JP6600938B2 - Lithium ion secondary battery and manufacturing method thereof - Google Patents

Lithium ion secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP6600938B2
JP6600938B2 JP2014237327A JP2014237327A JP6600938B2 JP 6600938 B2 JP6600938 B2 JP 6600938B2 JP 2014237327 A JP2014237327 A JP 2014237327A JP 2014237327 A JP2014237327 A JP 2014237327A JP 6600938 B2 JP6600938 B2 JP 6600938B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
coating layer
thickness
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014237327A
Other languages
Japanese (ja)
Other versions
JP2016100240A (en
Inventor
英二 水谷
祐樹 杉本
泰有 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2014237327A priority Critical patent/JP6600938B2/en
Publication of JP2016100240A publication Critical patent/JP2016100240A/en
Application granted granted Critical
Publication of JP6600938B2 publication Critical patent/JP6600938B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池及びその製造方法に関する。   The present invention relates to a lithium ion secondary battery and a method for manufacturing the same.

従来から、正極及び負極と、正極及び負極間をイオンが移動するための媒体となる電解液と、正極及び負極間の短絡を防止するためのセパレータとを具備するリチウムイオン二次電池が広く知られている。この電池製造時には、正極活物質層を有する正極、セパレータ、及び負極活物質層を有する負極を重ねた極板群に対し、一定の圧力を加え、極板群を規定の厚みとするのが一般的である。さらに特許文献1には、電池の充放電時に、活物質の膨張によって正極及び/又は負極の厚み、ひいては極板群の厚みが厚くならないように、極板群の厚み方向に一定の圧力をかけ続ける電池が提案されている。   Conventionally, a lithium ion secondary battery including a positive electrode and a negative electrode, an electrolytic solution serving as a medium for ions to move between the positive electrode and the negative electrode, and a separator for preventing a short circuit between the positive electrode and the negative electrode is widely known. It has been. When manufacturing this battery, it is common to apply a certain pressure to the electrode plate group in which the positive electrode having the positive electrode active material layer, the separator, and the negative electrode having the negative electrode active material layer are stacked, so that the electrode plate group has a specified thickness. Is. Furthermore, in Patent Document 1, a constant pressure is applied in the thickness direction of the electrode plate group so that the thickness of the positive electrode and / or the negative electrode, and consequently the electrode plate group, does not increase due to the expansion of the active material during charging and discharging of the battery. Continued batteries have been proposed.

ここで、極板群の厚みが増大しないように規制されている電池の場合、活物質層において、充放電時に活物質が膨張すると、活物質層に保持されていた電解液が活物質層の外に押し出される。そうすると、活物質近傍に存在する電解液の量が減少することとなり、結果として電池の性能が低下するおそれがある。   Here, in the case of a battery that is regulated so as not to increase the thickness of the electrode plate group, if the active material expands during charging / discharging in the active material layer, the electrolyte retained in the active material layer is removed from the active material layer. Pushed out. If it does so, the quantity of the electrolyte solution which exists in the active material vicinity will reduce, and there exists a possibility that the performance of a battery may fall as a result.

また特許文献2には、内部短絡時の短絡部の拡大を抑制するために、負極活物質層の上に耐熱性多孔層を形成したリチウムイオン二次電池が開示されている。また特許文献2には、耐熱性多孔層は電解液保持能力を有すること、耐熱性多孔層が負極活物質層の上に配置されることにより負極の電解液の含有量を増やすことができることが開示されている。しかしながら特許文献2には、厚みが増大しないように厚み方向に極板群を拘束することについては記載されていない。また一般的に活物質層の表面に何らかの層が形成された電池は、抵抗増加などによる出力低下を引き起こすおそれがある。   Patent Document 2 discloses a lithium ion secondary battery in which a heat-resistant porous layer is formed on a negative electrode active material layer in order to suppress the expansion of a short-circuit portion at the time of an internal short circuit. Patent Document 2 discloses that the heat-resistant porous layer has an electrolyte solution holding ability, and that the content of the electrolyte solution of the negative electrode can be increased by disposing the heat-resistant porous layer on the negative electrode active material layer. It is disclosed. However, Patent Document 2 does not describe restraining the electrode plate group in the thickness direction so that the thickness does not increase. In general, a battery in which some layer is formed on the surface of the active material layer may cause a decrease in output due to an increase in resistance or the like.

特開2014−82157号公報JP 2014-82157 A 特開2007−200795号公報JP 2007-200755 A

本発明は、このような事情に鑑みて為されたものであり、厚みが増大しないように厚み方向に極板群が拘束されているリチウムイオン二次電池において電池性能の低下を抑制することを目的とする。   The present invention has been made in view of such circumstances, and suppresses deterioration of battery performance in a lithium ion secondary battery in which the electrode plate group is constrained in the thickness direction so as not to increase the thickness. Objective.

本発明の発明者等は、鋭意研究の結果、負極活物質層の表面に被覆層を配置し、かつその被覆層の厚みを負極活物質層の厚みに対して0.03以上0.15以下とすることによって厚みが増大しないように極板群が厚み方向に拘束されているリチウムイオン二次電池において電池性能の低下を抑制できることを見出した。   As a result of intensive studies, the inventors of the present invention have arranged a coating layer on the surface of the negative electrode active material layer, and the thickness of the coating layer is 0.03 or more and 0.15 or less with respect to the thickness of the negative electrode active material layer. In the lithium ion secondary battery in which the electrode plate group is restrained in the thickness direction so as not to increase the thickness, it has been found that the battery performance can be prevented from deteriorating.

すなわち、本発明のリチウムイオン二次電池は、正極、セパレータ及び負極を含む極板群と電解液とを含むリチウムイオン二次電池であって、負極は、集電体と、集電体の表面に配置された負極活物質層と、負極活物質層の表面に配置され、無機粒子、被覆層用結着剤及び空隙を含む被覆層とを有し、被覆層の厚みは、負極活物質層の厚みに対して0.03以上0.15以下であり、極板群は、厚みが増大しないように厚み方向に拘束されていることを特徴とする。   That is, the lithium ion secondary battery of the present invention is a lithium ion secondary battery including an electrode plate group including a positive electrode, a separator, and a negative electrode, and an electrolyte solution. The negative electrode includes a current collector and a surface of the current collector. The negative electrode active material layer is disposed on the surface of the negative electrode active material layer, and the coating layer includes inorganic particles, a binder for the coating layer, and a void. The electrode plate group is constrained in the thickness direction so as not to increase in thickness.

被覆層の空隙率が35%〜85%であることが好ましい。   The porosity of the coating layer is preferably 35% to 85%.

被覆層の厚みは1μm以上15μm以下であることが好ましい。   The thickness of the coating layer is preferably 1 μm or more and 15 μm or less.

本発明のリチウムイオン二次電池の製造方法は、電解液を有するリチウムイオン二次電池の製造方法であって、集電体の表面に形成された負極活物質層の表面に、無機粒子、被覆層用結着剤及び空隙を含む被覆層を形成する負極形成工程と、正極とセパレータと負極形成工程で得られた負極とを有する極板群を形成する極板群形成工程と、製造後のリチウムイオン二次電池において厚みが増大しないように極板群を厚み方向に拘束する拘束工程と、を有し、負極形成工程における被覆層の厚みは、負極形成工程における負極活物質層の厚みに対して0.03以上0.15以下であることを特徴とする。   The method for producing a lithium ion secondary battery according to the present invention is a method for producing a lithium ion secondary battery having an electrolyte solution, wherein the surface of the negative electrode active material layer formed on the surface of the current collector is coated with inorganic particles, A negative electrode forming step for forming a coating layer containing a binder for the layer and voids, an electrode plate group forming step for forming an electrode plate group having a positive electrode, a separator, and a negative electrode obtained in the negative electrode forming step; A constraining step of constraining the electrode plate group in the thickness direction so that the thickness does not increase in the lithium ion secondary battery, and the thickness of the coating layer in the negative electrode forming step is equal to the thickness of the negative electrode active material layer in the negative electrode forming step On the other hand, it is 0.03 or more and 0.15 or less.

本発明のリチウムイオン二次電池は、厚みが増大しないように極板群が厚み方向に拘束されている。そのため、充放電時に負極活物質が膨張することによって、負極活物質層に保持された電解液が負極活物質層の外に押し出されるおそれがある。本発明のリチウムイオン二次電池においては、ある規定の厚みの被覆層を負極活物質層の表面に配置したことにより、充放電時に負極活物質層に保持された電解液が負極活物質層の外に押し出されても、被覆層に含まれる空隙に電解液が保持されているので、被覆層に含まれる電解液を近傍の負極活物質が使用することができ、電池性能の低下が抑制される。   In the lithium ion secondary battery of the present invention, the electrode plate group is constrained in the thickness direction so that the thickness does not increase. Therefore, when the negative electrode active material expands during charge / discharge, the electrolyte retained in the negative electrode active material layer may be pushed out of the negative electrode active material layer. In the lithium ion secondary battery of the present invention, the coating solution having a specific thickness is disposed on the surface of the negative electrode active material layer, so that the electrolyte solution retained in the negative electrode active material layer during charge / discharge is the negative electrode active material layer. Even if it is pushed out, the electrolyte solution is retained in the voids contained in the coating layer, so the electrolyte solution contained in the coating layer can be used by the nearby negative electrode active material, and the deterioration of battery performance is suppressed. The

本実施形態のリチウムイオン二次電池の充放電前の負極を説明する模式図である。It is a schematic diagram explaining the negative electrode before charging / discharging of the lithium ion secondary battery of this embodiment. 本実施形態のリチウムイオン二次電池の充放電時の負極を説明する模式図である。It is a schematic diagram explaining the negative electrode at the time of charging / discharging of the lithium ion secondary battery of this embodiment. 本実施形態のリチウムイオン二次電池の極板群を説明する模式図である。It is a schematic diagram explaining the electrode group of the lithium ion secondary battery of this embodiment. 本実施形態のリチウムイオン二次電池の極板群の拘束例を説明する模式図である。It is a schematic diagram explaining the example of a restriction | limiting of the electrode group of the lithium ion secondary battery of this embodiment. 被覆層の厚みの負極活物質層の厚みに対する比とリチウムイオン二次電池の充電抵抗及び容量維持率との関係を示すグラフである。It is a graph which shows the relationship between the ratio with respect to the thickness of the negative electrode active material layer of the thickness of a coating layer, the charging resistance of a lithium ion secondary battery, and a capacity | capacitance maintenance factor.

