1方法として、予め第2の集電タブを有する第2の集電体を用い、これにスラリーの塗布、乾燥等の必要な処理を施して第2の電極を得る。第2方法として、裁断工程において、第2の集電体を目的形状に裁断して第2の集電タブを得る。第3方法として、エレクトロスピニング法により第2の絶縁層を形成後、第2の集電体を目的形状に裁断して第2の集電タブを得る。裁断は、例えば、ダイス等を用いての打ち抜き、レーザによる切断などにより行われる。 The second current collecting tab can be obtained by, for example, the following method. As a first method, a second current collector having a second current collector tab is used in advance, and necessary treatments such as application of slurry and drying are applied to the second current collector to obtain a second electrode. As a second method, in the cutting step, the second current collector is cut into a target shape to obtain a second current collector tab. As a third method, after forming the second insulating layer by the electrospinning method, the second current collector is cut into a target shape to obtain a second current collector tab. Cutting is performed, for example, by punching with a die or the like, cutting with a laser, or the like.
 第1の電極と第2の電極とを、第1の活物質含有層及び第2の活物質含有層とが第2の絶縁層及び/または第1の絶縁層を介して対向するように積層して実施形態の積層体を得る。 The first electrode and the second electrode are laminated so that the first active material-containing layer and the second active material-containing layer face each other via the second insulating layer and / or the first insulating layer. To obtain the laminate of the embodiment.
 (第2の製造方法)
 第1の製造方法により作製した第1の電極に、エレクトロスピニング法により第2の絶縁層を形成する。次いで、プレスを施しても良い。
(Second manufacturing method)
A second insulating layer is formed on the first electrode produced by the first manufacturing method by an electrospinning method. Then, a press may be applied.
 一方、第2の集電体に第2の活物質を含むスラリーを塗布した後、スラリーを乾燥させ、乾燥後のものにロールプレスを施し、所定のサイズに裁断して第2の電極を得る。 On the other hand, after applying the slurry containing the second active material to the second current collector, the slurry is dried, and the dried one is roll-pressed and cut to a predetermined size to obtain a second electrode. ..
 第1の電極と第2の電極とを、第1の活物質含有層及び第2の活物質含有層とが第2の絶縁層及び/または第1の絶縁層を介して対向するように積層して実施形態の積層体を得る。 The first electrode and the second electrode are laminated so that the first active material-containing layer and the second active material-containing layer face each other via the second insulating layer and / or the first insulating layer. To obtain the laminate of the embodiment.
 第1又は第2の製造方法で得られた積層体をそのまま電極群として用いても、複数の積層体を積み重ねたものを電極群として用いても、一組または複数の積層体を渦巻き状に捲回したものを電極群として用いても良い。なお、電極群に、プレスを施しても良い。 Whether the laminate obtained by the first or second manufacturing method is used as it is as an electrode group or a stack of a plurality of laminates is used as an electrode group, one set or a plurality of laminates are spirally formed. The wound one may be used as an electrode group. The electrode group may be pressed.
 上記では、第1の絶縁層及び/または第2の絶縁層をセパレータとして用いる例を説明したが、これに限られない。第1,第2の絶縁層以外の絶縁性膜をセパレータとして使用しても良い。複数種類を組合わせたものをセパレータとしても良い。絶縁性膜の例には、合成樹脂製不織布、ポリエチレン製多孔質フィルムやポリプロピレン製多孔質フィルムを一例とするポリオレフィン製多孔質フィルム、およびセルロース系のセパレータが含まれる。また、これらの材料を複合したセパレータ、例えば、ポリオレフィン製多孔質フィルムとセルロースとからなるセパレータを用いることができる。絶縁性膜は、多孔質構造を有することが好ましい。 In the above, an example in which the first insulating layer and / or the second insulating layer is used as a separator has been described, but the present invention is not limited to this. An insulating film other than the first and second insulating layers may be used as the separator. A combination of a plurality of types may be used as a separator. Examples of the insulating film include synthetic resin non-woven fabrics, polyethylene porous films, polyolefin porous films such as polypropylene porous films, and cellulosic separators. Further, a separator in which these materials are combined, for example, a separator made of a porous polyolefin film and cellulose can be used. The insulating membrane preferably has a porous structure.
 以上説明した第1の実施形態の電極によれば、無機材料を含む第1の絶縁層が、少なくとも、第1の活物質含有層の第1端面の少なくとも一部と、第1の集電タブの表面及び裏面のうちの第1端面と隣接する部分とを被覆している。それ故、高容量を得るために、当該電極及び対極としての第2の電極を渦巻き状に捲回することにより電極群(積層体)を作製する際に、第2の電極が含む第2の集電体または第2の集電タブの端面がバリを有していたとしても、このバリが第1の電極の第1の集電タブに接触することを抑制することができる。 According to the electrode of the first embodiment described above, the first insulating layer containing the inorganic material is at least a part of the first end surface of the first active material-containing layer and the first current collecting tab. It covers the first end surface and the adjacent portion of the front surface and the back surface of the above. Therefore, in order to obtain a high capacity, when the electrode group (laminated body) is produced by winding the electrode and the second electrode as the counter electrode in a spiral shape, the second electrode included in the second electrode is included. Even if the end face of the current collector or the second current collector tab has burrs, it is possible to prevent the burrs from coming into contact with the first current collector tab of the first electrode.
 また、第2の実施形態に係る積層体は、第1の実施形態に係る電極を含むため、内部短絡の発生を抑制して高容量な電池を実現することができる。 Further, since the laminate according to the second embodiment includes the electrodes according to the first embodiment, it is possible to suppress the occurrence of an internal short circuit and realize a high-capacity battery.
 (第3の実施形態)
 第3の実施形態の二次電池は、第2の実施形態の積層体を含む。二次電池は、電解質と、電解質及び積層体を収容可能な外装部材とをさらに含んでいても良い。
(Third Embodiment)
The secondary battery of the third embodiment includes the laminate of the second embodiment. The secondary battery may further include an electrolyte and an exterior member capable of accommodating the electrolyte and the laminate.
 複数の積層体を、第1の活物質含有層と第2の活物質含有層との間にセパレータが位置するように積層したものを電極群として二次電池に使用しても良い。電極群の形状は、この形状に限られず、一以上の積層体を渦巻きあるいは扁平の渦巻状に捲回したものを電極群として使用しても良い。セパレータの例には、第1,第2の絶縁層、第1,第2の絶縁層以外の絶縁性膜が含まれる。複数種類を組合わせたものをセパレータとしても良い。絶縁性膜の例は、前述した通りである。 A plurality of laminates laminated so that a separator is located between the first active material-containing layer and the second active material-containing layer may be used as an electrode group in a secondary battery. The shape of the electrode group is not limited to this shape, and one or more laminated bodies wound in a spiral or flat spiral shape may be used as the electrode group. Examples of the separator include an insulating film other than the first and second insulating layers and the first and second insulating layers. A combination of a plurality of types may be used as a separator. Examples of the insulating film are as described above.
 二次電池は、第1の集電タブと電気的に接続される第1の電極端子と、第2の集電タブと電気的に接続される第2の電極端子とをさらに備えることも可能である。 The secondary battery may further include a first electrode terminal that is electrically connected to the first current collecting tab and a second electrode terminal that is electrically connected to the second current collecting tab. Is.
 電解質としては、例えば、非水電解質が用いられる。非水電解質としては、電解質を有機溶媒に溶解することにより調整される液状非水電解質、液状電解質と高分子材料を複合化したゲル状非水電解質等が挙げられる。液状非水電解質は、例えば電解質を0.5mol/L以上、2.5mol/L以下の濃度で有機溶媒に溶解することによって、調製することができる。 As the electrolyte, for example, a non-aqueous electrolyte is used. Examples of the non-aqueous electrolyte include a liquid non-aqueous electrolyte prepared by dissolving the electrolyte in an organic solvent, a gel-like non-aqueous electrolyte in which a liquid electrolyte and a polymer material are combined, and the like. The liquid non-aqueous electrolyte can be prepared, for example, by dissolving the electrolyte in an organic solvent at a concentration of 0.5 mol / L or more and 2.5 mol / L or less.
 電解質としては、例えば、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CF3SO22]等のリチウム塩、あるいはこれらの混合物を挙げることができる。高電位でも酸化し難いものであることが好ましく、LiPF6が最も好ましい。 Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium arsenic hexafluorophosphate (LiAsF 6 ), and trifluorometh. Lithium salts such as lithium sulfonate (LiCF 3 SO 3 ), bistrifluoromethylsulfonylimide lithium [LiN (CF 3 SO 2 ) 2 ], or mixtures thereof can be mentioned. It is preferable that it is hard to oxidize even at a high potential, and LiPF 6 is most preferable.
 有機溶媒としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ビニレンカーボネート等の環状カーボネートや、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)等の鎖状カーボネートや、テトラヒドロフラン(THF)、2メチルテトラヒドロフラン(2MeTHF)、ジオキソラン(DOX)等の環状エーテルや、ジメトキシエタン(DME)、ジエトキシエタン(DEE)等の鎖状エーテルや、γ-ブチロラクトン(GBL)、アセトニトリル(AN)、およびスルホラン(SL)等が挙げられる。こうした有機溶媒は、単独でも2種以上の混合物として用いてもよい。 Examples of the organic solvent include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC) and vinylene carbonate, and chain carbonates such as diethyl carbonate (DEC), dimethyl carbonate (DMC) and methyl ethyl carbonate (MEC). , Cyclic ethers such as tetrahydrofuran (THF), dimethyltetrahydrofuran (2MeTHF), dioxolane (DOX), chain ethers such as dimethoxyethane (DME) and diethoxyethane (DEE), γ-butyrolactone (GBL), Examples thereof include acetonitrile (AN) and sulfolane (SL). Such an organic solvent may be used alone or as a mixture of two or more kinds.
 高分子材料としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリアクリロニトリル(PAN)、ポリエチレンオキサイド(PEO)等を挙げることができる。 Examples of the polymer material include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyethylene oxide (PEO) and the like.
 なお、非水電解質として、リチウムイオンを含有した常温溶融塩(イオン性融体)、高分子固体電解質、無機固体電解質等を用いてもよい。 As the non-aqueous electrolyte, a room temperature molten salt (ionic melt) containing lithium ions, a polymer solid electrolyte, an inorganic solid electrolyte, or the like may be used.
 外装部材としては、例えば、金属製容器、又はラミネートフィルム製容器などを用いることができる。 As the exterior member, for example, a metal container, a laminated film container, or the like can be used.
 二次電池の形態は、特に限定されず、例えば、円筒型、扁平型、薄型、角型、コイン型等の様々な形態にすることができる。 The form of the secondary battery is not particularly limited, and can be, for example, various forms such as a cylindrical type, a flat type, a thin type, a square type, and a coin type.
 図20は、実施形態に係る二次電池の一例を示す部分切欠斜視図である。図20は、外装部材としてラミネートフィルムを用いた二次電池の一例を示す図である。図20に示す二次電池10は、ラミネートフィルム製の外装部材20と、電極群12と、第1の電極端子13と、第2の電極端子14と、非水電解質(図示しない)とを含む。電極群12は、実施形態の積層体を複数含み、第1の電極と第2の電極とがセパレータを介して積層された構造を有する。非水電解質(図示しない)は、電極群12に保持あるいは含浸されている。第1の電極端子13には、第1の電極の第1の集電タブが電気的に接続されている。第2の電極端子14には、第2の電極の第2の集電タブが電気的に接続されている。図12に示すように、第1の電極端子13と第2の電極端子14とは、互いに距離を隔てた状態でそれぞれの先端が外装部材11の一辺から外部に突出している。 FIG. 20 is a partially cutaway perspective view showing an example of the secondary battery according to the embodiment. FIG. 20 is a diagram showing an example of a secondary battery using a laminated film as an exterior member. The secondary battery 10 shown in FIG. 20 includes an exterior member 20 made of a laminated film, an electrode group 12, a first electrode terminal 13, a second electrode terminal 14, and a non-aqueous electrolyte (not shown). .. The electrode group 12 includes a plurality of laminated bodies of the embodiment, and has a structure in which the first electrode and the second electrode are laminated via a separator. A non-aqueous electrolyte (not shown) is retained or impregnated in the electrode group 12. The first current collecting tab of the first electrode is electrically connected to the first electrode terminal 13. The second current collecting tab of the second electrode is electrically connected to the second electrode terminal 14. As shown in FIG. 12, the tips of the first electrode terminal 13 and the second electrode terminal 14 project outward from one side of the exterior member 11 in a state where they are separated from each other.
 図21は、実施形態に係る二次電池の他の例を示す概略断面図である。より詳細には、図21は、第1の集電体1aから第1の集電体1cが延出されている方向に沿って切断することで得られる断面である。図21に示す二次電池10は、外装部材11と、複数の第1の電極1及び複数の第2の電極2とが交互に積層されてなる電極群12とを具備する。電極群12は、外装部材11内に収納されている。 FIG. 21 is a schematic cross-sectional view showing another example of the secondary battery according to the embodiment. More specifically, FIG. 21 is a cross section obtained by cutting the first current collector 1a to the first current collector 1c along the extending direction. The secondary battery 10 shown in FIG. 21 includes an exterior member 11, and an electrode group 12 in which a plurality of first electrodes 1 and a plurality of second electrodes 2 are alternately laminated. The electrode group 12 is housed in the exterior member 11.
 外装部材11は、2つの樹脂層とこれらの間に介在した金属層とを含むラミネートフィルムからなる袋状外装部材である。 The exterior member 11 is a bag-shaped exterior member made of a laminated film containing two resin layers and a metal layer interposed between them.
 電極群12は、図21に示すように、積層型の電極群である。積層型の電極群12は、第2の実施形態に係る積層体の態様の一例である。ここでは、第2の電極2は負極2とみなし、第1の電極1は正極1とみなす。 As shown in FIG. 21, the electrode group 12 is a laminated electrode group. The laminated electrode group 12 is an example of the aspect of the laminated body according to the second embodiment. Here, the second electrode 2 is regarded as the negative electrode 2, and the first electrode 1 is regarded as the positive electrode 1.
 電極群12は、複数の負極2を含んでいる。複数の負極2は、それぞれが、負極集電体2aと、負極集電体2aの両面に担持された負極活物質含有層2bとを備えている。各負極2の負極集電体2aは、その一辺において何れの表面にも負極活物質含有層2bが担持されていない部分2cを含む。部分2cは、負極集電タブ2cとして機能する。各負極2は、図3を参照しながら説明した第2の絶縁層5を備えている。各負極2から延出する複数の負極集電タブ2cは、帯状の負極端子24に電気的に接続されている。帯状の負極端子24の先端は、外装部材11の外部に引き出されている。 The electrode group 12 includes a plurality of negative electrodes 2. Each of the plurality of negative electrodes 2 includes a negative electrode current collector 2a and a negative electrode active material-containing layer 2b supported on both sides of the negative electrode current collector 2a. The negative electrode current collector 2a of each negative electrode 2 includes a portion 2c on which the negative electrode active material-containing layer 2b is not supported on any surface on one side thereof. The portion 2c functions as a negative electrode current collecting tab 2c. Each negative electrode 2 includes a second insulating layer 5 described with reference to FIG. A plurality of negative electrode current collecting tabs 2c extending from each negative electrode 2 are electrically connected to a band-shaped negative electrode terminal 24. The tip of the strip-shaped negative electrode terminal 24 is pulled out to the outside of the exterior member 11.
 また、電極群12は、複数の正極1を含んでいる。複数の正極1は、それぞれが、正極集電体1aと、正極集電体1aの両面に担持された正極活物質含有層1bとを備えている。正極活物質含有層1bは、正極集電体1aの表面の全面及び裏面の全面に設けられている。 Further, the electrode group 12 includes a plurality of positive electrodes 1. Each of the plurality of positive electrodes 1 includes a positive electrode current collector 1a and a positive electrode active material-containing layer 1b supported on both surfaces of the positive electrode current collector 1a. The positive electrode active material-containing layer 1b is provided on the entire front surface and the entire back surface of the positive electrode current collector 1a.
 各正極1の正極集電体1aは、その一辺において何れの表面にも正極活物質含有層1bが担持されていない部分1cを含む。部分1cは、正極集電タブ1cとして機能する。正極集電タブ1cは、負極集電タブ2cが延出する方向とは反対側に向かって延出している。正極活物質含有層1bは、正極集電タブ1cと隣接する第1端面を有している。正極集電タブ1c上の表面及び裏面において、正極活物質含有層1bが有する第1端面と、この端面に隣接する部分には第1の絶縁層4が担持されている。それ故、負極集電体2aの端面の一部がバリを有していたとしても、このバリが第2の絶縁層5を突き破って第1の集電タブ1cと接触するのを抑制することができる。 The positive electrode current collector 1a of each positive electrode 1 includes a portion 1c on which the positive electrode active material-containing layer 1b is not supported on any surface on one side thereof. The portion 1c functions as a positive electrode current collecting tab 1c. The positive electrode current collecting tab 1c extends in the direction opposite to the direction in which the negative electrode current collecting tab 2c extends. The positive electrode active material-containing layer 1b has a first end surface adjacent to the positive electrode current collecting tab 1c. On the front surface and the back surface on the positive electrode current collecting tab 1c, the first end surface of the positive electrode active material-containing layer 1b and the portion adjacent to the end surface are supported by the first insulating layer 4. Therefore, even if a part of the end face of the negative electrode current collector 2a has burrs, it is possible to prevent the burrs from penetrating the second insulating layer 5 and coming into contact with the first current collector tab 1c. Can be done.
 以上説明した第3の実施形態の二次電池によれば、第2の実施形態の積層体を含むため、高容量化の妨げとなる内部短絡を抑制して容量及び寿命性能に優れた二次電池を提供することができる。 According to the secondary battery of the third embodiment described above, since the laminated body of the second embodiment is included, the secondary battery excellent in capacity and life performance by suppressing an internal short circuit which hinders the increase in capacity. Batteries can be provided.
 第1の電極を正極、第2の電極を負極とした非水電解質電池を以下の方法で作製した。 A non-aqueous electrolyte battery having the first electrode as the positive electrode and the second electrode as the negative electrode was produced by the following method.
 (実施例1)
 正極が含む第1の絶縁層としての絶縁性無機材料層、負極が含む第2の絶縁層としてのナノファイバ層を以下の方法で作製した。
(Example 1)
An insulating inorganic material layer as a first insulating layer included in the positive electrode and a nanofiber layer as a second insulating layer included in the negative electrode were produced by the following methods.
 正極活物質としてLiNi0.33Co0.33Mn0.33粒子、導電剤としてカーボンブラック、バインダーとしてポリフッ化ビニリデン(PVdF)を用意した。これらを、90:5:5の質量比で混合して混合物を得た。次に、得られた混合物をn-メチルピロリドン(NMP)溶媒中に分散して正極スラリーを調製した。 LiNi 0.33 Co 0.33 Mn 0.33 O 2 particles were prepared as the positive electrode active material, carbon black was prepared as the conductive agent, and polyvinylidene fluoride (PVdF) was prepared as the binder. These were mixed at a mass ratio of 90: 5: 5 to obtain a mixture. Next, the obtained mixture was dispersed in an n-methylpyrrolidone (NMP) solvent to prepare a positive electrode slurry.
 絶縁性無機材料として平均粒径が1μmのAl粒子とPVdFを用意した。これらを、100:4の質量比で混合して混合物を得た。次に、得られた混合物をNMPに分散してアルミナ含有スラリーを調製した。 Al 2 O 3 particles having an average particle size of 1 μm and PVdF were prepared as insulating inorganic materials. These were mixed at a mass ratio of 100: 4 to obtain a mixture. Next, the obtained mixture was dispersed in NMP to prepare an alumina-containing slurry.
 次に、図23を参照しながら説明した塗工方法により、以下の通り第1の電極を作製した。まず、厚さ15μmのアルミニウム箔上に正極スラリーを塗布した。これとほぼ同時期に、アルミナ含有スラリーを、正極スラリーの塗布領域の塗工方向の一辺及びこれと隣接するアルミニウム箔表面上に平行して塗布した。次いで、正極スラリー及びアルミナ含有スラリーを乾燥させて正極活物質含有層及び絶縁性無機材料層を形成した。これをアルミニウム箔の両面で行った。その後、ロールプレスを施した後に金型で打ち抜き、集電体の一側面の複数個所から突出した複数の集電タブを備える第1の電極を得た。得られた第1の電極は、図2を参照しながら説明した構造を有していた。即ち、絶縁性無機材料層は、正極活物質含有層の端面と、複数の集電タブの表面及び裏面のそれぞれにおいて、当該端面と隣接する部分とを被覆していた。 Next, the first electrode was produced as follows by the coating method described with reference to FIG. 23. First, the positive electrode slurry was applied onto an aluminum foil having a thickness of 15 μm. At about the same time, the alumina-containing slurry was applied in parallel on one side of the coating area of the positive electrode slurry in the coating direction and on the surface of the aluminum foil adjacent thereto. Next, the positive electrode slurry and the alumina-containing slurry were dried to form a positive electrode active material-containing layer and an insulating inorganic material layer. This was done on both sides of the aluminum foil. Then, after performing a roll press, it was punched out with a die to obtain a first electrode having a plurality of current collector tabs protruding from a plurality of locations on one side surface of the current collector. The obtained first electrode had the structure described with reference to FIG. That is, the insulating inorganic material layer covered the end face of the positive electrode active material-containing layer and the portions adjacent to the end face on each of the front and back surfaces of the plurality of current collector tabs.
 正極活物質含有層それぞれの厚さは20μm、正極活物質含有層からはみ出してアルミニウム箔上に形成された絶縁性無機材料層の厚さは、20μmであった。 The thickness of each of the positive electrode active material-containing layers was 20 μm, and the thickness of the insulating inorganic material layer formed on the aluminum foil protruding from the positive electrode active material-containing layer was 20 μm.
 負極活物質として一次粒子の平均粒径が0.5μmのチタン酸リチウム粒子と、導電剤としてカーボンブラック、バインダーとしてポリフッ化ビニリデンを用意した。これらを、90:5:5の質量比で混合して混合物を得た。得られた混合物をn-メチルピロリドン(NMP)溶媒中に分散して、スラリーを調製した。 Lithium titanate particles having an average primary particle size of 0.5 μm were prepared as the negative electrode active material, carbon black was prepared as the conductive agent, and polyvinylidene fluoride was prepared as the binder. These were mixed at a mass ratio of 90: 5: 5 to obtain a mixture. The resulting mixture was dispersed in an n-methylpyrrolidone (NMP) solvent to prepare a slurry.
 得られたスラリーを、厚さ15μmのアルミニウム箔の両面に塗布し、乾燥させた。次いで、乾燥させた塗膜をプレスして負極を得た。負極活物質含有層それぞれの厚さは30μmであった。なお、集電体の一方の長辺に負極活物質含有層無担持の部分を設け、この箇所を負極集電タブとした。 The obtained slurry was applied to both sides of an aluminum foil having a thickness of 15 μm and dried. Then, the dried coating film was pressed to obtain a negative electrode. The thickness of each of the negative electrode active material-containing layers was 30 μm. A portion without a negative electrode active material-containing layer was provided on one long side of the current collector, and this portion was used as a negative electrode current collector tab.
 この負極上に、エレクトロスピニング法によって有機繊維を堆積させてナノファイバ層を形成した。有機材料としては、ポリイミドを用いた。このポリイミドを、溶媒としてのDMAcに20質量%の濃度で溶解して、液体原料として原料溶液を調製した。得られた原料溶液を、定量ポンプを使用して5μl/minの供給速度で紡糸ノズルから負極の表面に供給した。高電圧発生器を用いて、紡糸ノズルに20kVの電圧を印加し、この紡糸ノズル1本で100×200mmの範囲を動かしながら負極活物質含有層表面に2μmの有機繊維の層を形成した。なお、負極集電タブの両方の表面(主面)における負極活物質含有層との境界から10mmの部分を除き、負極集電タブの表面をマスクした状態でエレクトロスピニング法を実施して負極を得た。 Organic fibers were deposited on this negative electrode by an electrospinning method to form a nanofiber layer. Polyimide was used as the organic material. This polyimide was dissolved in DMAc as a solvent at a concentration of 20% by mass to prepare a raw material solution as a liquid raw material. The obtained raw material solution was supplied from the spinning nozzle to the surface of the negative electrode at a supply rate of 5 μl / min using a metering pump. A voltage of 20 kV was applied to the spinning nozzle using a high voltage generator, and a layer of 2 μm organic fibers was formed on the surface of the negative electrode active material-containing layer while moving the range of 100 × 200 mm with this spinning nozzle. The negative electrode was subjected to the electrospinning method with the surface of the negative electrode current collecting tab masked, except for the portion 10 mm from the boundary with the negative electrode active material-containing layer on both surfaces (main surfaces) of the negative electrode current collecting tab. Obtained.
 続いて、負極集電体の一側面の複数個所から突出した複数の負極集電タブが形成されるように金型で打ち抜き、ナノファイバ層が一体化された負極を得た。 Subsequently, a negative electrode with an integrated nanofiber layer was obtained by punching with a die so that a plurality of negative electrode current collector tabs protruding from a plurality of locations on one side surface of the negative electrode current collector were formed.
 ナノファイバ層は、図7と図8に示す通り、負極活物質含有層のそれぞれの表面と、負極活物質含有層のそれぞれの表面及び裏面に交差(例えば直交)する四側面のうち、負極集電体から負極集電タブが延出している面を除いた三側面と、残りの一側面の負極集電タブと隣接する部分と、負極集電タブの表面及び裏面における負極活物質含有層の端面と隣接する部分とを被覆していた。 As shown in FIGS. 7 and 8, the nanofiber layer is a collection of negative electrodes among four side surfaces intersecting (for example, orthogonal) with each surface of the negative electrode active material-containing layer and the front and back surfaces of the negative electrode active material-containing layer. The three side surfaces excluding the surface on which the negative electrode current collecting tab extends from the electric body, the portion adjacent to the negative electrode current collecting tab on the remaining one side surface, and the negative electrode active material-containing layers on the front and back surfaces of the negative electrode current collecting tab. It covered the end face and the adjacent part.
 作製した正極及び負極を、ナノファイバ層を介して、正極活物質含有層及び負極活物質含有層とが対向するように積層した後に、図7を参照しながら説明したように捲回して捲回型電極群を作製した。 The produced positive electrode and negative electrode are laminated via a nanofiber layer so that the positive electrode active material-containing layer and the negative electrode active material-containing layer face each other, and then wound and wound as described with reference to FIG. A mold electrode group was prepared.
 得られた電極群を室温で一晩真空乾燥した後、露点-80℃以下のグローブボックス内に1日放置した。これを、電解液とともに金属製容器に収容して、非水電解質電池を得た。なお、用いた電解液は、エチレンカーボネート(EC)とジメチルカーボネート(DMC)にLiPFを溶解させたものであった。 The obtained electrode group was vacuum-dried at room temperature overnight, and then left in a glove box having a dew point of −80 ° C. or lower for one day. This was housed in a metal container together with the electrolytic solution to obtain a non-aqueous electrolyte battery. The electrolytic solution used was a solution of LiPF 6 in ethylene carbonate (EC) and dimethyl carbonate (DMC).
 (実施例2)
 第1の絶縁層を構成する絶縁性無機材料として、平均粒径D50が0.5μmのチタン酸リチウム粒子を使用したことを除いて、実施例1と同様に非水電解質電池を作製した。
(Example 2)
A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that lithium titanate particles having an average particle diameter D50 of 0.5 μm were used as the insulating inorganic material constituting the first insulating layer.
 (実施例3)
 第1の絶縁層を構成する絶縁性無機材料として、平均粒径D50が1μmのルチル型の二酸化チタン(TiO)を使用したことを除いて、実施例1と同様に非水電解質電池を作製した。
(Example 3)
A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that rutile-type titanium dioxide (TiO 2 ) having an average particle diameter D50 of 1 μm was used as the insulating inorganic material constituting the first insulating layer. bottom.
 (実施例4)
 正極スラリーとして、実施例1で調製したものと同一のスラリーを用意した。 
 アルミナ含有スラリーとして、実施例1で調製したものと同一のスラリーを用意した。
(Example 4)
As the positive electrode slurry, the same slurry as that prepared in Example 1 was prepared.
As the alumina-containing slurry, the same slurry as that prepared in Example 1 was prepared.
 次に、図22を参照しながら説明した塗工方法により、以下の通り第1の電極を作製した。厚さ15μmのアルミニウム箔上に、下層に正極スラリー、上層にアルミナ含有スラリーとなるように、かつ、上層のアルミナ含有スラリーがはみ出すように重ね塗りをし、乾燥を行った。これをアルミニウム箔の両面で行った。その後、ロールプレスを施した後に金型で打ち抜き、集電体の一側面から突出した複数の集電タブを備える第1の電極を得た。得られた第1の電極は、図9に示す第1の電極1と同様の構造を有していた。即ち、絶縁性無機材料層は、正極活物質含有層の端面と、複数の集電タブの表面及び裏面のそれぞれにおいて、当該端面と隣接する部分とを被覆していた。更に、絶縁性無機材料層は、正極活物質含有層それぞれの表面上を被覆していた。 Next, the first electrode was produced as follows by the coating method described with reference to FIG. 22. The aluminum foil having a thickness of 15 μm was overcoated with a positive electrode slurry in the lower layer and an alumina-containing slurry in the upper layer, and the alumina-containing slurry in the upper layer protruded, and dried. This was done on both sides of the aluminum foil. Then, after performing a roll press, it was punched out with a die to obtain a first electrode having a plurality of current collector tabs protruding from one side surface of the current collector. The obtained first electrode had the same structure as the first electrode 1 shown in FIG. That is, the insulating inorganic material layer covered the end face of the positive electrode active material-containing layer and the portions adjacent to the end face on each of the front and back surfaces of the plurality of current collector tabs. Further, the insulating inorganic material layer covered the surface of each of the positive electrode active material-containing layers.
 正極活物質含有層それぞれの厚さは20μm、正極活物質含有層上の絶縁性無機材料層の厚さは3μm、正極活物質含有層からはみ出してアルミニウム箔上に形成された絶縁性無機材料層の厚さは、20μmであった。 The thickness of each of the positive electrode active material-containing layers is 20 μm, the thickness of the insulating inorganic material layer on the positive electrode active material-containing layer is 3 μm, and the insulating inorganic material layer formed on the aluminum foil protruding from the positive electrode active material-containing layer. The thickness of was 20 μm.
 次いで、実施例1と同様の方法で負極を作製した。 
 その後、実施例1と同様の方法で非水電解質電池を作製した。
Next, a negative electrode was prepared in the same manner as in Example 1.
Then, a non-aqueous electrolyte battery was produced in the same manner as in Example 1.
 (実施例5)
 第1の絶縁層を構成する絶縁性無機材料として、平均粒径D50が0.5μmのチタン酸リチウム粒子を使用したことを除いて、実施例4と同様に非水電解質電池を作製した。
(Example 5)
A non-aqueous electrolyte battery was produced in the same manner as in Example 4 except that lithium titanate particles having an average particle diameter D50 of 0.5 μm were used as the insulating inorganic material constituting the first insulating layer.
 (実施例6)
 第1の絶縁層を構成する絶縁性無機材料として、平均粒径D50が1μmのルチル型の二酸化チタン(TiO)を使用したことを除いて、実施例4と同様に非水電解質電池を作製した。
(Example 6)
A non-aqueous electrolyte battery was produced in the same manner as in Example 4, except that rutile-type titanium dioxide (TiO 2 ) having an average particle diameter D50 of 1 μm was used as the insulating inorganic material constituting the first insulating layer. bottom.
 (比較例)
 第1の電極を作製する際に、絶縁性無機材料層の形成を省略したことを除いて、実施例1と同様の方法で非水電解質電池を作製した。
(Comparison example)
A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that the formation of the insulating inorganic material layer was omitted when the first electrode was produced.
 <歩留まり評価>
 実施例1に係る非水電解質電池を50個作製し、それぞれの非水電解質電池について内部抵抗測定を行い、抵抗値が10kΩ以上である電池を良品と判断し、抵抗値が10kΩ未満である電池を不良品と判断する場合の歩留まりを評価した。この結果、実施例1に係る非水電解質電池は、50個全てが良品であった。即ち、実施例1に係る非水電解質電池の歩留まりは100%であった。
<Yield evaluation>
Fifty non-aqueous electrolyte batteries according to Example 1 were produced, internal resistance was measured for each non-aqueous electrolyte battery, and a battery having a resistance value of 10 kΩ or more was judged to be a non-defective product, and a battery having a resistance value of less than 10 kΩ. Was evaluated as a defective product. As a result, all 50 non-aqueous electrolyte batteries according to Example 1 were non-defective products. That is, the yield of the non-aqueous electrolyte battery according to Example 1 was 100%.
 実施例2~6についても、実施例1と同様にそれぞれ50個の非水電解質電池を作製して歩留まりを評価したところ、いずれも歩留まりは100%であった。 As for Examples 2 to 6, when 50 non-aqueous electrolyte batteries were prepared and the yield was evaluated in the same manner as in Example 1, the yield was 100% in each case.
 これに対して、比較例について50個の非水電解質電池を作製して歩留まりを評価したところ、良品は16個であり、不良品は34個であった。即ち、比較例に係る非水電解質電池の歩留まりは32%であった。 On the other hand, when 50 non-aqueous electrolyte batteries were prepared and the yield was evaluated for the comparative example, 16 were good products and 34 were defective. That is, the yield of the non-aqueous electrolyte battery according to the comparative example was 32%.
 実施例1~6に係る非水電解質電池が含む正極は、いずれも、絶縁性無機材料層が、正極活物質含有層の端面と、この端面と隣接する正極集電タブ上の一部を被覆していたことから、負極集電体の端面が有するバリと、正極集電タブとが直接接触するのを抑制し、内部短絡を抑制できたと考えられる。 In each of the positive electrodes included in the non-aqueous electrolyte batteries according to Examples 1 to 6, the insulating inorganic material layer covers the end face of the positive electrode active material-containing layer and a part on the positive electrode current collecting tab adjacent to the end face. Therefore, it is considered that the burr on the end face of the negative electrode current collector and the positive electrode current collector tab could be suppressed from coming into direct contact with each other, and an internal short circuit could be suppressed.
 以上に説明した少なくとも一つの実施形態及び実施例に係る電極では、第1の絶縁層が、第1の活物質含有層の第1端面の少なくとも一部と、第1の集電タブにおける第1端面と隣接する部分とを被覆している。それ故、高容量を得るために、当該電極及び対極としての第2の電極を渦巻き状に捲回するか又は積層させることにより電極群(積層体)を作製する際に、第2の電極が含む第2の集電体または第2の集電タブの端面がバリを有していたとしても、このバリが第1の電極の第1の集電タブに接触することを抑制することができる。その結果、高容量化を妨げる要因となる内部短絡を抑制することができる。 In the electrodes according to at least one embodiment and examples described above, the first insulating layer is at least a part of the first end face of the first active material-containing layer and the first in the first current collecting tab. It covers the end face and the adjacent portion. Therefore, in order to obtain a high capacity, when the electrode group (laminated body) is produced by spirally winding or laminating the electrode and the second electrode as a counter electrode, the second electrode is used. Even if the end face of the containing second current collector or the second current collector tab has burrs, it is possible to prevent the burrs from coming into contact with the first current collector tab of the first electrode. .. As a result, it is possible to suppress an internal short circuit that is a factor that hinders the increase in capacity.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.
 1…第1の電極、1a…第1の集電体、1b…第1の活物質含有層、1c…第1の集電タブ、2…第2の電極、2a…第2の集電体、2b…第2の活物質含有層、2c…第2の集電タブ、3…セパレータ、4…第1の絶縁層、5…第2の絶縁層、10…二次電池、11…外装部材、12…電極群、13…第1の電極端子、14…第2の電極端子、20…外装部材、23…正極端子、24…負極端子、40…第1の表面、41…第1の裏面、42…第2の表面、43…第2の裏面、45…第2の集電体の端面、46…第2の集電タブの第2の活物質含有層との境界を含む部分、51…第1方向、52、55…第1端面、53、56…第2端面、54…第2方向、100…積層体。 1 ... 1st electrode, 1a ... 1st current collector, 1b ... 1st active material-containing layer, 1c ... 1st current collection tab, 2 ... 2nd electrode, 2a ... 2nd current collector , 2b ... Second active material-containing layer, 2c ... Second current collecting tab, 3 ... Separator, 4 ... First insulating layer, 5 ... Second insulating layer, 10 ... Secondary battery, 11 ... Exterior member , 12 ... Electrode group, 13 ... First electrode terminal, 14 ... Second electrode terminal, 20 ... Exterior member, 23 ... Positive terminal, 24 ... Negative terminal, 40 ... First front surface, 41 ... First back surface , 42 ... second front surface, 43 ... second back surface, 45 ... end face of second current collector, 46 ... portion of the second current collection tab including the boundary with the second active material-containing layer, 51. ... 1st direction, 52, 55 ... 1st end face, 53, 56 ... 2nd end face, 54 ... 2nd direction, 100 ... Laminated body.

Claims (8)

  1.  表面及び裏面と、前記表面及び前記裏面と交差する第1側面とを有する第1の集電体と、
     前記第1の集電体の前記第1側面の少なくとも一部から第1方向に延出した第1の集電タブと、
     表面及び裏面を有し、前記裏面が、前記第1の集電体の前記表面及び/又は前記裏面のうちの少なくとも前記第1側面と隣接する端部に担持され、前記第1の集電タブと隣接する第1端面を含む第1の活物質含有層と、
     無機材料を含む第1の絶縁層とを含み、
     前記第1の絶縁層が、少なくとも、前記第1の活物質含有層の前記第1端面の少なくとも一部と、前記第1の集電タブの前記表面及び前記裏面のうちの前記第1端面と隣接する部分とを被覆している電極。
    A first current collector having a front surface and a back surface and a first side surface intersecting the front surface and the back surface.
    A first current collector tab extending in a first direction from at least a part of the first side surface of the first current collector.
    It has a front surface and a back surface, and the back surface is supported on at least an end portion of the front surface and / or the back surface of the first current collector adjacent to the first side surface, and the first current collector tab is provided. A first active material-containing layer containing the first end face adjacent to the
    Including a first insulating layer containing an inorganic material,
    The first insulating layer includes at least a part of the first end surface of the first active material-containing layer, and the first end surface of the front surface and the back surface of the first current collecting tab. An electrode that covers adjacent parts.
  2.  前記第1の絶縁層が、前記第1の活物質含有層の前記表面をさらに被覆する、請求項1に記載の電極。 The electrode according to claim 1, wherein the first insulating layer further covers the surface of the first active material-containing layer.
  3.  前記第1の集電タブは、前記第1側面の複数個所から第1方向に延出している、請求項1又は2に記載の電極。 The electrode according to claim 1 or 2, wherein the first current collecting tab extends in a first direction from a plurality of locations on the first side surface.
  4.  前記第1の集電タブは、前記第1側面の全体から第1方向に延出している、請求項1又は2に記載の電極。 The electrode according to claim 1 or 2, wherein the first current collecting tab extends in the first direction from the entire first side surface.
  5.  請求項1~4のいずれか1項に記載の電極である第1電極と、
     前記第1電極の対極としての第2電極とを備えた積層体であって、
     前記第2電極は、
     表面及び裏面を有する第2の集電体と、
     前記第2の集電体から、前記第1方向に沿って延出するか、又は、前記第1方向とは反対側に向かって延出する第2の集電タブと、
     表面及び裏面を有し、前記裏面が、前記第2の集電体の前記表面及び前記裏面のうちの少なくとも一部に担持され、前記第1の活物質含有層と対向する第2の活物質含有層とを含み、
     前記積層体は、前記第1の活物質含有層と前記第2の活物質含有層の間に配置された、有機繊維を含む第2の絶縁層を更に含む、積層体。
    The first electrode, which is the electrode according to any one of claims 1 to 4,
    A laminated body including a second electrode as a counter electrode of the first electrode.
    The second electrode is
    A second current collector with front and back surfaces,
    A second current collector tab extending from the second current collector along the first direction or extending toward the side opposite to the first direction.
    A second active material having a front surface and a back surface, the back surface of which is supported on at least a part of the front surface and the back surface of the second current collector and faces the first active material-containing layer. Including the containing layer,
    The laminate further includes a second insulating layer containing organic fibers, which is arranged between the first active material-containing layer and the second active material-containing layer.
  6.  前記第1の絶縁層は、前記第2の活物質含有層を介して前記第2の集電体と向き合う第1部分と、前記第2の集電体と向き合わない第2部分とを含む請求項5に記載の積層体。 The first insulating layer includes a first portion facing the second current collector and a second portion not facing the second current collector via the second active material-containing layer. Item 5. The laminated body according to Item 5.
  7.  前記第2の活物質含有層が、活物質としてチタン含有酸化物を含む、請求項5又は6に記載の積層体。 The laminate according to claim 5 or 6, wherein the second active material-containing layer contains a titanium-containing oxide as an active material.
  8.  請求項5~7のいずれか1項に記載の積層体を含む二次電池。 A secondary battery containing the laminate according to any one of claims 5 to 7.
PCT/JP2020/012460 2020-03-19 2020-03-19 Electrode, multilayer body and secondary battery WO2021186716A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/012460 WO2021186716A1 (en) 2020-03-19 2020-03-19 Electrode, multilayer body and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/012460 WO2021186716A1 (en) 2020-03-19 2020-03-19 Electrode, multilayer body and secondary battery

Publications (1)

Publication Number Publication Date
WO2021186716A1 true WO2021186716A1 (en) 2021-09-23

Family

ID=77771066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012460 WO2021186716A1 (en) 2020-03-19 2020-03-19 Electrode, multilayer body and secondary battery

Country Status (1)

Country Link
WO (1) WO2021186716A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023050405A1 (en) * 2021-09-30 2023-04-06 宁德新能源科技有限公司 Cell and electric device using same
WO2023221823A1 (en) * 2022-05-16 2023-11-23 比亚迪股份有限公司 Electrode sheet, battery, and electric vehicle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120095039A (en) * 2011-02-18 2012-08-28 주식회사 엘지화학 Electrode assembly for secondary battery and secondary battery comprising the same
JP2013051035A (en) * 2011-08-30 2013-03-14 Gs Yuasa Corp Manufacturing method of electrode for battery, and electrode for battery
JP2014107061A (en) * 2012-11-26 2014-06-09 Toshiba Corp Nonaqueous electrolyte battery
JP2015072758A (en) * 2013-10-02 2015-04-16 日立マクセル株式会社 Electrode for lithium ion secondary battery, method for manufacturing the same, and lithium ion secondary battery
JP2016119183A (en) * 2014-12-19 2016-06-30 トヨタ自動車株式会社 Electrode body and manufacturing method for cathode
JP2017054706A (en) * 2015-09-10 2017-03-16 株式会社東芝 Electrode, method for manufacturing electrode, and nonaqueous electrolyte battery
WO2017057762A1 (en) * 2015-09-30 2017-04-06 積水化学工業株式会社 Electrode portion of lithium ion secondary battery, lithium ion secondary battery, and manufacturing method of lithium ion secondary battery
JP2018056099A (en) * 2016-09-30 2018-04-05 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG Power storage element
JP2018137079A (en) * 2017-02-21 2018-08-30 Tdk株式会社 Storage battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120095039A (en) * 2011-02-18 2012-08-28 주식회사 엘지화학 Electrode assembly for secondary battery and secondary battery comprising the same
JP2013051035A (en) * 2011-08-30 2013-03-14 Gs Yuasa Corp Manufacturing method of electrode for battery, and electrode for battery
JP2014107061A (en) * 2012-11-26 2014-06-09 Toshiba Corp Nonaqueous electrolyte battery
JP2015072758A (en) * 2013-10-02 2015-04-16 日立マクセル株式会社 Electrode for lithium ion secondary battery, method for manufacturing the same, and lithium ion secondary battery
JP2016119183A (en) * 2014-12-19 2016-06-30 トヨタ自動車株式会社 Electrode body and manufacturing method for cathode
JP2017054706A (en) * 2015-09-10 2017-03-16 株式会社東芝 Electrode, method for manufacturing electrode, and nonaqueous electrolyte battery
WO2017057762A1 (en) * 2015-09-30 2017-04-06 積水化学工業株式会社 Electrode portion of lithium ion secondary battery, lithium ion secondary battery, and manufacturing method of lithium ion secondary battery
JP2018056099A (en) * 2016-09-30 2018-04-05 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG Power storage element
JP2018137079A (en) * 2017-02-21 2018-08-30 Tdk株式会社 Storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023050405A1 (en) * 2021-09-30 2023-04-06 宁德新能源科技有限公司 Cell and electric device using same
WO2023221823A1 (en) * 2022-05-16 2023-11-23 比亚迪股份有限公司 Electrode sheet, battery, and electric vehicle

Similar Documents

Publication Publication Date Title
US10700327B2 (en) Secondary battery
JP6219113B2 (en) Secondary battery
US11411284B2 (en) Laminate and secondary battery
US11133558B2 (en) Electrode structure and secondary battery
KR102193934B1 (en) Laminate and secondary battery
US20200006732A1 (en) Electrode structure and secondary battery
WO2021186716A1 (en) Electrode, multilayer body and secondary battery
JP7254941B2 (en) Electrodes, laminates and secondary batteries
JP6377586B2 (en) Electrode, electrode manufacturing method, and nonaqueous electrolyte battery
JP7242490B2 (en) Battery unit and secondary battery
WO2023188062A1 (en) Electrode group, secondary battery and battery pack
JP6373461B2 (en) Method for producing electrode for secondary battery with organic fiber layer and method for producing secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP