WO2023188062A1 - Electrode group, secondary battery and battery pack - Google Patents

Electrode group, secondary battery and battery pack Download PDF

Info

Publication number
WO2023188062A1
WO2023188062A1 PCT/JP2022/015801 JP2022015801W WO2023188062A1 WO 2023188062 A1 WO2023188062 A1 WO 2023188062A1 JP 2022015801 W JP2022015801 W JP 2022015801W WO 2023188062 A1 WO2023188062 A1 WO 2023188062A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
electrode
active material
containing layer
electrode structure
Prior art date
Application number
PCT/JP2022/015801
Other languages
French (fr)
Japanese (ja)
Inventor
佑磨 菊地
龍之介 宍戸
祐輝 渡邉
智裕 望月
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2022/015801 priority Critical patent/WO2023188062A1/en
Publication of WO2023188062A1 publication Critical patent/WO2023188062A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to an electrode group, a secondary battery, and a battery pack.
  • a porous separator is placed between the positive electrode and the negative electrode to avoid contact between the positive electrode and the negative electrode.
  • a self-supporting membrane separate from the positive and negative electrodes is used as the separator.
  • An example of this is a microporous membrane made of polyolefin resin.
  • Such a separator is produced, for example, by extruding a melt containing a polyolefin resin composition into a sheet, extracting and removing substances other than the polyolefin resin, and then stretching the sheet.
  • Separators made of resin films need to have mechanical strength so as not to break during battery production, so it is difficult to make them thinner than a certain point. Since the positive electrode and the negative electrode are stacked or wound with a separator interposed therebetween, if the separator is thick, the number of layers of the positive electrode and negative electrode that can be stored per unit volume of the battery is limited. As a result, battery capacity decreases. In addition, separators made of resin films have poor durability, and when used in secondary batteries, the separators deteriorate due to repeated charging and discharging, resulting in a decrease in battery cycleability.
  • the present invention was made in view of the above circumstances, and provides an electrode group having excellent insulation, a secondary battery including this electrode group, and a battery pack including this secondary battery.
  • an electrode group includes a first electrode structure and a second electrode structure at least partially facing the first electrode structure.
  • the first electrode structure includes a first current collector, a first active material-containing layer provided on at least one surface of the first current collector, and inorganic particles. and a first film provided in the first film.
  • the second electrode structure includes a second current collector, a second active material-containing layer provided on at least one surface of the second current collector, and an organic material; and a second film provided on.
  • a volume-based frequency distribution chart obtained by laser diffraction scattering has two peaks.
  • a secondary battery that includes the electrode group according to the embodiment and an electrolyte.
  • a battery pack including the secondary battery according to the embodiment is provided.
  • FIG. 1 is a cross-sectional view showing an example of an electrode group according to an embodiment.
  • FIG. 2 is a perspective view showing a first electrode structure included in the electrode group shown in FIG. 1;
  • FIG. 2 is a perspective view showing a second electrode structure included in the electrode group shown in FIG. 1;
  • FIG. 7 is a perspective view showing another example of the first electrode structure.
  • FIG. 3 is a cross-sectional view showing another example of the electrode group according to the embodiment.
  • FIG. 6 is a perspective view showing the first electrode structure of the electrode group shown in FIG. 5;
  • FIG. 7 is a perspective view showing another example of the first electrode structure.
  • FIG. 3 is a cross-sectional view showing another example of the electrode group according to the embodiment.
  • FIG. 1 is a schematic diagram showing one step in a method for manufacturing an electrode group according to an embodiment.
  • FIG. 10 is a perspective view showing the coating apparatus shown in FIG. 9;
  • FIG. 1 is a schematic diagram of one step in a method for manufacturing a laminate according to an embodiment.
  • FIG. 1 is a partially cutaway perspective view showing an example of a secondary battery according to an embodiment.
  • FIG. 6 is an exploded view of another example of the secondary battery according to the embodiment.
  • FIG. 1 is an exploded perspective view schematically showing an example of a battery pack according to an embodiment.
  • 15 is a block diagram showing an example of an electric circuit of the battery pack shown in FIG. 14.
  • FIG. 3 is a particle size distribution chart related to the first film included in the electrode group manufactured in Example 1.
  • an electrode group includes a first electrode structure and a second electrode structure at least partially facing the first electrode structure.
  • the first electrode structure includes a first current collector, a first active material-containing layer provided on at least one surface of the first current collector, and inorganic particles. and a first film provided in the first film.
  • the second electrode structure includes a second current collector, a second active material-containing layer provided on at least one surface of the second current collector, and an organic material; and a second film provided on.
  • a volume-based frequency distribution chart obtained by laser diffraction scattering has two peaks.
  • the present inventors have achieved excellent insulation properties even with a thin inorganic particle layer. I found out that it shows.
  • FIG. 1 is a cross-sectional view schematically showing an example of an electrode group according to an embodiment.
  • FIG. 2 is a perspective view showing the first electrode structure 1 included in the electrode group 10 shown in FIG.
  • FIG. 3 is a perspective view showing the second electrode structure 2 included in the electrode group shown in FIG.
  • the electrode group shown in FIG. 1 includes a first electrode structure 1 and a second electrode structure 2.
  • the first electrode structure 1 includes a first current collector 1a, a first active material-containing layer 1b provided on at least one surface of the first current collector 1a, and inorganic particles. and a first film 4 provided on the substance-containing layer 1b.
  • the first current collector 1a and the first active material-containing layer 1b may constitute a first electrode.
  • the first current collector 1a is a conductive sheet.
  • a part of the first current collector 1a may be a first current collecting tab 1c on which the first active material-containing layer 1b is not supported.
  • the first current collector tab 1c is formed, for example, on one side of the first current collector 1a to have a substantially constant width along a direction parallel to the side.
  • an XYZ orthogonal coordinate system is adopted as shown in the drawings.
  • the Z axis in the drawing is a direction parallel to the lamination direction of the first electrode structure 1 and the second electrode structure 2.
  • the X axis is a direction parallel to the direction in which the first current collecting tab 1c projects from the first electrode structure 1.
  • the Y-axis is a direction perpendicular to the X-axis and the Z-axis.
  • the first active material-containing layer 1b may be formed, for example, on at least a portion of at least one surface of the first current collector 1a.
  • the first active material-containing layer 1b has, for example, a sheet shape having a first surface 40 and a first back surface 41.
  • the first surface 40 and the first back surface 41 may be main surfaces of the first active material-containing layer 1b.
  • the first back surface 41 is in contact with the first current collector 1a.
  • the first surface 40 is in contact with the first membrane 4 .
  • the first film 4 may be formed, for example, on at least a portion of the main surface (first surface 40) of the first active material-containing layer 1b.
  • the first film 4 may be formed over the entire main surface of the first active material-containing layer 1b.
  • the first film 4 may have a sheet shape having a front surface A and a back surface B.
  • the back surface B of the first film 4 covers the first surface 40 of the first active material-containing layer 1b.
  • the second electrode structure 2 includes a second current collector 2a, a second active material-containing layer 2b provided on at least one surface of the second current collector 2a, and an organic material. and a second film 5 provided on the substance-containing layer 2b.
  • the second current collector 2a and the second active material-containing layer 2b may constitute a second electrode.
  • the second current collector 2a is a conductive sheet.
  • a part of the second current collector 2a may be a second current collecting tab 2c on which the second active material-containing layer 2b is not supported.
  • the second current collector tab 2c is formed, for example, on one side of the second current collector 2a with a substantially constant width along a direction parallel to the side.
  • the second active material-containing layer 2b may be formed, for example, on at least a portion of at least one surface of the second current collector 2a.
  • the second active material-containing layer 2b has, for example, a sheet shape having a second surface 42 and a second back surface 43.
  • the second surface 42 and the second back surface 43 may be the main surfaces of the second active material-containing layer 2b.
  • the second back surface 43 is in contact with the second current collector 2a.
  • the second surface 42 is in contact with the second film 5.
  • the second film 5 includes a second surface 42 of the second active material-containing layer 2b, four side surfaces 44 orthogonal to the second surface 42, and one of the four side surfaces of the second current collector 2a. , covering the three end surfaces 45 exposed on the surface of the second electrode structure 2 and the portion 46 including the boundary with the second active material-containing layer 2b on both main surfaces of the second current collecting tab 2c. There is.
  • the second film 5 has a front surface C and a back surface D. The back surface D of the second film 5 is in contact with the second active material containing layer 2b.
  • the second film 5 includes a boundary between the end surface 45 of the second current collector 2a and the second active material-containing layer 2b on the surface of the second current collector tab 2c.
  • the portion 46 is covered, internal short circuits due to contact between the first electrode structure and the second electrode structure 2 are reduced.
  • the first film 4 and the second film 5 can constitute a separator.
  • the surface A of the first film 4 and the surface C of the second film 5 can be in contact with each other.
  • the first active material containing layer 1b and the second active material containing layer 2b are opposed to each other, for example, with the first film 4 and the second film 5 interposed therebetween. At least a portion of the first active material-containing layer 1b and the second active material-containing layer may be opposed to each other with the first film 4 and the second film 5 interposed therebetween, and the entire surface thereof may be opposed to the first film 4. and may be opposed to each other with the second film 5 interposed therebetween.
  • first and second current collector tabs are not limited to one side of the first and second current collectors, respectively, on which no active material-containing layer is supported.
  • a plurality of strips protruding from one side of the first and second current collectors can be used as the first and second current collection tabs.
  • FIG. FIG. 4 shows another example of the first electrode structure 1.
  • a plurality of strips protruding from one side of the first current collector 1a may be used as the first current collector tab 1c.
  • first electrode structure and second electrode structure One of the first electrode structure and the second electrode structure may function as a positive electrode, and the other may function as a negative electrode.
  • the opposite pole of the first electrode structure is the second electrode structure.
  • the first electrode structure is a positive electrode structure
  • the second electrode structure is a negative electrode structure.
  • the first electrode structure may be a negative electrode structure
  • the second electrode structure may be a positive electrode structure.
  • the first electrode structure includes a porous first active material-containing layer having a first surface and a first back surface.
  • the second electrode structure includes a porous second active material-containing layer having a second surface and a second back surface.
  • the first electrode structure and the second electrode structure are stacked such that the first active material containing layer and the second active material containing layer thereof face each other.
  • the first film 4 and the second film 5 may be interposed between the first active material containing layer and the second active material containing layer.
  • the first electrode structure may further include a first current collector and a first current collection tab.
  • the second electrode structure may further include a second current collector and a second current collection tab.
  • the first active material-containing layer and the second active material-containing layer may be formed on both the main surfaces of the first current collector and the second current collector, respectively, but they can also be formed on only one surface. be.
  • a positive electrode active material and a negative electrode active material are used as the active materials contained in the first active material containing layer and the second active material containing layer.
  • the number of types of active materials can be one or more.
  • the active material included in the first active material-containing layer is referred to as a first active material.
  • the active material included in the second active material-containing layer is referred to as a second active material.
  • lithium transition metal composite oxide As the positive electrode active material, for example, a lithium transition metal composite oxide can be used.
  • lithium transition metal composite oxides include LiCoO 2 , LiNi 1-x Co x O 2 (0 ⁇ x ⁇ 0.3), LiMn x Ni y Co z O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.5,0 ⁇ z ⁇ 0.5), LiMn 2-x M x O 4 (M is at least one element selected from the group consisting of Mg, Co, Al and Ni, 0 ⁇ x ⁇ 0.2), LiMPO 4 (M is at least one element selected from the group consisting of Fe, Co, and Ni), and the like.
  • lithium titanate As the negative electrode active material, carbon materials such as graphite, tin-silicon alloy materials, etc. can be used, but it is preferable to use lithium titanate. Further, titanium oxide or lithium titanate containing other metals such as (niobium)Nb may also be used as negative electrode active materials. Examples of lithium titanate include Li 4+x Ti 5 O 12 (0 ⁇ x ⁇ 3) having a spinel structure and Li 2+y Ti 3 O 7 (0 ⁇ y ⁇ 3) having a ramsteride structure. Can be mentioned.
  • carbon materials such as graphite, tin-silicon alloy materials, etc. can be used, but it is preferable to use titanium-containing oxides.
  • titanium-containing oxide lithium titanium composite oxide, niobium titanium composite oxide, sodium niobium titanium composite oxide, etc. can be used.
  • lithium titanium oxide examples include spinel structure lithium titanium oxide (for example, general formula Li 4+x Ti 5 O 12 (x is -1 ⁇ x ⁇ 3)), ramsdellite structure lithium titanium oxide (for example, Li 2+x Ti 3 O 7 (-1 ⁇ x ⁇ 3)), Li 1+x Ti 2 O 4 (0 ⁇ x ⁇ 1), Li 1.1+x Ti 1.8 O 4 (0 ⁇ x ⁇ 1), Li 1.07+x These include Ti 1.86 O 4 (0 ⁇ x ⁇ 1), Li x TiO 2 (0 ⁇ x ⁇ 1), and the like. Further, the lithium titanium oxide may be a lithium titanium composite oxide into which a different element is introduced.
  • Niobium titanium composite oxide is, for example, Li a TiM b Nb 2 ⁇ O 7 ⁇ (0 ⁇ a ⁇ 5, 0 ⁇ b ⁇ 0.3, 0 ⁇ 0.3, 0 ⁇ 0.3 , M is at least one element selected from the group consisting of Fe, V, Mo, and Ta).
  • the sodium titanium composite oxide has, for example, the general formula Li 2+V Na 2-W M1 X Ti 6-y-z Nb y M2 z O 14+ ⁇ (0 ⁇ v ⁇ 4, 0 ⁇ w ⁇ 2, 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 6, 0 ⁇ z ⁇ 3, -0.5 ⁇ 0.5, M1 includes at least one selected from Cs, K, Sr, Ba, Ca, M2 includes Zr, Sn,
  • the present invention includes an orthorhombic Na-containing niobium titanium composite oxide represented by V, Ta, Mo, W, Fe, Co, Mn, and Al.
  • the active material may be a single primary particle, a secondary particle that is an agglomeration of primary particles, or a mixture of primary particles and secondary particles.
  • the average particle size of the primary particles of the negative electrode active material is preferably within the range of 0.001 or more and 1 ⁇ m or less.
  • the average particle size can be determined, for example, by observing the negative electrode active material with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the particle shape may be either granular or fibrous. When it is fibrous, it is preferable that the fiber diameter is 0.1 ⁇ m or less.
  • the average particle diameter of the primary particles of the negative electrode active material can be measured from an image observed with a SEM. When lithium titanate having an average particle size of 1 ⁇ m or less is used as the negative electrode active material, a negative electrode active material-containing layer with a highly flat surface can be obtained.
  • the negative electrode potential becomes nobler than that of a lithium ion secondary battery using a general carbon negative electrode, so that lithium metal does not precipitate in principle. Since the negative electrode active material containing lithium titanate has small expansion and contraction due to charge/discharge reactions, it is possible to prevent the crystal structure of the active material from collapsing.
  • the first active material containing layer and the second active material containing layer may contain a binder and a conductive agent in addition to the active material.
  • the conductive agent include acetylene black, carbon black, graphite, or mixtures thereof.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine rubber, styrene-butadiene rubber, or mixtures thereof.
  • the binder has a function of binding the active material and the conductive agent.
  • the contents of the active material, conductive agent, and binder are 80% by mass or more and 97% by mass or less, 2% by mass or more and 18% by mass or less, and 1% by mass or more and 17% by mass or less, respectively. It is preferable that there be.
  • the contents of the negative electrode active material-containing layer are 70% by mass or more and 98% by mass or less, 1% by mass or more and 28% by mass or less, and 1% by mass or more and 28% by mass or less, respectively. It is preferable that there be.
  • the thickness of the first active material-containing layer and the second active material-containing layer may be 5 ⁇ m or more and 100 ⁇ m or less, respectively.
  • the first current collector and the second current collector may be conductive sheets.
  • conductive sheets include foils made of conductive materials.
  • conductive materials include aluminum and aluminum alloys.
  • the thickness of the first current collector and the second current collector may be 5 ⁇ m or more and 40 ⁇ m or less, respectively.
  • the first current collector tab and the second current collector tab may be made of the same material as each current collector, but a current collector tab made of a different material from each current collector is prepared, This may be connected to a current collector by welding or the like.
  • the first film contains inorganic particles.
  • the form of the inorganic particles may be, for example, granular or fibrous.
  • the first film may further include a binder.
  • the thickness of the first film is, for example, in the range of 1 ⁇ m to 5 ⁇ m, preferably in the range of 2 ⁇ m to 4 ⁇ m. If the thickness of the first film is too small, the positive and negative electrodes are likely to short-circuit, and the amount of self-discharge may increase, which is not preferable. On the other hand, if the first film is excessively thick, it is not preferable because there is a possibility that the battery capacity will decrease and the resistance will increase.
  • the thickness of the first film can be measured by scanning electron microscopy (SEM) observation, which will be described later.
  • the content of inorganic particles in the first film is preferably in the range of 80% by mass or more and 99.9% by mass or less. Thereby, the insulation properties of the first film can be increased.
  • inorganic materials constituting inorganic particles include oxides (e.g., Li 2 O, BeO, B 2 O 3 , Na 2 O, MgO, Al 2 O 3 , SiO 2 , P 2 O 5 , CaO, Cr).
  • oxides e.g., Li 2 O, BeO, B 2 O 3 , Na 2 O, MgO, Al 2 O 3 , SiO 2 , P 2 O 5 , CaO, Cr).
  • M is a metal atom such as Na, K, Ca, and Ba
  • n is a number corresponding to the charge of the metal cation Mn +
  • x and y is the number of moles of SiO 2 and H 2 O (2 ⁇ x ⁇ 10, 2 ⁇ y)
  • nitrides e.g.
  • BN silicon carbide
  • SiC zircon
  • ZrSiO 4 carbonates
  • carbonates e.g., MgCO 3 and CaCO 3 , etc.
  • sulfates e.g., CaSO 4 and BaSO 4 , etc.
  • complexes thereof e.g., steatite (MgO -SiO 2 ), forsterite (2MgO.SiO 2 ), cordierite (2MgO.2Al 2 O 3 .5SiO 2 )), tungsten oxide, or mixtures thereof.
  • Examples of other inorganic materials include barium titanate, calcium titanate, lead titanate, ⁇ -LiAlO 2 , LiTiO 3 , solid electrolytes or mixtures thereof.
  • solid electrolytes include solid electrolytes with no or low lithium ion conductivity, and solid electrolytes with lithium ion conductivity.
  • oxide particles with no or low lithium ion conductivity include lithium aluminum oxide (for example, LiAlO 2 , Li x Al 2 O 3 where 0 ⁇ x ⁇ 1), lithium silicon oxide, and lithium zirconium oxide. It will be done.
  • Examples of solid electrolytes having lithium ion conductivity include oxide solid electrolytes with a garnet type structure.
  • Oxide solid electrolytes with a garnet-type structure have the advantage of high reduction resistance and a wide electrochemical window.
  • Examples of oxide solid electrolytes with a garnet-type structure include La 5+x A x La 3-x M 2 O 12 (A is at least one element selected from the group consisting of Ca, Sr, and Ba; M is Nb and ( M is Nb and/or Ta, L is Zr , x is 0.
  • Li 7-3x Al x La 3 Zr 3 O 12 (x is preferably a range of 0.5 or less (including 0))
  • Li 6.25 Al 0.25 La 3 Zr 3 O 12 , Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12, Li 6.4 La 3 Zr 1.6 Ta 0.6 O 12 , Li 7 La 3 Zr 2 O 12 has high ionic conductivity and is electrochemically stable, so it has excellent discharge performance and cycle life performance.
  • examples of the solid electrolyte having lithium ion conductivity include a lithium phosphate solid electrolyte having a NASICON type structure.
  • An example of a lithium phosphate solid electrolyte with a NASICON type structure includes LiM1 2 (PO 4 ) 3 , where M1 is one or more elements selected from the group consisting of Ti, Ge, Sr, Zr, Sn, and Al. included.
  • Preferred examples include Li 1+x Al x Ge 2-x (PO 4 ) 3 , Li 1+x Al x Zr 2-x (PO 4 ) 3 , and Li 1+x Al x Ti 2-x (PO 4 ) 3 .
  • x is preferably in the range of 0 or more and 0.5 or less.
  • each of the illustrated solid electrolytes has high ionic conductivity and high electrochemical stability. Both a lithium phosphate solid electrolyte having a NASICON type structure and an oxide solid electrolyte having a garnet type structure may be used as the solid electrolyte having lithium ion conductivity.
  • the inorganic particles may be made of only one type of the above-mentioned inorganic materials, or may be a mixture of two or more types.
  • the first film is, for example, a porous film containing inorganic particles and binder particles. Although there are inorganic materials that have lithium ion conductivity, such as solid electrolytes, many of the inorganic materials have low electronic conductivity or have insulating properties. Therefore, the first film can function as a partition wall for electrically insulating the positive electrode and the negative electrode.
  • the first membrane can hold the electrolyte in its porous portion, it does not inhibit the permeation of Li ions.
  • the first film containing the above-described type of inorganic material has high insulating properties while having Li ion permeability. From the viewpoint of achieving high insulation, it is preferable that the inorganic particles contain a substance having an energy bandgap value of 3.0 eV or more. Examples of substances with an energy bandgap value of 3.0 eV or more include aluminum oxide and barium sulfate.
  • Aluminum oxide and barium sulfate are preferred because they have an energy bandgap value of about 9 eV.
  • the inorganic particles may consist of aluminum oxide or barium sulfate.
  • binder examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine rubber, styrene-butadiene rubber, or mixtures thereof.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • fluorine rubber fluorine rubber
  • styrene-butadiene rubber or mixtures thereof.
  • the content of the binder in the first film is preferably in the range of 0.01% by mass to 20% by mass.
  • the volume-based frequency distribution chart obtained by the laser diffraction scattering method has two peaks.
  • the frequency distribution chart may include three or more peaks, but preferably includes two peaks.
  • the electrode group including the first film exhibits excellent insulation.
  • One reason for this is thought to be that the density within the layer is improved because two types of particle groups having mutually different particle diameters are present within the layer. It is thought that the density within the layer is increased by particles having a relatively small particle size entering the gaps between particles having a relatively large particle size.
  • the particles included in the first film may include inorganic particles and binder particles.
  • the layer does not contain or substantially does not contain coarse particles.
  • the coarse particles refer to, for example, primary particles having a diameter of 40 ⁇ m or more, or secondary particles obtained by agglomerating primary particles. If the first coating film is formed using a slurry containing a large amount of coarse particles, there is a tendency for coating failure to occur due to the coarse particles. Coating failure occurs, for example, when coarse particles are caught in a coating head provided in a coating device.
  • the term "missing coating” refers to the occurrence of uncoated parts in parts of the coating film that should be formed into a uniform film.
  • the frequency distribution chart of the first film included in the electrode group according to the embodiment includes two peaks with different particle sizes. Therefore, the first film is less likely to have holes due to coating failure. The reason for this will be explained in detail below.
  • the slurry used to form the first film also has a similar particle size distribution.
  • a volume-based frequency distribution chart obtained by a laser diffraction scattering method for the slurry for forming the first film may include two peaks having different particle diameters.
  • Such a slurry includes at least primary particles having a relatively small particle size and primary particles having a relatively large particle size.
  • the former will be referred to as first particles, and the latter will be referred to as second particles.
  • the slurry may include secondary particles that are aggregates of first particles and/or second particles. These secondary particles are called third particles.
  • the third particles may be the above coarse particles. Since the first particles have a small particle diameter, they tend to aggregate with each other. Therefore, most of the particles constituting the third particles are the first particles. For example, 50% or more by weight of the third particles can be the first particles.
  • the third particles which are mainly composed of aggregates of the first particles
  • the second particles having a relatively large particle size collide with the aggregate that is, the coarse particles (third particles), which are the aggregates of the first particles having a relatively small particle size, resulting in an aggregate.
  • the slurry has excellent dispersibility.
  • the probability of the presence of coarse particles is low, so even if the first film is formed using the slurry, coating defects are unlikely to occur. Therefore, by evaluating the number of coarse particles contained in the slurry after the dispersion treatment, it is possible to evaluate the insulation properties of the first film formed using the slurry.
  • Whether or not the slurry for forming the first film contains coarse particles can be determined using a grind gauge according to Japanese Industrial Standard JIS K 5600.
  • the number of coarse particles contained in 5 mL of slurry is, for example, 15 or less, preferably 10 or less, and more preferably 5 or less. The smaller the number of coarse particles, the lower the probability that coating defects will occur. As a result, the amount of self-discharge can be reduced.
  • the frequency distribution chart for the first film forming slurry does not have two peaks, it is sufficient that the frequency distribution chart for the first film has two peaks. Even in this case, the effect of increasing the density as described above can be obtained, so that an electrode group exhibiting excellent insulation properties can be obtained. It is preferable that the volume-based frequency distribution chart obtained by the laser diffraction scattering method for the first film-forming slurry also includes two peaks having different particle diameters.
  • Two peaks having different particle diameters in the frequency distribution chart for the first film are defined as a first peak and a second peak, respectively, in order from the peak with the smallest particle diameter.
  • the first peak having a small particle size may be, for example, a peak caused by the first particles.
  • the second peak having a large particle size may be, for example, a peak caused by the second particles. Since the number of third particles contained in the first film is very small, they are hardly detected or not detected in the frequency distribution chart.
  • the frequency distribution chart is a graph in which the horizontal axis indicates particle diameter [ ⁇ m] and the vertical axis indicates frequency (frequency distribution) [%].
  • the particle diameter D1 corresponding to the peak top of the first peak is smaller than the particle diameter D2 corresponding to the peak top of the second peak.
  • the particle diameter D1 is, for example, within the range of 0.4 ⁇ m or more and 1.0 ⁇ m or less, preferably within the range of 0.5 ⁇ m or more and 0.9 ⁇ m or less. If the particle size D1 of the first peak is excessively small, agglomerates are likely to be formed, which is not preferable because the frequency of coating failure due to agglomerates (coarse particles) may increase.
  • the particle diameter D2 is, for example, in the range of more than 1.0 ⁇ m and less than 2.0 ⁇ m, preferably in the range of 1.1 ⁇ m or more and less than 1.8 ⁇ m. If the particle diameter D2 of the second peak is excessively large, the number of primary particles having large particle diameters is too large, and the probability of contact between these primary particles increases. As a result, the probability of contact between primary particles having a relatively large particle size and aggregates decreases, and dispersibility tends to be poor. When the dispersibility is poor, coarse particles in the slurry are difficult to crush, and coating omissions may easily occur.
  • the particle diameter D1 corresponding to the peak top of the first peak is 0.4 ⁇ m or more and 1.0 ⁇ m or less
  • the particle diameter D2 corresponding to the peak top of the second peak is more than 1.0 ⁇ m and 2.0 ⁇ m or less. It is preferable that there be.
  • the particle diameters D1 and D2 are within these ranges, it can be considered that the primary particles contained in the first film have a small particle diameter as a whole. Therefore, in this case, since the thickness of the first film can be made sufficiently thin, a high battery capacity can be achieved.
  • the ratio D1/D2 of the particle diameter D1 corresponding to the peak top of the first peak to the particle diameter D2 corresponding to the peak top of the second peak is, for example, in the range of 1.0 or more and 5.0 or less, preferably It is in the range of 1.50 or more and 3.0 or less, more preferably 2.0 or more and 2.5 or less. If the ratio D1/D2 is too high, the number of particles having a large primary particle diameter to collide with the aggregates is insufficient, so that the dispersibility tends to deteriorate. If the ratio D1/D2 is too low, the number of particles having a large primary particle diameter will be too large, reducing the collision probability (frequency) during dispersion and deteriorating the dispersibility. As a result, coarse particles tend to exist in the slurry or in the first film, which tends to cause coating failure.
  • the frequency distribution chart for the first film according to the embodiment is obtained by measuring according to the following procedure.
  • the electrode group is taken out from the battery, and the electrode structure (positive electrode or negative electrode) including the first film containing an inorganic material is taken out.
  • the taken-out electrode structure is immersed in ethyl methyl carbonate to remove Li salt, and then dried. After drying, only the first film of the electrode structure is peeled off with a spatula and immersed in NMP (N-methyl-2-pyrrolidone) solvent. Thereafter, while immersed in the NMP solvent, the first film is dispersed in the NMP solvent using ultrasound to obtain a dispersion solution as a sample. Regarding this dispersion solution, the particle size distribution of the constituent particles is measured using a laser diffraction type distribution measuring device.
  • the dispersion solution may further contain not only the inorganic particles contained in the first film but also a binder component such as PVdF that may be contained in the first film. Since the particle size of the binder component is very small compared to the particle size of the inorganic particles, it is not detected.
  • a measuring device for example, Microtrac MT3100II manufactured by Microtrac Bell Co., Ltd. can be used.
  • ultrasonic treatment when obtaining the above-mentioned dispersion solvent is performed using a sample supply system attached to a laser diffraction type distribution measuring device. Ultrasonication is carried out at a power of 40W for 300 seconds.
  • the first peak and the second peak can be determined from the frequency distribution chart obtained by the above measurement. Furthermore, D10, D50, and D90 of the particles constituting the first film can be determined from this frequency distribution chart. D10, D50, and D90 are particle diameters of particles whose integrated value of particle diameter distribution corresponds to 10%, 50%, and 90%, respectively. D50 is also called the median diameter.
  • the average particle diameter D50 of the inorganic particles can be, for example, within the range of 0.60 ⁇ m to 2.0 ⁇ m. It is preferable that D50 is within this range because the thickness of the first film can be reduced.
  • the D50 of the inorganic particles may preferably be within the range of 0.80 ⁇ m to 1.20 ⁇ m.
  • D10 in the frequency distribution chart above is, for example, 0.10 ⁇ m or more.
  • a high value of D10 means less fine powder.
  • D10 may be 0.20 ⁇ m or more, or 0.30 ⁇ m or more. According to one example, D10 may be 0.60 ⁇ m or less.
  • D10 is 0.10 ⁇ m or more, the proportion of primary particles in the first film is low, so that agglomeration of fine powder can be suppressed. In this case, coarse particles are reduced and high insulation properties can be exhibited.
  • D90 in the above frequency distribution chart is, for example, within the range of 1.50 ⁇ m to 3.0 ⁇ m, although it is not particularly limited.
  • the second film contains organic fibers.
  • the second membrane may be a porous membrane in which organic fibers are deposited in the plane direction and the thickness direction.
  • the second film has a front surface and a back surface. One main surface of the second film corresponds to the front surface, and the other main surface corresponds to the back surface.
  • the organic fiber comprises, for example, at least one organic material selected from the group consisting of polyamideimide, polyamide, polyolefin, polyether, polyimide, polyketone, polysulfone, cellulose, polyvinyl alcohol (PVA) and polyvinylidene fluoride (PVdF).
  • polyolefins include polypropylene (PP) and polyethylene (PE).
  • the number of types of organic fibers can be one or more. Preferred is at least one selected from the group consisting of polyimide, polyamide, polyamideimide, cellulose, PVdF, and PVA, and more preferred is at least one selected from the group consisting of polyimide, polyamide, polyamideimide, cellulose, and PVdF. At least one type of
  • polyimide Since polyimide is insoluble, infusible, and does not decompose even at 250 to 400°C, it is possible to obtain a second film with excellent heat resistance.
  • the organic fiber preferably has a length of 1 mm or more and an average diameter of 2 ⁇ m or less, more preferably an average diameter of 1 ⁇ m or less. Since such a second film has sufficient strength, porosity, air permeability, pore size, electrolyte resistance, oxidation-reduction resistance, etc., it functions well as a separator.
  • the average diameter of organic fibers can be measured by observation with a focused ion beam (FIB) device. Further, the length of the organic fiber is obtained based on length measurement during observation with an FIB device.
  • FIB focused ion beam
  • 30% or more of the total volume of the fibers forming the second membrane is preferably organic fibers with an average diameter of 1 ⁇ m or less, and organic fibers with an average diameter of 350 nm or less. It is more preferable that it is an organic fiber, and even more preferable that it is an organic fiber of 50 nm or less.
  • the volume of the organic fibers having an average diameter of 1 ⁇ m or less accounts for 80% or more of the volume of the entire fibers forming the second film.
  • a scanning ion microscope SIM
  • the organic fibers having a thickness of 40 nm or less occupy 40% or more of the total volume of the fibers forming the second film. The smaller the diameter of the organic fiber, the less the effect of interfering with the movement of ions.
  • cation exchange groups exist on at least a portion of the entire surface of the organic fiber, including the front and back surfaces. Cation exchange groups promote the movement of ions, such as lithium ions, through the separator, thereby enhancing battery performance. Specifically, it becomes possible to perform rapid charging and rapid discharging over a long period of time.
  • the cation exchange group is not particularly limited, but includes, for example, a sulfonic acid group and a carboxylic acid group. Fibers having cation exchange groups on their surfaces can be formed, for example, by electrospinning using a sulfonated organic material.
  • the second film preferably has pores, and the average pore diameter of the pores is preferably 5 nm or more and 10 ⁇ m or less. Further, the porosity is preferably 30% or more and 90% or less. If such pores are provided, a separator with excellent ion permeability and good electrolyte impregnation properties can be obtained. More preferably, the porosity is 40% or more.
  • the average pore diameter and porosity of the pores can be confirmed by mercury intrusion method, calculation from volume and density, SEM observation, SIM observation, and gas desorption method. It is desirable that the porosity be calculated from the volume and density of the second film. Further, the average pore diameter is preferably measured by a mercury intrusion method or a gas adsorption method. A large porosity in the second film means that the effect of interfering with the movement of ions is small.
  • the thickness of the second film is preferably in the range of 12 ⁇ m or less.
  • the lower limit of the thickness is not particularly limited, but may be 1 ⁇ m.
  • the porosity can be increased by making the organic fibers contained in a sparse state, so it is not difficult to obtain a layer with a porosity of about 90%, for example. It is extremely difficult to form a layer with such a high porosity using particles.
  • the second film is more advantageous than the inorganic particle deposit in terms of roughness, breakability, electrolyte content, adhesion, bending properties, porosity, and ion permeability.
  • the second film may contain particles of an organic compound.
  • the particles are made of the same material as the organic fibers, for example.
  • the particles may be formed integrally with the organic fiber.
  • the second film may be formed on the second active material-containing layer, or may be formed on the first film. Alternatively, the second film may be formed on both surfaces of the second active material-containing layer and the first film. In either case, one of the front and back surfaces of the second film can be in contact with the front surface of the first film.
  • the thickness of the first film and the second film, and the thickness of the first active material-containing layer and the second active material-containing layer can be measured by performing SEM observation on the cross section of the electrode.
  • the target electrode group is cut using an ion milling device.
  • the electrode group is cut along the thickness direction.
  • the cross section of the electrode group after cutting is pasted on the SEM sample stage.
  • conductive tape or the like is used to prevent the electrode group from peeling off or floating from the sample stage. Observe the electrode group attached to the SEM sample stage using SEM. Note that when introducing the electrode group into the sample chamber, it is preferable to maintain an inert atmosphere.
  • the secondary battery to be analyzed is brought into a discharge state.
  • the secondary battery can be brought into a discharge state by discharging it to the rated final voltage with a 0.1 C current.
  • the discharged secondary battery is disassembled in a glove box filled with argon. Remove the electrode group to be measured from the disassembled battery.
  • This electrode group is washed with a suitable solvent.
  • a suitable solvent for example, ethyl methyl carbonate can be used. Thereafter, SEM observation is performed according to the above-described procedure.
  • the second film is formed, for example, by electrospinning.
  • the first electrode structure or the second electrode structure on which the second film is to be formed is grounded to serve as a ground electrode.
  • the first electrode structure on which the first film is already formed is prepared.
  • the voltage applied to the spinning nozzle charges the liquid raw material (for example, the raw material solution), and the amount of charge per unit volume of the raw material solution increases due to the volatilization of the solvent from the raw material solution. Due to the continuous volatilization of the solvent and the accompanying increase in the amount of charge per unit volume, the raw material solution discharged from the spinning nozzle extends in the longitudinal direction and forms nano-sized organic fibers at the first electrode, which is the ground electrode. or a second electrode structure.
  • Coulomb force is generated between the organic fiber and the earth electrode due to the potential difference between the nozzle and the earth electrode. Therefore, the contact area with the first film can be increased by the nano-sized organic fibers, and the organic fibers can be deposited on the first electrode structure or the second electrode structure by Coulomb force. It becomes possible to increase the peel strength of the two films from the electrode (second active material-containing layer).
  • the peel strength can be controlled, for example, by adjusting the solution concentration, the sample-nozzle distance, and the like.
  • the second film can be easily formed on the electrode surface.
  • the electrospinning method forms one continuous fiber, so it is possible to ensure a thin film with resistance to breakage due to bending and cracking of the film. If the organic fibers constituting the second film are seamless and continuous, the probability of fraying or partial loss of the second film is low, which is advantageous in terms of suppressing self-discharge.
  • the liquid raw material used for electrospinning for example, a raw material solution prepared by dissolving an organic material in a solvent is used.
  • the organic material include the same materials as those mentioned for the organic materials constituting the organic fibers.
  • the organic material is used by being dissolved in a solvent at a concentration of, for example, about 5 to 60% by mass.
  • the solvent for dissolving the organic material is not particularly limited, and any solvent such as dimethylacetamide (DMAc), dimethylsulfoxide (DMSO), N,N'dimethylformamide (DMF), N-methylpyrrolidone (NMP), water, alcohols, etc.
  • a solvent can be used.
  • electrospinning is performed while melting the sheet-like organic material using a laser or the like. In addition, it is also permissible to mix high boiling point organic solvents and low melting point solvents.
  • the second film is formed by discharging the raw material from the spinning nozzle over the surface of a predetermined electrode while applying voltage to the spinning nozzle using a high voltage generator.
  • the applied voltage is appropriately determined depending on the solvent/solute species, boiling point/vapor pressure curve of the solvent, solution concentration, temperature, nozzle shape, sample-nozzle distance, etc. It can be set to 100kV.
  • the feed rate of the raw material is also appropriately determined depending on the solution concentration, solution viscosity, temperature, pressure, applied voltage, nozzle shape, etc. In the case of a syringe type, the flow rate can be, for example, about 0.1 to 500 ⁇ l/min per nozzle. Furthermore, in the case of multiple nozzles or slits, the supply rate may be determined depending on the opening area.
  • the organic fibers are formed directly on the surface of the electrode in a dry state, it is substantially possible to prevent the solvent contained in the raw material from penetrating into the electrode.
  • the amount of solvent remaining inside the electrode is extremely low, below the ppm level.
  • the residual solvent inside the electrode causes an oxidation-reduction reaction, causing battery loss, leading to a decrease in battery performance.
  • the second film containing an organic material the possibility of such inconvenience occurring is reduced as much as possible, so that battery performance can be improved.
  • the first film may be formed only on at least one main surface of the first active material-containing layer, but it is also possible to further cover at least a portion of the surface of the first current collecting tab with the first film. good. An example of this is shown in FIGS. 5 and 6. For each of the two first active material-containing layers 1b, four side surfaces 47 perpendicular to the main surface are covered with the first film 6. The first film 6 also covers the portions adjacent to the first active material-containing layer 1b (including the boundary with the first active material-containing layer 1b) on both main surfaces of the first current collecting tab 1c. . The location where the first film 6 is provided is close to the end surface of the second electrode structure opposite to the side from which the second current collecting tab 2c extends.
  • the first film 6 By providing the first film 6, it is possible to reduce internal short circuits caused by contact between the first current collecting tab 1c of the first electrode structure and the end surface of the second electrode structure. In addition, when using a plurality of strips protruding from one side of the first current collector 1a as the first current collecting tab 1c as shown in FIG. It is desirable that the first film 6 covers a portion 48 adjacent to the current collector 1a and an end surface 49 of the first current collector 1a located between the first current collector tabs 1c. This configuration is effective in reducing internal short circuits.
  • the second film may be formed on the second electrode structure, but instead of being formed on the second electrode structure, it may be formed on the surface of the first electrode structure. An example of this is shown in FIG.
  • the second film 7 covers the surface of the first film 4 and all end faces of the first electrode structure. Further, the second film 7 also covers portions of both main surfaces of the first current collecting tab 1c, including the boundary with the first active material containing layer 1b.
  • the second electrode structure is arranged such that the second active material containing layer 2b faces the first active material containing layer 1b with a separator 3 formed of the first film 4 and the second film 7 interposed therebetween.
  • a portion of the main surface of the first current collecting tab 1c adjacent to the first active material containing layer 1b is covered with the second film 7, and the side opposite to the side of the first electrode structure from which the first current collecting tab 1c protrudes
  • the end face located at is covered with the second film 7.
  • the electrode group according to the embodiment can be manufactured by, for example, the first or second manufacturing method described below.
  • a slurry containing the first active material (hereinafter referred to as slurry I) and a slurry containing inorganic particles (hereinafter referred to as slurry II) are simultaneously applied to at least one main surface of the first current collector.
  • An example of the coating process is shown in FIGS. 9 and 10.
  • the coating device 60 includes a tank 62 containing slurry I and a tank 63 containing slurry II.
  • the coating device 60 is configured to be able to simultaneously coat slurry I and slurry II onto the base material.
  • the elongated first current collector 1a before being cut into a predetermined size is conveyed to the slurry discharge port of the coating device 60 by the conveyance roller 61.
  • the slurry I outlet 62a is located upstream of the current collector than the slurry II outlet 63a. Therefore, slurry I is discharged onto the current collector before slurry II.
  • Slurry I is applied from the coating device 60 onto the first current collector 1a except for both ends in the short side direction.
  • slurry II is overcoated so as to protrude from the area coated with slurry I. Since Slurry II is coated over Slurry I, Slurry II can easily follow the surface shape of Slurry I.
  • the first active material-containing layer can be formed by drying and pressing slurry I.
  • the first film can be formed by drying and pressing slurry II. In this way, a first electrode structure can be obtained.
  • the first electrode structure may be cut to a desired size.
  • the first film-forming slurry II can be obtained, for example, by obtaining a dispersion liquid in which inorganic particles and a binder are suspended in a suitable solvent, and then performing a dispersion treatment using a bead mill or the like.
  • One method for making the frequency distribution chart for the first film have two peaks is, for example, a method of mixing two types of inorganic particles with different D50s.
  • the inorganic particles contained in the slurry for forming the first film for example, two powders having a D50 of 0.4 ⁇ m to 0.7 ⁇ m and a powder having a D50 of 1.4 ⁇ m to 1.8 ⁇ m are used. : Use a mixture at a ratio of 8 to 8:2. These inorganic particles may be of the same type or different types. As described above, the particle size may be adjusted by further performing a dispersion treatment on the dispersion containing the inorganic particles.
  • the diameter of the beads used is, for example, within the range of 1 mm to 2 mm.
  • the filling rate is, for example, within the range of 40% to 70%.
  • the rotation speed is, for example, within the range of 500 rpm to 3000 rpm.
  • the processing time is, for example, 3 to 10 minutes.
  • the first peak position D1 (particle diameter) will become smaller.
  • the ratio D1/D2 tends to become smaller.
  • D10 becomes too small and aggregates are likely to be formed, which is not preferable.
  • the second peak position D2 (particle diameter) becomes larger. Therefore, the ratio D1/D2 tends to increase.
  • the second electrode structure can be manufactured as follows. After applying the slurry containing the second active material onto the second current collector, the slurry is dried, and the dried slurry is roll pressed to obtain a laminate.
  • the obtained laminate may be a second electrode including a second active material-containing layer on at least one main surface of the second current collector. After cutting the laminate as the second electrode into a predetermined size as necessary, a second film is formed on the laminate by electrospinning. Then, pressing may be performed. Examples of the pressing method include roll pressing.
  • FIG. 11 is a perspective view showing an example of the process of forming a second film on the second electrode.
  • the second film 5 is directly formed by depositing the raw material solution discharged from the nozzle N on the second active material-containing layer 2b and the second current collecting tab 2c as organic fibers.
  • One side of the second current collecting tab 2c and its vicinity are covered with a mask M. Therefore, the second film 5 includes organic fibers deposited across the surface of the second active material-containing layer 2b and the portion of the surface of the second current collecting tab 2c adjacent to the second active material-containing layer 2b. It becomes a porous membrane containing
  • the electrode group of the embodiment can be obtained by stacking the first electrode structure and the second electrode structure so that they face each other with the first film and the second film interposed in between.
  • a second film is formed by electrospinning on the first electrode structure produced by the first manufacturing method. Then, pressing may be performed. In this way, a first electrode structure further having a second film on the first film can be obtained.
  • the slurry is dried, and the dried material is roll pressed and cut into a predetermined size. Obtain 2 electrodes.
  • the electrode group of the embodiment can be obtained by stacking a first electrode structure having a second film and a second electrode so that they face each other with the first film and the second film interposed in between.
  • the electrode group obtained by the first or second manufacturing method may be used as a single electrode group, or a plurality of electrode groups may be stacked and used. Furthermore, one or more electrode groups may be spirally wound. Note that the electrode group may be further pressed.
  • an electrode group includes a first electrode structure and a second electrode structure at least partially facing the first electrode structure.
  • the first electrode structure includes a first current collector, a first active material-containing layer provided on at least one surface of the first current collector, and inorganic particles. and a first film provided in the first film.
  • the second electrode structure includes a second current collector, a second active material-containing layer provided on at least one surface of the second current collector, and an organic material; and a second film provided on.
  • a volume-based frequency distribution chart obtained by laser diffraction scattering has two peaks.
  • the electrode group according to the embodiment Shows excellent insulation properties.
  • the frequency distribution chart regarding the first film forming slurry for forming the first film which shows a frequency distribution chart having two peaks, also has the same chart shape as the frequency distribution chart for the first film. Since such a slurry for forming the first film has excellent dispersibility, the number of coarse particles contained after dispersion treatment using a bead mill or the like is small. As a result, in the coating process using the slurry, coating omission can be suppressed, so that the resulting electrode group including the first film can achieve high insulation.
  • the secondary battery according to the second embodiment includes the electrode group according to the first embodiment and an electrolyte.
  • the secondary battery may further include an exterior member capable of accommodating the electrode group and the electrolyte.
  • One or more electrode groups can be used in a laminated type, or in a spirally or flat spirally wound manner.
  • the plurality of electrode groups are stacked, for example, so that first electrode structures and second electrode structures are alternately arranged.
  • the secondary battery may further include a first electrode terminal electrically connected to the first current collecting tab, and a second electrode terminal electrically connected to the second current collecting tab.
  • a non-aqueous electrolyte for example, a non-aqueous electrolyte is used.
  • the non-aqueous electrolyte include a liquid non-aqueous electrolyte prepared by dissolving an electrolyte in an organic solvent, a gel-like non-aqueous electrolyte made of a composite of a liquid electrolyte and a polymer material, and the like.
  • the liquid non-aqueous electrolyte can be prepared, for example, by dissolving the electrolyte in an organic solvent at a concentration of 0.5 mol/L or more and 2.5 mol/L or less.
  • Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), and trifluoromethane.
  • Examples include lithium salts such as lithium sulfonate (LiCF 3 SO 3 ), lithium bistrifluoromethylsulfonylimide [LiN(CF 3 SO 2 ) 2 ], or mixtures thereof. It is preferable that it is resistant to oxidation even at high potentials, and LiPF 6 is most preferable.
  • organic solvents examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), and vinylene carbonate, and chain carbonates such as diethyl carbonate (DEC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC).
  • cyclic ethers such as tetrahydrofuran (THF), 2methyltetrahydrofuran (2MeTHF), dioxolane (DOX), chain ethers such as dimethoxyethane (DME), diethoxyethane (DEE), ⁇ -butyrolactone (GBL)
  • Examples include acetonitrile (AN) and sulfolane (SL). These organic solvents may be used alone or as a mixture of two or more.
  • polymer material examples include polyvinylidene fluoride (PVdF), polyacrylonitrile (P1N), and polyethylene oxide (PEO).
  • PVdF polyvinylidene fluoride
  • P1N polyacrylonitrile
  • PEO polyethylene oxide
  • non-aqueous electrolyte a room temperature molten salt (ionic melt) containing lithium ions, a polymer solid electrolyte, an inorganic solid electrolyte, etc. may be used.
  • the exterior member for example, a metal container or a laminated film container can be used.
  • the shape of the secondary battery is not particularly limited, and can be in various shapes, such as cylindrical, flat, thin, square, coin-shaped, etc.
  • FIG. 12 is a partially cutaway perspective view showing an example of the secondary battery according to the embodiment.
  • FIG. 12 is a diagram showing an example of a secondary battery using a laminate film as an exterior member.
  • the secondary battery 100 shown in FIG. 12 includes an exterior member 110 made of a laminate film, an electrode group 120, a first electrode terminal 130, a second electrode terminal 140, and a nonaqueous electrolyte (not shown).
  • the electrode group 120 includes a plurality of electrode groups according to the embodiment. These electrode groups are stacked such that the first electrode structures and the second electrode structures are alternately arranged.
  • a non-aqueous electrolyte (not shown) is held or impregnated in the electrode group 120.
  • a first current collection tab of the first electrode structure is electrically connected to the first electrode terminal 130 .
  • a second current collection tab of the second electrode structure is electrically connected to the second electrode terminal 140 .
  • the first electrode terminal 130 and the second electrode terminal 140 are spaced apart from each other, and their tips protrude outward from one side of the exterior member 110.
  • FIG. 13 is an exploded perspective view showing another example of the secondary battery according to the embodiment.
  • FIG. 13 is a diagram showing an example of a secondary battery using a square metal container as an exterior member.
  • the secondary battery shown in FIG. 13 includes an exterior member 20, a wound electrode group 51, a lid 52, a first electrode terminal 53, a second electrode terminal 54, and a non-aqueous electrolyte (not shown).
  • the wound electrode group 51 has a structure in which the electrode group according to the embodiment is wound in a flat spiral shape.
  • the first current collecting tab 25 wound in a flat spiral shape is located on one end surface of the winding shaft
  • the first current collecting tab 25 wound in a flat spiral shape is located on one end surface of the winding shaft.
  • Two current collection tabs 26 are located on the other end surface of the winding shaft.
  • a non-aqueous electrolyte (not shown) is held or impregnated in the electrode group 51.
  • the first electrode lead 27 is electrically connected to the first current collecting tab 25 and also to the first electrode terminal 53. Further, the second electrode lead 28 is electrically connected to the second current collecting tab 26 and also to the second electrode terminal 54 .
  • the electrode group 51 is arranged within the exterior member 20 such that the first electrode lead 27 and the second electrode lead 28 face the main surface side of the exterior member 20 .
  • the lid 52 is fixed to the opening 20a of the exterior member 20 by welding or the like.
  • the first electrode terminal 53 and the second electrode terminal 54 are each attached to the lid 52 via an insulating hermetic seal member (not shown).
  • the secondary battery of the second embodiment described above includes the electrode group according to the first embodiment, and thus exhibits excellent insulation properties.
  • a battery pack includes the secondary battery according to the second embodiment or an assembled battery including a plurality of secondary batteries.
  • the battery pack according to the second embodiment can further include a protection circuit.
  • the protection circuit has a function of controlling charging and discharging of the secondary battery.
  • a circuit included in a device for example, an electronic device, an automobile, etc. that uses a battery pack as a power source may be used as a protection circuit for the battery pack.
  • the battery pack according to the third embodiment may further include an external terminal for power supply.
  • the external terminal for energization is for outputting current from the secondary battery to the outside and/or inputting current from the outside to the secondary battery.
  • current is supplied to the outside through the external terminal for energization.
  • charging current (including regenerated energy from the motive power of an automobile, etc.) is supplied to the battery pack through an external terminal for energization.
  • FIG. 14 is an exploded perspective view schematically showing an example of a battery pack according to the third embodiment.
  • FIG. 15 is a block diagram showing an example of the electric circuit of the battery pack shown in FIG. 14.
  • the battery pack 300 shown in FIGS. 14 and 15 includes a storage container 31, a lid 32, a protective sheet 33, an assembled battery 200, a printed wiring board 34, wiring 35, and an insulating plate (not shown). .
  • the storage container 31 shown in FIG. 14 is a bottomed square container with a rectangular bottom surface.
  • the storage container 31 is configured to be able to accommodate the protective sheet 33, the assembled battery 200, the printed wiring board 34, and the wiring 35.
  • the lid 32 has a rectangular shape.
  • the lid 32 accommodates the assembled battery 200 and the like by covering the accommodation container 31.
  • the container 31 and the lid 32 are provided with an opening or a connection terminal for connection to an external device or the like.
  • the assembled battery 200 includes a plurality of single cells 100, a positive lead 22, a negative lead 23, and an adhesive tape 24.
  • At least one of the plurality of single cells 100 is a secondary battery according to the second embodiment.
  • Each of the plurality of unit cells 100 is electrically connected in series as shown in FIG. 15.
  • the plurality of unit cells 100 may be electrically connected in parallel, or may be connected in a combination of series connection and parallel connection. When a plurality of single cells 100 are connected in parallel, the battery capacity increases compared to when they are connected in series.
  • the adhesive tape 24 fastens the plurality of unit cells 100 together.
  • a heat shrink tape may be used to fix the plurality of cells 100.
  • the protective sheets 33 are arranged on both sides of the assembled battery 200, and after a heat-shrinkable tape is made to go around, the heat-shrinkable tape is heat-shrinked to bundle the plurality of unit cells 100.
  • One end of the positive electrode side lead 22 is connected to the assembled battery 200. One end of the positive electrode side lead 22 is electrically connected to the positive electrode of one or more unit cells 100. One end of the negative electrode side lead 23 is connected to the assembled battery 200. One end of the negative electrode side lead 23 is electrically connected to the negative electrode of one or more unit cells 100.
  • the printed wiring board 34 is installed along one of the inner surfaces of the container 31 in the short side direction.
  • the printed wiring board 34 includes a positive connector 342, a negative connector 343, a thermistor 345, a protection circuit 346, wiring 342a and 343a, an external terminal 350 for energization, and a positive wiring (positive wiring) 348a. and a negative side wiring (negative side wiring) 348b.
  • One main surface of the printed wiring board 34 faces one side of the assembled battery 200.
  • An insulating plate (not shown) is interposed between the printed wiring board 34 and the assembled battery 200.
  • the other end 22a of the positive lead 22 is electrically connected to the positive connector 342.
  • the other end 23 a of the negative lead 23 is electrically connected to the negative connector 343 .
  • the thermistor 345 is fixed to one main surface of the printed wiring board 34. Thermistor 345 detects the temperature of each cell 100 and transmits the detection signal to protection circuit 346.
  • the external terminal 350 for power supply is fixed to the other main surface of the printed wiring board 34.
  • the external terminal 350 for energization is electrically connected to a device existing outside the battery pack 300.
  • External terminal 350 for energization includes a positive terminal 352 and a negative terminal 353.
  • the protection circuit 346 is fixed to the other main surface of the printed wiring board 34.
  • the protection circuit 346 is connected to the positive terminal 352 via the positive wiring 348a.
  • the protection circuit 346 is connected to the negative terminal 353 via the negative wiring 348b.
  • the protection circuit 346 is electrically connected to the positive connector 342 via a wiring 342a.
  • the protection circuit 346 is electrically connected to the negative electrode side connector 343 via wiring 343a. Further, the protection circuit 346 is electrically connected to each of the plurality of unit cells 100 via the wiring 35.
  • the protective sheets 33 are disposed on both inner surfaces of the container 31 in the long side direction and on the inner surface of the container 31 in the short side direction facing the printed wiring board 34 with the assembled battery 200 interposed therebetween.
  • the protective sheet 33 is made of resin or rubber, for example.
  • the protection circuit 346 controls charging and discharging of the plurality of single cells 100. Furthermore, the protection circuit 346 connects the protection circuit 346 to an external terminal for energizing the external device based on the detection signal transmitted from the thermistor 345 or the detection signal transmitted from the individual cells 100 or the assembled batteries 200. 350 (positive side terminal 352, negative side terminal 353).
  • the detection signal transmitted from the thermistor 345 can be, for example, a signal that detects that the temperature of the cell 100 is higher than a predetermined temperature.
  • Examples of the detection signal transmitted from each single cell 100 or assembled battery 200 include signals that detect overcharging, overdischarging, and overcurrent of the single cell 100.
  • the battery voltage may be detected, or the positive electrode potential or the negative electrode potential may be detected. In the latter case, a lithium electrode used as a reference electrode is inserted into each cell 100.
  • protection circuit 346 a circuit included in a device (for example, an electronic device, an automobile, etc.) that uses the battery pack 300 as a power source may be used.
  • this battery pack 300 includes the external terminal 350 for power supply, as described above. Therefore, this battery pack 300 can output current from the assembled battery 200 to an external device and input current from the external device to the assembled battery 200 via the external terminal 350 for energization. In other words, when the battery pack 300 is used as a power source, the current from the assembled battery 200 is supplied to the external device through the external terminal 350 for energization. Further, when charging the battery pack 300, a charging current from an external device is supplied to the battery pack 300 through the external terminal 350 for energization. When this battery pack 300 is used as an on-vehicle battery, regenerated energy from the motive power of the vehicle can be used as the charging current from an external device.
  • the battery pack 300 may include a plurality of assembled batteries 200.
  • the plurality of assembled batteries 200 may be connected in series, in parallel, or by a combination of series connection and parallel connection.
  • the printed wiring board 34 and the wiring 35 may be omitted.
  • the positive lead 22 and the negative lead 23 may be used as a positive terminal and a negative terminal of an external terminal for energization, respectively.
  • Such a battery pack is used, for example, in applications that require excellent cycle performance when drawing a large current.
  • this battery pack is used, for example, as a power source for electronic equipment, a stationary battery, and an in-vehicle battery for various vehicles.
  • An example of the electronic device is a digital camera.
  • This battery pack is particularly suitable for use as a vehicle battery.
  • the battery pack according to the third embodiment includes the secondary battery according to the second embodiment. Therefore, this battery pack can achieve excellent insulation.
  • Example 1 An electrode group including a first electrode structure as a positive electrode and a second electrode structure as a negative electrode, and a secondary battery including this electrode group were manufactured by the method described below.
  • LiNi 0.33 Co 0.33 Mn 0.33 O 2 particles were prepared as a positive electrode active material, carbon black was prepared as a conductive agent, and polyvinylidene fluoride was prepared as a binder. These were mixed at a mass ratio of 90:5:5 to obtain a mixture. Next, the obtained mixture was dispersed in n-methylpyrrolidone (NMP) solvent to prepare slurry I.
  • Slurry I is a slurry for forming a layer containing a positive electrode active material.
  • slurry II was prepared as the slurry for forming the first film as follows.
  • inorganic particles alumina particles (material 1) with an average particle diameter D50 of 0.6 ⁇ m and alumina particles (material 2) with an average particle diameter D50 of 1.7 ⁇ m are prepared, and these are mixed in a 1:1 mass ratio. The mixture was mixed at the same ratio and subjected to a mixing process using a Henschel mixer.
  • the material with a relatively small D50 is called "Material 1”
  • the material with a relatively large D50 is called "Material 2".
  • Slurry II is a slurry for forming the first layer.
  • slurry I and slurry II were overcoated in this order on both sides of a 20 ⁇ m thick aluminum foil.
  • slurry II was applied onto slurry I before slurry I dried. Thereafter, after drying Slurry I and Slurry II, the dried slurry was subjected to a roll press at a linear pressure of 1 kN/cm and cut into a predetermined size to obtain a positive electrode as a first electrode structure.
  • the thickness of each positive electrode active material containing layer was 20 ⁇ m.
  • both surfaces (principal surfaces) of the positive electrode active material-containing layer were covered with the first film, as shown in FIGS. 1 and 2.
  • the content of the inorganic material in the first film was 98% by mass.
  • a negative electrode as a second electrode was produced by the following method. Lithium titanate particles having an average primary particle diameter of 0.5 ⁇ m, carbon black as a conductive agent, and polyvinylidene fluoride as a binder were prepared. These were mixed at a mass ratio of 90:5:5 to obtain a mixture. The resulting mixture was dispersed in n-methylpyrrolidone (NMP) solvent to prepare a slurry. The obtained slurry was applied to a 20 ⁇ m thick aluminum foil and dried. Next, the dried coating film was pressed to obtain a negative electrode. The thickness of each negative electrode active material containing layer was 50 ⁇ m. Note that a portion not supported by the negative electrode active material-containing layer was provided on one long side of the current collector, and this portion was used as a negative electrode current collection tab.
  • NMP n-methylpyrrolidone
  • organic fibers were deposited on this negative electrode by electrospinning to form a second film.
  • Polyimide was used as the organic material.
  • This polyimide was dissolved in DMAc as a solvent at a concentration of 20% by mass to prepare a raw material solution as a liquid raw material.
  • the obtained raw material solution was supplied to the surface of the positive electrode from a spinning nozzle at a supply rate of 5 ⁇ l/min using a metering pump.
  • a voltage of 20 kV was applied to the spinning nozzle using a high voltage generator, and a layer of organic fibers was formed on the surface of the positive electrode while moving the spinning nozzle over an area of 100 x 200 mm.
  • the electrospinning method was performed with the surface of the negative electrode current collecting tab masked except for a 10 mm portion from the boundary with the positive electrode active material-containing layer on both surfaces (principal surfaces) of the negative electrode current collecting tab.
  • a negative electrode (second electrode structure) having the structure shown in was obtained. That is, the second film includes the surface of the negative electrode active material-containing layer, four side surfaces perpendicular to the respective surfaces (principal surfaces) of the negative electrode active material-containing layer, and three end surfaces exposed on the negative electrode surface of the negative electrode current collector. , and the portion including the boundary with the negative electrode active material-containing layer on the surface of the negative electrode current collector tab.
  • this negative electrode was pressed using a roll press.
  • the average diameter of the organic fibers was 700 nm, and 50% or more of the total volume of the fibers forming the second film was occupied by organic fibers with an average diameter of 1 ⁇ m or less.
  • the average pore diameter of the second membrane was 10 ⁇ m, and the porosity was 45%.
  • the positive electrode and the negative electrode are arranged so that the positive electrode active material-containing layer and the negative electrode active material-containing layer face each other with the first film and the second film interposed therebetween, and are wound into a flat spiral shape.
  • An electrode group with a shape was obtained. After vacuum drying at room temperature overnight, it was left in a glove box with a dew point of -80°C or lower for one day. This was placed in a metal container together with an electrolyte to obtain a non-aqueous electrolyte battery of Example 1.
  • the electrolytic solution was one in which 1 mol/L of LiPF 6 was dissolved as an electrolyte in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) (volume ratio 1:1).
  • Example 1 When producing the first electrode structure, secondary electrode structure was prepared in the same manner as in Example 1, except that titania particles having only one peak in the particle size distribution chart were used as inorganic particles to be mixed in slurry II. A battery was created. The average particle diameter D50 of the titania particles was 0.40 ⁇ m.
  • Example 1 ⁇ Self-discharge performance evaluation>
  • the secondary batteries produced in Example 1 and Comparative Example 1 were each charged until the SOC reached 70%, and then left in a 25° C. environment. Then, the voltage drop rate ⁇ V [mV/d] from the 15th day to the 18th day of standing was measured for each example. As a result, the ⁇ V of the secondary battery according to Example 1 was 0.5 mV/d, and the ⁇ V of the secondary battery according to Comparative Example 1 was 1.0 mV/d. From this result, it can be seen that the voltage drop rate in Example 1 was significantly slower.
  • the voltage drop rate is an index for evaluating self-discharge characteristics.
  • FIG. 16 is a particle size distribution chart obtained by a laser diffraction scattering method for the first film according to Example 1.
  • the horizontal axis shows particle diameter [ ⁇ m]
  • the left vertical axis shows frequency [%]
  • the right vertical axis shows cumulative [%].
  • D10 and D50 were calculated based on the chart shown in FIG. 16, they were 0.50 ⁇ m and 1.1 ⁇ m, respectively.
  • the position (particle diameter) of the first peak P1 was 0.6 ⁇ m, and its frequency was 4%.
  • the position (particle diameter) of the second peak P2 was 1.3 ⁇ m, and its frequency was 5%.
  • the ratio D1/D2 of the first peak position D2 to the second peak position D1 was 2.2.
  • slurry II which was used when producing the first film included in the electrode group according to Example 1 and Comparative Example 1, was tested using a grind gauge according to the method described in the first embodiment.
  • primary particles or secondary particles with a diameter of 40 ⁇ m to 60 ⁇ m, primary particles or secondary particles with a diameter of 60 ⁇ m to 80 ⁇ m, and primary particles or The number of each type of secondary particle present was investigated.
  • Example 2 a secondary battery was produced in the same manner as in Example 1, except that alumina particles with a D50 of 1.5 ⁇ m were used as material 2 when producing the first film-forming slurry. .
  • Example 3 a secondary battery was produced in the same manner as in Example 1, except that alumina particles with a D50 of 2.0 ⁇ m were used as material 2 when producing the first film-forming slurry. .
  • Example 4 when producing the first film forming slurry, alumina particles with a D50 of 0.5 ⁇ m were used as material 1, and alumina particles with a D50 of 1.5 ⁇ m were used as material 2.
  • a secondary battery was produced in the same manner as in Example 1 except for the following.
  • Example 5 when producing the first film forming slurry, alumina particles with a D50 of 0.4 ⁇ m were used as material 1, and alumina particles with a D50 of 1.2 ⁇ m were used as material 2.
  • a secondary battery was produced in the same manner as in Example 1 except for the following.
  • Example 6 when producing the first film forming slurry, alumina particles with a D50 of 0.4 ⁇ m were used as material 1, and alumina particles with a D50 of 0.6 ⁇ m were used as material 2.
  • a secondary battery was produced in the same manner as in Example 1 except for the following.
  • Example 7 when producing the slurry for forming the first film, alumina particles with D50 of 0.4 ⁇ m were used as material 1, alumina particles with D50 of 1.2 ⁇ m were used as material 2, and a bead mill was used.
  • a secondary battery was produced in the same manner as in Example 1, except that the conditions were changed as shown in Table 3.
  • Example 1 As shown in Tables 1 and 2, from the comparison between Example 1 and Comparative Example 1, when the volume-based frequency distribution chart obtained by the laser diffraction scattering method for the first film has two peaks, the voltage It can be seen that the descending speed ⁇ V was able to be significantly lowered. Further, the number of coarse particles contained in the first film forming slurry produced in Example 1 was 0 in any diameter range. In contrast, the first film forming slurry prepared in Comparative Example 1 contained 30 particles with a diameter of 40 ⁇ m to 60 ⁇ m, and 10 particles with a diameter of 60 ⁇ m to 80 ⁇ m. It was.
  • the first film-forming slurry according to Comparative Example 1 had poor dispersibility because the particle size distribution chart of the inorganic particles contained therein had only one peak. Therefore, it is considered that the number of coarse particles contained in the first film-forming slurry was large, and the frequency of coating omissions increased, resulting in poor self-discharge performance.
  • Example 2 From the comparison between Example 2 and Example 3, it can be seen that when the peak position ratio D1/D2 is 3.0 or less, the number of coarse particles in the slurry tends to be small.
  • Example 6 when the particle diameter D1 of the first peak P1 is 1.0 ⁇ m or less and the particle diameter D2 of the second peak P2 is 1.0 ⁇ m or more, The number of coarse particles was 0.
  • Example 6 when the particle diameter D1 of the first peak P1 is 1.0 ⁇ m or less and the particle diameter D2 of the second peak P2 is also 1.0 ⁇ m or less, the number of coarse particles increases. increased slightly. This shows that the slurries according to Examples 4 and 5 had better dispersibility than the slurry according to Example 6.
  • Example 4 From a comparison between Example 4 and Example 7, in Example 4 where D10 was 0.20 ⁇ m or more, the number of coarse particles in the slurry was smaller than in Example 7 where D10 was 0.10 ⁇ m. This is considered to be because in Example 4, the amount of fine powder itself was small, so the number of coarse particles as aggregates was reduced.
  • an electrode group includes a first electrode structure and a second electrode structure at least partially facing the first electrode structure.
  • the first electrode structure includes a first current collector, a first active material-containing layer provided on at least one surface of the first current collector, and inorganic particles. and a first film provided in the first film.
  • the second electrode structure includes a second current collector, a second active material-containing layer provided on at least one surface of the second current collector, and an organic material; and a second film provided on.
  • a volume-based frequency distribution chart obtained by laser diffraction scattering has two peaks. Such an electrode group has excellent insulation properties.
  • Protection circuit 348a ...Plus side wiring (positive side wiring), 348a...Plus side wiring, 348b...Minus side wiring (negative side wiring), 348b...Minus side wiring, 350...External terminal, 352...Positive side terminal, 353...Negative side terminal, A...Front side, B...Back side, C...Front side, D...Back side.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

One embodiment of the present invention provides an electrode group that comprises a first electrode structure and a second electrode structure, at least a part of which faces the first electrode structure. The first electrode structure is provided with: a first collector; a first active material-containing layer which is provided on at least one surface of the first collector; and a first film which contains inorganic particles and is provided on the first active material-containing layer. The second electrode structure is provided with: a second collector; a second active material-containing layer which is provided on at least one surface of the second collector; and a second film which contains an organic material and is provided on the second active material-containing layer. With respect to the first film, the volume-based frequency distribution chart as obtained by a laser diffraction/scattering method has two peaks.

Description

電極群、二次電池及び電池パックElectrode group, secondary battery and battery pack
 本発明の実施形態は、電極群、二次電池及び電池パックに関する。 Embodiments of the present invention relate to an electrode group, a secondary battery, and a battery pack.
 リチウム二次電池等の二次電池においては、正極と負極との接触を回避するために正極と負極の間に多孔質のセパレータが配置されている。セパレータには、正極及び負極とは別個の自立膜が使用されている。この一例として、ポリオレフィン系樹脂製微多孔膜が挙げられる。こうしたセパレータは、例えば、ポリオレフィン系樹脂組成物を含む溶融物をシート状に押出成形し、ポリオレフィン系樹脂以外の物質を抽出除去した後、そのシートを延伸することによって製造される。 In a secondary battery such as a lithium secondary battery, a porous separator is placed between the positive electrode and the negative electrode to avoid contact between the positive electrode and the negative electrode. A self-supporting membrane separate from the positive and negative electrodes is used as the separator. An example of this is a microporous membrane made of polyolefin resin. Such a separator is produced, for example, by extruding a melt containing a polyolefin resin composition into a sheet, extracting and removing substances other than the polyolefin resin, and then stretching the sheet.
 樹脂フィルム製のセパレータは、電池の作製時に破断しないよう機械的強度を有する必要があるため、ある程度を超えて薄くすることが難しい。正極及び負極は、その間にセパレータを介在させつつ、積層または捲回されているので、セパレータが厚いと、電池の単位容積あたりに収納可能な正極及び負極の層数が制限されてしまう。その結果、電池容量が低下する。また、樹脂フィルム製のセパレータは耐久性が乏しく、二次電池に用いると、充電と放電を繰り返すことによりセパレータが劣化して電池のサイクル性が低下する。 Separators made of resin films need to have mechanical strength so as not to break during battery production, so it is difficult to make them thinner than a certain point. Since the positive electrode and the negative electrode are stacked or wound with a separator interposed therebetween, if the separator is thick, the number of layers of the positive electrode and negative electrode that can be stored per unit volume of the battery is limited. As a result, battery capacity decreases. In addition, separators made of resin films have poor durability, and when used in secondary batteries, the separators deteriorate due to repeated charging and discharging, resulting in a decrease in battery cycleability.
 セパレータの厚さを薄くするため、正極又は負極のいずれか一方の電極に、ナノファイバ膜を一体化させることが検討されている。この電極一体型セパレータには、セパレータの薄膜化に伴い二次電池の自己放電が進みやすくなるという課題がある。 In order to reduce the thickness of the separator, it is being considered to integrate a nanofiber membrane into either the positive electrode or the negative electrode. This electrode-integrated separator has a problem in that self-discharge of the secondary battery tends to progress as the separator becomes thinner.
日本国特開2019-153431号公報Japanese Patent Application Publication No. 2019-153431
 本発明は、上記事情に鑑みてなされ、優れた絶縁性を有する電極群、この電極群を具備する二次電池、及び、この二次電池を具備する電池パックが提供される。 The present invention was made in view of the above circumstances, and provides an electrode group having excellent insulation, a secondary battery including this electrode group, and a battery pack including this secondary battery.
 実施形態によると、第1電極構造体と、少なくとも一部が第1電極構造体と対向する第2電極構造体とを具備する電極群が提供される。第1電極構造体は、第1集電体と、第1集電体の少なくとも一方の面上に設けられる第1活物質含有層と、無機粒子を含み、且つ、第1活物質含有層上に設けられる第1膜とを備える。第2電極構造体は、第2集電体と、第2集電体の少なくとも一方の面上に設けられる第2活物質含有層と、有機材料を含み、且つ、第2活物質含有層上に設けられる第2膜とを備える。第1膜について、レーザー回折散乱法により得られる体積基準での頻度分布チャートは2つのピークを有している。 According to an embodiment, an electrode group is provided that includes a first electrode structure and a second electrode structure at least partially facing the first electrode structure. The first electrode structure includes a first current collector, a first active material-containing layer provided on at least one surface of the first current collector, and inorganic particles. and a first film provided in the first film. The second electrode structure includes a second current collector, a second active material-containing layer provided on at least one surface of the second current collector, and an organic material; and a second film provided on. Regarding the first film, a volume-based frequency distribution chart obtained by laser diffraction scattering has two peaks.
 他の実施形態によると、実施形態に係る電極群と、電解質とを備える二次電池が提供される。 According to another embodiment, a secondary battery is provided that includes the electrode group according to the embodiment and an electrolyte.
 他の実施形態によると、実施形態に係る二次電池を備える電池パックが提供される。 According to another embodiment, a battery pack including the secondary battery according to the embodiment is provided.
実施形態に係る電極群の一例を示す断面図。1 is a cross-sectional view showing an example of an electrode group according to an embodiment. 図1に示す電極群が備える第1電極構造体を示す斜視図。FIG. 2 is a perspective view showing a first electrode structure included in the electrode group shown in FIG. 1; 図1に示す電極群が備える第2電極構造体を示す斜視図。FIG. 2 is a perspective view showing a second electrode structure included in the electrode group shown in FIG. 1; 第1電極構造体の別の例を示す斜視図。FIG. 7 is a perspective view showing another example of the first electrode structure. 実施形態に係る電極群の別の例を示す断面図。FIG. 3 is a cross-sectional view showing another example of the electrode group according to the embodiment. 図5に示す電極群の第1電極構造体を示す斜視図。FIG. 6 is a perspective view showing the first electrode structure of the electrode group shown in FIG. 5; 第1電極構造体の別の例を示す斜視図。FIG. 7 is a perspective view showing another example of the first electrode structure. 実施形態に係る電極群の別の例を示す断面図。FIG. 3 is a cross-sectional view showing another example of the electrode group according to the embodiment. 実施形態に係る電極群の製造方法における一工程を示す概略図。FIG. 1 is a schematic diagram showing one step in a method for manufacturing an electrode group according to an embodiment. 図9に示す塗工装置を示す斜視図。FIG. 10 is a perspective view showing the coating apparatus shown in FIG. 9; 実施形態の積層体の製造方法における一工程の概略図。FIG. 1 is a schematic diagram of one step in a method for manufacturing a laminate according to an embodiment. 実施形態に係る二次電池の一例を示す、部分切欠き斜視図。FIG. 1 is a partially cutaway perspective view showing an example of a secondary battery according to an embodiment. 実施形態に係る二次電池の別の例の分解図。FIG. 6 is an exploded view of another example of the secondary battery according to the embodiment. 実施形態に係る電池パックの一例を概略的に示す分解斜視図。FIG. 1 is an exploded perspective view schematically showing an example of a battery pack according to an embodiment. 図14に示す電池パックの電気回路の一例を示すブロック図。15 is a block diagram showing an example of an electric circuit of the battery pack shown in FIG. 14. FIG. 実施例1で製造された電極群が備える第1膜に係る粒度分布チャート。3 is a particle size distribution chart related to the first film included in the electrode group manufactured in Example 1.
 以下に、実施の形態について図面を参照しながら説明する。なお、実施の形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施の形態の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術とを参酌して、適宜設計変更することができる。 Embodiments will be described below with reference to the drawings. Note that common components throughout the embodiments are denoted by the same reference numerals, and redundant explanations will be omitted. In addition, each figure is a schematic diagram for explaining the embodiment and promoting understanding thereof, and the shape, dimensions, ratio, etc. may differ from the actual device, but these are in accordance with the following explanation and known technology. The design can be changed as appropriate by taking into consideration.
 (第1実施形態)
 第1実施形態によると、第1電極構造体と、少なくとも一部が第1電極構造体と対向する第2電極構造体とを具備する電極群が提供される。第1電極構造体は、第1集電体と、第1集電体の少なくとも一方の面上に設けられる第1活物質含有層と、無機粒子を含み、且つ、第1活物質含有層上に設けられる第1膜とを備える。第2電極構造体は、第2集電体と、第2集電体の少なくとも一方の面上に設けられる第2活物質含有層と、有機材料を含み、且つ、第2活物質含有層上に設けられる第2膜とを備える。第1膜について、レーザー回折散乱法により得られる体積基準での頻度分布チャートは2つのピークを有している。
(First embodiment)
According to the first embodiment, an electrode group is provided that includes a first electrode structure and a second electrode structure at least partially facing the first electrode structure. The first electrode structure includes a first current collector, a first active material-containing layer provided on at least one surface of the first current collector, and inorganic particles. and a first film provided in the first film. The second electrode structure includes a second current collector, a second active material-containing layer provided on at least one surface of the second current collector, and an organic material; and a second film provided on. Regarding the first film, a volume-based frequency distribution chart obtained by laser diffraction scattering has two peaks.
 セパレータの薄膜化に伴い、絶縁性能は低下する傾向にある。本発明者らは、正極と負極との間に設けられる無機粒子層(第1膜)の粒度分布を適切に制御することにより、膜厚が薄い無機粒子層であっても優れた絶縁性を示すことを見出した。 As separators become thinner, insulation performance tends to decline. By appropriately controlling the particle size distribution of the inorganic particle layer (first film) provided between the positive electrode and the negative electrode, the present inventors have achieved excellent insulation properties even with a thin inorganic particle layer. I found out that it shows.
 以下、実施形態に係る電極群について、図面を参照しながら説明する。 
 図1は、実施形態に係る電極群の一例を概略的に示す断面図である。図2は、図1に示す電極群10が備える第1電極構造体1を示す斜視図である。図3は、図1に示す電極群が備える第2電極構造体2を示す斜視図である。
Hereinafter, electrode groups according to embodiments will be described with reference to the drawings.
FIG. 1 is a cross-sectional view schematically showing an example of an electrode group according to an embodiment. FIG. 2 is a perspective view showing the first electrode structure 1 included in the electrode group 10 shown in FIG. FIG. 3 is a perspective view showing the second electrode structure 2 included in the electrode group shown in FIG.
 図1に示す電極群は、第1電極構造体1及び第2電極構造体2を備える。 The electrode group shown in FIG. 1 includes a first electrode structure 1 and a second electrode structure 2.
 第1電極構造体1は、第1集電体1aと、第1集電体1aの少なくとも一方の面上に設けられる第1活物質含有層1bと、無機粒子を含み、且つ、第1活物質含有層1b上に設けられる第1膜4とを備える。第1集電体1a及び第1活物質含有層1bは、第1電極を構成し得る。第1集電体1aは、導電性のシートである。第1集電体1aの一部は、第1活物質含有層1bが担持されていない第1集電タブ1cであり得る。第1集電タブ1cは、例えば、第1集電体1aの一辺において、当該辺と平行な方向に沿って略一定の幅で形成されている。 The first electrode structure 1 includes a first current collector 1a, a first active material-containing layer 1b provided on at least one surface of the first current collector 1a, and inorganic particles. and a first film 4 provided on the substance-containing layer 1b. The first current collector 1a and the first active material-containing layer 1b may constitute a first electrode. The first current collector 1a is a conductive sheet. A part of the first current collector 1a may be a first current collecting tab 1c on which the first active material-containing layer 1b is not supported. The first current collector tab 1c is formed, for example, on one side of the first current collector 1a to have a substantially constant width along a direction parallel to the side.
 本実施形態に係る電極群10に対し、図面に示すようにXYZ直交座標系を採ることとする。図面におけるZ軸は、第1電極構造体1及び第2電極構造体2の積層方向と平行な方向である。X軸は、第1電極構造体1から第1集電タブ1cが突出している方向と平行な方向である。Y軸は、X軸及びZ軸と直交する方向である。 For the electrode group 10 according to this embodiment, an XYZ orthogonal coordinate system is adopted as shown in the drawings. The Z axis in the drawing is a direction parallel to the lamination direction of the first electrode structure 1 and the second electrode structure 2. The X axis is a direction parallel to the direction in which the first current collecting tab 1c projects from the first electrode structure 1. The Y-axis is a direction perpendicular to the X-axis and the Z-axis.
 第1活物質含有層1bは、例えば、第1集電体1aの少なくとも一方の面上において、その少なくとも一部に形成されうる。第1活物質含有層1bは、例えば、第1表面40及び第1裏面41を有するシート形状を有する。第1表面40及び第1裏面41は、第1活物質含有層1bが有する主面であり得る。第1裏面41は、第1集電体1aと接している。第1表面40は、第1膜4と接している。 The first active material-containing layer 1b may be formed, for example, on at least a portion of at least one surface of the first current collector 1a. The first active material-containing layer 1b has, for example, a sheet shape having a first surface 40 and a first back surface 41. The first surface 40 and the first back surface 41 may be main surfaces of the first active material-containing layer 1b. The first back surface 41 is in contact with the first current collector 1a. The first surface 40 is in contact with the first membrane 4 .
 第1膜4は、例えば、第1活物質含有層1bの主面(第1表面40)上の少なくとも一部に形成されうる。第1膜4は、第1活物質含有層1bの主面上の全面に形成されていてもよい。第1膜4は、表面A及び裏面Bを有するシート形状を有し得る。第1膜4の裏面Bは、第1活物質含有層1bの第1表面40を被覆している。第1膜4が第1活物質含有層1bにどのようにして固定されているかは特に限定されるものではないが、例えば、接着、熱融着が挙げられる。 The first film 4 may be formed, for example, on at least a portion of the main surface (first surface 40) of the first active material-containing layer 1b. The first film 4 may be formed over the entire main surface of the first active material-containing layer 1b. The first film 4 may have a sheet shape having a front surface A and a back surface B. The back surface B of the first film 4 covers the first surface 40 of the first active material-containing layer 1b. Although there are no particular limitations on how the first film 4 is fixed to the first active material-containing layer 1b, examples include adhesion and thermal fusion.
 第2電極構造体2は、第2集電体2aと、第2集電体2aの少なくとも一方の面上に設けられる第2活物質含有層2bと、有機材料を含み、且つ、第2活物質含有層2b上に設けられる第2膜5とを備える。第2集電体2a及び第2活物質含有層2bは、第2電極を構成し得る。第2集電体2aは、導電性のシートである。第2集電体2aの一部は、第2活物質含有層2bが担持されていない第2集電タブ2cであり得る。第2集電タブ2cは、例えば、第2集電体2aの一辺において、当該辺と平行な方向に沿って略一定の幅で形成されている。 The second electrode structure 2 includes a second current collector 2a, a second active material-containing layer 2b provided on at least one surface of the second current collector 2a, and an organic material. and a second film 5 provided on the substance-containing layer 2b. The second current collector 2a and the second active material-containing layer 2b may constitute a second electrode. The second current collector 2a is a conductive sheet. A part of the second current collector 2a may be a second current collecting tab 2c on which the second active material-containing layer 2b is not supported. The second current collector tab 2c is formed, for example, on one side of the second current collector 2a with a substantially constant width along a direction parallel to the side.
 第2活物質含有層2bは、例えば、第2集電体2aの少なくとも一方の面上において、その少なくとも一部に形成されうる。第2活物質含有層2bは、例えば、第2表面42及び第2裏面43を有するシート形状を有する。第2表面42及び第2裏面43は、第2活物質含有層2bが有する主面であり得る。第2裏面43は、第2集電体2aと接している。第2表面42は、第2膜5と接している。 The second active material-containing layer 2b may be formed, for example, on at least a portion of at least one surface of the second current collector 2a. The second active material-containing layer 2b has, for example, a sheet shape having a second surface 42 and a second back surface 43. The second surface 42 and the second back surface 43 may be the main surfaces of the second active material-containing layer 2b. The second back surface 43 is in contact with the second current collector 2a. The second surface 42 is in contact with the second film 5.
 第2膜5は、図3に示す通り、第2活物質含有層2bの第2表面42と、第2表面42に直交する四側面44と、第2集電体2aが有する四側面のうち、第2電極構造体2表面に露出している3つの端面45と、第2集電タブ2cの両方の主面における第2活物質含有層2bとの境界を含む部分46とを被覆している。第2膜5は、表面C及び裏面Dを有する。第2膜5の裏面Dは、第2活物質含有層2bと接している。 As shown in FIG. 3, the second film 5 includes a second surface 42 of the second active material-containing layer 2b, four side surfaces 44 orthogonal to the second surface 42, and one of the four side surfaces of the second current collector 2a. , covering the three end surfaces 45 exposed on the surface of the second electrode structure 2 and the portion 46 including the boundary with the second active material-containing layer 2b on both main surfaces of the second current collecting tab 2c. There is. The second film 5 has a front surface C and a back surface D. The back surface D of the second film 5 is in contact with the second active material containing layer 2b.
 図1及び図3に示すように、第2膜5が、第2集電体2aの端面45と、第2集電タブ2cの表面のうちの第2活物質含有層2bとの境界を含む部分46とを被覆している場合、第1電極構造体と第2電極構造体2との接触による内部短絡が低減される。 As shown in FIGS. 1 and 3, the second film 5 includes a boundary between the end surface 45 of the second current collector 2a and the second active material-containing layer 2b on the surface of the second current collector tab 2c. When the portion 46 is covered, internal short circuits due to contact between the first electrode structure and the second electrode structure 2 are reduced.
 第1膜4及び第2膜5は、セパレータを構成し得る。第1膜4の表面Aと、第2膜5の表面Cとが接触し得る。第1活物質含有層1bと第2活物質含有層2bとは、例えば、第1膜4及び第2膜5を介して対向している。第1活物質含有層1bと第2活物質含有層とは、これらの少なくとも一部が第1膜4及び第2膜5を介して対向していてもよく、これらの全面が第1膜4及び第2膜5を介して対向していてもよい。 The first film 4 and the second film 5 can constitute a separator. The surface A of the first film 4 and the surface C of the second film 5 can be in contact with each other. The first active material containing layer 1b and the second active material containing layer 2b are opposed to each other, for example, with the first film 4 and the second film 5 interposed therebetween. At least a portion of the first active material-containing layer 1b and the second active material-containing layer may be opposed to each other with the first film 4 and the second film 5 interposed therebetween, and the entire surface thereof may be opposed to the first film 4. and may be opposed to each other with the second film 5 interposed therebetween.
 図1に示すように、第1活物質含有層1bと第2活物質含有層2bとが、無機粒子を含む第1膜4及び有機材料を含む第2膜5を介して対向している場合、言い換えると、第1電極構造体と第2電極構造体とが対向している場合、この積層体では、セパレータの厚さを低減できる。それ故、エネルギー密度が高く、また、無機粒子を含む第1膜が高い絶縁性を有するため、自己放電の少ない二次電池を実現することが可能である。 As shown in FIG. 1, when the first active material-containing layer 1b and the second active material-containing layer 2b face each other with a first film 4 containing inorganic particles and a second film 5 containing an organic material interposed therebetween. In other words, when the first electrode structure and the second electrode structure face each other, the thickness of the separator can be reduced in this laminate. Therefore, since the energy density is high and the first film containing inorganic particles has high insulation properties, it is possible to realize a secondary battery with less self-discharge.
 なお、第1及び第2集電タブは、それぞれ、第1及び第2の集電体における活物質含有層無担持の一辺に限られない。例えば、第1及び第2の集電体の一辺から突出した複数の帯状部を第1及び第2集電タブとして使用可能である。この一例を図4に示す。図4は、第1電極構造体1の別の例を示す。図4に示す通り、第1集電体1aの一辺から突出した複数の帯状部を第1集電タブ1cとして用いてもよい。 Note that the first and second current collector tabs are not limited to one side of the first and second current collectors, respectively, on which no active material-containing layer is supported. For example, a plurality of strips protruding from one side of the first and second current collectors can be used as the first and second current collection tabs. An example of this is shown in FIG. FIG. 4 shows another example of the first electrode structure 1. As shown in FIG. 4, a plurality of strips protruding from one side of the first current collector 1a may be used as the first current collector tab 1c.
 以下、第1電極構造体、第2電極構造体、第1膜及び第2膜について説明する。 Hereinafter, the first electrode structure, the second electrode structure, the first film, and the second film will be explained.
 (1)第1電極構造体及び第2電極構造体
 第1電極構造体及び第2電極構造体のうちの一方は正極として機能し、他の一方は負極として機能し得る。第1電極構造体の反対極が、第2電極構造体である。例えば、第1電極構造体は正極構造体であり、第2電極構造体は負極構造体である。第1電極構造体が負極構造体であり、第2電極構造体が正極構造体であってもよい。
(1) First electrode structure and second electrode structure One of the first electrode structure and the second electrode structure may function as a positive electrode, and the other may function as a negative electrode. The opposite pole of the first electrode structure is the second electrode structure. For example, the first electrode structure is a positive electrode structure, and the second electrode structure is a negative electrode structure. The first electrode structure may be a negative electrode structure, and the second electrode structure may be a positive electrode structure.
 第1電極構造体は、第1表面及び第1裏面を有する多孔質の第1活物質含有層を含む。第2電極構造体は、第2表面及び第2裏面を有する多孔質の第2活物質含有層を含む。第1電極構造体及び第2電極構造体は、それぞれの第1活物質含有層と第2活物質含有層とが互いに対向するように積層されている。この場合、前述の通り、第1活物質含有層及び第2活物質含有層の間は、第1膜4及び第2膜5が介在していてもよい。 The first electrode structure includes a porous first active material-containing layer having a first surface and a first back surface. The second electrode structure includes a porous second active material-containing layer having a second surface and a second back surface. The first electrode structure and the second electrode structure are stacked such that the first active material containing layer and the second active material containing layer thereof face each other. In this case, as described above, the first film 4 and the second film 5 may be interposed between the first active material containing layer and the second active material containing layer.
 第1電極構造体は、第1集電体及び第1集電タブを更に含んでいてもよい。第2電極構造体は、第2集電体及び第2集電タブを更に含んでいてもよい。第1活物質含有層及び第2活物質含有層は、それぞれ、第1集電体及び第2集電体の両方の主面に形成してもよいが、片面のみに形成することも可能である。 The first electrode structure may further include a first current collector and a first current collection tab. The second electrode structure may further include a second current collector and a second current collection tab. The first active material-containing layer and the second active material-containing layer may be formed on both the main surfaces of the first current collector and the second current collector, respectively, but they can also be formed on only one surface. be.
 第1活物質含有層及び第2活物質含有層が含む活物質としては、正極活物質及び負極活物質が用いられる。活物質の種類は1種類または2種類以上にすることができる。第1活物質含有層が含む活物質を第1活物質と呼ぶ。第2活物質含有層が含む活物質を第2活物質と呼ぶ。 A positive electrode active material and a negative electrode active material are used as the active materials contained in the first active material containing layer and the second active material containing layer. The number of types of active materials can be one or more. The active material included in the first active material-containing layer is referred to as a first active material. The active material included in the second active material-containing layer is referred to as a second active material.
 正極活物質としては、例えばリチウム遷移金属複合酸化物を用いることができる。リチウム遷移金属複合酸化物の例は、LiCoO2、LiNi1-xCox2(0<x<0.3)、LiMnxNiyCoz2(0<x<0.5、0<y<0.5、0≦z<0.5)、LiMn2-xx4(MはMg、Co、Al及びNiからなる群より選択される少なくとも1種類の元素、0<x<0.2)、LiMPO4(MはFe,Co及びNiからなる群より選択される少なくとも1種類の元素)などを含む。 As the positive electrode active material, for example, a lithium transition metal composite oxide can be used. Examples of lithium transition metal composite oxides include LiCoO 2 , LiNi 1-x Co x O 2 (0<x<0.3), LiMn x Ni y Co z O 2 (0<x<0.5, 0<y<0.5,0≦z<0.5), LiMn 2-x M x O 4 (M is at least one element selected from the group consisting of Mg, Co, Al and Ni, 0<x< 0.2), LiMPO 4 (M is at least one element selected from the group consisting of Fe, Co, and Ni), and the like.
 負極活物質としては、グラファイトをはじめとした炭素材料、スズ・シリコン系合金材料等を用いることができるが、チタン酸リチウムを用いることが好ましい。また、(ニオブ)Nbなど他金属を含むチタン酸化物あるいはチタン酸リチウムも負極活物質として挙げられる。チタン酸リチウムとしては、例えば、スピネル構造を有するLi4+xTi512(0≦x≦3)や、ラムステライド構造を有するLi2+yTi37(0≦y≦3)が挙げられる。 As the negative electrode active material, carbon materials such as graphite, tin-silicon alloy materials, etc. can be used, but it is preferable to use lithium titanate. Further, titanium oxide or lithium titanate containing other metals such as (niobium)Nb may also be used as negative electrode active materials. Examples of lithium titanate include Li 4+x Ti 5 O 12 (0≦x≦3) having a spinel structure and Li 2+y Ti 3 O 7 (0≦y≦3) having a ramsteride structure. Can be mentioned.
 負極活物質としては、グラファイトをはじめとした炭素材料、スズ・シリコン系合金材料等を用いることができるが、チタン含有酸化物を用いることが好ましい。チタン含有酸化物としては、リチウムチタン複合酸化物、ニオブチタン複合酸化物、ナトリウムニオブチタン複合酸化物などを使用することができる。 As the negative electrode active material, carbon materials such as graphite, tin-silicon alloy materials, etc. can be used, but it is preferable to use titanium-containing oxides. As the titanium-containing oxide, lithium titanium composite oxide, niobium titanium composite oxide, sodium niobium titanium composite oxide, etc. can be used.
 リチウムチタン酸化物は、例えば、スピネル構造のリチウムチタン酸化物(例えば一般式Li4+xTi12(xは-1≦x≦3))、ラムスデライト構造のリチウムチタン酸化物(例えば、Li2+xTi(-1≦x≦3))、Li1+xTi(0≦x≦1)、Li1.1+xTi1.8(0≦x≦1)、Li1.07+xTi1.86(0≦x≦1)、LiTiO(0<x≦1)などを含む。また、リチウムチタン酸化物は、異種元素が導入されているリチウムチタン複合酸化物であってもよい。 Examples of lithium titanium oxide include spinel structure lithium titanium oxide (for example, general formula Li 4+x Ti 5 O 12 (x is -1≦x≦3)), ramsdellite structure lithium titanium oxide (for example, Li 2+x Ti 3 O 7 (-1≦x≦3)), Li 1+x Ti 2 O 4 (0≦x≦1), Li 1.1+x Ti 1.8 O 4 (0≦x≦1), Li 1.07+x These include Ti 1.86 O 4 (0≦x≦1), Li x TiO 2 (0<x≦1), and the like. Further, the lithium titanium oxide may be a lithium titanium composite oxide into which a different element is introduced.
 ニオブチタン複合酸化物は、例えば、LiTiMNb2±β7±σ(0≦a≦5、0≦b≦0.3、0≦β≦0.3、0≦σ≦0.3、MはFe,V,Mo及びTaよりなる群から選択される少なくとも1種の元素)で表されるものを含む。 Niobium titanium composite oxide is, for example, Li a TiM b Nb 2±β O 7±σ (0≦a≦5, 0≦b≦0.3, 0≦β≦0.3, 0≦σ≦0.3 , M is at least one element selected from the group consisting of Fe, V, Mo, and Ta).
 ナトリウムチタン複合酸化物は、例えば、一般式Li2+VNa2―WM1Ti6-y-zNbM214+δ(0≦v≦4、0≦w<2、0≦x<2、0≦y<6、0≦z<3、-0.5≦δ≦0.5、M1はCs,K,Sr,Ba,Caより選択される少なくとも1つを含み、M2はZr,Sn,V,Ta,Mo,W,Fe,Co,Mn,Alより選択される少なくとも1つを含む)で表される直方晶(orthorhombic)型Na含有ニオブチタン複合酸化物を含む。 The sodium titanium composite oxide has, for example, the general formula Li 2+V Na 2-W M1 X Ti 6-y-z Nb y M2 z O 14+δ (0≦v≦4, 0≦w<2, 0≦x<2, 0≦y<6, 0≦z<3, -0.5≦δ≦0.5, M1 includes at least one selected from Cs, K, Sr, Ba, Ca, M2 includes Zr, Sn, The present invention includes an orthorhombic Na-containing niobium titanium composite oxide represented by V, Ta, Mo, W, Fe, Co, Mn, and Al.
 活物質は、単独の一次粒子、一次粒子が凝集した二次粒子、又は、一次粒子と二次粒子の混合物であり得る。 The active material may be a single primary particle, a secondary particle that is an agglomeration of primary particles, or a mixture of primary particles and secondary particles.
 負極活物質の一次粒子の平均粒径は、0.001以上1μm以下の範囲内であることが好ましい。平均粒径は、例えば負極活物質を走査型電子顕微鏡(SEM:Scanning Electron Microscopy)で観察することで求めることができる。粒子形状は、粒状、繊維状のいずれであってもよい。繊維状の場合は、繊維径が0.1μm以下であることが好ましい。負極活物質の一次粒子の平均粒径は、具体的には、SEMで観察した像から測長することができる。平均粒径1μm以下のチタン酸リチウムが負極活物質して用いられる場合には、表面の平坦性の高い負極活物質含有層が得られる。また、チタン酸リチウムが用いられると、一般的なカーボン負極を用いるリチウムイオン二次電池と比較して負極電位が貴なものとなるので、リチウム金属の析出は原理的に生じない。チタン酸リチウムを含む負極活物質は、充放電反応に伴う膨張収縮が、小さいため、活物質の結晶構造の崩壊を防止することができる。 The average particle size of the primary particles of the negative electrode active material is preferably within the range of 0.001 or more and 1 μm or less. The average particle size can be determined, for example, by observing the negative electrode active material with a scanning electron microscope (SEM). The particle shape may be either granular or fibrous. When it is fibrous, it is preferable that the fiber diameter is 0.1 μm or less. Specifically, the average particle diameter of the primary particles of the negative electrode active material can be measured from an image observed with a SEM. When lithium titanate having an average particle size of 1 μm or less is used as the negative electrode active material, a negative electrode active material-containing layer with a highly flat surface can be obtained. Furthermore, when lithium titanate is used, the negative electrode potential becomes nobler than that of a lithium ion secondary battery using a general carbon negative electrode, so that lithium metal does not precipitate in principle. Since the negative electrode active material containing lithium titanate has small expansion and contraction due to charge/discharge reactions, it is possible to prevent the crystal structure of the active material from collapsing.
 第1活物質含有層及び第2活物質含有層は、活物質以外に、結着剤、及び導電剤を含んでいてもよい。導電剤としては、例えばアセチレンブラック、カーボンブラック、黒鉛又はこれらの混合物を挙げることができる。結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、スチレンブタジエンゴム又はこれらの混合物が挙げられる。結着剤は、活物質と導電剤とを結着させる機能を有する。 The first active material containing layer and the second active material containing layer may contain a binder and a conductive agent in addition to the active material. Examples of the conductive agent include acetylene black, carbon black, graphite, or mixtures thereof. Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine rubber, styrene-butadiene rubber, or mixtures thereof. The binder has a function of binding the active material and the conductive agent.
 正極活物質含有層において、活物質、導電剤及び結着剤の含有量は、それぞれ80質量%以上97質量%以下、2質量%以上18質量%以下、及び1質量%以上17質量%以下であることが好ましい。負極活物質含有層において、負極活物質、導電剤及び結着剤の含有量は、それぞれ70質量%以上98質量%以下、1質量%以上28質量%以下、1質量%以上28質量%以下であることが好ましい。 In the positive electrode active material-containing layer, the contents of the active material, conductive agent, and binder are 80% by mass or more and 97% by mass or less, 2% by mass or more and 18% by mass or less, and 1% by mass or more and 17% by mass or less, respectively. It is preferable that there be. In the negative electrode active material-containing layer, the contents of the negative electrode active material, the conductive agent, and the binder are 70% by mass or more and 98% by mass or less, 1% by mass or more and 28% by mass or less, and 1% by mass or more and 28% by mass or less, respectively. It is preferable that there be.
 第1活物質含有層及び第2活物質含有層の厚さは、それぞれ、5μm以上100μm以下でありうる。 The thickness of the first active material-containing layer and the second active material-containing layer may be 5 μm or more and 100 μm or less, respectively.
 第1集電体及び第2集電体は、導電性シートであり得る。導電性シートの例には、導電性材料からなる箔が含まれる。導電性材料の例には、アルミニウム、及びアルミニウム合金が含まれる。第1集電体及び第2集電体の厚さは、それぞれ、5μm以上40μm以下でありうる。 The first current collector and the second current collector may be conductive sheets. Examples of conductive sheets include foils made of conductive materials. Examples of conductive materials include aluminum and aluminum alloys. The thickness of the first current collector and the second current collector may be 5 μm or more and 40 μm or less, respectively.
 第1集電タブ及び第2集電タブは、各集電体と同じ材料で形成されていてもよいが、各集電体とは別の材料で構成されている集電タブを用意し、これを集電体に溶接等で接続したものを用いてもよい。 The first current collector tab and the second current collector tab may be made of the same material as each current collector, but a current collector tab made of a different material from each current collector is prepared, This may be connected to a current collector by welding or the like.
 (2)第1膜
 第1膜は、無機粒子を含む。無機粒子の形態は、例えば、粒状及び繊維状等であり得る。第1膜は、更にバインダを含み得る。
(2) First film The first film contains inorganic particles. The form of the inorganic particles may be, for example, granular or fibrous. The first film may further include a binder.
 第1膜の厚さ(片面)は、例えば1μm~5μmの範囲内にあり、好ましくは2μm~4μmの範囲内にある。第1膜の厚さが過剰に小さいと、正負極が短絡を起こしやすくなり、また、自己放電量が多くなる可能性があるため好ましくない。一方、第1膜の厚さが過剰に厚いと、電池容量の減少及び抵抗増大の可能性があるため好ましくない。 The thickness of the first film (on one side) is, for example, in the range of 1 μm to 5 μm, preferably in the range of 2 μm to 4 μm. If the thickness of the first film is too small, the positive and negative electrodes are likely to short-circuit, and the amount of self-discharge may increase, which is not preferable. On the other hand, if the first film is excessively thick, it is not preferable because there is a possibility that the battery capacity will decrease and the resistance will increase.
 第1膜の厚さは、後述する走査型電子顕微鏡(SEM:Scanning Electron Microscopy)観察により測定できる。 The thickness of the first film can be measured by scanning electron microscopy (SEM) observation, which will be described later.
 第1膜における無機粒子の含有量は80質量%以上99.9質量%以下の範囲にすることが望ましい。これにより、第1膜の絶縁性を高くすることができる。 The content of inorganic particles in the first film is preferably in the range of 80% by mass or more and 99.9% by mass or less. Thereby, the insulation properties of the first film can be increased.
 無機粒子を構成する無機材料の例としては、酸化物(例えば、Li2O、BeO、B23 、Na2O、MgO、Al23、SiO2、P25、CaO、Cr23、Fe23 、ZnO、ZrO2、TiO2、酸化マグネシウム、酸化ケイ素、酸化アルミニウム、ジルコニア、酸化チタン等のIIA~VA族、遷移金属、IIIB、IVBの酸化物)、ゼオライト(M2/nO・Al23・xSiO2・yH2O(式中、MはNa、K、Ca及びBa等の金属原子、nは金属陽イオンMn+の電荷に相当する数、x及びyはSiO2及びH2Oのモル数であり2≦x≦10、2≦y)、窒化物(例えば、BN、AlN、Si34及びBa32等)、炭化ケイ素(SiC)、ジルコン(ZrSiO4)、炭酸塩(例えば、MgCO3及びCaCO3等)、硫酸塩(例えば、CaSO4及びBaSO4等)及びこれらの複合体(例えば磁器の一種である、ステアタイト(MgO・SiO2)、フォルステライト(2MgO・SiO2)及び、コージェライト(2MgO・2Al23・5SiO2))、酸化タングステン又はこれらの混合物を挙げることができる。 Examples of inorganic materials constituting inorganic particles include oxides (e.g., Li 2 O, BeO, B 2 O 3 , Na 2 O, MgO, Al 2 O 3 , SiO 2 , P 2 O 5 , CaO, Cr). 2 O 3 , Fe 2 O 3 , ZnO, ZrO 2 , TiO 2 , magnesium oxide, silicon oxide, aluminum oxide, zirconia, titanium oxide, etc., oxides of IIA to VA groups, transition metals, IIIB, IVB), zeolites ( M 2/n O・Al 2 O 3・xSiO 2・yH 2 O (in the formula, M is a metal atom such as Na, K, Ca, and Ba, n is a number corresponding to the charge of the metal cation Mn + , x and y is the number of moles of SiO 2 and H 2 O (2≦x≦10, 2≦y), nitrides (e.g. BN, AlN, Si 3 N 4 and Ba 3 N 2 etc.), silicon carbide (SiC ), zircon (ZrSiO 4 ), carbonates (e.g., MgCO 3 and CaCO 3 , etc.), sulfates (e.g., CaSO 4 and BaSO 4 , etc.), and complexes thereof (e.g., steatite (MgO -SiO 2 ), forsterite (2MgO.SiO 2 ), cordierite (2MgO.2Al 2 O 3 .5SiO 2 )), tungsten oxide, or mixtures thereof.
 その他の無機材料の例としては、チタン酸バリウム、チタン酸カルシウム、チタン酸鉛、γ-LiAlO2、LiTiO3、固体電解質又はこれらの混合物を挙げることができる。 Examples of other inorganic materials include barium titanate, calcium titanate, lead titanate, γ-LiAlO 2 , LiTiO 3 , solid electrolytes or mixtures thereof.
 固体電解質の例には、リチウムイオン伝導性が無いまたは低い固体電解質、リチウムイオン伝導性を有する固体電解質が含まれる。リチウムイオン伝導性が無いまたは低い酸化物粒子としては、リチウムアルミニウム酸化物(例えば、LiAlO,LiAlここで0<x≦1)、リチウムシリコン酸化物、リチウムジルコニウム酸化物が挙げられる。 Examples of solid electrolytes include solid electrolytes with no or low lithium ion conductivity, and solid electrolytes with lithium ion conductivity. Examples of oxide particles with no or low lithium ion conductivity include lithium aluminum oxide (for example, LiAlO 2 , Li x Al 2 O 3 where 0<x≦1), lithium silicon oxide, and lithium zirconium oxide. It will be done.
 リチウムイオン伝導性を有する固体電解質の例に、ガーネット型構造の酸化物固体電解質が含まれる。ガーネット型構造の酸化物固体電解質は耐還元性が高く、電気化学窓が広い利点がある。ガーネット型構造の酸化物固体電解質の例には、La5+xLa3-x12(AはCa,Sr及びBaよりなる群から選択される少なくとも一種類の元素、MはNb及び/またはTa、xは0.5以下(0を含む)の範囲が好ましい。),Li2-x12(MはNb及び/またはTa、LはZrを含む、xは0.5以下(0を含む)の範囲が好ましい)、Li7-3xAlLaZr12(xは0.5以下(0を含む)の範囲が好ましい)、LiLaZr12が含まれる。中でも、Li6.25Al0.25LaZr12、Li6.4LaZr1.4Ta0.612、Li6.4LaZr1.6Ta0.612、LiLaZr12は、イオン伝導性が高く、電気化学的に安定なため、放電性能とサイクル寿命性能に優れる。 Examples of solid electrolytes having lithium ion conductivity include oxide solid electrolytes with a garnet type structure. Oxide solid electrolytes with a garnet-type structure have the advantage of high reduction resistance and a wide electrochemical window. Examples of oxide solid electrolytes with a garnet-type structure include La 5+x A x La 3-x M 2 O 12 (A is at least one element selected from the group consisting of Ca, Sr, and Ba; M is Nb and ( M is Nb and/or Ta, L is Zr , x is 0. (preferably a range of .5 or less (including 0)), Li 7-3x Al x La 3 Zr 3 O 12 (x is preferably a range of 0.5 or less (including 0)), Li 7 La 3 Zr 2 Contains O12 . Among them, Li 6.25 Al 0.25 La 3 Zr 3 O 12 , Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12, Li 6.4 La 3 Zr 1.6 Ta 0.6 O 12 , Li 7 La 3 Zr 2 O 12 has high ionic conductivity and is electrochemically stable, so it has excellent discharge performance and cycle life performance.
 また、リチウムイオン伝導性を有する固体電解質の例に、NASICON型構造を有するリチウムリン酸固体電解質が含まれる。NASICON型構造のリチウムリン酸固体電解質の例には、LiM1(PO、ここでM1は、Ti,Ge,Sr,Zr,Sn及びAlよりなる群から選ばれる一種以上の元素、が含まれる。好ましい例として、Li1+xAlGe2-x(PO、Li1+xAlZr2-x(PO、Li1+xAlTi2-x(PO、が挙げられる。ここで、それぞれにおいて、xは0以上0.5以下の範囲が好ましい。また、例示した固体電解質は、それぞれ、イオン伝導性が高く、電気化学的安定性が高い。NASICON型構造を有するリチウムリン酸固体電解質と、ガーネット型構造の酸化物固体電解質の双方をリチウムイオン伝導性を有する固体電解質として使用しても良い。 Furthermore, examples of the solid electrolyte having lithium ion conductivity include a lithium phosphate solid electrolyte having a NASICON type structure. An example of a lithium phosphate solid electrolyte with a NASICON type structure includes LiM1 2 (PO 4 ) 3 , where M1 is one or more elements selected from the group consisting of Ti, Ge, Sr, Zr, Sn, and Al. included. Preferred examples include Li 1+x Al x Ge 2-x (PO 4 ) 3 , Li 1+x Al x Zr 2-x (PO 4 ) 3 , and Li 1+x Al x Ti 2-x (PO 4 ) 3 . Here, in each case, x is preferably in the range of 0 or more and 0.5 or less. Further, each of the illustrated solid electrolytes has high ionic conductivity and high electrochemical stability. Both a lithium phosphate solid electrolyte having a NASICON type structure and an oxide solid electrolyte having a garnet type structure may be used as the solid electrolyte having lithium ion conductivity.
 無機粒子は、上述した無機材料のうちの1種のみからなっていてもよく、2種以上の混合物であってもよい。 The inorganic particles may be made of only one type of the above-mentioned inorganic materials, or may be a mixture of two or more types.
 第1膜は、例えば、無機粒子及びバインダ粒子を含む多孔質膜である。固体電解質のように、リチウムイオン導電性を有する無機材料は存在するものの、無機材料の多くは電子伝導性が低いか、又は、絶縁性を有する。そのため、第1膜は、正極と負極とを電気的に絶縁するための隔壁として機能し得る。 The first film is, for example, a porous film containing inorganic particles and binder particles. Although there are inorganic materials that have lithium ion conductivity, such as solid electrolytes, many of the inorganic materials have low electronic conductivity or have insulating properties. Therefore, the first film can function as a partition wall for electrically insulating the positive electrode and the negative electrode.
 第1膜は、多孔質の部分に電解質を保持することができるため、Liイオンの透過を阻害することはない。上記種類の無機材料を含む第1膜は、Liイオン透過性を持ちつつ、高い絶縁性を有する。高い絶縁性を達成する観点から、無機粒子はエネルギーバンドギャップ値が3.0eV以上の物質を含むことが好ましい。エネルギーバンドギャップ値が3.0eV以上の物質の例として、酸化アルミニウム及び硫酸バリウムを挙げることができる。 Since the first membrane can hold the electrolyte in its porous portion, it does not inhibit the permeation of Li ions. The first film containing the above-described type of inorganic material has high insulating properties while having Li ion permeability. From the viewpoint of achieving high insulation, it is preferable that the inorganic particles contain a substance having an energy bandgap value of 3.0 eV or more. Examples of substances with an energy bandgap value of 3.0 eV or more include aluminum oxide and barium sulfate.
 酸化アルミニウム及び硫酸バリウムは、エネルギーバンドギャップ値が約9eVであることから好ましい。無機粒子は、酸化アルミニウム又は硫酸バリウムからなっていてもよい。 Aluminum oxide and barium sulfate are preferred because they have an energy bandgap value of about 9 eV. The inorganic particles may consist of aluminum oxide or barium sulfate.
 バインダとして、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、スチレンブタジエンゴム又はこれらの混合物が挙げられる。第1膜中のバインダの含有量は0.01質量%以上20質量%以下の範囲にすることが望ましい。 Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine rubber, styrene-butadiene rubber, or mixtures thereof. The content of the binder in the first film is preferably in the range of 0.01% by mass to 20% by mass.
 第1膜について、レーザー回折散乱法により得られる体積基準での頻度分布チャートは2つのピークを有している。当該頻度分布チャートは、3つ以上のピークを含んでいてもよいが、2つのピークを含むことが好ましい。 Regarding the first film, the volume-based frequency distribution chart obtained by the laser diffraction scattering method has two peaks. The frequency distribution chart may include three or more peaks, but preferably includes two peaks.
 第1膜に含まれる粒子が、互いに粒子径が異なる2つのピークを含む場合、当該第1膜を含む電極群は、優れた絶縁性を示す。これは、層内において、互いに異なる粒子径を有する2種の粒子群が存在するため、層内の緻密性が向上することが一因と考えられる。相対的に大きな粒子径を有する粒子群の隙間に、相対的に小さな粒子径を有する粒子群が入り込むことにより、層内の緻密性が高まっていると考えられる。なお、第1膜に含まれる粒子には、無機粒子及びバインダ粒子が含まれうる。 When the particles included in the first film include two peaks with different particle diameters, the electrode group including the first film exhibits excellent insulation. One reason for this is thought to be that the density within the layer is improved because two types of particle groups having mutually different particle diameters are present within the layer. It is thought that the density within the layer is increased by particles having a relatively small particle size entering the gaps between particles having a relatively large particle size. Note that the particles included in the first film may include inorganic particles and binder particles.
 また、実施形態に係る電極群が優れた絶縁性を示す別の理由として、層内に粗大粒子が含まれていないか、又は、実質的に含まれていないことが挙げられる。粗大粒子とは、例えば、直径が40μm以上の、一次粒子、又は一次粒子が凝集した二次粒子を指す。仮に、粗大粒子が多く含まれるスラリーを用いて第1膜の塗膜を形成すると、粗大粒子に起因した塗布抜けが生じる傾向がある。塗布抜けは、例えば、塗工装置が備える塗布用ヘッドに粗大粒子が引っかかることにより生じる。塗布抜けとは、即ち、均一な膜状に形成されるべき塗膜の一部に、塗布されていない部分が生じることを指す。塗布抜けが生じた部分には絶縁性の膜(第1膜)が形成されないこととなるため、絶縁性が低下する。実施形態に係る電極群が備える第1膜の頻度分布チャートは、互いに粒子径が異なる2つのピークを含む。それ故、第1膜は塗布抜けに起因した孔を有しにくい。この理由を以下で詳しく説明する。 Another reason why the electrode group according to the embodiment exhibits excellent insulation is that the layer does not contain or substantially does not contain coarse particles. The coarse particles refer to, for example, primary particles having a diameter of 40 μm or more, or secondary particles obtained by agglomerating primary particles. If the first coating film is formed using a slurry containing a large amount of coarse particles, there is a tendency for coating failure to occur due to the coarse particles. Coating failure occurs, for example, when coarse particles are caught in a coating head provided in a coating device. The term "missing coating" refers to the occurrence of uncoated parts in parts of the coating film that should be formed into a uniform film. Since the insulating film (first film) is not formed in the portion where the coating omission has occurred, the insulating property is reduced. The frequency distribution chart of the first film included in the electrode group according to the embodiment includes two peaks with different particle sizes. Therefore, the first film is less likely to have holes due to coating failure. The reason for this will be explained in detail below.
 第1膜についてのレーザー回折散乱法により得られる体積基準での頻度分布チャートが、互いに粒子径が異なる2つのピークを含む場合、当該第1膜を形成する際に使用するスラリーも同様の粒度分布を示しうる。即ち、第1膜を形成するためのスラリーについてのレーザー回折散乱法により得られる体積基準での頻度分布チャートが、互いに粒子径が異なる2つのピークを含みうる。 If the volume-based frequency distribution chart obtained by the laser diffraction scattering method for the first film includes two peaks with different particle sizes, the slurry used to form the first film also has a similar particle size distribution. can be shown. That is, a volume-based frequency distribution chart obtained by a laser diffraction scattering method for the slurry for forming the first film may include two peaks having different particle diameters.
 このようなスラリーには、少なくとも、相対的に小さな粒子径を有する一次粒子と、相対的に大きな粒子径を有する一次粒子とが含まれる。ここでは、便宜的に、前者を第1粒子と呼び、後者を第2粒子と呼ぶ。また、スラリーには、第1粒子及び/又は第2粒子が凝集した二次粒子が含まれ得る。この二次粒子を第3粒子と呼ぶ。第3粒子は、上記粗大粒子であり得る。第1粒子は、粒子径が小さいため、粒子同士が凝集し易い性質を有する。それ故、第3粒子を構成する粒子の多くは第1粒子である。例えば、第3粒子の50重量%以上は第1粒子であり得る。 Such a slurry includes at least primary particles having a relatively small particle size and primary particles having a relatively large particle size. Here, for convenience, the former will be referred to as first particles, and the latter will be referred to as second particles. Further, the slurry may include secondary particles that are aggregates of first particles and/or second particles. These secondary particles are called third particles. The third particles may be the above coarse particles. Since the first particles have a small particle diameter, they tend to aggregate with each other. Therefore, most of the particles constituting the third particles are the first particles. For example, 50% or more by weight of the third particles can be the first particles.
 第1膜について、2つのピークを有する頻度分布チャートを発現させるスラリーを用いてビーズミル等の分散処理を行う場合、主に第1粒子が凝集して構成されている第3粒子に対して、第2粒子が衝突して、第3粒子が解砕しやすい。つまり、相対的に小さな粒子径を有する第1粒子同士が凝集した凝集塊、即ち粗大粒子(第3粒子)に対して、相対的に大きな粒子径を有する第2粒子が衝突して凝集塊が解砕しやすい。それ故、分散処理により粗大粒子の数を低減することができる。言い換えると、上記スラリーの分散性は優れている。 When the first film is subjected to a dispersion process such as a bead mill using a slurry that develops a frequency distribution chart with two peaks, the third particles, which are mainly composed of aggregates of the first particles, are When the two particles collide, the third particle is likely to be crushed. In other words, the second particles having a relatively large particle size collide with the aggregate, that is, the coarse particles (third particles), which are the aggregates of the first particles having a relatively small particle size, resulting in an aggregate. Easy to crush. Therefore, the number of coarse particles can be reduced by dispersion treatment. In other words, the slurry has excellent dispersibility.
 優れた分散性を示す第1膜形成用スラリーでは、粗大粒子の存在確率が低いため、当該スラリーを用いて第1膜を形成しても塗布抜けが生じにくい。それ故、分散処理後のスラリーに含まれる粗大粒子の数を評価することにより、当該スラリーを用いて形成される第1膜の絶縁性の良し悪しを評価することができる。 In the slurry for forming the first film that exhibits excellent dispersibility, the probability of the presence of coarse particles is low, so even if the first film is formed using the slurry, coating defects are unlikely to occur. Therefore, by evaluating the number of coarse particles contained in the slurry after the dispersion treatment, it is possible to evaluate the insulation properties of the first film formed using the slurry.
 第1膜形成用スラリーに粗大粒子が含まれているか否かは、日本工業規格JIS K 5600に準じて、グラインドゲージを用いて行うことができる。5mLのスラリー中に含まれる粗大粒子の数は、例えば15個以下であり、好ましくは10個以下であり、更に好ましくは5個以下である。粗大粒子の数が少ないほど、塗布抜けが生じる確率を低減させることができる。その結果、自己放電量を低減させることができる。 Whether or not the slurry for forming the first film contains coarse particles can be determined using a grind gauge according to Japanese Industrial Standard JIS K 5600. The number of coarse particles contained in 5 mL of slurry is, for example, 15 or less, preferably 10 or less, and more preferably 5 or less. The smaller the number of coarse particles, the lower the probability that coating defects will occur. As a result, the amount of self-discharge can be reduced.
 なお、第1膜形成用スラリーについての頻度分布チャートが2つのピークを有していない場合であっても、第1膜についての頻度分布チャートが2つのピークを有していればよい。この場合であっても前述の通り緻密性が高まる効果が得られるため、優れた絶縁性を示す電極群を得ることができる。第1膜形成用スラリーについてのレーザー回折散乱法により得られる体積基準での頻度分布チャートも、互いに粒子径が異なる2つのピークを含むことが好ましい。 Note that even if the frequency distribution chart for the first film forming slurry does not have two peaks, it is sufficient that the frequency distribution chart for the first film has two peaks. Even in this case, the effect of increasing the density as described above can be obtained, so that an electrode group exhibiting excellent insulation properties can be obtained. It is preferable that the volume-based frequency distribution chart obtained by the laser diffraction scattering method for the first film-forming slurry also includes two peaks having different particle diameters.
 第1膜についての頻度分布チャートが有する、互いに粒子径が異なる2つのピークを、粒子径が小さいピークから順に、それぞれ第1ピーク及び第2ピークと定義する。小さな粒子径を有する第1ピークは、例えば、第1粒子に起因したピークであり得る。大きな粒子径を有する第2ピークは、例えば、第2粒子に起因したピークであり得る。第1膜に含まれる第3粒子の数は非常に少ないため、頻度分布チャートではほとんど検出されないか、又は検出されない。 Two peaks having different particle diameters in the frequency distribution chart for the first film are defined as a first peak and a second peak, respectively, in order from the peak with the smallest particle diameter. The first peak having a small particle size may be, for example, a peak caused by the first particles. The second peak having a large particle size may be, for example, a peak caused by the second particles. Since the number of third particles contained in the first film is very small, they are hardly detected or not detected in the frequency distribution chart.
 頻度分布チャートは、横軸が粒子径[μm]を示し、縦軸が頻度(頻度分布)[%]を示すグラフである。 The frequency distribution chart is a graph in which the horizontal axis indicates particle diameter [μm] and the vertical axis indicates frequency (frequency distribution) [%].
 第1ピークのピークトップに対応する粒子径D1は、第2ピークのピークトップに対応する粒子径D2と比較して小さい。粒子径D1は、例えば、0.4μm以上1.0μm以下の範囲内にあり、好ましくは0.5μm以上0.9μm以下の範囲内にある。第1ピークの粒子径D1が過剰に小さい場合、凝集塊が形成されやすいため、凝集塊(粗大粒子)による塗布抜けの頻度が増大する可能性があるため好ましくない。 The particle diameter D1 corresponding to the peak top of the first peak is smaller than the particle diameter D2 corresponding to the peak top of the second peak. The particle diameter D1 is, for example, within the range of 0.4 μm or more and 1.0 μm or less, preferably within the range of 0.5 μm or more and 0.9 μm or less. If the particle size D1 of the first peak is excessively small, agglomerates are likely to be formed, which is not preferable because the frequency of coating failure due to agglomerates (coarse particles) may increase.
 粒子径D2は、例えば、1.0μm超2.0μm以下の範囲内にあり、好ましくは1.1μm以上1.8μm以下の範囲内にある。第2ピークの粒子径D2が過剰に大きい場合、大きな粒子径を有する一次粒子の数が多すぎるため、これら一次粒子同士での接触確率が高まる。この結果、相対的に大きな粒子径を持つ一次粒子と、凝集塊との接触確率が低下して、分散性が乏しい傾向がある。分散性が乏しい場合、スラリー中の粗大粒子が解砕されにくいため、塗布抜けが生じ易い可能性がある。 The particle diameter D2 is, for example, in the range of more than 1.0 μm and less than 2.0 μm, preferably in the range of 1.1 μm or more and less than 1.8 μm. If the particle diameter D2 of the second peak is excessively large, the number of primary particles having large particle diameters is too large, and the probability of contact between these primary particles increases. As a result, the probability of contact between primary particles having a relatively large particle size and aggregates decreases, and dispersibility tends to be poor. When the dispersibility is poor, coarse particles in the slurry are difficult to crush, and coating omissions may easily occur.
 第1ピークのピークトップに対応する粒子径D1は、0.4μm以上1.0μm以下であり、且つ、第2ピークのピークトップに対応する粒子径D2は、1.0μm超2.0μm以下であることが好ましい。粒子径D1とD2とがこれらの範囲内にある場合、第1膜に含まれる一次粒子が、全体として小さな粒子径を有すると見なすことができる。それ故、この場合、第1膜の厚さを十分に薄くすることができるので、高い電池容量を実現可能である。 The particle diameter D1 corresponding to the peak top of the first peak is 0.4 μm or more and 1.0 μm or less, and the particle diameter D2 corresponding to the peak top of the second peak is more than 1.0 μm and 2.0 μm or less. It is preferable that there be. When the particle diameters D1 and D2 are within these ranges, it can be considered that the primary particles contained in the first film have a small particle diameter as a whole. Therefore, in this case, since the thickness of the first film can be made sufficiently thin, a high battery capacity can be achieved.
 第2ピークのピークトップに対応する粒子径D2に対する、第1ピークのピークトップに対応する粒子径D1の比D1/D2は、例えば1.0以上5.0以下の範囲内にあり、好ましくは1.50以上3.0以下の範囲内にあり、より好ましくは2.0以上2.5以下にある。比D1/D2が高過ぎる場合、凝集塊に衝突するための、大きな一次粒子径を持つ粒子数が不足しているため、分散性が悪化する傾向がある。比D1/D2が過剰に低いと、大きな一次粒子径を持つ粒子数が多すぎて、分散時における衝突確率(頻度)が低下して分散性が悪化する。その結果、スラリー中又は第1膜中に粗大粒子が存在しやすいため、塗布抜けが生じやすい傾向がある。 The ratio D1/D2 of the particle diameter D1 corresponding to the peak top of the first peak to the particle diameter D2 corresponding to the peak top of the second peak is, for example, in the range of 1.0 or more and 5.0 or less, preferably It is in the range of 1.50 or more and 3.0 or less, more preferably 2.0 or more and 2.5 or less. If the ratio D1/D2 is too high, the number of particles having a large primary particle diameter to collide with the aggregates is insufficient, so that the dispersibility tends to deteriorate. If the ratio D1/D2 is too low, the number of particles having a large primary particle diameter will be too large, reducing the collision probability (frequency) during dispersion and deteriorating the dispersibility. As a result, coarse particles tend to exist in the slurry or in the first film, which tends to cause coating failure.
 なお、実施形態に係る第1電極構造体が含む第1膜の作製方法に関しては後述する。 Note that a method for manufacturing the first film included in the first electrode structure according to the embodiment will be described later.
 <第1膜の粒度分布測定>
 実施形態に係る第1膜についての頻度分布チャートは、以下の手順で測定することにより得られる。
<Particle size distribution measurement of first film>
The frequency distribution chart for the first film according to the embodiment is obtained by measuring according to the following procedure.
 まず、電池から電極群を取り出し、無機材料を含む第1膜を備える電極構造体(正極又は負極)を取り出す。取り出した電極構造体をエチルメチルカーボネートに浸漬してLi塩を除去した後に乾燥させる。乾燥後の電極構造体について、第1膜のみをスパチュラにより剥ぎ取り、NMP(N-メチル-2-ピロリドン)溶媒へ浸漬させる。その後、NMP溶媒へ浸漬させた状態で超音波を用いて、第1膜をNMP溶媒へ分散させてサンプルとしての分散溶液を得る。この分散溶液について、レーザー回折式分布測定装置を用いて構成粒子の粒度分布測定を実施する。当該分散溶液は、第1膜に含まれる無機粒子のみならず、第1膜に含まれ得るPVdF等のバインダ成分を更に含んでいてもよい。バインダ成分の粒子径は、無機粒子の粒子径と比較して非常に小さいため、検出されない。測定装置としては、例えばマイクロトラック・ベル株式会社製 マイクロトラックMT3100IIを使用することができる。 First, the electrode group is taken out from the battery, and the electrode structure (positive electrode or negative electrode) including the first film containing an inorganic material is taken out. The taken-out electrode structure is immersed in ethyl methyl carbonate to remove Li salt, and then dried. After drying, only the first film of the electrode structure is peeled off with a spatula and immersed in NMP (N-methyl-2-pyrrolidone) solvent. Thereafter, while immersed in the NMP solvent, the first film is dispersed in the NMP solvent using ultrasound to obtain a dispersion solution as a sample. Regarding this dispersion solution, the particle size distribution of the constituent particles is measured using a laser diffraction type distribution measuring device. The dispersion solution may further contain not only the inorganic particles contained in the first film but also a binder component such as PVdF that may be contained in the first film. Since the particle size of the binder component is very small compared to the particle size of the inorganic particles, it is not detected. As a measuring device, for example, Microtrac MT3100II manufactured by Microtrac Bell Co., Ltd. can be used.
 なお、上記分散溶媒を得る際の超音波処理は、レーザー回折式分布測定装置に付随する試料供給システムにより実施する。超音波処理は、40Wの出力で、300秒に亘って実施する。 Note that the ultrasonic treatment when obtaining the above-mentioned dispersion solvent is performed using a sample supply system attached to a laser diffraction type distribution measuring device. Ultrasonication is carried out at a power of 40W for 300 seconds.
 上記測定により得られた頻度分布チャートから、第1ピーク及び第2ピークを決定できる。また、この頻度分布チャートから第1膜を構成する粒子のD10、D50及びD90を決定することができる。D10、D50及びD90は、粒子径分布の積算値が、それぞれ10%、50%及び90%に相当する粒子の粒子径である。D50はメジアン径とも呼ばれる。 The first peak and the second peak can be determined from the frequency distribution chart obtained by the above measurement. Furthermore, D10, D50, and D90 of the particles constituting the first film can be determined from this frequency distribution chart. D10, D50, and D90 are particle diameters of particles whose integrated value of particle diameter distribution corresponds to 10%, 50%, and 90%, respectively. D50 is also called the median diameter.
 無機粒子の平均粒子径D50は、例えば、0.60μm~2.0μmの範囲内にあり得る。D50がこの範囲内にあると、第1膜の厚さを薄くすることができるため好ましい。無機粒子のD50は、好ましくは0.80μm~1.20μmの範囲内にあり得る。 The average particle diameter D50 of the inorganic particles can be, for example, within the range of 0.60 μm to 2.0 μm. It is preferable that D50 is within this range because the thickness of the first film can be reduced. The D50 of the inorganic particles may preferably be within the range of 0.80 μm to 1.20 μm.
 上記頻度分布チャートにおけるD10は、例えば0.10μm以上である。D10の値が高いことは微粉末が少ないことを意味する。D10は、0.20μm以上であってもよく、0.30μm以上であってもよい。一例によれば、D10は、0.60μm以下であり得る。D10が0.10μm以上であると、第1膜における一次粒子の割合が低いため、微粉末の凝集を抑制することができる。この場合、粗大粒子が減って高い絶縁性を示すことができる。 D10 in the frequency distribution chart above is, for example, 0.10 μm or more. A high value of D10 means less fine powder. D10 may be 0.20 μm or more, or 0.30 μm or more. According to one example, D10 may be 0.60 μm or less. When D10 is 0.10 μm or more, the proportion of primary particles in the first film is low, so that agglomeration of fine powder can be suppressed. In this case, coarse particles are reduced and high insulation properties can be exhibited.
 上記頻度分布チャートにおけるD90は、特に限定されないが、例えば、1.50μm~3.0μmの範囲内にある。 D90 in the above frequency distribution chart is, for example, within the range of 1.50 μm to 3.0 μm, although it is not particularly limited.
 (3)第2膜
 第2膜は有機繊維を含む。第2膜は、有機繊維を面方向及び厚さ方向に堆積させた多孔質膜であり得る。第2膜は、表面及び裏面を有する。第2膜の一方の主面が表面で、他方の主面が裏面に相当する。
(3) Second film The second film contains organic fibers. The second membrane may be a porous membrane in which organic fibers are deposited in the plane direction and the thickness direction. The second film has a front surface and a back surface. One main surface of the second film corresponds to the front surface, and the other main surface corresponds to the back surface.
 有機繊維は、例えば、ポリアミドイミド、ポリアミド、ポリオレフィン、ポリエーテル、ポリイミド、ポリケトン、ポリスルホン、セルロース、ポリビニルアルコール(PVA)及びポリフッ化ビニリデン(PVdF)からなる群から選択される少なくとも1つの有機材料を含む。ポリオレフィンとしては、例えば、ポリプロピレン(PP)およびポリエチレン(PE)などが挙げられる。有機繊維の種類は1種類又は2種類以上にすることができる。好ましいのは、ポリイミド、ポリアミド、ポリアミドイミド、セルロース、PVdF、及びPVAからなる群より選ばれる少なくとも1種類であり、より好ましいのは、ポリイミド、ポリアミド、ポリアミドイミド、セルロース、及びPVdFからなる群より選ばれる少なくとも1種類である。 The organic fiber comprises, for example, at least one organic material selected from the group consisting of polyamideimide, polyamide, polyolefin, polyether, polyimide, polyketone, polysulfone, cellulose, polyvinyl alcohol (PVA) and polyvinylidene fluoride (PVdF). . Examples of polyolefins include polypropylene (PP) and polyethylene (PE). The number of types of organic fibers can be one or more. Preferred is at least one selected from the group consisting of polyimide, polyamide, polyamideimide, cellulose, PVdF, and PVA, and more preferred is at least one selected from the group consisting of polyimide, polyamide, polyamideimide, cellulose, and PVdF. At least one type of
 ポリイミドは、250~400℃においても不溶・不融であって分解もしないので、耐熱性に優れた第2膜を得ることができる。 Since polyimide is insoluble, infusible, and does not decompose even at 250 to 400°C, it is possible to obtain a second film with excellent heat resistance.
 有機繊維は、長さ1mm以上、平均直径2μm以下であることが好ましく、平均直径1μm以下であることがより好ましい。こうした第2膜は、十分な強度、気孔率、透気度、孔径、耐電解質性、耐酸化還元性等を有するので、セパレータとして良好に機能する。有機繊維の平均直径は、集束イオンビーム(FIB)装置での観察により測定することができる。また、有機繊維の長さは、FIB装置での観察での測長に基づいて得られる。 The organic fiber preferably has a length of 1 mm or more and an average diameter of 2 μm or less, more preferably an average diameter of 1 μm or less. Since such a second film has sufficient strength, porosity, air permeability, pore size, electrolyte resistance, oxidation-reduction resistance, etc., it functions well as a separator. The average diameter of organic fibers can be measured by observation with a focused ion beam (FIB) device. Further, the length of the organic fiber is obtained based on length measurement during observation with an FIB device.
 イオン透過性および電解質保持性の確保が必要であることから、第2膜を形成している繊維全体の体積の30%以上は、平均直径1μm以下の有機繊維であることが好ましく、350nm以下の有機繊維であることがより好ましく、50nm以下の有機繊維であることが更に好ましい。 Since it is necessary to ensure ion permeability and electrolyte retention, 30% or more of the total volume of the fibers forming the second membrane is preferably organic fibers with an average diameter of 1 μm or less, and organic fibers with an average diameter of 350 nm or less. It is more preferable that it is an organic fiber, and even more preferable that it is an organic fiber of 50 nm or less.
 また、平均直径1μm以下(より好ましくは350nm以下、さらに好ましくは50nm以下)の有機繊維の体積は、第2膜を形成している繊維全体の体積の80%以上を占めることがより好ましい。こうした状態は、第2膜の走査イオン顕微鏡(SIM)観察によって確認することができる。太さ40nm以下の有機繊維が、第2膜を形成している繊維全体の体積の40%以上を占めることがより好ましい。有機繊維の径が小さいことは、イオンの移動を妨害する影響が小さいことになる。 Further, it is more preferable that the volume of the organic fibers having an average diameter of 1 μm or less (more preferably 350 nm or less, still more preferably 50 nm or less) accounts for 80% or more of the volume of the entire fibers forming the second film. Such a state can be confirmed by observing the second film using a scanning ion microscope (SIM). More preferably, the organic fibers having a thickness of 40 nm or less occupy 40% or more of the total volume of the fibers forming the second film. The smaller the diameter of the organic fiber, the less the effect of interfering with the movement of ions.
 有機繊維の表面及び裏面を含む全表面の少なくとも一部には、カチオン交換基が存在することが好ましい。カチオン交換基によって、セパレータを通過するリチウムイオンなどのイオンの移動が促進されるので、電池の性能が高められる。具体的には、長期にわたって急速充電、急速放電を行なうことが可能となる。カチオン交換基は特に限定されないが、例えばスルホン酸基およびカルボン酸基が挙げられる。カチオン交換基を表面に有する繊維は、例えば、スルホン化された有機材料を用いてエレクトロスピニング法により形成することができる。 It is preferable that cation exchange groups exist on at least a portion of the entire surface of the organic fiber, including the front and back surfaces. Cation exchange groups promote the movement of ions, such as lithium ions, through the separator, thereby enhancing battery performance. Specifically, it becomes possible to perform rapid charging and rapid discharging over a long period of time. The cation exchange group is not particularly limited, but includes, for example, a sulfonic acid group and a carboxylic acid group. Fibers having cation exchange groups on their surfaces can be formed, for example, by electrospinning using a sulfonated organic material.
 第2膜は空孔を有し、空孔の平均孔径5nm以上10μm以下であることが好ましい。また、気孔率は30%以上90%以下であることが好ましい。こうした空孔を備えていれば、イオンの透過性に優れ、電解質の含浸性も良好なセパレータが得られる。気孔率は、40%以上であることがより好ましい。空孔の平均孔径および気孔率は、水銀圧入法、体積と密度からの算出、SEM観察、SIM観察、ガス脱吸着法によって確認することができる。気孔率は、第2膜の体積と密度から算出することが望ましい。また、平均孔径は、水銀圧入法かガス吸着法により測定することが望ましい。第2膜における気孔率が大きいことは、イオンの移動を妨害する影響が小さいことになる。 The second film preferably has pores, and the average pore diameter of the pores is preferably 5 nm or more and 10 μm or less. Further, the porosity is preferably 30% or more and 90% or less. If such pores are provided, a separator with excellent ion permeability and good electrolyte impregnation properties can be obtained. More preferably, the porosity is 40% or more. The average pore diameter and porosity of the pores can be confirmed by mercury intrusion method, calculation from volume and density, SEM observation, SIM observation, and gas desorption method. It is desirable that the porosity be calculated from the volume and density of the second film. Further, the average pore diameter is preferably measured by a mercury intrusion method or a gas adsorption method. A large porosity in the second film means that the effect of interfering with the movement of ions is small.
 第2膜の厚さは12μm以下の範囲にすることが望ましい。厚さの下限値は、特に限定されないが、1μmでありうる。 The thickness of the second film is preferably in the range of 12 μm or less. The lower limit of the thickness is not particularly limited, but may be 1 μm.
 第2膜においては、含まれる有機繊維を疎の状態とすれば気孔率が高められるので、例えば気孔率が90%程度の層を得るのも困難ではない。そのような気孔率の大きな層を粒子で形成するのは、極めて困難である。 In the second film, the porosity can be increased by making the organic fibers contained in a sparse state, so it is not difficult to obtain a layer with a porosity of about 90%, for example. It is extremely difficult to form a layer with such a high porosity using particles.
 第2膜は、凹凸、割れやすさ、含電解質性、密着性、曲げ特性、気孔率、及びイオン透過性の点で、無機粒子の堆積物より有利である。 The second film is more advantageous than the inorganic particle deposit in terms of roughness, breakability, electrolyte content, adhesion, bending properties, porosity, and ion permeability.
 第2膜は、有機化合物の粒子を含んでいてもよい。この粒子は、例えば、有機繊維と同じ材料からなる。この粒子は、有機繊維と一体的に形成されていてもよい。 The second film may contain particles of an organic compound. The particles are made of the same material as the organic fibers, for example. The particles may be formed integrally with the organic fiber.
 第2膜は、第2活物質含有層に形成されていてもよいが、第1膜上に形成されていてもよい。或いは、第2活物質含有層と第1膜の双方の表面に第2膜を形成してもよい。いずれの場合でも、第2膜の表面及び裏面のうちの一方の面が、第1膜の表面と接することができる。 The second film may be formed on the second active material-containing layer, or may be formed on the first film. Alternatively, the second film may be formed on both surfaces of the second active material-containing layer and the first film. In either case, one of the front and back surfaces of the second film can be in contact with the front surface of the first film.
 <断面SEM観察>
 第1膜及び第2膜の厚さ、並びに、第1活物質含有層及び第2活物質含有層の厚さは、電極の断面に対してSEM観察を実施することで測定できる。
<Cross-sectional SEM observation>
The thickness of the first film and the second film, and the thickness of the first active material-containing layer and the second active material-containing layer can be measured by performing SEM observation on the cross section of the electrode.
 まず、対象の電極群を、イオンミリング装置にて裁断する。電極群を裁断する際は、電極群を厚み方向に沿って裁断する。裁断後の電極群の断面を、SEM試料台に貼り付ける。このとき、電極群が試料台から剥がれたり浮いたりしないように、導電性テープなどを用いて処理を施す。SEM試料台に貼り付けた電極群をSEMで観察する。なお、電極群を試料室に導入する際には、不活性雰囲気を維持することが好ましい。 First, the target electrode group is cut using an ion milling device. When cutting the electrode group, the electrode group is cut along the thickness direction. The cross section of the electrode group after cutting is pasted on the SEM sample stage. At this time, conductive tape or the like is used to prevent the electrode group from peeling off or floating from the sample stage. Observe the electrode group attached to the SEM sample stage using SEM. Note that when introducing the electrode group into the sample chamber, it is preferable to maintain an inert atmosphere.
 測定対象となる電極群が電池に組み込まれている場合には、まず、分析対象の二次電池を放電状態にする。例えば、25℃環境において、0.1C電流で定格終止電圧まで放電させることで、二次電池を放電状態とすることができる。放電状態とした二次電池を、アルゴンを充填したグローブボックス中で分解する。分解した電池から、測定対象の電極群を取り出す。この電極群を適切な溶媒で洗浄する。洗浄に用いる溶媒としては、例えばエチルメチルカーボネートを用いることができる。その後、上述の手順でSEM観察を行う。 If the electrode group to be measured is incorporated into a battery, first, the secondary battery to be analyzed is brought into a discharge state. For example, in a 25° C. environment, the secondary battery can be brought into a discharge state by discharging it to the rated final voltage with a 0.1 C current. The discharged secondary battery is disassembled in a glove box filled with argon. Remove the electrode group to be measured from the disassembled battery. This electrode group is washed with a suitable solvent. As the solvent used for washing, for example, ethyl methyl carbonate can be used. Thereafter, SEM observation is performed according to the above-described procedure.
 第2膜は、例えば、エレクトロスピニング法により形成される。エレクトロスピニング法では、第2膜の形成対象である、第1電極構造体又は第2電極構造体をアースしてアース電極とする。第1電極構造体に形成する場合、第1膜を形成済みの第1電極構造体を用意する。 The second film is formed, for example, by electrospinning. In the electrospinning method, the first electrode structure or the second electrode structure on which the second film is to be formed is grounded to serve as a ground electrode. When forming the first electrode structure, the first electrode structure on which the first film is already formed is prepared.
 紡糸ノズルに印加された電圧により液状の原料(例えば原料溶液)が帯電すると共に、原料溶液からの溶媒の揮発により原料溶液の単位体積当たりの帯電量が増加する。溶媒の揮発とそれに伴う単位体積あたりの帯電量の増加が連続して生じることで、紡糸ノズルから吐出された原料溶液は長手方向に延び、ナノサイズの有機繊維として、アース電極である第1電極構造体又は第2電極構造体に堆積する。有機繊維とアース電極間には、ノズルとアース電極間の電位差によりクーロン力が生じる。よって、ナノサイズの有機繊維により第1膜との接触面積を増加させることができ、この有機繊維をクーロン力により第1電極構造体又は第2電極構造体上に堆積することができるため、第2膜の電極(第2活物質含有層)からの剥離強度を高めることが可能となる。剥離強度は、例えば、溶液濃度、サンプル-ノズル間距離等を調節することにより制御することが可能である。 The voltage applied to the spinning nozzle charges the liquid raw material (for example, the raw material solution), and the amount of charge per unit volume of the raw material solution increases due to the volatilization of the solvent from the raw material solution. Due to the continuous volatilization of the solvent and the accompanying increase in the amount of charge per unit volume, the raw material solution discharged from the spinning nozzle extends in the longitudinal direction and forms nano-sized organic fibers at the first electrode, which is the ground electrode. or a second electrode structure. Coulomb force is generated between the organic fiber and the earth electrode due to the potential difference between the nozzle and the earth electrode. Therefore, the contact area with the first film can be increased by the nano-sized organic fibers, and the organic fibers can be deposited on the first electrode structure or the second electrode structure by Coulomb force. It becomes possible to increase the peel strength of the two films from the electrode (second active material-containing layer). The peel strength can be controlled, for example, by adjusting the solution concentration, the sample-nozzle distance, and the like.
 エレクトロスピニング法を用いることによって、第2膜を電極表面に容易に形成することができる。エレクトロスピニング法は、原理的には連続した1本の繊維を形成するので、曲げによる破断、膜の割れへの耐性を薄膜で確保できる。第2膜を構成する有機繊維が継ぎ目のない連続したものであることは、第2膜のほつれや一部欠損の確率が低く、自己放電の抑制の点で有利である。 By using the electrospinning method, the second film can be easily formed on the electrode surface. In principle, the electrospinning method forms one continuous fiber, so it is possible to ensure a thin film with resistance to breakage due to bending and cracking of the film. If the organic fibers constituting the second film are seamless and continuous, the probability of fraying or partial loss of the second film is low, which is advantageous in terms of suppressing self-discharge.
 エレクトロスピニングに用いられる液状の原料には、例えば、有機材料を溶媒に溶解して調製された原料溶液が用いられる。有機材料の例は、有機繊維を構成する有機材料で挙げたものと同様なものを挙げることができる。有機材料は、例えば5~60質量%程度の濃度で溶媒に溶解して用いられる。有機材料を溶解する溶媒は特に限定されず、ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、N,N‘ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)、水、アルコール類等、任意の溶媒を用いることができる。また、溶解性の低い有機材料に対しては、レーザー等でシート状の有機材料を溶融しながらエレクトロスピニングする。加えて、高沸点有機溶剤と低融点の溶剤とを混合することも許容される。 As the liquid raw material used for electrospinning, for example, a raw material solution prepared by dissolving an organic material in a solvent is used. Examples of the organic material include the same materials as those mentioned for the organic materials constituting the organic fibers. The organic material is used by being dissolved in a solvent at a concentration of, for example, about 5 to 60% by mass. The solvent for dissolving the organic material is not particularly limited, and any solvent such as dimethylacetamide (DMAc), dimethylsulfoxide (DMSO), N,N'dimethylformamide (DMF), N-methylpyrrolidone (NMP), water, alcohols, etc. A solvent can be used. For organic materials with low solubility, electrospinning is performed while melting the sheet-like organic material using a laser or the like. In addition, it is also permissible to mix high boiling point organic solvents and low melting point solvents.
 高電圧発生器を用いて紡糸ノズルに電圧を印加しつつ、紡糸ノズルから所定の電極の表面にわたって原料を吐出することによって、第2膜が形成される。印加電圧は、溶媒・溶質種、溶媒の沸点・蒸気圧曲線、溶液濃度、温度、ノズル形状、サンプル-ノズル間距離等に応じて適宜決定され、例えばノズルとワーク間の電位差を0.1~100kVとすることができる。原料の供給速度もまた、溶液濃度、溶液粘度、温度、圧力、印加電圧、ノズル形状等に応じて適宜決定される。シリンジタイプの場合には、例えば、1ノズルあたり0.1~500μl/min程度とすることができる。また、多ノズルやスリットの場合には、その開口面積に応じて供給速度を決定すればよい。 The second film is formed by discharging the raw material from the spinning nozzle over the surface of a predetermined electrode while applying voltage to the spinning nozzle using a high voltage generator. The applied voltage is appropriately determined depending on the solvent/solute species, boiling point/vapor pressure curve of the solvent, solution concentration, temperature, nozzle shape, sample-nozzle distance, etc. It can be set to 100kV. The feed rate of the raw material is also appropriately determined depending on the solution concentration, solution viscosity, temperature, pressure, applied voltage, nozzle shape, etc. In the case of a syringe type, the flow rate can be, for example, about 0.1 to 500 μl/min per nozzle. Furthermore, in the case of multiple nozzles or slits, the supply rate may be determined depending on the opening area.
 有機繊維が乾燥状態で電極の表面に直接形成されるので、電極内部に原料に含まれる溶媒が浸み込むことは実質的に避けられる。電極内部の溶媒残留量は、ppmレベル以下と極めて低いものとなる。電極内部の残留溶媒は、酸化還元反応を生じて電池のロスを引き起こし、電池性能の低下につながる。有機材料を含む第2膜によれば、こうした不都合が生じるおそれは極力低減されることから、電池性能を高めることができる。 Since the organic fibers are formed directly on the surface of the electrode in a dry state, it is substantially possible to prevent the solvent contained in the raw material from penetrating into the electrode. The amount of solvent remaining inside the electrode is extremely low, below the ppm level. The residual solvent inside the electrode causes an oxidation-reduction reaction, causing battery loss, leading to a decrease in battery performance. According to the second film containing an organic material, the possibility of such inconvenience occurring is reduced as much as possible, so that battery performance can be improved.
 第1膜は、第1活物質含有層の少なくとも一方の主面上のみに形成することも可能であるが、第1集電タブの表面の少なくとも一部を第1膜で更に被覆してもよい。この一例を図5~図6に示す。二つの第1活物質含有層1bそれぞれについて、主面に対して直交する四側面47が第1膜6で被覆されている。第1膜6は、第1集電タブ1cの両方の主面それぞれの第1活物質含有層1bと隣接する部分(第1活物質含有層1bとの境界を含む部分)も被覆している。第1膜6が設けられている箇所は、第2電極構造体の第2集電タブ2cが延出している側の反対側に位置する端面に近い位置にある。第1膜6を設けることにより、第1電極構造体の第1集電タブ1cと第2電極構造体の端面とが接触することによる内部短絡を低減することができる。なお、図7に示すような、第1集電体1aの一辺から突出した複数の帯状部を第1集電タブ1cとして用いる場合、第1集電タブ1cの四つの面それぞれの第1集電体1aと隣接する部分48と、第1集電タブ1cの間に位置する第1集電体1aの端面49とを第1膜6で被覆することが望ましい。この構成は、内部短絡低減に有効である。 The first film may be formed only on at least one main surface of the first active material-containing layer, but it is also possible to further cover at least a portion of the surface of the first current collecting tab with the first film. good. An example of this is shown in FIGS. 5 and 6. For each of the two first active material-containing layers 1b, four side surfaces 47 perpendicular to the main surface are covered with the first film 6. The first film 6 also covers the portions adjacent to the first active material-containing layer 1b (including the boundary with the first active material-containing layer 1b) on both main surfaces of the first current collecting tab 1c. . The location where the first film 6 is provided is close to the end surface of the second electrode structure opposite to the side from which the second current collecting tab 2c extends. By providing the first film 6, it is possible to reduce internal short circuits caused by contact between the first current collecting tab 1c of the first electrode structure and the end surface of the second electrode structure. In addition, when using a plurality of strips protruding from one side of the first current collector 1a as the first current collecting tab 1c as shown in FIG. It is desirable that the first film 6 covers a portion 48 adjacent to the current collector 1a and an end surface 49 of the first current collector 1a located between the first current collector tabs 1c. This configuration is effective in reducing internal short circuits.
 第2膜は、第2電極構造体に形成してもよいが、第2電極構造体に形成する代わりに、第1電極構造体の表面上に形成しても良い。この一例を図8に示す。第2膜7は、第1膜4の表面と、第1電極構造体の全ての端面とを被覆している。また、第2膜7は、第1集電タブ1cの両方の主面それぞれにおける、第1活物質含有層1bとの境界を含む部分も被覆する。 The second film may be formed on the second electrode structure, but instead of being formed on the second electrode structure, it may be formed on the surface of the first electrode structure. An example of this is shown in FIG. The second film 7 covers the surface of the first film 4 and all end faces of the first electrode structure. Further, the second film 7 also covers portions of both main surfaces of the first current collecting tab 1c, including the boundary with the first active material containing layer 1b.
 第2電極構造体は、第2活物質含有層2bが第1膜4及び第2膜7からなるセパレータ3を介して第1活物質含有層1bと対向するように配置されている。第1集電タブ1cの主面における第1活物質含有層1bと隣接する部分が第2膜7で被覆され、第1電極構造体の第1集電タブ1cが突出している側と反対側に位置する端面が第2膜7で被覆されている。この構成により、自己放電及び内部短絡が抑制される。 The second electrode structure is arranged such that the second active material containing layer 2b faces the first active material containing layer 1b with a separator 3 formed of the first film 4 and the second film 7 interposed therebetween. A portion of the main surface of the first current collecting tab 1c adjacent to the first active material containing layer 1b is covered with the second film 7, and the side opposite to the side of the first electrode structure from which the first current collecting tab 1c protrudes The end face located at is covered with the second film 7. This configuration suppresses self-discharge and internal short circuits.
 <電極群の製造方法>
 実施形態に係る電極群は、例えば、下記の第1又は第2製造方法で製造することができる。
<Method for manufacturing electrode group>
The electrode group according to the embodiment can be manufactured by, for example, the first or second manufacturing method described below.
 <第1製造方法>
 第1集電体の少なくとも一方の主面に、第1活物質を含むスラリー(以下、スラリーIとする)と、無機粒子を含むスラリー(以下、スラリーIIとする)を同時に塗工する。塗工工程の一例を図9及び図10に示す。塗工装置60は、スラリーIを収容するタンク62と、スラリーIIを収容するタンク63とを備える。塗工装置60は、基材に対してスラリーI及びスラリーIIを同時に塗布可能な構成となっている。
<First manufacturing method>
A slurry containing the first active material (hereinafter referred to as slurry I) and a slurry containing inorganic particles (hereinafter referred to as slurry II) are simultaneously applied to at least one main surface of the first current collector. An example of the coating process is shown in FIGS. 9 and 10. The coating device 60 includes a tank 62 containing slurry I and a tank 63 containing slurry II. The coating device 60 is configured to be able to simultaneously coat slurry I and slurry II onto the base material.
 所定の寸法に裁断される前の長尺状の第1集電体1aを、搬送ローラ61によって、塗工装置60のスラリー吐出口に搬送する。図10において、スラリーI吐出口62aがスラリーII吐出口63aよりも集電体の上流側に位置している。それ故、スラリーIIよりも先にスラリーIが集電体上に吐出される。塗工装置60から第1集電体1a上に、短辺方向の両端部を除き、スラリーIが塗布される。次いで、スラリーIが乾く前にスラリーIIがスラリーIの塗布領域からはみ出すように重ね塗りされる。スラリーIにスラリーIIが重ね塗りされているため、スラリーIの表面形状にスラリーIIが追従しやすくなる。スラリーI及びIIを乾燥させた後、乾燥後のものにロールプレスを施す。スラリーIが乾燥及びプレスに供されることで、第1活物質含有層を構成し得る。一方、スラリーIIが乾燥及びプレスに供されることで、第1膜を構成し得る。こうして、第1電極構造体を得ることができる。第1電極構造体を、所望のサイズに裁断してもよい。 The elongated first current collector 1a before being cut into a predetermined size is conveyed to the slurry discharge port of the coating device 60 by the conveyance roller 61. In FIG. 10, the slurry I outlet 62a is located upstream of the current collector than the slurry II outlet 63a. Therefore, slurry I is discharged onto the current collector before slurry II. Slurry I is applied from the coating device 60 onto the first current collector 1a except for both ends in the short side direction. Next, before slurry I dries, slurry II is overcoated so as to protrude from the area coated with slurry I. Since Slurry II is coated over Slurry I, Slurry II can easily follow the surface shape of Slurry I. After drying slurries I and II, the dried slurries are roll pressed. The first active material-containing layer can be formed by drying and pressing slurry I. On the other hand, the first film can be formed by drying and pressing slurry II. In this way, a first electrode structure can be obtained. The first electrode structure may be cut to a desired size.
 第1膜形成用スラリーIIは、例えば、無機粒子と、バインダとを適当な溶媒に懸濁させた分散液を得た後に、ビーズミル等の分散処理を施すことにより得られる。第1膜についての頻度分布チャートが2つのピークを有するための一つの方法として、例えば、無機粒子として、D50が互いに異なる2種類の無機粒子を混合する方法が挙げられる。 The first film-forming slurry II can be obtained, for example, by obtaining a dispersion liquid in which inorganic particles and a binder are suspended in a suitable solvent, and then performing a dispersion treatment using a bead mill or the like. One method for making the frequency distribution chart for the first film have two peaks is, for example, a method of mixing two types of inorganic particles with different D50s.
 第1膜形成用スラリーに含まれる無機粒子として、例えば、D50が0.4μm~0.7μmの範囲内にある粉末と、D50が1.4μm~1.8μmの範囲内にある粉末とを2:8~8:2の比率で混合したものを使用する。これら無機粒子は、互いに同一の種類の無機粒子であってもよく、異なる種類の無機粒子であってもよい。上記の通り、当該無機粒子を含む分散液に対して、更に分散処理を施すことにより粒度を調整してもよい。 As the inorganic particles contained in the slurry for forming the first film, for example, two powders having a D50 of 0.4 μm to 0.7 μm and a powder having a D50 of 1.4 μm to 1.8 μm are used. : Use a mixture at a ratio of 8 to 8:2. These inorganic particles may be of the same type or different types. As described above, the particle size may be adjusted by further performing a dispersion treatment on the dispersion containing the inorganic particles.
 ビーズミルによる分散を実施する際には、ビーズの材質、ビーズ径、ビーズ充填率、羽根の回転数及び処理時間を調整することで、第1膜を構成する材料の粒度を制御することが可能である。即ち、これらの条件を複合的に調節することにより、第1ピーク及び第2ピークの粒子径及び頻度を調整することができる。 When performing dispersion using a bead mill, it is possible to control the particle size of the material constituting the first film by adjusting the bead material, bead diameter, bead filling rate, blade rotation speed, and processing time. be. That is, by adjusting these conditions in a complex manner, the particle size and frequency of the first peak and second peak can be adjusted.
 ビーズ径は、例えば、直径が1mm~2mmの範囲内にあるものを使用する。充填率は、例えば40%~70%の範囲内とする。回転数は、例えば500rpm~3000rpmの範囲内とする。処理時間は、例えば3分~10分とする。 The diameter of the beads used is, for example, within the range of 1 mm to 2 mm. The filling rate is, for example, within the range of 40% to 70%. The rotation speed is, for example, within the range of 500 rpm to 3000 rpm. The processing time is, for example, 3 to 10 minutes.
 第1ピークの頻度F1を高めるためには、一次粒子の形態で存在する無機粒子の存在比率を高めるために、無機粒子の二次粒子を解砕させることが有効である。そこで、第1ピークの頻度F1を高めるためには、サンドグラインダーなどの大きな衝突エネルギーを利用したビーズミル分散を施すことが好ましい。 In order to increase the frequency F1 of the first peak, it is effective to crush secondary particles of inorganic particles in order to increase the abundance ratio of inorganic particles existing in the form of primary particles. Therefore, in order to increase the frequency F1 of the first peak, it is preferable to perform bead mill dispersion using a sand grinder or the like using large collision energy.
 例えば、上述したビーズの材質、ビーズ径、ビーズ充填率、羽根の回転数及び処理時間を複合的に調整して、分散溶液を強く分散させると、第1ピークの位置D1(粒子径)が小さくなることにより比D1/D2が小さくなる傾向にある。例えば処理時間を延ばすことにより分散溶液を強く分散させすぎると、D10が小さくなりすぎて凝集塊が形成されやすいため好ましくない。 For example, if the dispersion solution is strongly dispersed by compositely adjusting the bead material, bead diameter, bead filling rate, impeller rotation speed, and processing time described above, the first peak position D1 (particle diameter) will become smaller. As a result, the ratio D1/D2 tends to become smaller. For example, if the dispersion solution is dispersed too strongly by extending the treatment time, D10 becomes too small and aggregates are likely to be formed, which is not preferable.
 他方、ビーズの材質、ビーズ径、ビーズ充填率、羽根の回転数及び処理時間を複合的に調整して、分散溶液を弱く分散させると、第2ピークの位置D2(粒子径)が大きくなることにより比D1/D2が大きくなる傾向にある。 On the other hand, if the dispersion solution is weakly dispersed by compositely adjusting the bead material, bead diameter, bead filling rate, impeller rotation speed, and processing time, the second peak position D2 (particle diameter) becomes larger. Therefore, the ratio D1/D2 tends to increase.
 第2電極構造体は、以下のようにして製造することができる。第2活物質を含むスラリーを第2集電体上に塗布した後、スラリーを乾燥させ、乾燥後のものにロールプレスを施して積層体を得る。得られた積層体は、第2集電体の少なくとも一方の主面上に第2活物質含有層を備える第2電極であり得る。第2電極としての積層体を、必要に応じて所定のサイズに裁断した後に、当該積層体に対してエレクトロスピニング法により第2膜を形成する。次いで、プレスを施してもよい。プレス方法としては、例えばロールプレスが挙げられる。 The second electrode structure can be manufactured as follows. After applying the slurry containing the second active material onto the second current collector, the slurry is dried, and the dried slurry is roll pressed to obtain a laminate. The obtained laminate may be a second electrode including a second active material-containing layer on at least one main surface of the second current collector. After cutting the laminate as the second electrode into a predetermined size as necessary, a second film is formed on the laminate by electrospinning. Then, pressing may be performed. Examples of the pressing method include roll pressing.
 なお、第2集電タブに第2膜を形成しない場合、第2集電タブをマスクしてから第2膜を形成することができる。この例を図11に示す。図11は、第2電極に第2膜を形成する工程の一例を示す斜視図である。図11に示す通り、第2膜5は、ノズルNから吐出される原料溶液が第2活物質含有層2b及び第2集電タブ2c上に、有機繊維として堆積することで直接形成される。第2集電タブ2cの一辺及びその近傍がマスクMで被覆されている。そのため、第2膜5は、第2活物質含有層2bの表面と、第2集電タブ2c表面における第2活物質含有層2bと隣接する部分に跨がるように堆積された有機繊維を含む多孔質膜となる。 Note that when the second film is not formed on the second current collection tab, the second film can be formed after masking the second current collection tab. An example of this is shown in FIG. FIG. 11 is a perspective view showing an example of the process of forming a second film on the second electrode. As shown in FIG. 11, the second film 5 is directly formed by depositing the raw material solution discharged from the nozzle N on the second active material-containing layer 2b and the second current collecting tab 2c as organic fibers. One side of the second current collecting tab 2c and its vicinity are covered with a mask M. Therefore, the second film 5 includes organic fibers deposited across the surface of the second active material-containing layer 2b and the portion of the surface of the second current collecting tab 2c adjacent to the second active material-containing layer 2b. It becomes a porous membrane containing
 第1電極構造体と第2電極構造体を、これらが第1膜と第2膜とを介して対向するように積層して実施形態の電極群を得ることができる。 The electrode group of the embodiment can be obtained by stacking the first electrode structure and the second electrode structure so that they face each other with the first film and the second film interposed in between.
 <第2製造方法>
 第1製造方法により作製した第1電極構造体に、エレクトロスピニング法により第2膜を形成する。次いで、プレスを施してもよい。こうして、第1膜上に、第2膜を更に有する第1電極構造体を得ることができる。
<Second manufacturing method>
A second film is formed by electrospinning on the first electrode structure produced by the first manufacturing method. Then, pressing may be performed. In this way, a first electrode structure further having a second film on the first film can be obtained.
 次いで、第2活物質を含むスラリーを第2集電体上の少なくとも一方の面上に塗布した後、スラリーを乾燥させ、乾燥後のものにロールプレスを施し、所定のサイズに裁断して第2電極を得る。 Next, after applying a slurry containing the second active material onto at least one surface of the second current collector, the slurry is dried, and the dried material is roll pressed and cut into a predetermined size. Obtain 2 electrodes.
 第2膜を有する第1電極構造体と、第2電極とを、これらが第1膜と第2膜とを介して対向するように積層して実施形態の電極群を得ることができる。 The electrode group of the embodiment can be obtained by stacking a first electrode structure having a second film and a second electrode so that they face each other with the first film and the second film interposed in between.
 第1又は第2製造方法で得られた電極群は、単一の電極群として使用してもよく、又は、複数の電極群を積層して使用してもよい。また、1つ又は複数の電極群を渦巻き状に捲回して使用してもよい。なお、電極群に対して更にプレスを施してもよい。 The electrode group obtained by the first or second manufacturing method may be used as a single electrode group, or a plurality of electrode groups may be stacked and used. Furthermore, one or more electrode groups may be spirally wound. Note that the electrode group may be further pressed.
 第1実施形態によると、第1電極構造体と、少なくとも一部が第1電極構造体と対向する第2電極構造体とを具備する電極群が提供される。第1電極構造体は、第1集電体と、第1集電体の少なくとも一方の面上に設けられる第1活物質含有層と、無機粒子を含み、且つ、第1活物質含有層上に設けられる第1膜とを備える。第2電極構造体は、第2集電体と、第2集電体の少なくとも一方の面上に設けられる第2活物質含有層と、有機材料を含み、且つ、第2活物質含有層上に設けられる第2膜とを備える。第1膜について、レーザー回折散乱法により得られる体積基準での頻度分布チャートは2つのピークを有している。 According to the first embodiment, an electrode group is provided that includes a first electrode structure and a second electrode structure at least partially facing the first electrode structure. The first electrode structure includes a first current collector, a first active material-containing layer provided on at least one surface of the first current collector, and inorganic particles. and a first film provided in the first film. The second electrode structure includes a second current collector, a second active material-containing layer provided on at least one surface of the second current collector, and an organic material; and a second film provided on. Regarding the first film, a volume-based frequency distribution chart obtained by laser diffraction scattering has two peaks.
 第1膜において、相対的に大きな粒子径を有する粒子群の隙間に、相対的に小さな粒子径を有する粒子群が入り込むことにより、層内の緻密性が高まるため、実施形態に係る電極群は優れた絶縁性を示す。また、2つのピークを有する頻度分布チャートを示すような第1膜を形成するための第1膜形成用スラリーに関する頻度分布チャートも、第1膜についての頻度分布チャートと同様のチャート形状を持つ。このような第1膜形成用スラリーは分散性に優れているため、ビーズミル等の分散処理後に含まれる粗大粒子数が少ない。その結果、当該スラリーを用いた塗工工程では、塗布抜けを抑制することができるため、得られる第1膜を含む電極群は高い絶縁性を達成できる。 In the first film, particles having a relatively small particle size enter gaps between particles having a relatively large particle size, thereby increasing the density of the layer, so that the electrode group according to the embodiment Shows excellent insulation properties. Further, the frequency distribution chart regarding the first film forming slurry for forming the first film, which shows a frequency distribution chart having two peaks, also has the same chart shape as the frequency distribution chart for the first film. Since such a slurry for forming the first film has excellent dispersibility, the number of coarse particles contained after dispersion treatment using a bead mill or the like is small. As a result, in the coating process using the slurry, coating omission can be suppressed, so that the resulting electrode group including the first film can achieve high insulation.
 (第2実施形態)
 第2実施形態に係る二次電池は、第1実施形態に係る電極群と、電解質とを含む。二次電池は、電極群及び電解質を収容可能な外装部材を更に含み得る。
(Second embodiment)
The secondary battery according to the second embodiment includes the electrode group according to the first embodiment and an electrolyte. The secondary battery may further include an exterior member capable of accommodating the electrode group and the electrolyte.
 一以上の電極群を、積層型、又は、渦巻き若しくは扁平の渦巻状に捲回して使用することができる。複数の電極群は、例えば、第1電極構造体と第2電極構造体とが交互に配置されるように積層される。 One or more electrode groups can be used in a laminated type, or in a spirally or flat spirally wound manner. The plurality of electrode groups are stacked, for example, so that first electrode structures and second electrode structures are alternately arranged.
 二次電池は、第1集電タブと電気的に接続される第1電極端子と、第2集電タブと電気的に接続される第2電極端子とを更に備えることができる。 The secondary battery may further include a first electrode terminal electrically connected to the first current collecting tab, and a second electrode terminal electrically connected to the second current collecting tab.
 電解質としては、例えば、非水電解質が用いられる。非水電解質としては、電解質を有機溶媒に溶解することにより調整される液状非水電解質、液状電解質と高分子材料を複合化したゲル状非水電解質等が挙げられる。液状非水電解質は、例えば電解質を0.5mol/L以上、2.5mol/L以下の濃度で有機溶媒に溶解することによって、調製することができる。 As the electrolyte, for example, a non-aqueous electrolyte is used. Examples of the non-aqueous electrolyte include a liquid non-aqueous electrolyte prepared by dissolving an electrolyte in an organic solvent, a gel-like non-aqueous electrolyte made of a composite of a liquid electrolyte and a polymer material, and the like. The liquid non-aqueous electrolyte can be prepared, for example, by dissolving the electrolyte in an organic solvent at a concentration of 0.5 mol/L or more and 2.5 mol/L or less.
 電解質としては、例えば、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CF3SO22]等のリチウム塩、あるいはこれらの混合物を挙げることができる。高電位でも酸化し難いものであることが好ましく、LiPF6が最も好ましい。 Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), and trifluoromethane. Examples include lithium salts such as lithium sulfonate (LiCF 3 SO 3 ), lithium bistrifluoromethylsulfonylimide [LiN(CF 3 SO 2 ) 2 ], or mixtures thereof. It is preferable that it is resistant to oxidation even at high potentials, and LiPF 6 is most preferable.
 有機溶媒としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ビニレンカーボネート等の環状カーボネートや、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)等の鎖状カーボネートや、テトラヒドロフラン(THF)、2メチルテトラヒドロフラン(2MeTHF)、ジオキソラン(DOX)等の環状エーテルや、ジメトキシエタン(DME)、ジエトキシエタン(DEE)等の鎖状エーテルや、γ-ブチロラクトン(GBL)、アセトニトリル(AN)、およびスルホラン(SL)等が挙げられる。こうした有機溶媒は、単独でも2種以上の混合物として用いてもよい。 Examples of organic solvents include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), and vinylene carbonate, and chain carbonates such as diethyl carbonate (DEC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC). , cyclic ethers such as tetrahydrofuran (THF), 2methyltetrahydrofuran (2MeTHF), dioxolane (DOX), chain ethers such as dimethoxyethane (DME), diethoxyethane (DEE), γ-butyrolactone (GBL), Examples include acetonitrile (AN) and sulfolane (SL). These organic solvents may be used alone or as a mixture of two or more.
 高分子材料としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリアクリロニトリル(P1N)、ポリエチレンオキサイド(PEO)等を挙げることができる。 Examples of the polymer material include polyvinylidene fluoride (PVdF), polyacrylonitrile (P1N), and polyethylene oxide (PEO).
 なお、非水電解質として、リチウムイオンを含有した常温溶融塩(イオン性融体)、高分子固体電解質、無機固体電解質等を用いてもよい。 Note that as the non-aqueous electrolyte, a room temperature molten salt (ionic melt) containing lithium ions, a polymer solid electrolyte, an inorganic solid electrolyte, etc. may be used.
 外装部材としては、例えば、金属製容器、又はラミネートフィルム製容器などを用いることができる。 As the exterior member, for example, a metal container or a laminated film container can be used.
 二次電池の形態は、特に限定されず、例えば、円筒型、扁平型、薄型、角型、コイン型等の様々な形態にすることができる。 The shape of the secondary battery is not particularly limited, and can be in various shapes, such as cylindrical, flat, thin, square, coin-shaped, etc.
 図12は、実施形態に係る二次電池の一例を示す部分切欠斜視図である。図12は、外装部材としてラミネートフィルムを用いた二次電池の一例を示す図である。図12に示す二次電池100は、ラミネートフィルム製の外装部材110と、電極群120と、第1電極端子130と、第2電極端子140と、非水電解質(図示しない)とを含む。電極群120は、実施形態に係る電極群を複数含む。これら電極群は、第1電極構造体と第2電極構造体とが交互に配置されるように積層されている。非水電解質(図示しない)は、電極群120に保持又は含浸されている。第1電極端子130には、第1電極構造体の第1集電タブが電気的に接続されている。第2電極端子140には、第2電極構造体の第2集電タブが電気的に接続されている。図12に示すように、第1電極端子130と第2電極端子140とは、互いに距離を隔てた状態でそれぞれの先端が外装部材110の一辺から外部に突出している。 FIG. 12 is a partially cutaway perspective view showing an example of the secondary battery according to the embodiment. FIG. 12 is a diagram showing an example of a secondary battery using a laminate film as an exterior member. The secondary battery 100 shown in FIG. 12 includes an exterior member 110 made of a laminate film, an electrode group 120, a first electrode terminal 130, a second electrode terminal 140, and a nonaqueous electrolyte (not shown). The electrode group 120 includes a plurality of electrode groups according to the embodiment. These electrode groups are stacked such that the first electrode structures and the second electrode structures are alternately arranged. A non-aqueous electrolyte (not shown) is held or impregnated in the electrode group 120. A first current collection tab of the first electrode structure is electrically connected to the first electrode terminal 130 . A second current collection tab of the second electrode structure is electrically connected to the second electrode terminal 140 . As shown in FIG. 12, the first electrode terminal 130 and the second electrode terminal 140 are spaced apart from each other, and their tips protrude outward from one side of the exterior member 110.
 図13は、実施形態に係る二次電池の他の例を示す分解斜視図である。図13は、外装部材として角型の金属製容器を用いた二次電池の一例を示す図である。図13に示す二次電池は、外装部材20と、捲回型電極群51と、蓋52と、第1電極端子53と、第2電極端子54と、非水電解質(図示しない)とを含む。捲回型電極群51は、実施形態に係る電極群が扁平の渦巻き状に捲回された構造を有する。捲回型電極群51において、扁平の渦巻き状に捲回された第1集電タブ25が、捲回軸のうちの一方の端面に位置し、また、扁平の渦巻き状に捲回された第2集電タブ26が、捲回軸のうちの他方の端面に位置している。非水電解質(図示しない)は、電極群51に保持あるいは含浸されている。 FIG. 13 is an exploded perspective view showing another example of the secondary battery according to the embodiment. FIG. 13 is a diagram showing an example of a secondary battery using a square metal container as an exterior member. The secondary battery shown in FIG. 13 includes an exterior member 20, a wound electrode group 51, a lid 52, a first electrode terminal 53, a second electrode terminal 54, and a non-aqueous electrolyte (not shown). . The wound electrode group 51 has a structure in which the electrode group according to the embodiment is wound in a flat spiral shape. In the wound electrode group 51, the first current collecting tab 25 wound in a flat spiral shape is located on one end surface of the winding shaft, and the first current collecting tab 25 wound in a flat spiral shape is located on one end surface of the winding shaft. Two current collection tabs 26 are located on the other end surface of the winding shaft. A non-aqueous electrolyte (not shown) is held or impregnated in the electrode group 51.
 第1電極リード27は、第1集電タブ25と電気的に接続され、かつ第1電極端子53とも電気的に接続されている。また、第2電極リード28は、第2集電タブ26と電気的に接続され、かつ第2電極端子54とも電気的に接続されている。電極群51は、第1電極リード27及び第2電極リード28が、外装部材20の主面側と対向するように外装部材20内に配置される。蓋52は、外装部材20の開口部20aに溶接等により固定されている。第1電極端子53と第2電極端子54とは、絶縁性のハーメチックシール部材(図示せず)を介して蓋52にそれぞれ取り付けられている。 The first electrode lead 27 is electrically connected to the first current collecting tab 25 and also to the first electrode terminal 53. Further, the second electrode lead 28 is electrically connected to the second current collecting tab 26 and also to the second electrode terminal 54 . The electrode group 51 is arranged within the exterior member 20 such that the first electrode lead 27 and the second electrode lead 28 face the main surface side of the exterior member 20 . The lid 52 is fixed to the opening 20a of the exterior member 20 by welding or the like. The first electrode terminal 53 and the second electrode terminal 54 are each attached to the lid 52 via an insulating hermetic seal member (not shown).
 以上説明した第2実施形態の二次電池は、第1実施形態に係る電極群を含むため、優れた絶縁性を示す。 The secondary battery of the second embodiment described above includes the electrode group according to the first embodiment, and thus exhibits excellent insulation properties.
 (第3実施形態)
 第3実施形態によると、電池パックが提供される。この電池パックは、第2実施形態に係る二次電池、又は、複数の二次電池を含む組電池を備える。
(Third embodiment)
According to a third embodiment, a battery pack is provided. This battery pack includes the secondary battery according to the second embodiment or an assembled battery including a plurality of secondary batteries.
 第2実施形態に係る電池パックは、保護回路を更に具備することができる。保護回路は、二次電池の充放電を制御する機能を有する。或いは、電池パックを電源として使用する装置(例えば、電子機器、自動車等)に含まれる回路を、電池パックの保護回路として使用してもよい。 The battery pack according to the second embodiment can further include a protection circuit. The protection circuit has a function of controlling charging and discharging of the secondary battery. Alternatively, a circuit included in a device (for example, an electronic device, an automobile, etc.) that uses a battery pack as a power source may be used as a protection circuit for the battery pack.
 また、第3実施形態に係る電池パックは、通電用の外部端子を更に具備することもできる。通電用の外部端子は、外部に二次電池からの電流を出力するため、及び/又は二次電池に外部からの電流を入力するためのものである。言い換えれば、電池パックを電源として使用する際、電流が通電用の外部端子を通して外部に供給される。また、電池パックを充電する際、充電電流(自動車などの動力の回生エネルギーを含む)は通電用の外部端子を通して電池パックに供給される。 Furthermore, the battery pack according to the third embodiment may further include an external terminal for power supply. The external terminal for energization is for outputting current from the secondary battery to the outside and/or inputting current from the outside to the secondary battery. In other words, when the battery pack is used as a power source, current is supplied to the outside through the external terminal for energization. Furthermore, when charging the battery pack, charging current (including regenerated energy from the motive power of an automobile, etc.) is supplied to the battery pack through an external terminal for energization.
 次に、第3実施形態に係る電池パックの一例について、図面を参照しながら説明する。 Next, an example of the battery pack according to the third embodiment will be described with reference to the drawings.
 図14は、第3実施形態に係る電池パックの一例を概略的に示す分解斜視図である。図15は、図14に示す電池パックの電気回路の一例を示すブロック図である。 FIG. 14 is an exploded perspective view schematically showing an example of a battery pack according to the third embodiment. FIG. 15 is a block diagram showing an example of the electric circuit of the battery pack shown in FIG. 14.
 図14及び図15に示す電池パック300は、収容容器31と、蓋32と、保護シート33と、組電池200と、プリント配線基板34と、配線35と、図示しない絶縁板とを備えている。 The battery pack 300 shown in FIGS. 14 and 15 includes a storage container 31, a lid 32, a protective sheet 33, an assembled battery 200, a printed wiring board 34, wiring 35, and an insulating plate (not shown). .
 図14に示す収容容器31は、長方形の底面を有する有底角型容器である。収容容器31は、保護シート33と、組電池200と、プリント配線基板34と、配線35とを収容可能に構成されている。蓋32は、矩形型の形状を有する。蓋32は、収容容器31を覆うことにより、上記組電池200等を収容する。収容容器31及び蓋32には、図示していないが、外部機器等へと接続するための開口部又は接続端子等が設けられている。 The storage container 31 shown in FIG. 14 is a bottomed square container with a rectangular bottom surface. The storage container 31 is configured to be able to accommodate the protective sheet 33, the assembled battery 200, the printed wiring board 34, and the wiring 35. The lid 32 has a rectangular shape. The lid 32 accommodates the assembled battery 200 and the like by covering the accommodation container 31. Although not shown, the container 31 and the lid 32 are provided with an opening or a connection terminal for connection to an external device or the like.
 組電池200は、複数の単電池100と、正極側リード22と、負極側リード23と、粘着テープ24とを備えている。 The assembled battery 200 includes a plurality of single cells 100, a positive lead 22, a negative lead 23, and an adhesive tape 24.
 複数の単電池100の少なくとも1つは、第2実施形態に係る二次電池である。複数の単電池100の各々は、図15に示すように電気的に直列に接続されている。複数の単電池100は、電気的に並列に接続されていてもよく、直列接続及び並列接続を組み合わせて接続されていてもよい。複数の単電池100を並列接続すると、直列接続した場合と比較して、電池容量が増大する。 At least one of the plurality of single cells 100 is a secondary battery according to the second embodiment. Each of the plurality of unit cells 100 is electrically connected in series as shown in FIG. 15. The plurality of unit cells 100 may be electrically connected in parallel, or may be connected in a combination of series connection and parallel connection. When a plurality of single cells 100 are connected in parallel, the battery capacity increases compared to when they are connected in series.
 粘着テープ24は、複数の単電池100を締結している。粘着テープ24の代わりに、熱収縮テープを用いて複数の単電池100を固定してもよい。この場合、組電池200の両側面に保護シート33を配置し、熱収縮テープを周回させた後、熱収縮テープを熱収縮させて複数の単電池100を結束させる。 The adhesive tape 24 fastens the plurality of unit cells 100 together. Instead of the adhesive tape 24, a heat shrink tape may be used to fix the plurality of cells 100. In this case, the protective sheets 33 are arranged on both sides of the assembled battery 200, and after a heat-shrinkable tape is made to go around, the heat-shrinkable tape is heat-shrinked to bundle the plurality of unit cells 100.
 正極側リード22の一端は、組電池200に接続されている。正極側リード22の一端は、1以上の単電池100の正極と電気的に接続されている。負極側リード23の一端は、組電池200に接続されている。負極側リード23の一端は、1以上の単電池100の負極と電気的に接続されている。 One end of the positive electrode side lead 22 is connected to the assembled battery 200. One end of the positive electrode side lead 22 is electrically connected to the positive electrode of one or more unit cells 100. One end of the negative electrode side lead 23 is connected to the assembled battery 200. One end of the negative electrode side lead 23 is electrically connected to the negative electrode of one or more unit cells 100.
 プリント配線基板34は、収容容器31の内側面のうち、一方の短辺方向の面に沿って設置されている。プリント配線基板34は、正極側コネクタ342と、負極側コネクタ343と、サーミスタ345と、保護回路346と、配線342a及び343aと、通電用の外部端子350と、プラス側配線(正側配線)348aと、マイナス側配線(負側配線)348bとを備えている。プリント配線基板34の一方の主面は、組電池200の一側面と向き合っている。プリント配線基板34と組電池200との間には、図示しない絶縁板が介在している。 The printed wiring board 34 is installed along one of the inner surfaces of the container 31 in the short side direction. The printed wiring board 34 includes a positive connector 342, a negative connector 343, a thermistor 345, a protection circuit 346, wiring 342a and 343a, an external terminal 350 for energization, and a positive wiring (positive wiring) 348a. and a negative side wiring (negative side wiring) 348b. One main surface of the printed wiring board 34 faces one side of the assembled battery 200. An insulating plate (not shown) is interposed between the printed wiring board 34 and the assembled battery 200.
 正極側コネクタ342に、正極側リード22の他端22aが電気的に接続されている。負極側コネクタ343に、負極側リード23の他端23aが電気的に接続されている。 The other end 22a of the positive lead 22 is electrically connected to the positive connector 342. The other end 23 a of the negative lead 23 is electrically connected to the negative connector 343 .
 サーミスタ345は、プリント配線基板34の一方の主面に固定されている。サーミスタ345は、単電池100の各々の温度を検出し、その検出信号を保護回路346に送信する。 The thermistor 345 is fixed to one main surface of the printed wiring board 34. Thermistor 345 detects the temperature of each cell 100 and transmits the detection signal to protection circuit 346.
 通電用の外部端子350は、プリント配線基板34の他方の主面に固定されている。通電用の外部端子350は、電池パック300の外部に存在する機器と電気的に接続されている。通電用の外部端子350は、正側端子352と負側端子353とを含む。 The external terminal 350 for power supply is fixed to the other main surface of the printed wiring board 34. The external terminal 350 for energization is electrically connected to a device existing outside the battery pack 300. External terminal 350 for energization includes a positive terminal 352 and a negative terminal 353.
 保護回路346は、プリント配線基板34の他方の主面に固定されている。保護回路346は、プラス側配線348aを介して正側端子352と接続されている。保護回路346は、マイナス側配線348bを介して負側端子353と接続されている。また、保護回路346は、配線342aを介して正極側コネクタ342に電気的に接続されている。保護回路346は、配線343aを介して負極側コネクタ343に電気的に接続されている。更に、保護回路346は、複数の単電池100の各々と配線35を介して電気的に接続されている。 The protection circuit 346 is fixed to the other main surface of the printed wiring board 34. The protection circuit 346 is connected to the positive terminal 352 via the positive wiring 348a. The protection circuit 346 is connected to the negative terminal 353 via the negative wiring 348b. Furthermore, the protection circuit 346 is electrically connected to the positive connector 342 via a wiring 342a. The protection circuit 346 is electrically connected to the negative electrode side connector 343 via wiring 343a. Further, the protection circuit 346 is electrically connected to each of the plurality of unit cells 100 via the wiring 35.
 保護シート33は、収容容器31の長辺方向の両方の内側面と、組電池200を介してプリント配線基板34と向き合う短辺方向の内側面とに配置されている。保護シート33は、例えば、樹脂又はゴムからなる。 The protective sheets 33 are disposed on both inner surfaces of the container 31 in the long side direction and on the inner surface of the container 31 in the short side direction facing the printed wiring board 34 with the assembled battery 200 interposed therebetween. The protective sheet 33 is made of resin or rubber, for example.
 保護回路346は、複数の単電池100の充放電を制御する。また、保護回路346は、サーミスタ345から送信される検出信号、又は、個々の単電池100若しくは組電池200から送信される検出信号に基づいて、保護回路346と外部機器への通電用の外部端子350(正側端子352、負側端子353)との電気的な接続を遮断する。 The protection circuit 346 controls charging and discharging of the plurality of single cells 100. Furthermore, the protection circuit 346 connects the protection circuit 346 to an external terminal for energizing the external device based on the detection signal transmitted from the thermistor 345 or the detection signal transmitted from the individual cells 100 or the assembled batteries 200. 350 (positive side terminal 352, negative side terminal 353).
 サーミスタ345から送信される検出信号としては、例えば、単電池100の温度が所定の温度以上であることを検出した信号を挙げることができる。個々の単電池100若しくは組電池200から送信される検出信号としては、例えば、単電池100の過充電、過放電及び過電流を検出した信号を挙げることができる。個々の単電池100について過充電等を検出する場合、電池電圧を検出してもよく、正極電位又は負極電位を検出してもよい。後者の場合、参照極として用いるリチウム電極を個々の単電池100に挿入する。 The detection signal transmitted from the thermistor 345 can be, for example, a signal that detects that the temperature of the cell 100 is higher than a predetermined temperature. Examples of the detection signal transmitted from each single cell 100 or assembled battery 200 include signals that detect overcharging, overdischarging, and overcurrent of the single cell 100. When detecting overcharging or the like for each cell 100, the battery voltage may be detected, or the positive electrode potential or the negative electrode potential may be detected. In the latter case, a lithium electrode used as a reference electrode is inserted into each cell 100.
 なお、保護回路346としては、電池パック300を電源として使用する装置(例えば、電子機器、自動車等)に含まれる回路を用いてもよい。 Note that as the protection circuit 346, a circuit included in a device (for example, an electronic device, an automobile, etc.) that uses the battery pack 300 as a power source may be used.
 また、この電池パック300は、上述したように通電用の外部端子350を備えている。したがって、この電池パック300は、通電用の外部端子350を介して、組電池200からの電流を外部機器に出力するとともに、外部機器からの電流を、組電池200に入力することができる。言い換えると、電池パック300を電源として使用する際には、組電池200からの電流が、通電用の外部端子350を通して外部機器に供給される。また、電池パック300を充電する際には、外部機器からの充電電流が、通電用の外部端子350を通して電池パック300に供給される。この電池パック300を車載用電池として用いた場合、外部機器からの充電電流として、車両の動力の回生エネルギーを用いることができる。 Additionally, this battery pack 300 includes the external terminal 350 for power supply, as described above. Therefore, this battery pack 300 can output current from the assembled battery 200 to an external device and input current from the external device to the assembled battery 200 via the external terminal 350 for energization. In other words, when the battery pack 300 is used as a power source, the current from the assembled battery 200 is supplied to the external device through the external terminal 350 for energization. Further, when charging the battery pack 300, a charging current from an external device is supplied to the battery pack 300 through the external terminal 350 for energization. When this battery pack 300 is used as an on-vehicle battery, regenerated energy from the motive power of the vehicle can be used as the charging current from an external device.
 なお、電池パック300は、複数の組電池200を備えていてもよい。この場合、複数の組電池200は、直列に接続されてもよく、並列に接続されてもよく、直列接続及び並列接続を組み合わせて接続されてもよい。また、プリント配線基板34及び配線35は省略してもよい。この場合、正極側リード22及び負極側リード23を通電用の外部端子の正側端子と負側端子としてそれぞれ用いてもよい。 Note that the battery pack 300 may include a plurality of assembled batteries 200. In this case, the plurality of assembled batteries 200 may be connected in series, in parallel, or by a combination of series connection and parallel connection. Further, the printed wiring board 34 and the wiring 35 may be omitted. In this case, the positive lead 22 and the negative lead 23 may be used as a positive terminal and a negative terminal of an external terminal for energization, respectively.
 このような電池パックは、例えば大電流を取り出したときにサイクル性能が優れていることが要求される用途に用いられる。この電池パックは、具体的には、例えば、電子機器の電源、定置用電池、各種車両の車載用電池として用いられる。電子機器としては、例えば、デジタルカメラを挙げることができる。この電池パックは、車載用電池として特に好適に用いられる。 Such a battery pack is used, for example, in applications that require excellent cycle performance when drawing a large current. Specifically, this battery pack is used, for example, as a power source for electronic equipment, a stationary battery, and an in-vehicle battery for various vehicles. An example of the electronic device is a digital camera. This battery pack is particularly suitable for use as a vehicle battery.
 第3実施形態に係る電池パックは、第2実施形態に係る二次電池を備えている。従って、この電池パックは、優れた絶縁性を実現できる。 The battery pack according to the third embodiment includes the secondary battery according to the second embodiment. Therefore, this battery pack can achieve excellent insulation.
 [実施例]
 (実施例1)
 以下に説明する方法で、正極としての第1電極構造体、及び、負極としての第2電極構造体を備える電極群、並びに、この電極群を備える二次電池を作製した。
[Example]
(Example 1)
An electrode group including a first electrode structure as a positive electrode and a second electrode structure as a negative electrode, and a secondary battery including this electrode group were manufactured by the method described below.
 正極活物質としてLiNi0.33Co0.33Mn0.33粒子、導電剤としてカーボンブラック、バインダとしてポリフッ化ビニリデンを用意した。これらを、90:5:5の質量比で混合して混合物を得た。次に、得られた混合物をn-メチルピロリドン(NMP)溶媒中に分散して、スラリーIを調製した。スラリーIは、正極活物質含有層形成用スラリーである。 LiNi 0.33 Co 0.33 Mn 0.33 O 2 particles were prepared as a positive electrode active material, carbon black was prepared as a conductive agent, and polyvinylidene fluoride was prepared as a binder. These were mixed at a mass ratio of 90:5:5 to obtain a mixture. Next, the obtained mixture was dispersed in n-methylpyrrolidone (NMP) solvent to prepare slurry I. Slurry I is a slurry for forming a layer containing a positive electrode active material.
 次に、第1膜形成用スラリーとして、以下の通りスラリーIIを作製した。まず、無機粒子として、平均粒子径D50が0.6μmのアルミナ粒子(材料1)と、平均粒子径D50が1.7μmのアルミナ粒子(材料2)とを準備し、これらを1:1の質量比で混合して、ヘンシェルミキサーによる混合工程に供した。無機粒子として使用した二種類の材料のうち、相対的にD50が小さい材料を「材料1」と呼び、相対的にD50が大きい材料を「材料2」と呼ぶ。次に、当該無機粒子100質量部に対して、PVDF4質量部及びNMPを混合して、これらを攪拌機にて攪拌した後、ビーズミルにて分散させた。ビーズミルによる分散条件は、下記表1に示す通りとした。こうしてスラリーIIを作製した。スラリーIIは、第1層形成用スラリーである。 Next, slurry II was prepared as the slurry for forming the first film as follows. First, as inorganic particles, alumina particles (material 1) with an average particle diameter D50 of 0.6 μm and alumina particles (material 2) with an average particle diameter D50 of 1.7 μm are prepared, and these are mixed in a 1:1 mass ratio. The mixture was mixed at the same ratio and subjected to a mixing process using a Henschel mixer. Of the two types of materials used as the inorganic particles, the material with a relatively small D50 is called "Material 1", and the material with a relatively large D50 is called "Material 2". Next, 4 parts by mass of PVDF and NMP were mixed with 100 parts by mass of the inorganic particles, stirred with a stirrer, and then dispersed with a bead mill. The dispersion conditions using the bead mill were as shown in Table 1 below. In this way, Slurry II was prepared. Slurry II is a slurry for forming the first layer.
 図9及び図10に示す塗工装置を用い、厚さ20μmのアルミニウム箔の両面に、スラリーI、スラリーIIがこの順番に重なるように重ね塗りをした。スラリーIの塗工速度を20m/minとし、スラリーIIの塗工速度を20m/minとすることで、スラリーIが乾く前にスラリーI上にスラリーIIを塗布した。その後、スラリーI及びスラリーIIを乾燥させた後、乾燥後のものにロールプレスを線圧1kN/cmで施し、所定のサイズに裁断して、第1電極構造体としての正極を得た。正極活物質含有層それぞれの厚さは20μmであった。なお、集電体の一方の長辺に正極活物質含有層無担持の部分を設け、この箇所を正極集電タブとした。得られた第1電極構造体では、図1及び図2に示す通り、正極活物質含有層の両方の表面(主面)が第1膜で被覆されていた。第1膜中の無機材料の含有量は98質量%であった。 Using the coating apparatus shown in FIGS. 9 and 10, slurry I and slurry II were overcoated in this order on both sides of a 20 μm thick aluminum foil. By setting the coating speed of slurry I to 20 m/min and the coating speed of slurry II to 20 m/min, slurry II was applied onto slurry I before slurry I dried. Thereafter, after drying Slurry I and Slurry II, the dried slurry was subjected to a roll press at a linear pressure of 1 kN/cm and cut into a predetermined size to obtain a positive electrode as a first electrode structure. The thickness of each positive electrode active material containing layer was 20 μm. Note that a portion not supported by the positive electrode active material-containing layer was provided on one long side of the current collector, and this portion was used as a positive electrode current collecting tab. In the obtained first electrode structure, both surfaces (principal surfaces) of the positive electrode active material-containing layer were covered with the first film, as shown in FIGS. 1 and 2. The content of the inorganic material in the first film was 98% by mass.
 他方、第2電極としての負極を次の方法で作製した。一次粒子の平均粒径が0.5μmのチタン酸リチウム粒子と、導電剤としてカーボンブラック、バインダとしてポリフッ化ビニリデンを用意した。これらを、90:5:5の質量比で混合して混合物を得た。得られた混合物をn-メチルピロリドン(NMP)溶媒中に分散して、スラリーを調製した。得られたスラリーを、厚さ20μmのアルミニウム箔に塗布し、乾燥させた。次いで、乾燥させた塗膜をプレスして負極を得た。負極活物質含有層それぞれの厚さは50μmであった。なお、集電体の一方の長辺に負極活物質含有層無担持の部分を設け、この箇所を負極集電タブとした。 On the other hand, a negative electrode as a second electrode was produced by the following method. Lithium titanate particles having an average primary particle diameter of 0.5 μm, carbon black as a conductive agent, and polyvinylidene fluoride as a binder were prepared. These were mixed at a mass ratio of 90:5:5 to obtain a mixture. The resulting mixture was dispersed in n-methylpyrrolidone (NMP) solvent to prepare a slurry. The obtained slurry was applied to a 20 μm thick aluminum foil and dried. Next, the dried coating film was pressed to obtain a negative electrode. The thickness of each negative electrode active material containing layer was 50 μm. Note that a portion not supported by the negative electrode active material-containing layer was provided on one long side of the current collector, and this portion was used as a negative electrode current collection tab.
 次いで、この負極上に、エレクトロスピニング法によって有機繊維を堆積させて第2膜を形成した。有機材料としては、ポリイミドを用いた。このポリイミドを、溶媒としてのDMAcに20質量%の濃度で溶解して、液体原料として原料溶液を調製した。得られた原料溶液を、定量ポンプを使用して5μl/minの供給速度で紡糸ノズルから正極の表面に供給した。高電圧発生器を用いて、紡糸ノズルに20kVの電圧を印加し、この紡糸ノズル1本で100×200mmの範囲を動かしながら正極表面に有機繊維の層を形成した。なお、負極集電タブの両方の表面(主面)における正極活物質含有層との境界から10mmの部分を除き、負極集電タブの表面をマスクした状態でエレクトロスピニング法を実施して図3に示す構造の負極(第2電極構造体)を得た。すなわち、第2膜は、負極活物質含有層の表面、負極活物質含有層それぞれの表面(主面)に直交する四側面と、負極集電体の負極表面に露出している3つの端面と、負極集電タブの表面における負極活物質含有層との境界を含む部分とを被覆していた。 Next, organic fibers were deposited on this negative electrode by electrospinning to form a second film. Polyimide was used as the organic material. This polyimide was dissolved in DMAc as a solvent at a concentration of 20% by mass to prepare a raw material solution as a liquid raw material. The obtained raw material solution was supplied to the surface of the positive electrode from a spinning nozzle at a supply rate of 5 μl/min using a metering pump. A voltage of 20 kV was applied to the spinning nozzle using a high voltage generator, and a layer of organic fibers was formed on the surface of the positive electrode while moving the spinning nozzle over an area of 100 x 200 mm. In addition, the electrospinning method was performed with the surface of the negative electrode current collecting tab masked except for a 10 mm portion from the boundary with the positive electrode active material-containing layer on both surfaces (principal surfaces) of the negative electrode current collecting tab. A negative electrode (second electrode structure) having the structure shown in was obtained. That is, the second film includes the surface of the negative electrode active material-containing layer, four side surfaces perpendicular to the respective surfaces (principal surfaces) of the negative electrode active material-containing layer, and three end surfaces exposed on the negative electrode surface of the negative electrode current collector. , and the portion including the boundary with the negative electrode active material-containing layer on the surface of the negative electrode current collector tab.
 次いで、この負極をロールプレスを用いてプレスした。第2膜において、有機繊維の平均直径が700nm、第2膜を形成している繊維全体の体積の50%以上が平均直径1μm以下の有機繊維で占められていた。第2膜の平均孔径は10μmであり、気孔率は45%であった。 Next, this negative electrode was pressed using a roll press. In the second film, the average diameter of the organic fibers was 700 nm, and 50% or more of the total volume of the fibers forming the second film was occupied by organic fibers with an average diameter of 1 μm or less. The average pore diameter of the second membrane was 10 μm, and the porosity was 45%.
 次に、作製された正極(第1電極構造体)と負極(第2電極構造体)とを用いて、下記の通り二次電池を作製した。 Next, using the produced positive electrode (first electrode structure) and negative electrode (second electrode structure), a secondary battery was produced as follows.
 正極と負極とを、正極活物質含有層と負極活物質含有層とが、第1膜及び第2膜を介してと対向するように配置し、これらを偏平形状に捲回して扁平状の渦巻き状をした電極群を得た。室温で一晩真空乾燥した後、露点-80℃以下のグローブボックス内に1日放置した。これを、電解液とともに金属製容器に収容して、実施例1の非水電解質電池を得た。電解液は、エチレンカーボネート(EC)及びジメチルカーボネート(DMC)の混合溶媒(体積比率1:1)に、電解質としてLiPFを1mol/L溶解させたものであった。 The positive electrode and the negative electrode are arranged so that the positive electrode active material-containing layer and the negative electrode active material-containing layer face each other with the first film and the second film interposed therebetween, and are wound into a flat spiral shape. An electrode group with a shape was obtained. After vacuum drying at room temperature overnight, it was left in a glove box with a dew point of -80°C or lower for one day. This was placed in a metal container together with an electrolyte to obtain a non-aqueous electrolyte battery of Example 1. The electrolytic solution was one in which 1 mol/L of LiPF 6 was dissolved as an electrolyte in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) (volume ratio 1:1).
 (比較例1)
 第1電極構造体を作製する際に、スラリーIIに混合する無機粒子として、粒度分布チャートにおけるピークを1つのみ有するチタニア粒子を使用したことを除いて、実施例1と同様の方法で二次電池を作製した。チタニア粒子の平均粒子径D50は、0.40μmであった。
(Comparative example 1)
When producing the first electrode structure, secondary electrode structure was prepared in the same manner as in Example 1, except that titania particles having only one peak in the particle size distribution chart were used as inorganic particles to be mixed in slurry II. A battery was created. The average particle diameter D50 of the titania particles was 0.40 μm.
 <自己放電性能評価>
 実施例1及び比較例1で作製した二次電池を、それぞれ、SOCが70%となるまで充電した後、25℃環境で放置した。そして、放置の15日目から18日目までにおける電圧降下速度ΔV[mV/d]を、それぞれの例について測定した。その結果、実施例1に係る二次電池のΔVは0.5mV/dであり、比較例1に係る二次電池のΔVは1.0mV/dであった。この結果から、実施例1の方が大幅に電圧降下速度が遅かったことが分かる。電圧降下速度は、自己放電特性を評価する指標である。
<Self-discharge performance evaluation>
The secondary batteries produced in Example 1 and Comparative Example 1 were each charged until the SOC reached 70%, and then left in a 25° C. environment. Then, the voltage drop rate ΔV [mV/d] from the 15th day to the 18th day of standing was measured for each example. As a result, the ΔV of the secondary battery according to Example 1 was 0.5 mV/d, and the ΔV of the secondary battery according to Comparative Example 1 was 1.0 mV/d. From this result, it can be seen that the voltage drop rate in Example 1 was significantly slower. The voltage drop rate is an index for evaluating self-discharge characteristics.
 <粒度分布測定>
 実施例1及び比較例1で作製した二次電池を、第1実施形態において説明した方法に従って分解し、第1膜を構成している粒子の粒度分布を測定した。図16は、実施例1に係る第1膜についてのレーザー回折散乱法により得られた粒度分布チャートである。図16において、横軸は粒子径[μm]を示し、左側の縦軸は頻度[%]を示し、右側の縦軸は累積[%]を示す。図16に示すチャートに基づいてD10及びD50を算出したところ、それぞれ、0.50μm及び1.1μmであった。また、図16から読み取れるように、第1ピークP1の位置(粒子径)は、0.6μmであり、その頻度は4%であった。第2ピークP2の位置(粒子径)は、1.3μmであり、その頻度は5%であった。第2ピークの位置D1に対する、第1ピークの位置D2の比D1/D2は、2.2であった。
<Particle size distribution measurement>
The secondary batteries produced in Example 1 and Comparative Example 1 were disassembled according to the method described in the first embodiment, and the particle size distribution of particles constituting the first film was measured. FIG. 16 is a particle size distribution chart obtained by a laser diffraction scattering method for the first film according to Example 1. In FIG. 16, the horizontal axis shows particle diameter [μm], the left vertical axis shows frequency [%], and the right vertical axis shows cumulative [%]. When D10 and D50 were calculated based on the chart shown in FIG. 16, they were 0.50 μm and 1.1 μm, respectively. Moreover, as can be read from FIG. 16, the position (particle diameter) of the first peak P1 was 0.6 μm, and its frequency was 4%. The position (particle diameter) of the second peak P2 was 1.3 μm, and its frequency was 5%. The ratio D1/D2 of the first peak position D2 to the second peak position D1 was 2.2.
 <グラインドゲージ>
 別途、実施例1及び比較例1に係る電極群が備える第1膜を作製する際に使用した、スラリーIIについて、第1実施形態において説明した方法に従ってグラインドゲージを用いた試験を実施した。この試験では、5mLのスラリー中に、40μm~60μmの直径を有する一次粒子又は二次粒子、60μm~80μmの直径を有する一次粒子又は二次粒子、及び、80μm~100μmの直径を有する一次粒子又は二次粒子が、それぞれ何個ずつ存在していたかを調べた。
<Grind Gauge>
Separately, slurry II, which was used when producing the first film included in the electrode group according to Example 1 and Comparative Example 1, was tested using a grind gauge according to the method described in the first embodiment. In this test, primary particles or secondary particles with a diameter of 40 μm to 60 μm, primary particles or secondary particles with a diameter of 60 μm to 80 μm, and primary particles or The number of each type of secondary particle present was investigated.
 実施例1及び比較例1に係る粒度分布測定、グラインドゲージ測定及び自己放電性能評価の結果を、下記表1及び表2にまとめる。 The results of particle size distribution measurement, grind gauge measurement, and self-discharge performance evaluation according to Example 1 and Comparative Example 1 are summarized in Tables 1 and 2 below.
 (実施例2)
 実施例2では、第1膜形成用スラリーを作製する際に、材料2としてD50が1.5μmのアルミナ粒子を使用したことを除いて、実施例1と同様の方法で二次電池を作製した。
(Example 2)
In Example 2, a secondary battery was produced in the same manner as in Example 1, except that alumina particles with a D50 of 1.5 μm were used as material 2 when producing the first film-forming slurry. .
 (実施例3)
 実施例3では、第1膜形成用スラリーを作製する際に、材料2としてD50が2.0μmのアルミナ粒子を使用したことを除いて、実施例1と同様の方法で二次電池を作製した。
(Example 3)
In Example 3, a secondary battery was produced in the same manner as in Example 1, except that alumina particles with a D50 of 2.0 μm were used as material 2 when producing the first film-forming slurry. .
 (実施例4)
 実施例4では、第1膜形成用スラリーを作製する際に、材料1としてD50が0.5μmのアルミナ粒子を使用し、且つ、材料2としてD50が1.5μmのアルミナ粒子を使用したことを除いて、実施例1と同様の方法で二次電池を作製した。
(Example 4)
In Example 4, when producing the first film forming slurry, alumina particles with a D50 of 0.5 μm were used as material 1, and alumina particles with a D50 of 1.5 μm were used as material 2. A secondary battery was produced in the same manner as in Example 1 except for the following.
 (実施例5)
 実施例5では、第1膜形成用スラリーを作製する際に、材料1としてD50が0.4μmのアルミナ粒子を使用し、且つ、材料2としてD50が1.2μmのアルミナ粒子を使用したことを除いて、実施例1と同様の方法で二次電池を作製した。
(Example 5)
In Example 5, when producing the first film forming slurry, alumina particles with a D50 of 0.4 μm were used as material 1, and alumina particles with a D50 of 1.2 μm were used as material 2. A secondary battery was produced in the same manner as in Example 1 except for the following.
 (実施例6)
 実施例6では、第1膜形成用スラリーを作製する際に、材料1としてD50が0.4μmのアルミナ粒子を使用し、且つ、材料2としてD50が0.6μmのアルミナ粒子を使用したことを除いて、実施例1と同様の方法で二次電池を作製した。
(Example 6)
In Example 6, when producing the first film forming slurry, alumina particles with a D50 of 0.4 μm were used as material 1, and alumina particles with a D50 of 0.6 μm were used as material 2. A secondary battery was produced in the same manner as in Example 1 except for the following.
 (実施例7)
 実施例7では、第1膜形成用スラリーを作製する際に、材料1としてD50が0.4μmのアルミナ粒子を使用し、材料2としてD50が1.2μmのアルミナ粒子を使用し、また、ビーズミル条件を表3に示す通りに変更したことを除いて、実施例1と同様の方法で二次電池を作製した。
(Example 7)
In Example 7, when producing the slurry for forming the first film, alumina particles with D50 of 0.4 μm were used as material 1, alumina particles with D50 of 1.2 μm were used as material 2, and a bead mill was used. A secondary battery was produced in the same manner as in Example 1, except that the conditions were changed as shown in Table 3.
 <粒度分布測定及びグラインドゲージ測定>
 実施例2~7のそれぞれに係る第1膜形成用スラリーについて、粒度分布測定及びグラインドゲージ測定を実施した。以上の結果を表3及び表4に示す。なお、表2及び表4において、「ピーク位置の比」の列には、第2ピークP2の位置D2に対する第1ピークP1の位置D1の比D1/D2を示している。
<Particle size distribution measurement and grind gauge measurement>
Particle size distribution measurement and grind gauge measurement were performed on the first film forming slurry according to each of Examples 2 to 7. The above results are shown in Tables 3 and 4. In Tables 2 and 4, the column "Ratio of peak positions" shows the ratio D1/D2 of the position D1 of the first peak P1 to the position D2 of the second peak P2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1及び表2に示すように、実施例1と比較例1との対比から、第1膜についてのレーザー回折散乱法により得られる体積基準での頻度分布チャートが2つのピークを有する場合、電圧降下速度ΔVを大幅に低くすることができたことが分かる。また、実施例1で作製した第1膜形成用スラリーに含まれる粗大粒子の数は、いずれの直径範囲においても0個であった。これに対して、比較例1で作製した第1膜形成用スラリーには、40μm~60μmの直径を有する粒子が30個含まれており、また、60μm~80μmの直径を有する粒子が10個含まれていた。このことから、比較例1に係る第1膜形成用スラリーでは、これに含まれる無機粒子の粒度分布チャートがピークを1つのみ有していたため、分散性が乏しかったと考えられる。それ故、第1膜形成用スラリーに含まれる粗大粒子数が多く、塗布抜けの頻度が増大し、その結果、自己放電性能が劣っていたと考えられる。 As shown in Tables 1 and 2, from the comparison between Example 1 and Comparative Example 1, when the volume-based frequency distribution chart obtained by the laser diffraction scattering method for the first film has two peaks, the voltage It can be seen that the descending speed ΔV was able to be significantly lowered. Further, the number of coarse particles contained in the first film forming slurry produced in Example 1 was 0 in any diameter range. In contrast, the first film forming slurry prepared in Comparative Example 1 contained 30 particles with a diameter of 40 μm to 60 μm, and 10 particles with a diameter of 60 μm to 80 μm. It was. From this, it is considered that the first film-forming slurry according to Comparative Example 1 had poor dispersibility because the particle size distribution chart of the inorganic particles contained therein had only one peak. Therefore, it is considered that the number of coarse particles contained in the first film-forming slurry was large, and the frequency of coating omissions increased, resulting in poor self-discharge performance.
 このように、第1膜形成用スラリーに含まれる粗大粒子数を調べることにより、当該スラリーを用いて作製される第1膜の自己放電性能を見積もることができる。具体的には、第1膜形成用スラリーに含まれる粗大粒子数が多いほど、自己放電性能は低下する傾向にある。 In this way, by examining the number of coarse particles contained in the slurry for forming the first film, it is possible to estimate the self-discharge performance of the first film produced using the slurry. Specifically, the greater the number of coarse particles contained in the first film-forming slurry, the lower the self-discharge performance tends to be.
 このことを踏まえて実施例2~7の結果を考察する。 
 実施例2~7に係る第1膜形成用スラリーの粒度分布チャートは、いずれの例においても2つのピークを有していた。それ故、これらスラリーの分散性は優れていたため、実施例2~7に係る第1膜形成用スラリーに含まれている粗大粒子の数は、比較例1に係る第1膜形成用スラリーに含まれている粗大粒子の数と比較して少なかった。このことから、仮に、実施例2~7に係る第1膜形成用スラリーを用いて第1膜を作製した場合には、絶縁性に優れる電極群が得られると推察できる。
Based on this, the results of Examples 2 to 7 will be discussed.
The particle size distribution charts of the first film forming slurries according to Examples 2 to 7 had two peaks in all examples. Therefore, since the dispersibility of these slurries was excellent, the number of coarse particles contained in the first film forming slurry according to Examples 2 to 7 was lower than that contained in the first film forming slurry according to Comparative Example 1. The number of coarse particles was small compared to the number of coarse particles. From this, it can be inferred that if the first film is produced using the first film forming slurry according to Examples 2 to 7, an electrode group with excellent insulation properties can be obtained.
 実施例2と実施例3との対比から、ピーク位置の比D1/D2が3.0以下にある場合には、スラリー中の粗大粒子数が少ない傾向があることが読み取れる。 From the comparison between Example 2 and Example 3, it can be seen that when the peak position ratio D1/D2 is 3.0 or less, the number of coarse particles in the slurry tends to be small.
 また、実施例4及び5に示すように、第1ピークP1の粒子径D1が1.0μm以下であり且つ第2ピークP2の粒子径D2が1.0μm以上である場合には、スラリー中の粗大粒子数は0個であった。これに対して実施例6に示すように、第1ピークP1の粒子径D1が1.0μm以下であり且つ第2ピークP2の粒子径D2も1.0μm以下である場合には、粗大粒子数が若干増加した。このことから、実施例4及び5に係るスラリーは、実施例6に係るスラリーと比較して分散性が優れていたことが分かる。 Furthermore, as shown in Examples 4 and 5, when the particle diameter D1 of the first peak P1 is 1.0 μm or less and the particle diameter D2 of the second peak P2 is 1.0 μm or more, The number of coarse particles was 0. On the other hand, as shown in Example 6, when the particle diameter D1 of the first peak P1 is 1.0 μm or less and the particle diameter D2 of the second peak P2 is also 1.0 μm or less, the number of coarse particles increases. increased slightly. This shows that the slurries according to Examples 4 and 5 had better dispersibility than the slurry according to Example 6.
 実施例4と実施例7との対比から、D10が0.20μm以上である実施例4では、D10が0.10μmである実施例7と比較してスラリー中の粗大粒子数が少なかった。これは、実施例4では微粉末自体の量が少ないことから、凝集体としての粗大粒子が低減されたと考えられる。 From a comparison between Example 4 and Example 7, in Example 4 where D10 was 0.20 μm or more, the number of coarse particles in the slurry was smaller than in Example 7 where D10 was 0.10 μm. This is considered to be because in Example 4, the amount of fine powder itself was small, so the number of coarse particles as aggregates was reduced.
 以上に説明した少なくとも一つの実施形態及び実施例によると、第1電極構造体と、少なくとも一部が第1電極構造体と対向する第2電極構造体とを具備する電極群が提供される。第1電極構造体は、第1集電体と、第1集電体の少なくとも一方の面上に設けられる第1活物質含有層と、無機粒子を含み、且つ、第1活物質含有層上に設けられる第1膜とを備える。第2電極構造体は、第2集電体と、第2集電体の少なくとも一方の面上に設けられる第2活物質含有層と、有機材料を含み、且つ、第2活物質含有層上に設けられる第2膜とを備える。第1膜について、レーザー回折散乱法により得られる体積基準での頻度分布チャートは2つのピークを有している。このような電極群は、絶縁性に優れている。 According to at least one embodiment and example described above, an electrode group is provided that includes a first electrode structure and a second electrode structure at least partially facing the first electrode structure. The first electrode structure includes a first current collector, a first active material-containing layer provided on at least one surface of the first current collector, and inorganic particles. and a first film provided in the first film. The second electrode structure includes a second current collector, a second active material-containing layer provided on at least one surface of the second current collector, and an organic material; and a second film provided on. Regarding the first film, a volume-based frequency distribution chart obtained by laser diffraction scattering has two peaks. Such an electrode group has excellent insulation properties.
 本発明のいくつか実施形態を説明したが、これら実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the gist of the invention. These embodiments and their modifications are included within the scope and gist of the invention, as well as within the scope of the invention described in the claims and its equivalents.
 1…第1電極構造体、1a…第1集電体、1b…第1活物質含有層、1c…第1集電タブ、2…第2電極構造体、2a…第2集電体、2b…第2活物質含有層、2c…第2集電タブ、3…セパレータ、4…第1膜、5…第2膜、6…第1膜、7…第2膜、10…電極群、20…外装部材、20a…開口部、22…正極側リード、23…負極側リード、24…粘着テープ、25…第1集電タブ、26…第2集電タブ、27…第1電極リード、28…第2電極リード、31…収容容器、32…蓋、33…保護シート、34…プリント配線基板、35…配線、40…第1表面、41…第1裏面、42…第2表面、43…第2裏面、44…四側面、51…電極群、51…捲回型電極群、52…蓋、53…第1電極端子、54…第2電極端子、60…塗工装置、61…搬送ローラ、62…タンク、62a…スラリーI吐出口、63…タンク、63a…スラリーII吐出口、100…二次電池、110…外装部材、120…電極群、130…第1電極端子、140…第2電極端子、200…複数の組電池、200…組電池、300…電池パック、342…正極側コネクタ、342a…配線、343…負極側コネクタ、343a…配線、345…サーミスタ、346…保護回路、348a…プラス側配線(正側配線)、348a…プラス側配線、348b…マイナス側配線(負側配線)、348b…マイナス側配線、350…外部端子、352…正側端子、353…負側端子、A…表面、B…裏面、C…表面、D…裏面。 DESCRIPTION OF SYMBOLS 1...1st electrode structure, 1a...1st current collector, 1b...1st active material containing layer, 1c...1st current collection tab, 2...2nd electrode structure, 2a...2nd current collector, 2b ...Second active material containing layer, 2c...Second current collection tab, 3...Separator, 4...First film, 5...Second film, 6...First film, 7...Second film, 10...Electrode group, 20 ... Exterior member, 20a... Opening, 22... Positive electrode side lead, 23... Negative electrode side lead, 24... Adhesive tape, 25... First current collecting tab, 26... Second current collecting tab, 27... First electrode lead, 28 ...Second electrode lead, 31...Accommodation container, 32...Lid, 33...Protection sheet, 34...Printed wiring board, 35...Wiring, 40...First surface, 41...First back surface, 42...Second surface, 43... Second back surface, 44...Four sides, 51...electrode group, 51...wound type electrode group, 52...lid, 53...first electrode terminal, 54...second electrode terminal, 60...coating device, 61...conveying roller , 62...tank, 62a...slurry I discharge port, 63...tank, 63a...slurry II discharge port, 100...secondary battery, 110...exterior member, 120...electrode group, 130...first electrode terminal, 140...second Electrode terminal, 200... Plural assembled batteries, 200... Assembled battery, 300... Battery pack, 342... Positive electrode side connector, 342a... Wiring, 343... Negative electrode side connector, 343a... Wiring, 345... Thermistor, 346... Protection circuit, 348a ...Plus side wiring (positive side wiring), 348a...Plus side wiring, 348b...Minus side wiring (negative side wiring), 348b...Minus side wiring, 350...External terminal, 352...Positive side terminal, 353...Negative side terminal, A...Front side, B...Back side, C...Front side, D...Back side.

Claims (9)

  1.  第1電極構造体と、少なくとも一部が前記第1電極構造体と対向する第2電極構造体とを具備し、
     前記第1電極構造体は、
      第1集電体と、前記第1集電体の少なくとも一方の面上に設けられる第1活物質含有層と、無機粒子を含み、且つ、前記第1活物質含有層上に設けられる第1膜とを備え、
     前記第2電極構造体は、
      第2集電体と、前記第2集電体の少なくとも一方の面上に設けられる第2活物質含有層と、有機材料を含み、且つ、前記第2活物質含有層上に設けられる第2膜とを備え、
     前記第1膜についてのレーザー回折散乱法により得られる体積基準での頻度分布チャートは、2つのピークを有する電極群。
    comprising a first electrode structure and a second electrode structure at least partially facing the first electrode structure,
    The first electrode structure includes:
    a first current collector; a first active material-containing layer provided on at least one surface of the first current collector; and a first active material-containing layer that includes inorganic particles and is provided on the first active material-containing layer. comprising a membrane;
    The second electrode structure includes:
    a second current collector; a second active material-containing layer provided on at least one surface of the second current collector; and a second active material-containing layer that includes an organic material and is provided on the second active material-containing layer. comprising a membrane;
    The volume-based frequency distribution chart obtained by the laser diffraction scattering method for the first film shows an electrode group having two peaks.
  2.  前記2つのピークは、第1ピーク及び第2ピークであり、
     前記第1ピークのピークトップに対応する粒子径D1は、前記第2ピークのピークトップに対応する粒子径D2と比較してより小さく、
     前記粒子径D2に対する、前記粒子径D1の比D1/D2は、1.0以上3.0以下の範囲内にある請求項1に記載の電極群。
    The two peaks are a first peak and a second peak,
    The particle diameter D1 corresponding to the peak top of the first peak is smaller than the particle diameter D2 corresponding to the peak top of the second peak,
    The electrode group according to claim 1, wherein a ratio D1/D2 of the particle diameter D1 to the particle diameter D2 is within a range of 1.0 or more and 3.0 or less.
  3.  前記2つのピークは、第1ピーク及び第2ピークであり、
     前記第1ピークのピークトップに対応する粒子径D1は、0.4μm以上1.0μm以下であり、
     前記第2ピークのピークトップに対応する粒子径D2は、1.0μm超2.0μm以下である請求項1又は2に記載の電極群。
    The two peaks are a first peak and a second peak,
    The particle diameter D1 corresponding to the peak top of the first peak is 0.4 μm or more and 1.0 μm or less,
    The electrode group according to claim 1 or 2, wherein a particle diameter D2 corresponding to the peak top of the second peak is more than 1.0 μm and 2.0 μm or less.
  4.  前記頻度分布チャートにおけるD10は、0.20μm以上である請求項1~3の何れか1項に記載の電極群。 The electrode group according to any one of claims 1 to 3, wherein D10 in the frequency distribution chart is 0.20 μm or more.
  5.  前記頻度分布チャートにおけるD50は、0.60μm~2.0μmの範囲内にある請求項1~4の何れか1項に記載の電極群。 The electrode group according to any one of claims 1 to 4, wherein D50 in the frequency distribution chart is within a range of 0.60 μm to 2.0 μm.
  6.  前記無機粒子は、エネルギーバンドギャップ値が3.0eV以上の物質を含む請求項1~5の何れか1項に記載の電極群。 The electrode group according to any one of claims 1 to 5, wherein the inorganic particles include a substance with an energy bandgap value of 3.0 eV or more.
  7.  前記第1膜の厚さは、1.0μm~5.0μmの範囲内にある請求項1~6の何れか1項に記載の電極群。 The electrode group according to any one of claims 1 to 6, wherein the first film has a thickness within a range of 1.0 μm to 5.0 μm.
  8.  請求項1~7の何れか1項に係る電極群と、
     電解質とを具備する二次電池。
    An electrode group according to any one of claims 1 to 7,
    A secondary battery comprising an electrolyte.
  9.  請求項8に記載の二次電池を具備する電池パック。
     
    A battery pack comprising the secondary battery according to claim 8.
PCT/JP2022/015801 2022-03-30 2022-03-30 Electrode group, secondary battery and battery pack WO2023188062A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/015801 WO2023188062A1 (en) 2022-03-30 2022-03-30 Electrode group, secondary battery and battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/015801 WO2023188062A1 (en) 2022-03-30 2022-03-30 Electrode group, secondary battery and battery pack

Publications (1)

Publication Number Publication Date
WO2023188062A1 true WO2023188062A1 (en) 2023-10-05

Family

ID=88200280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015801 WO2023188062A1 (en) 2022-03-30 2022-03-30 Electrode group, secondary battery and battery pack

Country Status (1)

Country Link
WO (1) WO2023188062A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001870A1 (en) * 1995-06-28 1997-01-16 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
JP2018160444A (en) * 2017-03-23 2018-10-11 株式会社東芝 Secondary battery, battery pack, and vehicle
JP2019153434A (en) * 2018-03-01 2019-09-12 株式会社東芝 Laminate and secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001870A1 (en) * 1995-06-28 1997-01-16 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
JP2018160444A (en) * 2017-03-23 2018-10-11 株式会社東芝 Secondary battery, battery pack, and vehicle
JP2019153434A (en) * 2018-03-01 2019-09-12 株式会社東芝 Laminate and secondary battery

Similar Documents

Publication Publication Date Title
US10700327B2 (en) Secondary battery
EP3544084B1 (en) Electrode group, secondary battery, battery pack, vehicle, and stationary power supply
KR101985092B1 (en) Composite electrolyte, secondary battery, battery pack and vehicle
US11411284B2 (en) Laminate and secondary battery
US11056751B2 (en) Laminate and secondary battery
JP6571284B2 (en) Electrode, non-aqueous electrolyte battery and battery pack
CN110392953B (en) Electrode structure and secondary battery
WO2021186716A1 (en) Electrode, multilayer body and secondary battery
JP2019169300A (en) Electrode composite, electrode group, secondary battery, battery pack and vehicle
JP7254941B2 (en) Electrodes, laminates and secondary batteries
WO2023188062A1 (en) Electrode group, secondary battery and battery pack
JP6702903B2 (en) Secondary battery
JP6924047B2 (en) Rechargeable battery
JP7242490B2 (en) Battery unit and secondary battery
US11888121B2 (en) Secondary battery, battery pack, and vehicle
US20230077637A1 (en) Electrode structure, secondary battery, battery pack, and vehicle
JP7286559B2 (en) Electrode group, non-aqueous electrolyte secondary battery, battery pack and vehicle
EP4333189A1 (en) Separator for lithium secondary battery and method for manufacturing same
EP4310935A1 (en) Positive electrode, electrode group, secondary battery, and battery pack
KR20230105111A (en) A separator for electrochemical devices and a electrochemical device comprising the same
KR20230026208A (en) A separator for a lithium secondary battery and a lithium secondary battery comprising the same
KR20220161218A (en) A separator for a electrochemical device and a electrochemical device comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935209

Country of ref document: EP

Kind code of ref document: A1