以下に、本発明を実施するための形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a〜b」は、下限aおよび上限bをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに数値範囲内から任意に選択した数値を上限、下限の数値とすることができる。   Below, the form for implementing this invention is demonstrated. Unless otherwise specified, the numerical range “ab” described herein includes the lower limit “a” and the upper limit “b”. The numerical range can be configured by arbitrarily combining these upper limit value and lower limit value and the numerical values listed in the examples. Furthermore, numerical values arbitrarily selected from the numerical value range can be used as upper and lower numerical values.

<リチウムイオン二次電池>
本発明のリチウムイオン二次電池は、正極、セパレータ及び負極を含む極板群と電解液とを含む。極板群は、厚みが増大しないように厚み方向に拘束されている。また負極は、集電体と、負極活物質層と、被覆層とを有する。被覆層は無機粒子、被覆層用結着剤及び空隙を含み、被覆層の厚みは負極活物質層の厚みに対して0.03以上0.15以下である。
<Lithium ion secondary battery>
The lithium ion secondary battery of the present invention includes an electrode plate group including a positive electrode, a separator, and a negative electrode, and an electrolytic solution. The electrode plate group is constrained in the thickness direction so that the thickness does not increase. The negative electrode includes a current collector, a negative electrode active material layer, and a coating layer. The coating layer includes inorganic particles, a binder for the coating layer, and voids, and the thickness of the coating layer is 0.03 or more and 0.15 or less with respect to the thickness of the negative electrode active material layer.

(負極)
負極は、集電体と、集電体の表面に配置された負極活物質層と、負極活物質層の表面に配置され、無機粒子、被覆層用結着剤及び空隙を含む被覆層とを有する。
(Negative electrode)
The negative electrode includes a current collector, a negative electrode active material layer disposed on the surface of the current collector, and a coating layer disposed on the surface of the negative electrode active material layer and including inorganic particles, a binder for the coating layer, and voids. Have.

集電体は、リチウムイオン二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。集電体の材料として、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、又はステンレス鋼などの金属材料を例示することができる。集電体は公知の保護層で被覆されていても良い。また集電体の表面を公知の方法で処理したものを集電体として用いてもよい。   The current collector refers to a chemically inert electronic high conductor that keeps a current flowing through an electrode during discharge or charging of a lithium ion secondary battery. As a current collector material, at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, or stainless steel The metal material can be exemplified. The current collector may be covered with a known protective layer. Moreover, you may use what processed the surface of the electrical power collector by the well-known method as an electrical power collector.

集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm〜100μmの範囲内であることが好ましい。   The current collector can take the form of a foil, a sheet, a film, a linear shape, a rod shape, a mesh, or the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector. When the current collector is in the form of foil, sheet or film, the thickness is preferably in the range of 1 μm to 100 μm.

負極活物質層は、負極活物質を含み、必要に応じて結着剤及び/又は導電助剤を含む。
負極活物質としては、リチウムイオンを吸蔵及び放出し得る材料が使用可能である。従って、負極活物質としては、リチウムイオンを吸蔵及び放出可能である単体、合金又は化合物であれば特に限定はない。負極活物質は、一般的にリチウムイオンの吸蔵及び放出に伴って、膨張、収縮する。
The negative electrode active material layer includes a negative electrode active material, and includes a binder and / or a conductive aid as necessary.
As the negative electrode active material, a material capable of inserting and extracting lithium ions can be used. Therefore, the negative electrode active material is not particularly limited as long as it is a simple substance, alloy, or compound that can occlude and release lithium ions. The negative electrode active material generally expands and contracts as lithium ions are stored and released.

負極活物質としては、リチウムを吸蔵及び放出可能な炭素系材料、リチウムと合金化可能な元素、リチウムと合金化可能な元素を有する化合物、あるいは高分子材料を例示することができる。炭素系材料としては、難黒鉛化性炭素、人造黒鉛、天然黒鉛、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭あるいはカーボンブラック類を例示できる。ここで、有機高分子化合物焼成体とは、フェノール類やフラン類などの高分子材料を適当な温度で焼成して炭素化したものをいう。リチウムと合金化可能な元素としては、具体的にNa、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biが例示でき、特に、SiまたはSnが好ましい。リチウムと合金化可能な元素を有する化合物としては、具体的にZnLiAl、AlSb、SiB、SiB、MgSi、MgSn、NiSi、TiSi、MoSi、 CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、SnO(0<w≦2)、SnSiO、LiSiO あるいはLiSnOを例示でき、特に、SiO(0.5≦x≦1.5)が好ましい。また、リチウムと合金化反応可能な元素を有する化合物として、スズ合金(Cu−Sn合金、Co−Sn合金等)を例示できる。高分子材料としては、具体的にポリアセチレン、ポリピロールを例示できる。 Examples of the negative electrode active material include a carbon-based material capable of inserting and extracting lithium, an element capable of being alloyed with lithium, a compound having an element capable of being alloyed with lithium, or a polymer material. Examples of the carbon-based material include non-graphitizable carbon, artificial graphite, natural graphite, cokes, graphites, glassy carbons, organic polymer compound fired bodies, carbon fibers, activated carbon, and carbon blacks. Here, the organic polymer compound fired body refers to a material obtained by firing and carbonizing a polymer material such as phenols and furans at an appropriate temperature. Specifically, elements that can be alloyed with lithium include Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si. , Ge, Sn, Pb, Sb, Bi can be exemplified, and Si or Sn is particularly preferable. As the compound having an element that can be alloyed with lithium, specifically, ZnLiAl, AlSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2, CrSi 2, Cu 5 Si, FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO v (0 <v ≦ 2), SnO w (0 <w ≦ 2), SnSiO 3 , LiSiO 2 or LiSnO, and SiO x (0.5 ≦ x ≦ 1.5) is particularly preferable. Moreover, tin compounds (Cu-Sn alloy, Co-Sn alloy, etc.) can be illustrated as a compound which has an element which can be alloyed with lithium. Specific examples of the polymer material include polyacetylene and polypyrrole.

負極活物質は粉末形状であることが好ましい。負極活物質が粉末形状の場合、負極活物質の平均粒径D50は0.5μm以上30μm以下であることが好ましく、1μm以上20μm以下であることがより好ましい。負極活物質の平均粒径D50が小さすぎると、負極活物質の粉末の比表面積が大きくなり、負極活物質の粉末と電解液との接触面積が大きくなって、電解液の分解が進んでしまい、サイクル特性が悪くなるおそれがある。また、負極活物質の平均粒径D50が大きすぎると、導電性が低い負極活物質を用いた場合、電極全体の導電性が不均一になり、充放電特性が低下するおそれがある。 The negative electrode active material is preferably in powder form. When the negative electrode active material is in a powder form, the average particle diameter D 50 of the negative electrode active material is preferably 0.5 μm or more and 30 μm or less, and more preferably 1 μm or more and 20 μm or less. When the average particle diameter D 50 of the negative electrode active material is too small, the specific surface area of the powder of the negative electrode active material is increased, it increases the contact area of the powder of the anode active material and the electrolyte solution, proceed decomposition of the electrolyte solution As a result, the cycle characteristics may be deteriorated. If the average particle diameter D 50 of the negative electrode active material is too large, if the conductivity using a low negative electrode active material, conductive entire electrode becomes uneven, charging and discharging characteristics may deteriorate.

平均粒径D50は粒度分布測定法によって計測できる。平均粒径D50とはレーザー回析法による粒度分布測定における体積分布の積算値が50%に相当する粒子径のことである。つまり、平均粒径D50とは、体積基準で測定したメディアン径を意味する。 The average particle diameter D 50 can be measured by particle size distribution measurement method. The average particle diameter D 50 is that the particle size cumulative value of the volume distribution in the particle size distribution measurement by laser diffraction method is equivalent to 50%. That is, the average particle diameter D 50 means the median size measured by volume.

結着剤は活物質を集電体の表面に繋ぎ止める役割を果たすものである。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、ポリ(メタ)アクリル酸などのアクリル系樹脂、カルボキシメチルセルロース、メチルセルロース、ポリビニルアルコール、ポリビニルピロリドン、スチレンブタジエンゴム、アルコキシシリル基含有樹脂などの公知のものを用いることができる。これらの結着剤を単独または二種以上組み合わせて活物質層に添加することができる。結着剤の使用量については特に制限はないが、活物質100質量部に対して結着剤1〜50質量部の範囲が好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。   The binder plays a role of binding the active material to the surface of the current collector. Examples of the binder include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluorine rubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, and poly (meth) acrylic acid. Known resins such as acrylic resins, carboxymethyl cellulose, methyl cellulose, polyvinyl alcohol, polyvinyl pyrrolidone, styrene butadiene rubber, and alkoxysilyl group-containing resins can be used. These binders can be added to the active material layer alone or in combination of two or more. Although there is no restriction | limiting in particular about the usage-amount of a binder, The range of 1-50 mass parts of binders with respect to 100 mass parts of active materials is preferable. This is because when the amount of the binder is too small, the moldability of the electrode is lowered, and when the amount of the binder is too large, the energy density of the electrode is lowered.

導電助剤は導電性を高めるために添加される。導電助剤としては、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック、ケッチェンブラック(登録商標)、気相法炭素繊維(Vapor Grown Carbon Fiber)が例示される。これらの導電助剤を単独または二種以上組み合わせて活物質層に添加することができる。導電助剤の使用量については特に制限はないが、例えば、活物質100質量部に対して導電助剤1〜30質量部とすることができる。   A conductive additive is added to increase conductivity. Examples of the conductive assistant include carbon black, graphite, acetylene black, ketjen black (registered trademark), and vapor grown carbon fiber (Vapor Grown Carbon Fiber) which are carbonaceous fine particles. These conductive assistants can be added to the active material layer alone or in combination of two or more. Although there is no restriction | limiting in particular about the usage-amount of a conductive support agent, For example, it can be set as 1-30 mass parts of conductive support agents with respect to 100 mass parts of active materials.

集電体の表面に負極活物質層を形成するには、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に負極活物質を直接塗布すればよい。具体的には、負極活物質、並びに必要に応じて結着剤及び/又は導電助剤を含む活物質層形成用組成物を調製し、この組成物に適当な溶媒を加えてペースト状の液とする。あらかじめ結着剤を溶媒に溶解させた溶液又は分散させた懸濁液を用いても良い。上記溶媒としては、N−メチル−2−ピロリドン、メタノール、エタノール、メチルイソブチルケトン、水を例示できる。上記ペースト状の液を集電体の表面に塗布後、乾燥する。乾燥は、常圧条件で行っても良いし、真空乾燥機を用いた減圧条件下で行っても良い。乾燥温度は適宜設定すればよく、上記溶媒の沸点以上の温度が好ましい。乾燥時間は塗布量及び乾燥温度に応じ適宜設定すればよい。負極活物質層の密度を高めるべく、負極活物質層を形成させた乾燥後の集電体に対し、圧縮工程を加えても良い。   In order to form the negative electrode active material layer on the surface of the current collector, a conventionally known method such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method is used. The negative electrode active material may be applied directly on the surface. Specifically, a composition for forming an active material layer containing a negative electrode active material and, if necessary, a binder and / or a conductive aid is prepared, and an appropriate solvent is added to the composition to obtain a paste-like liquid. And A solution in which a binder is dissolved in a solvent in advance or a dispersed suspension may be used. Examples of the solvent include N-methyl-2-pyrrolidone, methanol, ethanol, methyl isobutyl ketone, and water. The paste-like liquid is applied to the surface of the current collector and then dried. Drying may be performed under normal pressure conditions or under reduced pressure conditions using a vacuum dryer. What is necessary is just to set drying temperature suitably, and the temperature beyond the boiling point of the said solvent is preferable. What is necessary is just to set drying time suitably according to an application quantity and drying temperature. In order to increase the density of the negative electrode active material layer, a compression step may be added to the dried current collector on which the negative electrode active material layer is formed.

被覆層は、負極活物質層の表面に配置され、無機粒子、被覆層用結着剤及び空隙を含む。
この被覆層は、無機粒子同士の間、無機粒子と被覆層用結着剤との間、無機粒子と負極活物質層との間等に空隙を有する。リチウムイオン二次電池内ではこの空隙に電解液が保持される。無機粒子の体積はリチウムイオン二次電池の充放電時に変動しないため、空隙内の電解液の量も充放電により変動することはない。すなわち、被覆層内に保持された電解液が充放電により減ることはない。そのため、この被覆層に含まれる電解液を近傍の負極活物質が容易に利用できる。従って、厚み方向に拘束された極板群を有するリチウムイオン二次電池の電池容量及び容量維持率の劣化を抑制できる。
The coating layer is disposed on the surface of the negative electrode active material layer and includes inorganic particles, a binder for the coating layer, and voids.
This coating layer has voids between the inorganic particles, between the inorganic particles and the binder for the coating layer, between the inorganic particles and the negative electrode active material layer, and the like. In the lithium ion secondary battery, the electrolytic solution is held in this gap. Since the volume of the inorganic particles does not change during charging / discharging of the lithium ion secondary battery, the amount of the electrolyte solution in the gap does not change due to charging / discharging. That is, the electrolytic solution retained in the coating layer is not reduced by charge / discharge. Therefore, the nearby negative electrode active material can be easily used for the electrolyte contained in the coating layer. Therefore, deterioration of the battery capacity and capacity retention rate of the lithium ion secondary battery having the electrode plate group constrained in the thickness direction can be suppressed.

また被覆層は負極活物質層の表面に配置されるため、負極活物質層と電解液との直接の接触を低減する。電解液と負極活物質とが直接接触することによって電解液の分解がおこる。そのため被覆層により電解液の分解を抑制できる。また負極活物質層の表面が被覆層で覆われているので、負極活物質層の表面に電解液中に含まれる金属成分の溶出物や電解液の分解物が堆積するのが抑制される。その結果としてリチウムイオン二次電池のサイクル特性が劣化するのを抑制できる。   In addition, since the coating layer is disposed on the surface of the negative electrode active material layer, direct contact between the negative electrode active material layer and the electrolytic solution is reduced. The electrolytic solution is decomposed by direct contact between the electrolytic solution and the negative electrode active material. Therefore, decomposition | disassembly of electrolyte solution can be suppressed with a coating layer. In addition, since the surface of the negative electrode active material layer is covered with the coating layer, deposition of a metal component eluate or a decomposition product of the electrolyte contained in the electrolyte is suppressed on the surface of the negative electrode active material layer. As a result, deterioration of the cycle characteristics of the lithium ion secondary battery can be suppressed.

無機粒子としては、例えば、Al、SiO、TiO、ZrO、MgO、SiC、AlN、BN、CaCO、MgCO、BaCO、タルク、マイカ、カオリナイト、CaSO、MgSO、BaSO、CaO、ZnO、ゼオライトから選択される無機化合物の1種若しくは複数からなる粒子が挙げられる。無機粒子の材料としては、入手の容易さの点から、Al、SiO、TiOが好ましく、特にAlが好ましい。 Examples of the inorganic particles include Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2 , MgO, SiC, AlN, BN, CaCO 3 , MgCO 3 , BaCO 3 , talc, mica, kaolinite, CaSO 4 , MgSO 4. , BaSO 4 , CaO, ZnO, and particles composed of one or more inorganic compounds selected from zeolite. As the material for the inorganic particles, Al 2 O 3 , SiO 2 , and TiO 2 are preferable from the viewpoint of easy availability, and Al 2 O 3 is particularly preferable.

無機粒子の粒径としては、平均粒径D50が0.1〜10μmのものが好ましく、0.2〜5μmのものがより好ましく、0.5〜3μmのものが特に好ましい。平均粒径D50が小さすぎると、電解液を保持できる空隙を形成するのが困難になる場合がある。平均粒径D50が大きすぎると被覆層の厚みが増加するため、厚みの増加に因り生じる抵抗が電池出力に悪影響を与えるおそれがある。 The particle size of the inorganic particles, the average particle size D 50 thereof is preferably 0.1 to 10 [mu] m, more preferably a 0.2 to 5 .mu.m, those of 0.5~3μm is particularly preferred. When the average particle diameter D 50 is too small, there are cases where forming a gap capable of holding the electrolytic solution becomes difficult. Since the thickness of the average particle diameter D 50 is too large the coating layer increases, resulting due to the increase in thickness the resistance is likely to adversely affect the battery output.

被覆層用結着剤としては、活物質層についての説明で述べた結着剤を単独で採用又は複数を併用すれば良い。被覆層用結着剤としては、電気化学的な安定性などの面から、ポリフッ化ビニリデンが特に好ましい。   As the binder for the coating layer, the binder described in the description of the active material layer may be employed alone or in combination. As the binder for the coating layer, polyvinylidene fluoride is particularly preferable from the viewpoint of electrochemical stability.

無機粒子と被覆層用結着剤との好ましい質量比は5:1〜200:1であり、より好ましくは10:1〜150:1であり、特に好ましくは15:1〜100:1である。   A preferable mass ratio of the inorganic particles and the binder for the coating layer is 5: 1 to 200: 1, more preferably 10: 1 to 150: 1, and particularly preferably 15: 1 to 100: 1. .

被覆層の厚みは、負極活物質層の厚みに対して0.03以上0.15以下であり、0.05以上0.11以下であることがより好ましい。実施例において後述するが、被覆層の厚みの負極活物質層の厚みに対する比をこの範囲とすることで、充電抵抗及び容量維持率の両者を満足するリチウムイオン二次電池とすることができる。被覆層の厚みの負極活物質層の厚みに対する比が大きすぎると電極の抵抗が上がりすぎるおそれがあり、被覆層の厚みの負極活物質層の厚みに対する比が小さすぎるとリチウムイオン二次電池の容量維持率が悪くなるおそれがある。   The thickness of the coating layer is 0.03 or more and 0.15 or less, more preferably 0.05 or more and 0.11 or less with respect to the thickness of the negative electrode active material layer. Although mentioned later in an Example, it can be set as the lithium ion secondary battery which satisfies both charging resistance and a capacity | capacitance maintenance factor by making ratio of the thickness of a coating layer with respect to the thickness of a negative electrode active material layer into this range. If the ratio of the thickness of the coating layer to the thickness of the negative electrode active material layer is too large, the resistance of the electrode may be increased too much. If the ratio of the thickness of the coating layer to the thickness of the negative electrode active material layer is too small, the lithium ion secondary battery There is a risk that the capacity maintenance rate will deteriorate.

被覆層の厚みは、特に制限が無いが、1μm以上15μm以下が好ましく、3μm以上10μm以下がさらに好ましい。
被覆層の密度は特に制限が無いが、0.1g/cm〜3g/cmが好ましく、0.3g/cm〜2.5g/cmがより好ましく、0.6g/cm〜2g/cmが特に好ましい。
被覆層の空隙率は特に制限が無いが、5%〜95%が好ましく、20%〜90%がより好ましく、35%〜85%がさらに好ましい。
The thickness of the coating layer is not particularly limited, but is preferably 1 μm or more and 15 μm or less, and more preferably 3 μm or more and 10 μm or less.
Although the density of the coating layer is not particularly limited but is preferably 0.1g / cm 3 ~3g / cm 3 , more preferably 0.3g / cm 3 ~2.5g / cm 3 , 0.6g / cm 3 ~2g / Cm 3 is particularly preferred.
The porosity of the coating layer is not particularly limited, but is preferably 5% to 95%, more preferably 20% to 90%, and further preferably 35% to 85%.

負極活物質層上に被覆層を設けるには、例えば、無機粒子及び被覆層用結着剤を溶媒に分散させて被覆層形成用組成物を調製する工程、及び、被覆層形成用組成物を負極活物質層上に塗布する工程を実施した後、乾燥工程を実施すればよい。被覆層形成用組成物における無機粒子及び被覆層用結着剤の合計配合量は10質量%〜50質量%の範囲内が好ましい。被覆層形成用組成物の調製に用いる溶媒としては、N−メチル−2−ピロリドン、メタノール、エタノール、メチルイソブチルケトン、水を例示できる。塗布工程では、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いればよい。乾燥工程は、常圧条件で行っても良いし、真空乾燥機を用いた減圧条件下で行っても良い。乾燥温度は被覆層用結着剤が分解しない範囲内で適宜設定すればよく、上記溶媒の沸点以上の温度が好ましい。乾燥時間は塗布量及び乾燥温度に応じ適宜設定すればよい。   In order to provide a coating layer on the negative electrode active material layer, for example, a step of preparing a coating layer forming composition by dispersing inorganic particles and a coating layer binder in a solvent, and a coating layer forming composition, What is necessary is just to implement a drying process, after implementing the process apply | coated on a negative electrode active material layer. The total amount of the inorganic particles and the binder for the coating layer in the composition for forming a coating layer is preferably in the range of 10% by mass to 50% by mass. Examples of the solvent used for preparing the composition for forming a coating layer include N-methyl-2-pyrrolidone, methanol, ethanol, methyl isobutyl ketone, and water. In the coating process, a conventionally known method such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method may be used. The drying step may be performed under normal pressure conditions or under reduced pressure conditions using a vacuum dryer. What is necessary is just to set a drying temperature suitably in the range which the binder for coating layers does not decompose | disassemble, and the temperature beyond the boiling point of the said solvent is preferable. What is necessary is just to set drying time suitably according to an application quantity and drying temperature.

ここで被覆層の効果について図を用いて説明する。図1は本実施形態のリチウムイオン二次電池の充放電前の負極を説明する模式図である。図2は、本実施形態のリチウムイオン二次電池の充放電時の負極を説明する模式図である。   Here, the effect of the coating layer will be described with reference to the drawings. FIG. 1 is a schematic diagram illustrating a negative electrode before charging / discharging of the lithium ion secondary battery of this embodiment. FIG. 2 is a schematic diagram for explaining the negative electrode during charging and discharging of the lithium ion secondary battery of the present embodiment.

図1に示すように、負極用集電体10の表面に負極活物質層11が配置され、負極活物質層11の表面に被覆層12が配置されている。負極用集電体10、負極活物質層11及び被覆層12には図1の矢印A及び矢印Bで示すように厚み方向に拘束力が付与されている。負極活物質層11には負極活物質111と電解液5が含まれている。負極活物質層11には結着剤及び導電助剤も含まれているが、図1においては省略している。被覆層12には無機粒子121と電解液5が含まれている。被覆層12には被覆層用結着剤も含まれているが図1においては省略している。図1に示す負極においては充放電前であるので負極活物質111は膨張しておらず負極活物質層11には負極活物質111の近傍に電解液5が保持されている。   As shown in FIG. 1, the negative electrode active material layer 11 is disposed on the surface of the negative electrode current collector 10, and the coating layer 12 is disposed on the surface of the negative electrode active material layer 11. As shown by arrows A and B in FIG. 1, a binding force is applied to the negative electrode current collector 10, the negative electrode active material layer 11, and the coating layer 12 in the thickness direction. The negative electrode active material layer 11 includes a negative electrode active material 111 and an electrolytic solution 5. The negative electrode active material layer 11 also includes a binder and a conductive auxiliary agent, which are omitted in FIG. The coating layer 12 includes inorganic particles 121 and the electrolytic solution 5. The coating layer 12 also includes a coating layer binder, but is omitted in FIG. In the negative electrode shown in FIG. 1, since the negative electrode active material 111 is not expanded because it is before charging and discharging, the negative electrode active material layer 11 holds the electrolytic solution 5 in the vicinity of the negative electrode active material 111.

図2では、リチウムイオン二次電池の充放電時に負極活物質111が膨張している様子を示す。図2に示すように、負極活物質層11において負極活物質111が膨張しており、負極活物質層11から電解液5が押し出されている。図2においては、図2に示す矢印A及び矢印Bの方向に拘束力がかかっているため、負極活物質層11は厚み方向に厚みが変えられず、拘束力の付与されていない方向である例えば厚み方向と垂直な方向である矢印Cの方向に電解液5が押し出される。被覆層12において無機粒子121は充放電時に膨張しないため、被覆層における空隙の容積が減少することはなく被覆層12には、充放電前と同様に電解液5が保持されている。そのため被覆層12の近傍にある負極活物質111は、充放電時に近傍の電解液5が少なくなっていても、被覆層12に保持されている電解液5を利用することができる。被覆層12が配置されていない場合、負極活物質111の近傍において電解液5が不足し、電池容量が低下するおそれがある。被覆層12が負極活物質層11の表面に配置されていることによって厚み方向に拘束力が付与されていても負極活物質の近傍の電解液枯れを抑制することができ、負極活物質近傍の電解液枯れによるリチウムイオン二次電池の容量低下や容量維持率の低下を抑制できる。   FIG. 2 shows a state where the negative electrode active material 111 is expanded during charging / discharging of the lithium ion secondary battery. As shown in FIG. 2, the negative electrode active material 111 is expanded in the negative electrode active material layer 11, and the electrolytic solution 5 is pushed out from the negative electrode active material layer 11. In FIG. 2, since the binding force is applied in the directions of arrows A and B shown in FIG. 2, the thickness of the negative electrode active material layer 11 is not changed in the thickness direction, and the binding force is not applied. For example, the electrolytic solution 5 is extruded in the direction of arrow C which is a direction perpendicular to the thickness direction. In the coating layer 12, the inorganic particles 121 do not expand at the time of charging / discharging, so the void volume in the coating layer does not decrease and the coating layer 12 holds the electrolytic solution 5 as before charging / discharging. Therefore, the negative electrode active material 111 in the vicinity of the coating layer 12 can use the electrolytic solution 5 retained in the coating layer 12 even when the amount of the electrolytic solution 5 in the vicinity is small during charging and discharging. When the coating layer 12 is not disposed, the electrolyte solution 5 is insufficient in the vicinity of the negative electrode active material 111, and the battery capacity may be reduced. By disposing the coating layer 12 on the surface of the negative electrode active material layer 11, it is possible to suppress the electrolyte withering near the negative electrode active material even when a binding force is applied in the thickness direction. It is possible to suppress a decrease in capacity and a decrease in capacity maintenance rate of the lithium ion secondary battery due to the electrolyte withering.

(正極)
正極は、集電体とその表面に配置された正極活物質層とを有する。正極活物質層は、正極活物質を含み、必要に応じて結着剤及び/又は導電助剤を含む。
集電体、結着剤、導電助剤は負極で説明したものと同様のものが使用できる。
(Positive electrode)
The positive electrode has a current collector and a positive electrode active material layer disposed on the surface thereof. The positive electrode active material layer includes a positive electrode active material, and includes a binder and / or a conductive aid as necessary.
As the current collector, the binder, and the conductive auxiliary agent, the same materials as those described for the negative electrode can be used.

正極活物質としては、リチウム含有酸化物あるいは他の金属酸化物よりなるものを用いることができる。リチウム含有酸化物としては、例えば、層状構造を有するリチウムコバルト複合酸化物、層状構造を有するリチウムニッケル複合酸化物、スピネル構造を有するリチウムマンガン複合酸化物、一般式: LiCoNiMn (DはAl、Mg、Ti、Sn、Zn、W、Zr、Mo、Fe及びNaから選択される少なくとも一種でありp+q+r+s=1、0<p<1、0≦q<1、0≦r<1、0≦s<1、0.8≦a<2.0、−0.2≦x−(a+p+q+r+s)≦0.2)で表される層状構造を有するリチウムコバルト含有複合金属酸化物、一般式:LiMPOで示されるオリビン型リチウムリン酸複合酸化物(MはMn、Fe、Co及びNiから選択される少なくとも一種)、一般式:LiMPOFで示されるフッ化オリビン型リチウムリン酸複合酸化物(MはMn、Fe、Co及びNiから選択される少なくとも一種)、一般式:LiMSiOで示されるケイ酸塩系型リチウム複合酸化物(MはMn、Fe、Co及びNiから選択される少なくとも一種)を用いることができる。また他の金属酸化物としては、例えば、酸化チタン、酸化バナジウム若しくは二酸化マンガンが挙げられる。 As the positive electrode active material, a lithium-containing oxide or another metal oxide can be used. As the lithium-containing oxides include a lithium-cobalt composite oxide having a layered structure, the lithium nickel composite oxide having a layered structure, the lithium manganese composite oxide having a spinel structure represented by the general formula: Li a Co p Ni q Mn r D s O x (D is at least one selected from Al, Mg, Ti, Sn, Zn, W, Zr, Mo, Fe and Na, and p + q + r + s = 1, 0 <p <1, 0 ≦ q <1, Lithium cobalt-containing composite metal having a layered structure represented by 0 ≦ r <1, 0 ≦ s <1, 0.8 ≦ a <2.0, −0.2 ≦ x− (a + p + q + r + s) ≦ 0.2) oxides of the general formula: olivine-type lithium phosphate compound oxide represented by LiMPO 4 (at least one M is selected Mn, Fe, Co and Ni), the general formula: Li 2 MPO 4 F Fluoride olivine-type lithium phosphate compound oxide represented (at least one M is selected Mn, Fe, Co and Ni), the general formula: Li 2 MSiO silicate lithium composite oxide represented by 4 ( M may be at least one selected from Mn, Fe, Co, and Ni. Examples of other metal oxides include titanium oxide, vanadium oxide, and manganese dioxide.

また正極活物質は、化学式:LiMO(MはNi,Co及びMnから選択される少なくとも一種である)で表されるリチウム含有酸化物よりなることが好ましく、さらに一般式: LiCoNiMn (DはAl、Mg、Ti、Sn、Zn、W、Zr、Mo、Fe及びNaから選択される少なくとも一種であり、p+q+r+s=1、0<p<1、0≦q<1、0≦r<1、0≦s<1、0.8≦a<2.0、−0.2≦x−(a+p+q+r+s)≦0.2)で表される層状構造を有するリチウムコバルト含有複合金属酸化物よりなることが好ましい。 The positive electrode active material is preferably made of a lithium-containing oxide represented by the chemical formula: LiMO 2 (M is at least one selected from Ni, Co, and Mn), and further has a general formula: Li a Co p Ni q Mn r D s O x ( D is at least one selected Al, Mg, Ti, Sn, Zn, W, Zr, Mo, Fe and Na, p + q + r + s = 1,0 <p <1,0 ≦ Lithium having a layered structure represented by q <1, 0 ≦ r <1, 0 ≦ s <1, 0.8 ≦ a <2.0, −0.2 ≦ x− (a + p + q + r + s) ≦ 0.2) It is preferably made of a cobalt-containing composite metal oxide.

リチウム含有酸化物としては、例えば、LiCo1/3Ni1/3Mn1/3、LiNi0.6Co0.2Mn0.2、LiNi0.5Co0.2Mn0.3、LiCoO、LiNi0.8Co0.2、LiCoMnOを用いることができる。中でもLiCo1/3Ni1/3Mn1/3、LiNi0.5Co0.2Mn0.3は、熱安定性の点で好ましい。 Examples of the lithium-containing oxide include LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.5 Co 0.2 Mn 0. 3 O 2 , LiCoO 2 , LiNi 0.8 Co 0.2 O 2 , LiCoMnO 2 can be used. Among these, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 and LiNi 0.5 Co 0.2 Mn 0.3 O 2 are preferable in terms of thermal stability.

正極活物質はその平均粒径D50が1μm〜20μmの粉末形状であることが好ましい。正極活物質の平均粒径D50が小さいと、正極活物質の比表面積が大きくなる。このため、正極活物質の平均粒径D50が小さすぎると正極活物質と電解液との反応面積が過度に増えることになり、その結果、電解液の分解が促進されて、リチウムイオン二次電池のサイクル特性が悪くなるおそれがある。正極活物質の平均粒径D50が大きすぎるとリチウムイオン二次電池の抵抗が大きくなり、リチウムイオン二次電池の出力特性が下がるおそれがある。
集電体の表面に正極活物質層を形成するには、上記負極で説明した負極活物質層の形成方法と同様の方法でおこなえばよい。
The positive electrode active material preferably has an average particle diameter D 50 is a powder form of 1 m to 20 m. When the average particle diameter D 50 of the positive electrode active material is small, the specific surface area of the positive electrode active material is increased. Thus, the reaction area of the average particle diameter D 50 of the positive electrode active material is too small and the positive electrode active material and the electrolyte becomes excessive increase it, as a result, are accelerated decomposition of the electrolytic solution, the lithium ion secondary The cycle characteristics of the battery may be deteriorated. When the average particle diameter D 50 of the positive electrode active material is too large resistance of the lithium ion secondary battery increases, there is a possibility that the output characteristics of the lithium ion secondary battery decreases.
In order to form the positive electrode active material layer on the surface of the current collector, a method similar to the method for forming the negative electrode active material layer described above for the negative electrode may be used.

(セパレータ)
セパレータは、正極と負極とを隔離し、両極の接触による電流の短絡を防止しつつ、イオンを通過させるものである。セパレータとしては、各リチウムイオン二次電池で採用される公知のものを用いればよく、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリエステル、ポリアミドなどの合成樹脂を1種若しくは複数用いた多孔質膜又はセラミックス製の多孔質膜を例示できる。合成樹脂製のセパレータは、単一の合成樹脂を用いた単層構造でもよいし、複数の合成樹脂の層を重ねた積層構造でもよい。セパレータの厚みは特に制限されないが、5μm〜100μmの範囲が好ましく、10μm〜50μmの範囲がより好ましく、15μm〜30μmの範囲が特に好ましい。
(Separator)
The separator separates the positive electrode and the negative electrode, and allows ions to pass through while preventing a short circuit of current due to contact between the two electrodes. As the separator, a known one used in each lithium ion secondary battery may be used. For example, a porous film using one or more synthetic resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyester, and polyamide. Or the porous film made from ceramics can be illustrated. The separator made of synthetic resin may have a single layer structure using a single synthetic resin or a laminated structure in which a plurality of synthetic resin layers are stacked. The thickness of the separator is not particularly limited, but is preferably in the range of 5 μm to 100 μm, more preferably in the range of 10 μm to 50 μm, and particularly preferably in the range of 15 μm to 30 μm.

(極板群)
正極及び負極にセパレータを挟装させ極板群とする。極板群は、正極、セパレータ及び負極を重ねた積層型、又は、正極、セパレータ及び負極を捲いた捲回型のいずれの型にしてもよい。
(Plate group)
A separator is sandwiched between the positive electrode and the negative electrode to form an electrode plate group. The electrode plate group may be either a stacked type in which the positive electrode, the separator and the negative electrode are stacked, or a wound type in which the positive electrode, the separator and the negative electrode are sandwiched.

図3に本実施形態のリチウムイオン二次電池の極板群を説明する模式図を示す。図3に示すように、負極1及び正極2にセパレータ3を挟装させ極板群4とする。負極1は、負極用集電体10と、負極用集電体10の表面に配置された負極活物質層11と、負極活物質層11の表面に配置された被覆層12とを有する。正極2は、正極用集電体20と、正極用集電体20の表面に配置された正極活物質層21とを有する。   FIG. 3 is a schematic diagram for explaining an electrode plate group of the lithium ion secondary battery of the present embodiment. As shown in FIG. 3, a separator 3 is sandwiched between a negative electrode 1 and a positive electrode 2 to form an electrode plate group 4. The negative electrode 1 includes a negative electrode current collector 10, a negative electrode active material layer 11 disposed on the surface of the negative electrode current collector 10, and a coating layer 12 disposed on the surface of the negative electrode active material layer 11. The positive electrode 2 includes a positive electrode current collector 20 and a positive electrode active material layer 21 disposed on the surface of the positive electrode current collector 20.

極板群は厚みが増大しないようにその厚み方向に拘束されている。極板群の厚みの増加分÷もとの極板群の厚み×100で示される極板群の厚みの増加率が10%以下となるように拘束されていることが好ましい。   The electrode plate group is constrained in the thickness direction so that the thickness does not increase. It is preferable that the increase rate of the thickness of the electrode plate group divided by the original thickness of the electrode plate group × 100 is increased to 10% or less.

極板群の厚み方向にかかる圧力(以下拘束圧力と称す)は、0MPa以上で極板群の厚みを小さくさせない大きさである。拘束圧力は、極板群を内包する容器によって極板群に付与されてもよいし、極板群を内包する容器を介して極板群に拘束圧力を付与する拘束手段によって極板群に付与されていてもよい。   The pressure applied in the thickness direction of the electrode plate group (hereinafter referred to as the restraining pressure) is 0 MPa or more and does not reduce the thickness of the electrode plate group. The restraining pressure may be applied to the electrode plate group by a container that encloses the electrode plate group, or is applied to the electrode plate group by a restraining means that applies the restraining pressure to the electrode plate group through a container that encloses the electrode plate group. May be.

極板群の厚みが厚くなることを許容しない内寸を有し、極板群の膨張によって変形しない材質の容器に極板群を配置すれば、容器から極板群に拘束圧力が付与される。拘束手段は、例えば容器を厚み方向に挟み込む一対のプレートと、その一対のプレートを締結するロッド及びナットからなる構成が挙げられる。また拘束手段は、ボルトとナットで締結する構成にかえて、ゴム、ばね等の弾性体、油圧機器、電動機器を用いてもよい。   If the electrode plate group is disposed in a container made of a material that has an internal dimension that does not allow the electrode plate group to become thick and does not deform due to expansion of the electrode plate group, a restraining pressure is applied from the container to the electrode plate group. . Examples of the restraining means include a pair of plates that sandwich the container in the thickness direction, and a rod and a nut that fasten the pair of plates. In addition, the restraining means may use an elastic body such as rubber or a spring, a hydraulic device, or an electric device instead of the configuration in which the bolt and the nut are fastened.

図4に本実施形態のリチウムイオン二次電池の極板群の拘束例を説明する模式図を示す。図4に示す形態は一例であり本発明はこれに限定されるものではない。図4において、極板群4は容器6に内包されている。一対のプレート71、72によって極板群4の厚み方向に容器6が挟装されている。一対のプレート71、72は4角をボルト及びナットで締結されている。図4に示すように一対のプレート71、72の右端部にはボルト81が貫通して設置されておりボルト81の両端部をナット91及び92で締結している。また一対のプレート71、72の左端部にはボルト82が貫通して設置されており、ボルト82の両端部をナット93及び94で締結している。これらのプレート、ナット、ボルトにより、容器6を介して極板群4は厚み方向に拘束圧力を付与される。   FIG. 4 is a schematic diagram for explaining a constraint example of the electrode plate group of the lithium ion secondary battery of the present embodiment. The form shown in FIG. 4 is an example, and the present invention is not limited to this. In FIG. 4, the electrode plate group 4 is contained in a container 6. The container 6 is sandwiched between the pair of plates 71 and 72 in the thickness direction of the electrode plate group 4. The pair of plates 71 and 72 are fastened at four corners with bolts and nuts. As shown in FIG. 4, bolts 81 are installed through the right ends of the pair of plates 71 and 72, and both ends of the bolt 81 are fastened with nuts 91 and 92. Further, a bolt 82 is installed through the left end of the pair of plates 71 and 72, and both ends of the bolt 82 are fastened with nuts 93 and 94. The plate group 4 is given a restraining pressure in the thickness direction through the container 6 by these plates, nuts, and bolts.

(電解液)
電解液は、溶媒とこの溶媒に溶解された電解質とを含んでいる。
溶媒として、例えば、環状エステル類、鎖状エステル類、エーテル類が使用できる。環状エステル類として、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2−メチル−ガンマブチロラクトン、アセチル−ガンマブチロラクトン、ガンマバレロラクトンが使用できる。鎖状エステル類として、例えばジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステルが使用できる。エーテル類として、例えばテトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジブトキシエタンが使用できる。
(Electrolyte)
The electrolytic solution includes a solvent and an electrolyte dissolved in the solvent.
As the solvent, for example, cyclic esters, chain esters, and ethers can be used. Examples of cyclic esters include ethylene carbonate, propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone. Examples of chain esters that can be used include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester. As ethers, for example, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane can be used.

また上記電解液に溶解させる電解質として、例えばLiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(CFSO等のリチウム塩を使用することができる。 As the electrolyte dissolved in the electrolytic solution, for example, a lithium salt such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 can be used.

電解液として、例えば、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの溶媒にLiClO、LiPF、LiBF、LiCFSOなどのリチウム塩を0.5mol/lから1.7mol/l程度の濃度で溶解させた溶液を使用することができる。 As an electrolytic solution, for example, a lithium salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 in a solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate, or the like is from 0.5 mol / l to 1.7 mol / l. A solution dissolved at a certain concentration can be used.

容器は特に限定されない。容器の材質は、極板群の膨張によって変形しにくい材質であることが好ましく、容器の材質として例えば金属材料が挙げられる。
本発明のリチウムイオン二次電池の形状は特に限定されるものでなく、円筒型、角型、コイン型など、種々の形状を採用することができる。
The container is not particularly limited. The material of the container is preferably a material that is not easily deformed by expansion of the electrode plate group, and examples of the material of the container include a metal material.
The shape of the lithium ion secondary battery of the present invention is not particularly limited, and various shapes such as a cylindrical shape, a square shape, and a coin shape can be adopted.

本発明のリチウムイオン二次電池の製造方法の一例を示す。まず、正極、負極を上述した方法で準備する。次に、両電極間にセパレータを挟装させて極板群とする。次に、正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リードでそれぞれ接続する。そして、極板群を容器にいれ電解液を加えてリチウムイオン二次電池とする。リチウムイオン二次電池は極板群の厚み方向に拘束されている。極板群の拘束は、容器によって行われても良いし、拘束手段を用いてもよい。   An example of the manufacturing method of the lithium ion secondary battery of this invention is shown. First, a positive electrode and a negative electrode are prepared by the method described above. Next, a separator is sandwiched between both electrodes to form an electrode plate group. Next, between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal that communicate with the outside are connected by current collecting leads. Then, the electrode plate group is placed in a container and an electrolyte is added to form a lithium ion secondary battery. The lithium ion secondary battery is constrained in the thickness direction of the electrode plate group. The electrode plate group may be restrained by a container, or a restraining means may be used.

本発明のリチウムイオン二次電池の製造方法は、電解液を有するリチウムイオン二次電池の製造方法であって、負極形成工程と、極板群形成工程と、拘束工程とを有する。   The manufacturing method of the lithium ion secondary battery of this invention is a manufacturing method of the lithium ion secondary battery which has electrolyte solution, Comprising: A negative electrode formation process, an electrode group forming process, and a restraint process.

負極形成工程は、集電体の表面に形成された負極活物質層の表面に、無機粒子、被覆層用結着剤及び空隙を含む被覆層を形成する。極板群形成工程は正極とセパレータと負極形成工程で得られた負極とを有する極板群を形成する。拘束工程は、製造後のリチウムイオン二次電池において厚みが増大しないように極板群を厚み方向に拘束する。負極形成工程における被覆層の厚みは、負極形成工程における負極活物質層の厚みに対して0.03以上0.15以下である。   In the negative electrode forming step, a coating layer including inorganic particles, a binder for the coating layer, and voids is formed on the surface of the negative electrode active material layer formed on the surface of the current collector. The electrode plate group forming step forms an electrode plate group having a positive electrode, a separator, and a negative electrode obtained in the negative electrode forming step. The restraining step restrains the electrode plate group in the thickness direction so that the thickness does not increase in the manufactured lithium ion secondary battery. The thickness of the coating layer in the negative electrode forming step is not less than 0.03 and not more than 0.15 with respect to the thickness of the negative electrode active material layer in the negative electrode forming step.

上記リチウムイオン二次電池は車両に搭載することができる。車両としては、電池による電気エネルギーを動力源の全部または一部に使用する車両であればよく、例えば、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、電動フォークリフト、電気車椅子、電動アシスト自転車、電動二輪車が挙げられる。   The lithium ion secondary battery can be mounted on a vehicle. The vehicle may be a vehicle that uses electric energy from a battery as a whole or a part of a power source. For example, an electric vehicle, a hybrid vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, an electric forklift, an electric wheelchair, and an electric assist. Bicycles and electric motorcycles are examples.

以上、本発明のリチウムイオン二次電池の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   As mentioned above, although embodiment of the lithium ion secondary battery of this invention was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.

以下、実施例を挙げて本発明を更に詳しく説明する。
(実施例1)
本発明の電池を以下のとおり製造した。
平均粒径D50が0.5μmのAl96質量部及びポリフッ化ビニリデン4質量部を混合し、混合物を調製した。混合物にN−メチル−2−ピロリドンを加え、混合物を35質量%含む被覆層形成用組成物を調整した。
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
The battery of the present invention was manufactured as follows.
96 parts by mass of Al 2 O 3 having an average particle diameter D 50 of 0.5 μm and 4 parts by mass of polyvinylidene fluoride were mixed to prepare a mixture. N-methyl-2-pyrrolidone was added to the mixture to prepare a coating layer forming composition containing 35% by mass of the mixture.

負極活物質である平均粒径D50が20μmの天然黒鉛98質量部、並びに結着剤であるスチレンブタジエンゴム1質量部及びカルボキシメチルセルロース1質量部を混合した。この混合物を適量のイオン交換水に分散させて、スラリーを作製した。負極集電体として厚み20μmの銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を乾燥して水を除去し、その後、銅箔をプレスし、接合物を得た。銅箔1cmあたりの負極活物質層の質量は11.1mgであり、負極活物質層の密度は1.4g/cmであった。負極活物質層の厚みは79.9μmであった。銅箔の負極活物質層上に、ドクターブレードを用いて、上記被覆層形成用組成物を膜状に塗布した。これを120℃で6時間乾燥して、負極活物質層上に厚み3μm、密度1.2g/cm、空隙率70%の被覆層が形成された銅箔を得た。これを負極とした。
(被覆層の厚み)/(負極活物質層の厚み)は0.038であった。
98 parts by mass of natural graphite having an average particle diameter D 50 of 20 μm, which is a negative electrode active material, and 1 part by mass of styrene butadiene rubber and 1 part by mass of carboxymethyl cellulose, which are binders, were mixed. This mixture was dispersed in an appropriate amount of ion-exchanged water to prepare a slurry. A copper foil having a thickness of 20 μm was prepared as a negative electrode current collector. The slurry was applied in a film form on the surface of the copper foil using a doctor blade. The copper foil coated with the slurry was dried to remove water, and then the copper foil was pressed to obtain a bonded product. The mass of the negative electrode active material layer per 1 cm 2 of copper foil was 11.1 mg, and the density of the negative electrode active material layer was 1.4 g / cm 3 . The thickness of the negative electrode active material layer was 79.9 μm. On the negative electrode active material layer of copper foil, the said composition for coating layer formation was apply | coated to the film form using the doctor blade. This was dried at 120 ° C. for 6 hours to obtain a copper foil in which a coating layer having a thickness of 3 μm, a density of 1.2 g / cm 3 and a porosity of 70% was formed on the negative electrode active material layer. This was used as a negative electrode.
(Thickness of coating layer) / (thickness of negative electrode active material layer) was 0.038.

正極活物質である平均粒径D50が10μmのLiNi5/10Co2/10Mn3/10で表される層状岩塩構造のリチウム含有金属酸化物94質量部、導電助剤であるアセチレンブラック3質量部、および結着剤であるポリフッ化ビニリデン3質量部を混合した。この混合物を適量のN−メチル−2−ピロリドンに分散させて、スラリーを作製した。正極集電体として厚み20μmのアルミニウム箔を準備した。このアルミニウム箔の表面に、ドクターブレードを用いて上記スラリーが膜状になるように塗布した。スラリーが塗布されたアルミニウム箔を80℃で20分間乾燥することでN−メチル−2−ピロリドンを揮発により除去し、正極活物質層が形成されたアルミニウム箔を得た。アルミニウム箔1cmあたりの正極活物質層の質量は18.4mgであり、正極活物質層の密度は3.1g/cmであった。この正極活物質層が形成されたアルミニウム箔を正極とした。
セパレータとしてポリエチレン製樹脂膜からなる矩形状シート(112mm×136mm、厚さ25μm)を準備した。
94 parts by mass of a lithium-containing metal oxide having a layered rock salt structure represented by LiNi 5/10 Co 2/10 Mn 3/10 O 2 having an average particle diameter D 50 of 10 μm as a positive electrode active material, and acetylene as a conductive additive 3 parts by mass of black and 3 parts by mass of polyvinylidene fluoride as a binder were mixed. This mixture was dispersed in an appropriate amount of N-methyl-2-pyrrolidone to prepare a slurry. An aluminum foil having a thickness of 20 μm was prepared as a positive electrode current collector. The slurry was applied to the surface of the aluminum foil using a doctor blade so as to form a film. The aluminum foil coated with the slurry was dried at 80 ° C. for 20 minutes to remove N-methyl-2-pyrrolidone by volatilization to obtain an aluminum foil on which a positive electrode active material layer was formed. The mass of the positive electrode active material layer per 1 cm 2 of aluminum foil was 18.4 mg, and the density of the positive electrode active material layer was 3.1 g / cm 3 . The aluminum foil on which this positive electrode active material layer was formed was used as the positive electrode.
A rectangular sheet (112 mm × 136 mm, thickness 25 μm) made of a polyethylene resin film was prepared as a separator.

負極及び正極の間にセパレータを挟装して極板群とした。この極板群をアルミニウム製で板厚が3mmの金属缶(123mm×141mm×26.5mm)に挿入し、さらに金属缶に電解液を注入し密閉してリチウムイオン二次電池とした。電解液として、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)をEC:EMC:DMC=30:30:40(体積比)で混合した溶媒にLiPFを1モル/lとなるように溶解した溶液を用いた。なお正極および負極は外部と電気的に接続可能なタブを備え、このタブの一部はリチウムイオン二次電池の外側に延出している。 A separator was sandwiched between the negative electrode and the positive electrode to form an electrode plate group. The electrode plate group was inserted into a metal can (123 mm × 141 mm × 26.5 mm) made of aluminum and having a plate thickness of 3 mm, and an electrolyte was injected into the metal can and sealed to obtain a lithium ion secondary battery. As an electrolytic solution, 1 mol / l of LiPF 6 was added to a solvent obtained by mixing ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) at EC: EMC: DMC = 30: 30: 40 (volume ratio). A solution dissolved so as to be used was used. The positive electrode and the negative electrode have a tab that can be electrically connected to the outside, and a part of the tab extends to the outside of the lithium ion secondary battery.

一対のアルミニウム板でリチウムイオン二次電池を挟んだ。このアルミニウム板の4角近辺の4箇所でボルト及びナットを用いて一対のアルミニウム板を締結した。   A lithium ion secondary battery was sandwiched between a pair of aluminum plates. A pair of aluminum plates was fastened using bolts and nuts at four locations near the four corners of the aluminum plate.

拘束圧力の付与方法は、精密万能試験機オートグラフ(株式会社島津製作所)を用いて、一対のアルミニウム板間に0.52MPaの圧力を加えたところで、ボルトにナットを締結して固定した。   The method for applying the restraint pressure was performed by using a precision universal testing machine Autograph (Shimadzu Corporation), and applying a pressure of 0.52 MPa between a pair of aluminum plates, and fastening and fixing a nut to a bolt.

この0.52MPaの圧力が付与されたリチウムイオン二次電池を実施例1のリチウムイオン二次電池とした。   The lithium ion secondary battery to which the pressure of 0.52 MPa was applied was used as the lithium ion secondary battery of Example 1.

(実施例2)
被覆層の厚みを6μm、密度1.2g/cm、空隙率70%とした以外は実施例1のリチウムイオン二次電池と同様にして実施例2のリチウムイオン二次電池を作製した。実施例2のリチウムイオン二次電池の負極における(被覆層の厚み)/(負極活物質層の厚み)は0.077であった。
(Example 2)
A lithium ion secondary battery of Example 2 was fabricated in the same manner as the lithium ion secondary battery of Example 1, except that the thickness of the coating layer was 6 μm, the density was 1.2 g / cm 3 , and the porosity was 70%. (Thickness of coating layer) / (thickness of negative electrode active material layer) in the negative electrode of the lithium ion secondary battery of Example 2 was 0.077.

(実施例3)
被覆層の厚みを10μm、密度1.2g/cm、空隙率70%とした以外は実施例1のリチウムイオン二次電池と同様にして実施例3のリチウムイオン二次電池を作製した。実施例3のリチウムイオン二次電池の負極における(被覆層の厚み)/(負極活物質層の厚み)は0.130であった。
(Example 3)
A lithium ion secondary battery of Example 3 was fabricated in the same manner as the lithium ion secondary battery of Example 1 except that the thickness of the coating layer was 10 μm, the density was 1.2 g / cm 3 , and the porosity was 70%. (Thickness of coating layer) / (thickness of negative electrode active material layer) in the negative electrode of the lithium ion secondary battery of Example 3 was 0.130.

(比較例1)
被覆層の厚みを1μm、密度1.2g/cm、空隙率70%とした以外は実施例1のリチウムイオン二次電池と同様にして比較例1のリチウムイオン二次電池を作製した。比較例1のリチウムイオン二次電池の負極における(被覆層の厚み)/(負極活物質層の厚み)は0.013であった。
(Comparative Example 1)
A lithium ion secondary battery of Comparative Example 1 was fabricated in the same manner as the lithium ion secondary battery of Example 1, except that the thickness of the coating layer was 1 μm, the density was 1.2 g / cm 3 , and the porosity was 70%. (Thickness of coating layer) / (thickness of negative electrode active material layer) in the negative electrode of the lithium ion secondary battery of Comparative Example 1 was 0.013.

(比較例2)
被覆層の厚みを15μm、密度1.2g/cm、空隙率70%とした以外は実施例1のリチウムイオン二次電池と同様にして比較例2のリチウムイオン二次電池を作製した。比較例2のリチウムイオン二次電池の負極における(被覆層の厚み)/(負極活物質層の厚み)は0.191であった。
(Comparative Example 2)
A lithium ion secondary battery of Comparative Example 2 was produced in the same manner as the lithium ion secondary battery of Example 1 except that the thickness of the coating layer was 15 μm, the density was 1.2 g / cm 3 , and the porosity was 70%. In the negative electrode of the lithium ion secondary battery of Comparative Example 2, (the thickness of the coating layer) / (the thickness of the negative electrode active material layer) was 0.191.

<充電抵抗測定>
実施例1〜3及び比較例1〜2のリチウムイオン二次電池の充電抵抗を測定した。
充電率が85%の電池に対し、25℃において、1.0Cレートで10秒間の充電を行った。充電抵抗(mΩ)は以下の式で求めた。
充電抵抗(mΩ)=|充電前の電圧−充電後の電圧|/電流値
結果を表1に示す。
<Charging resistance measurement>
The charging resistance of the lithium ion secondary batteries of Examples 1 to 3 and Comparative Examples 1 and 2 was measured.
A battery having a charging rate of 85% was charged at a 1.0 C rate for 10 seconds at 25 ° C. The charging resistance (mΩ) was obtained by the following formula.
Charging resistance (mΩ) = | Voltage before charging−Voltage after charging | / Current value Table 1 shows the results.

<容量維持率測定>
実施例1〜3及び比較例1〜2のリチウムイオン二次電池につき、以下の試験を行い、初期容量と容量維持率を測定した。容量維持率(%)の結果を表1に示す。
<Capacity retention measurement>
About the lithium ion secondary battery of Examples 1-3 and Comparative Examples 1-2, the following test was done and the initial stage capacity | capacitance and the capacity | capacitance maintenance factor were measured. The results of the capacity retention rate (%) are shown in Table 1.

測定するリチウムイオン二次電池に対し、25℃、1Cレート、電圧3.92VまでCCCV充電(定電流定電圧充電)し、そして、1Cレートで3.48VまでCCCV放電(定電流定電圧放電)を行ったときの放電容量を測定し、この放電容量を初期容量とした。   The lithium ion secondary battery to be measured is CCCV charged (constant current constant voltage charge) to 25 ° C., 1C rate, voltage 3.92V, and CCCV discharge (constant current constant voltage discharge) to 3.48V at 1C rate. The discharge capacity at the time of performing was measured, and this discharge capacity was defined as the initial capacity.

リチウムイオン二次電池に対し、60℃、1Cレート、電圧3.92VまでCC充電(定電流充電)し、1Cレートで3.48VまでCC放電(定電流放電)を行う充放電サイクルを1サイクルとし、これを2500サイクル繰り返した。この電圧範囲はSOC(State of Charge)が15%〜85%となる範囲である。   One charge / discharge cycle for CC charge (constant current charge) to 60 ° C, 1C rate, voltage 3.92V, and CC discharge (constant current discharge) to 3.48V at 1C rate for lithium ion secondary batteries This was repeated 2500 cycles. This voltage range is a range in which SOC (State of Charge) is 15% to 85%.

2500サイクル後のリチウムイオン二次電池の放電容量を初期容量の測定と同様の方法で測定して、容量維持率を算出した。容量維持率(%)は以下の式で求めた。
容量維持率(%)=2500サイクル後の放電容量/初期容量×100
The discharge capacity of the lithium ion secondary battery after 2500 cycles was measured by the same method as the measurement of the initial capacity, and the capacity retention rate was calculated. The capacity retention rate (%) was obtained by the following formula.
Capacity retention rate (%) = 2500 cycles discharge capacity / initial capacity × 100

Figure 0006600938
Figure 0006600938

図5に、被覆層の厚みの負極活物質層の厚みに対する比とリチウムイオン二次電池の充電抵抗及び容量維持率との関係を示すグラフを記す。表1及び図5からわかるように、被覆層の厚みの負極活物質層の厚みに対する比が大きくなるにつれて容量維持率が向上し、被覆層の厚みの負極活物質層の厚みに対する比が小さくなるにつれて充電抵抗が小さくなった。図5のグラフにおいて、充電抵抗は逆数で示されているため、被覆層の厚みの負極活物質層の厚みに対する比が小さくなるにつれて充電抵抗の逆数は大きくなった。このことから被覆層の厚みが負極活物質層の厚みに対して0.03以上0.15以下であれば、充電抵抗がそれほど大きくならず、容量維持率が保持されることがわかった。   FIG. 5 is a graph showing the relationship between the ratio of the thickness of the coating layer to the thickness of the negative electrode active material layer and the charging resistance and capacity retention rate of the lithium ion secondary battery. As can be seen from Table 1 and FIG. 5, as the ratio of the thickness of the coating layer to the thickness of the negative electrode active material layer increases, the capacity retention rate improves, and the ratio of the thickness of the coating layer to the thickness of the negative electrode active material layer decreases. As the charging resistance decreased. In the graph of FIG. 5, the charging resistance is indicated by the reciprocal number, so that the reciprocal number of the charging resistance increases as the ratio of the coating layer thickness to the negative electrode active material layer thickness decreases. From this, it was found that when the thickness of the coating layer is 0.03 or more and 0.15 or less with respect to the thickness of the negative electrode active material layer, the charging resistance does not increase so much and the capacity retention ratio is maintained.

リチウムイオン二次電池の極板群が厚み方向に拘束されていても、被覆層の厚みが負極活物質層の厚みに対して0.03以上0.15以下である被覆層が負極活物質層の表面に配置されることによって、被覆層に含まれる電解液を近傍の負極活物質が使用することができ、抵抗をそれほど上げることなく容量維持率の低下を抑制できることがわかった。   Even if the electrode plate group of the lithium ion secondary battery is constrained in the thickness direction, the coating layer in which the thickness of the coating layer is 0.03 or more and 0.15 or less with respect to the thickness of the negative electrode active material layer is a negative electrode active material layer It has been found that the negative electrode active material in the vicinity can use the electrolytic solution contained in the coating layer, and the decrease in the capacity retention rate can be suppressed without significantly increasing the resistance.

実施例において負極活物質として炭素材料を用いたが、炭素材料よりも充放電時に膨張しやすいSi化合物やSn化合物を負極活物質として用いても同様の効果が得られると考える。   In the examples, a carbon material was used as the negative electrode active material. However, it is considered that the same effect can be obtained even if a Si compound or Sn compound that expands more easily during charge / discharge than the carbon material is used as the negative electrode active material.

1:負極、2:正極、3:セパレータ、4:極板群、5:電解液、6:容器、10:負極用集電体、11:負極活物質層、12:被覆層、20:正極用集電体、21:正極活物質層、111:負極活物質、121:無機粒子、71、72:プレート、81、82:ボルト、91、92、93、94:ナット。   1: negative electrode, 2: positive electrode, 3: separator, 4: electrode plate group, 5: electrolyte, 6: container, 10: current collector for negative electrode, 11: negative electrode active material layer, 12: coating layer, 20: positive electrode Current collector, 21: positive electrode active material layer, 111: negative electrode active material, 121: inorganic particles, 71, 72: plate, 81, 82: bolt, 91, 92, 93, 94: nut.

Claims (2)

正極、セパレータ及び負極を含む極板群と電解液とを含む積層型のリチウムイオン二次電池であって、
前記負極は、集電体と、該集電体の表面に配置された負極活物質層と、該負極活物質層の表面に配置され、無機粒子、被覆層用結着剤及び空隙を含む被覆層とを有し、
前記被覆層の厚みは、該負極活物質層の厚みに対して0.038以上0.130以下であり、
前記被覆層用結着剤は含フッ素樹脂であり、
前記被覆層の空隙率が35%〜85%であり、
前記被覆層の密度は0.6g/cm 〜2g/cm であり、
前記被覆層の厚みは3μm以上10μm以下であり、
前記被覆層において、前記無機粒子と前記被覆層用結着剤の質量比は15:1〜100:1であり、
前記極板群は、厚みが増大しないように厚み方向に拘束されていることを特徴とするリチウムイオン二次電池。
A laminated lithium ion secondary battery including an electrode plate group including a positive electrode, a separator and a negative electrode, and an electrolyte solution,
The negative electrode is a current collector, a negative electrode active material layer disposed on the surface of the current collector, a coating disposed on the surface of the negative electrode active material layer, including inorganic particles, a binder for the coating layer, and voids And having a layer
The thickness of the coating layer is 0.038 or more and 0.130 or less with respect to the thickness of the negative electrode active material layer,
The coating layer binder is a fluorine-containing resin,
The porosity of the coating layer is 35% to 85%,
Density of the coating layer is 0.6g / cm 3 ~2g / cm 3 ,
The coating layer has a thickness of 3 μm or more and 10 μm or less,
In the coating layer, the mass ratio of the inorganic particles and the binder for the coating layer is 15: 1 to 100: 1,
The lithium ion secondary battery, wherein the electrode plate group is constrained in the thickness direction so as not to increase in thickness.
電解液を有する積層型のリチウムイオン二次電池の製造方法であって、
集電体の表面に形成された負極活物質層の表面に、無機粒子、被覆層用結着剤及び空隙を含む被覆層を形成する負極形成工程と、
正極とセパレータと該負極形成工程で得られた負極とを有する極板群を形成する極板群形成工程と、
製造後のリチウムイオン二次電池において厚みが増大しないように該極板群を厚み方向に拘束する拘束工程と、
を有し、
前記負極形成工程における前記被覆層の厚みは、前記負極形成工程における該負極活物質層の厚みに対して0.038以上0.130以下であり、前記被覆層の空隙率が35%〜85%であり、前記被覆層の密度は0.6g/cm 〜2g/cm であり、前記被覆層の厚みは3μm以上10μm以下であり、前記被覆層において、前記無機粒子と前記被覆層用結着剤の質量比は15:1〜100:1であり、
前記被覆層用結着剤は含フッ素樹脂であることを特徴とするリチウムイオン二次電池の製造方法。
A method for producing a laminated lithium ion secondary battery having an electrolyte solution,
A negative electrode forming step of forming a coating layer containing inorganic particles, a binder for the coating layer, and voids on the surface of the negative electrode active material layer formed on the surface of the current collector;
An electrode plate group forming step for forming an electrode plate group having a positive electrode, a separator, and a negative electrode obtained in the negative electrode forming step;
A constraining step of constraining the electrode plate group in the thickness direction so that the thickness does not increase in the manufactured lithium ion secondary battery;
Have
The thickness of the coating layer in the negative electrode forming step is 0.038 or more and 0.130 or less with respect to the thickness of the negative electrode active material layer in the negative electrode forming step, and the porosity of the coating layer is 35% to 85%. , and the density of the coating layer is 0.6g / cm 3 ~2g / cm 3 , the thickness of the coating layer has a 3μm or 10μm or less, in the coating layer, consolidating the inorganic particles and the covering layer The mass ratio of the dressing is 15: 1 to 100: 1,
The method for producing a lithium ion secondary battery, wherein the coating layer binder is a fluorine-containing resin.
JP2014237327A 2014-11-25 2014-11-25 Lithium ion secondary battery and manufacturing method thereof Expired - Fee Related JP6600938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014237327A JP6600938B2 (en) 2014-11-25 2014-11-25 Lithium ion secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014237327A JP6600938B2 (en) 2014-11-25 2014-11-25 Lithium ion secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016100240A JP2016100240A (en) 2016-05-30
JP6600938B2 true JP6600938B2 (en) 2019-11-06

Family

ID=56078084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014237327A Expired - Fee Related JP6600938B2 (en) 2014-11-25 2014-11-25 Lithium ion secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6600938B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6883265B2 (en) * 2017-12-25 2021-06-09 トヨタ自動車株式会社 Lithium secondary battery
US20230061388A1 (en) * 2019-12-24 2023-03-02 Sanyo Electric Co., Ltd. Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
KR20220135527A (en) * 2021-03-30 2022-10-07 삼성에스디아이 주식회사 Electrode assembly for rechargeable lithium battery, and rechargeable lithium battery including same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4839117B2 (en) * 2005-04-04 2011-12-21 パナソニック株式会社 Cylindrical lithium secondary battery
JP4519796B2 (en) * 2005-04-15 2010-08-04 パナソニック株式会社 Square lithium secondary battery
JP5424011B2 (en) * 2008-08-13 2014-02-26 ソニー株式会社 SECONDARY BATTERY AND ITS MANUFACTURING METHOD, SECONDARY BATTERY ANODE AND SECONDARY BATTERY POSITIVE
JP4524713B2 (en) * 2008-11-06 2010-08-18 トヨタ自動車株式会社 Lithium secondary battery and its use
JP5920638B2 (en) * 2011-05-02 2016-05-18 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP5994354B2 (en) * 2011-09-05 2016-09-21 ソニー株式会社 Separator and nonaqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and power system

Also Published As

Publication number Publication date
JP2016100240A (en) 2016-05-30

Similar Documents

Publication Publication Date Title
JP2007035358A (en) Positive electrode active substance, its manufacturing method and lithium ion secondary battery
JP6327011B2 (en) Electrode for power storage device, power storage device, and method for manufacturing electrode for power storage device
JP2004111076A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP6044427B2 (en) Current collector for positive electrode of lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6136809B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6061143B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6597267B2 (en) Lithium ion secondary battery
JP5656093B2 (en) Batteries having an electrolyte solution holding layer
JP2015002008A (en) Electrode including protective layer formed on active material layer
JP5643996B1 (en) Lithium ion secondary battery having a positive electrode comprising a thermal runaway suppression layer on a positive electrode active material layer
US8980482B2 (en) Nonaqueous electrolyte lithium ion secondary battery
JP6600938B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP2016115403A (en) Lithium ion secondary battery and method for manufacturing the same
JP5713071B2 (en) Lithium ion secondary battery
WO2015198519A1 (en) Electricity storage device electrode, electricity storage device and electricity storage device electrode production method
JP6160521B2 (en) Power storage device
JP2015005353A (en) Power storage device
JP6016029B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6048751B2 (en) Current collector for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5557067B1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2015053288A (en) Battery provided with electrolyte holding layer
JP6202191B2 (en) A positive electrode active material layer having a first positive electrode active material and a second positive electrode active material, and a method for producing a positive electrode comprising the positive electrode active material layer
JP6460381B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP6187824B2 (en) Method for producing composition comprising first positive electrode active material, second positive electrode active material, conductive additive, binder and solvent
JP5610031B1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190923

R151 Written notification of patent or utility model registration

Ref document number: 6600938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees