JP4839117B2 - Cylindrical lithium secondary battery - Google Patents

Cylindrical lithium secondary battery Download PDF

Info

Publication number
JP4839117B2
JP4839117B2 JP2006092657A JP2006092657A JP4839117B2 JP 4839117 B2 JP4839117 B2 JP 4839117B2 JP 2006092657 A JP2006092657 A JP 2006092657A JP 2006092657 A JP2006092657 A JP 2006092657A JP 4839117 B2 JP4839117 B2 JP 4839117B2
Authority
JP
Japan
Prior art keywords
battery
resistant layer
porous heat
active material
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006092657A
Other languages
Japanese (ja)
Other versions
JP2006313739A (en
Inventor
万郷 藤川
剛平 鈴木
薫 井上
幹也 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006092657A priority Critical patent/JP4839117B2/en
Publication of JP2006313739A publication Critical patent/JP2006313739A/en
Application granted granted Critical
Publication of JP4839117B2 publication Critical patent/JP4839117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)

Description

本発明は、特に安全性と電池特性とを両立させた円筒型リチウム二次電池に関する。   The present invention relates to a cylindrical lithium secondary battery that achieves both safety and battery characteristics.

リチウム二次電池は、ポータブル機器を中心に高容量電源として注目されている。さらに、近年、電気自動車を中心に、高出力電源としてもリチウム二次電池が注目されつつある。一般にリチウム二次電池を含む化学電池では、正極と負極とを電気的に絶縁するとともに電解質を保持する役目をもつセパレータを有する。リチウム二次電池の場合、ポリオレフィン(例えばポリエチレン、ポリプロピレンなど)からなる微多孔質フィルムが、セパレータとして主に用いられている。正極と負極とを、これらの間に介在するセパレータとともに、円柱状に捲回することにより、円筒型リチウム二次電池の電極群が形成される。   Lithium secondary batteries are attracting attention as high-capacity power supplies, mainly portable devices. Furthermore, in recent years, lithium secondary batteries have been attracting attention as a high-output power source mainly in electric vehicles. In general, a chemical battery including a lithium secondary battery has a separator that functions to electrically insulate a positive electrode and a negative electrode and hold an electrolyte. In the case of a lithium secondary battery, a microporous film made of polyolefin (for example, polyethylene, polypropylene, etc.) is mainly used as a separator. The electrode group of the cylindrical lithium secondary battery is formed by winding the positive electrode and the negative electrode together with a separator interposed between them into a cylindrical shape.

しかし、極度な高温環境にリチウム二次電池を長時間保持した場合、微多孔質フィルムからなるセパレータは収縮しやすい。セパレータが収縮すると、正極と負極とが物理的に接触する内部短絡が発生する可能性がある。特に近年、リチウム二次電池の高容量化に伴い、セパレータが薄型化する傾向にある。よって、内部短絡の防止が、一層、重要視されつつある。一旦、内部短絡が発生すると、短絡電流に伴うジュール熱によって短絡部が拡大し、電池が過熱に至る場合もある。   However, when a lithium secondary battery is held in an extremely high temperature environment for a long time, a separator made of a microporous film tends to shrink. When the separator contracts, an internal short circuit in which the positive electrode and the negative electrode are in physical contact may occur. Particularly, in recent years, with the increase in capacity of lithium secondary batteries, separators tend to be thinner. Therefore, prevention of internal short circuit is becoming more important. Once an internal short circuit occurs, the short circuit part may expand due to Joule heat associated with the short circuit current, and the battery may overheat.

そこで、仮に内部短絡が発生しても、短絡部の拡大を抑制する観点から、無機フィラー(固体微粒子)および結着剤を含む多孔質耐熱層を、電極活物質層に担持させることが提案されている。無機フィラーには、アルミナ、シリカなどが用いられている。多孔質耐熱層には、無機フィラーが充填されており、フィラー粒子同士は比較的少量の結着剤で結合されている(特許文献1)。多孔質耐熱層は、高温でも収縮しにくいので、内部短絡の発生時に、電池の過熱を抑止する働きがある。
特開平7−220759号公報
Therefore, even if an internal short circuit occurs, it has been proposed to support a porous heat-resistant layer containing an inorganic filler (solid fine particles) and a binder on the electrode active material layer from the viewpoint of suppressing the expansion of the short circuit part. ing. As the inorganic filler, alumina, silica, or the like is used. The porous heat-resistant layer is filled with an inorganic filler, and filler particles are bonded to each other with a relatively small amount of a binder (Patent Document 1). Since the porous heat-resistant layer hardly shrinks even at high temperatures, it has a function of suppressing overheating of the battery when an internal short circuit occurs.
Japanese Patent Laid-Open No. 7-220759

近年、ポータブル機器の電源においては、充電を短時間で完了させる必要性が高まっている。充電を短時間で終えるためには、高率充電(例えば1時間率以下)を行う必要がある。高率充電では、低率充電(例えば1.5時間率以上)の場合と比較して、充放電に伴う極板の膨張および収縮が大きく、ガス発生も顕著となる。そのため、電極群に歪みが生じる。多孔質耐熱層が含む結着剤量は、比較的少量であるため、フィラー粒子同士の結着力は小さい。よって、多孔質耐熱層が破損し、内部短絡時に電池の過熱を抑止する機能が低下することがある。   In recent years, there has been an increasing need to complete charging in a short time in the power source of portable devices. In order to finish charging in a short time, it is necessary to perform high rate charging (for example, 1 hour rate or less). In the high rate charge, compared with the case of the low rate charge (for example, 1.5 hour rate or more), the expansion and contraction of the electrode plate accompanying the charge / discharge are large, and the gas generation becomes remarkable. Therefore, distortion occurs in the electrode group. Since the amount of the binder contained in the porous heat-resistant layer is relatively small, the binding force between the filler particles is small. Therefore, the porous heat-resistant layer may be damaged, and the function of suppressing overheating of the battery during an internal short circuit may be deteriorated.

本発明は、多孔質耐熱層の破損を防止することにより安全性を確保でき、かつ優れた電池特性を実現できる円筒型リチウム二次電池の提供を目的とする。   An object of the present invention is to provide a cylindrical lithium secondary battery capable of ensuring safety by preventing damage to a porous heat-resistant layer and realizing excellent battery characteristics.

本発明は、底部と側壁と上部開口とを有する円筒型の電池缶と、電極群と、非水電解質と、電極群および非水電解質を収容した電池缶の上部開口を覆う封口板とを含むリチウム二次電池に関する。前記電池缶の材質は、鉄またはステンレス鋼である。電極群は、帯状の正極と帯状の負極とを、これらの間に介在する多孔質耐熱層およびセパレータとともに捲回してなる。正極は、正極芯材とその両面に担持された正極活物質層とを含み、負極は、負極芯材とその両面に担持された負極活物質層とを含む。前記正極活物質層は、正極活物質として、リチウム含有遷移金属酸化物を含み、前記負極活物質層は、負極活物質として、天然黒鉛または人造黒鉛を含み、前記多孔質耐熱層は、絶縁性フィラーと結着剤とを含み、前記結着剤の量は、前記絶縁性フィラー100重量部あたり1〜10重量部であり、前記多孔質耐熱層の空隙率は40〜80%である。多孔質耐熱層の厚みAと、電池缶の側壁の厚みBとは、0.005≦A/B≦0.1を満たす。 The present invention includes a cylindrical battery can having a bottom, a side wall, and an upper opening, an electrode group, a nonaqueous electrolyte, and a sealing plate that covers the upper opening of the battery can containing the electrode group and the nonaqueous electrolyte. The present invention relates to a lithium secondary battery. The battery can is made of iron or stainless steel. The electrode group is formed by winding a belt-like positive electrode and a belt-like negative electrode together with a porous heat-resistant layer and a separator interposed therebetween. The positive electrode includes a positive electrode core material and a positive electrode active material layer supported on both surfaces thereof, and the negative electrode includes a negative electrode core material and a negative electrode active material layer supported on both surfaces thereof. The positive electrode active material layer includes a lithium-containing transition metal oxide as a positive electrode active material, the negative electrode active material layer includes natural graphite or artificial graphite as a negative electrode active material, and the porous heat-resistant layer has an insulating property. A filler and a binder are included, the amount of the binder is 1 to 10 parts by weight per 100 parts by weight of the insulating filler, and the porosity of the porous heat-resistant layer is 40 to 80%. The thickness A of the porous heat-resistant layer and the thickness B of the side wall of the battery can satisfy 0.005 ≦ A / B ≦ 0.1.

多孔質耐熱層の厚みAは2〜10μmであり、電池缶の側壁の厚みBは80〜300μmであり、多孔質耐熱層の厚みAおよび電池缶の側壁の厚みBは、0.01≦A/B≦0.05を満たすことが好ましい。   The thickness A of the porous heat-resistant layer is 2 to 10 μm, the thickness B of the side wall of the battery can is 80 to 300 μm, and the thickness A of the porous heat-resistant layer and the thickness B of the side wall of the battery can are 0.01 ≦ A It is preferable to satisfy /B≦0.05.

多孔質耐熱層は、正極および負極の少なくとも一方の電極において、芯材の両面に担持された2つの活物質層のうちの少なくとも一方の表面に担持されていることが好ましい。
縁性フィラーは、無機酸化物からなることが好ましい。
The porous heat-resistant layer is preferably supported on at least one surface of two active material layers supported on both surfaces of the core material in at least one of the positive electrode and the negative electrode.
Insulation filler is preferably made of an inorganic oxide.

高率充電を行う場合、電極群に対して大きな歪みが印加される。しかし、電池缶の側壁が電極群を押し返す力が十分であれば、多孔質耐熱層は破損を免れる。この場合、多孔質耐熱層は、正極または負極の活物質層に押し付けられるため、形状を維持できると考えられる。   When performing high rate charging, a large strain is applied to the electrode group. However, if the side wall of the battery can sufficiently pushes back the electrode group, the porous heat-resistant layer can be prevented from being damaged. In this case, since the porous heat-resistant layer is pressed against the active material layer of the positive electrode or the negative electrode, it is considered that the shape can be maintained.

ただし、多孔質耐熱層には、正極と負極との間に電解質を保持する機能も要求される。よって、多孔質耐熱層が過度に活物質層に押し付けられると、電解質が電極群内で局所的に枯渇する。その結果、電池特性は低下する。   However, the porous heat-resistant layer is also required to have a function of holding an electrolyte between the positive electrode and the negative electrode. Therefore, when the porous heat-resistant layer is excessively pressed against the active material layer, the electrolyte is locally depleted in the electrode group. As a result, the battery characteristics are degraded.

本発明は、上記の2つの知見に基づいている。本発明は、電池缶の側壁が多孔質耐熱層を押し返す力を、多孔質耐熱層の厚みに応じて、適正範囲に制御することを提案している。これにより、多孔質耐熱層の破損を防止でき、内部短絡時の安全性を確保できる。さらに、優れた電池特性も実現できる。   The present invention is based on the above two findings. The present invention proposes that the force by which the side wall of the battery can pushes back the porous heat-resistant layer is controlled within an appropriate range according to the thickness of the porous heat-resistant layer. Thereby, damage to a porous heat-resistant layer can be prevented, and safety at the time of an internal short circuit can be secured. Furthermore, excellent battery characteristics can be realized.

図1は、本発明の円筒型リチウム二次電池の一部を概念的に示している。
正極13は、帯状の正極芯材11およびこの両面に担持された正極活物質層12を有する。負極16は、帯状の負極芯材14およびこの両面に担持された負極活物質層15を有する。負極活物質層15の表面には、多孔質耐熱層18が担持されている。多孔質耐熱層18は、内部短絡時に短絡部の拡大を防止する役割を果たす。正極13と負極16とは、これらの間に介在する帯状のセパレータ17および多孔質耐熱層18とともに捲回され、電極群を構成している。電極群の最外周には、負極芯材の露出部14aが配置されている。電極群は、円筒型の電池缶19に収容されている。
FIG. 1 conceptually shows a part of the cylindrical lithium secondary battery of the present invention.
The positive electrode 13 includes a strip-shaped positive electrode core material 11 and a positive electrode active material layer 12 supported on both surfaces thereof. The negative electrode 16 has a strip-shaped negative electrode core material 14 and a negative electrode active material layer 15 supported on both sides thereof. A porous heat resistant layer 18 is supported on the surface of the negative electrode active material layer 15. The porous heat-resistant layer 18 plays a role of preventing the expansion of the short-circuit portion when an internal short circuit occurs. The positive electrode 13 and the negative electrode 16 are wound together with a strip-shaped separator 17 and a porous heat-resistant layer 18 interposed between them to constitute an electrode group. An exposed portion 14a of the negative electrode core material is disposed on the outermost periphery of the electrode group. The electrode group is accommodated in a cylindrical battery can 19.

本発明においては、多孔質耐熱層の厚みAと、電池缶の側壁の厚みBとが、0.005≦A/B≦0.1を満たす。多孔質耐熱層には、耐短絡性を確保する機能(第1機能)と、電解質を保持する機能(第2機能)とを有する。電池缶の側壁が電極群を押し返す力が不足すると、高率充電時に多孔質耐熱層が破損しやすく、第1機能が損なわれる。一方、電池缶の側壁が電極群を押し返す力が過剰になると、多孔質耐熱層が強く締め付けられるため、十分量の電解質を保持できない。よって、第2機能が損なわれる。   In the present invention, the thickness A of the porous heat-resistant layer and the thickness B of the side wall of the battery can satisfy 0.005 ≦ A / B ≦ 0.1. The porous heat-resistant layer has a function of securing short-circuit resistance (first function) and a function of retaining electrolyte (second function). When the force with which the side wall of the battery can pushes back the electrode group is insufficient, the porous heat-resistant layer is easily damaged during high-rate charging, and the first function is impaired. On the other hand, if the force with which the side wall of the battery can pushes back the electrode group becomes excessive, the porous heat-resistant layer is strongly tightened, so that a sufficient amount of electrolyte cannot be retained. Therefore, the second function is impaired.

A/B<0.005の場合、多孔質耐熱層の厚みAは、電池缶の側壁の厚みBに対して薄すぎる。多孔質耐熱層が薄いと、そこに保持される電解質量は少なくなる。その上、電池缶の側壁から電極群に大きな圧力が印加されるため、多孔質耐熱層から電解質が搾り出される傾向が強い。よって、電極群内で電解質が局所的に枯渇し、電池特性が低下する。第1機能と第2機能とのバランスを最適化する観点からは、0.01≦A/Bであることが望ましく、0.015≦A/Bであることが更に望ましい。   When A / B <0.005, the thickness A of the porous heat-resistant layer is too thin with respect to the thickness B of the side wall of the battery can. When the porous heat-resistant layer is thin, the electrolytic mass retained therein is reduced. In addition, since a large pressure is applied to the electrode group from the side wall of the battery can, the electrolyte tends to be squeezed out from the porous heat-resistant layer. Therefore, the electrolyte is locally depleted in the electrode group, and the battery characteristics are deteriorated. From the viewpoint of optimizing the balance between the first function and the second function, 0.01 ≦ A / B is desirable, and 0.015 ≦ A / B is more desirable.

0.1<A/Bの場合、多孔質耐熱層の厚みAは、電池缶の側壁の厚みBに対して厚すぎる。多孔質耐熱層が厚いと、その柔軟性が低下し、多孔質耐熱層は脆くなる。よって、高率充電によって電極群が変形する際に、多孔質耐熱層が崩れやすい。その上、電池缶の側壁が電極群を押し返す力が不足するため、多孔質耐熱層の補強も不十分になる。よって、多孔質耐熱層が容易に破損し、電池の耐短絡性が低下する。第1機能と第2機能とのバランスを最適化する観点からは、A/B≦0.05であることが望ましく、A/B≦0.045であることが更に望ましい。以上より、A/Bは、0.01≦A/B≦0.05を満たすことが好ましく、0.015≦A/B≦0.045を満たすことが特に好ましい。   In the case of 0.1 <A / B, the thickness A of the porous heat-resistant layer is too thick with respect to the thickness B of the side wall of the battery can. When the porous heat-resistant layer is thick, its flexibility is lowered and the porous heat-resistant layer becomes brittle. Therefore, when the electrode group is deformed by high rate charging, the porous heat-resistant layer tends to collapse. In addition, the strength of the porous heat-resistant layer is insufficient because the side wall of the battery can lacks the force to push back the electrode group. Therefore, the porous heat-resistant layer is easily damaged, and the short circuit resistance of the battery is lowered. From the viewpoint of optimizing the balance between the first function and the second function, A / B ≦ 0.05 is desirable, and A / B ≦ 0.045 is more desirable. From the above, A / B preferably satisfies 0.01 ≦ A / B ≦ 0.05, and particularly preferably satisfies 0.015 ≦ A / B ≦ 0.045.

多孔質耐熱層の厚みAは2〜10μmであることが好ましく、3〜8μmであることが更に好ましい。厚みAが小さすぎると、耐短絡性を向上させる機能もしくは電解質を保持する機能が不十分になる場合がある。厚みAが大きすぎると、正極と負極との間隔が過剰に広がり、出力特性が低下することがある。   The thickness A of the porous heat-resistant layer is preferably 2 to 10 μm, and more preferably 3 to 8 μm. If the thickness A is too small, the function of improving the short circuit resistance or the function of holding the electrolyte may be insufficient. If the thickness A is too large, the distance between the positive electrode and the negative electrode may be excessively widened, and the output characteristics may be deteriorated.

電池缶の側壁の厚みBは80〜300μmであることが好ましく、100〜250μmであることが更に好ましい。厚みBが小さすぎると、電池缶の成形が困難になる場合がある。厚みBが大きすぎると、電池のエネルギー密度を高くすることが困難になる。   The thickness B of the side wall of the battery can is preferably 80 to 300 μm, and more preferably 100 to 250 μm. If the thickness B is too small, it may be difficult to mold the battery can. If the thickness B is too large, it is difficult to increase the energy density of the battery.

帯状のセパレータには、微多孔質フィルムを用いることが好ましい。微多孔質フィルムの材質には、ポリオレフィンを用いることが好ましく、ポリオレフィンは、ポリエチレン、ポリプロピレンなどであることが好ましい。ポリエチレンとポリプロピレンの両方を含む微多孔質フィルムを用いることもできる。微多孔質フィルムの厚みは、高容量設計を維持する観点から、8〜20μmが好ましい。   A microporous film is preferably used for the strip-shaped separator. Polyolefin is preferably used as the material of the microporous film, and the polyolefin is preferably polyethylene, polypropylene or the like. A microporous film containing both polyethylene and polypropylene can also be used. The thickness of the microporous film is preferably 8 to 20 μm from the viewpoint of maintaining a high capacity design.

多孔質耐熱層は、正極活物質層の表面だけに設けてもよく、負極活物質層の表面だけに設けてもよく、正極活物質層の表面と負極活物質層の表面に設けてもよい。ただし、内部短絡を確実に回避する観点からは、正極活物質層よりも大面積に設計される負極活物質層の表面に設けることが望ましい。多孔質耐熱層は、芯材の片面にある活物質層だけに設けてもよく、芯材の両面にある活物質層に設けてもよい。また、多孔質耐熱層は、活物質層の表面に接着されていることが望ましい。   The porous heat-resistant layer may be provided only on the surface of the positive electrode active material layer, may be provided only on the surface of the negative electrode active material layer, or may be provided on the surface of the positive electrode active material layer and the surface of the negative electrode active material layer. . However, from the viewpoint of reliably avoiding an internal short circuit, it is desirable to provide it on the surface of the negative electrode active material layer designed to have a larger area than the positive electrode active material layer. The porous heat-resistant layer may be provided only on the active material layer on one side of the core material, or may be provided on the active material layer on both sides of the core material. The porous heat-resistant layer is desirably bonded to the surface of the active material layer.

多孔質耐熱層は、独立したシート状であってもよい。ただし、シート状に形成された多孔質耐熱層は、機械的強度が余り高くないため、取り扱いが困難になる場合がある。また、多孔質耐熱層は、セパレータの表面に設けてもよい。ただし、セパレータは高温下で収縮するため、多孔質耐熱層の製造条件に細心の注意を払う必要がある。これらの懸念を払拭する観点からも、正極活物質層または負極活物質層の表面に多孔質耐熱層を設けることが望ましい。多孔質耐熱層は多くの空隙を有するため、正極活物質層、負極活物質層もしくはセパレータの表面に形成しても、リチウムイオンの移動を妨げることがない。なお、同一または異なる組成の多孔質耐熱層を積層してもよい。   The porous heat-resistant layer may be an independent sheet. However, the porous heat-resistant layer formed in a sheet shape is not so high in mechanical strength, so that it may be difficult to handle. The porous heat-resistant layer may be provided on the surface of the separator. However, since the separator shrinks at a high temperature, it is necessary to pay close attention to the manufacturing conditions of the porous heat-resistant layer. From the viewpoint of eliminating these concerns, it is desirable to provide a porous heat-resistant layer on the surface of the positive electrode active material layer or the negative electrode active material layer. Since the porous heat-resistant layer has many voids, even if it is formed on the surface of the positive electrode active material layer, the negative electrode active material layer, or the separator, the movement of lithium ions is not hindered. In addition, you may laminate | stack the porous heat resistant layer of the same or different composition.

多孔質耐熱層は、絶縁性フィラーおよび結着剤を含むことが好ましい。このような多孔質耐熱層は、絶縁性フィラーと少量の結着剤とを含む原料ペーストを、ドクターブレードやダイコートなどの方法で、電極活物質層の表面に塗布し、乾燥させることにより形成される。原料ペーストは、絶縁性フィラーと結着剤と液状成分とを、双椀式練合機などで混合することにより調製される。   The porous heat-resistant layer preferably contains an insulating filler and a binder. Such a porous heat-resistant layer is formed by applying a raw material paste containing an insulating filler and a small amount of a binder to the surface of the electrode active material layer by a method such as doctor blade or die coating, and drying. The The raw material paste is prepared by mixing an insulating filler, a binder, and a liquid component with a twin-type kneader or the like.

高耐熱性樹脂の繊維を膜状に成形したものを多孔質耐熱層に用いることもできる。高耐熱性樹脂には、アラミド、ポリアミドイミドなどが好ましく用いられる。ただし、絶縁性フィラーおよび結着剤を含む多孔質耐熱層の方が、結着剤の作用により構造的強度が高くなるので好ましい。   A highly heat-resistant resin fiber formed into a film can be used for the porous heat-resistant layer. For the high heat resistance resin, aramid, polyamideimide, etc. are preferably used. However, a porous heat-resistant layer containing an insulating filler and a binder is preferable because the structural strength is increased by the action of the binder.

絶縁性フィラーには、高耐熱性樹脂の繊維もしくはビーズなどを用いることもできるが、無機酸化物を用いることが好ましい。無機酸化物は硬質であるため、充放電に伴って電極が膨張しても、正極と負極との間隔を適性範囲内に維持することができる。無機酸化物のなかでも、特にアルミナ、シリカ、マグネシア、チタニア、ジルコニアなどは、リチウム二次電池の使用環境下において電気化学的な安定性が高い点で好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。絶縁性フィラーとして、アラミド、ポリアミドイミドなどの高耐熱性樹脂を用いることもできる。無機酸化物と高耐熱性樹脂とを併用することもできる。   As the insulating filler, fibers or beads of a high heat-resistant resin can be used, but an inorganic oxide is preferably used. Since the inorganic oxide is hard, the interval between the positive electrode and the negative electrode can be maintained within an appropriate range even if the electrode expands with charge / discharge. Among the inorganic oxides, alumina, silica, magnesia, titania, zirconia, and the like are particularly preferable in terms of high electrochemical stability in the usage environment of the lithium secondary battery. These may be used alone or in combination of two or more. As the insulating filler, a high heat-resistant resin such as aramid or polyamideimide can be used. An inorganic oxide and a high heat resistant resin can be used in combination.

絶縁性フィラーおよび結着剤を含む多孔質耐熱層においては、その機械的強度を維持するとともにイオン伝導性を確保する観点から、結着剤の量が、絶縁性フィラー100重量部あたり、1〜10重量部が好ましく、2〜8重量部が更に好ましい。結着剤および増粘剤のほとんどは、非水電解質で膨潤する性質を有する。よって、結着剤の量が10重量部を超えると、結着剤の過度な膨潤により、多孔質耐熱層の空隙が塞がれ、イオン伝導性が低下し、電池反応が阻害される場合がある。一方、結着剤の量が1重量部未満では、多孔質耐熱層の機械的強度が低下する場合がある。   In the porous heat-resistant layer containing an insulating filler and a binder, the amount of the binder is 1 to 100 parts by weight of the insulating filler from the viewpoint of maintaining its mechanical strength and ensuring ionic conductivity. 10 parts by weight is preferable, and 2 to 8 parts by weight is more preferable. Most binders and thickeners have the property of swelling with non-aqueous electrolytes. Therefore, if the amount of the binder exceeds 10 parts by weight, the pores of the porous heat-resistant layer may be blocked due to excessive swelling of the binder, the ion conductivity may be lowered, and the battery reaction may be inhibited. is there. On the other hand, if the amount of the binder is less than 1 part by weight, the mechanical strength of the porous heat-resistant layer may be lowered.

多孔質耐熱層に用いる結着剤は、特に限定されないが、ポリフッ化ビニリデン(以下、PVDFと略記)、ポリテトラフルオロエチレン(以下、PTFEと略記)、ポリアクリル酸系ゴム粒子(例えば日本ゼオン(株)製のBM−500B(商品名))などが好ましい。ここで、PTFEやBM−500Bは、増粘剤と組み合わせて用いることが好ましい。増粘剤は、特に限定されないが、カルボキシメチルセルロース(以下、CMCと略記)、ポリエチレンオキシド(以下、PEOと略記)、変性アクリロニトリルゴム(例えば日本ゼオン(株)製のBM−720H(商品名))などが好ましい。   The binder used for the porous heat-resistant layer is not particularly limited, but polyvinylidene fluoride (hereinafter abbreviated as PVDF), polytetrafluoroethylene (hereinafter abbreviated as PTFE), polyacrylic rubber particles (for example, Nippon Zeon ( BM-500B (trade name) manufactured by KK) is preferred. Here, it is preferable to use PTFE and BM-500B in combination with a thickener. The thickener is not particularly limited, but carboxymethyl cellulose (hereinafter abbreviated as CMC), polyethylene oxide (hereinafter abbreviated as PEO), modified acrylonitrile rubber (for example, BM-720H (trade name) manufactured by Nippon Zeon Co., Ltd.) Etc. are preferable.

絶縁性フィラーおよび結着剤を含む多孔質耐熱層の空隙率は、その機械的強度を維持するとともに、イオン伝導性を確保する観点から、40〜80%が好適であり、45〜65%が更に好適である。多孔質耐熱層の空隙率を40〜80%に制御し、多孔質耐熱層に適量の電解質を含ませることにより、電極群が適度に膨張する。よって、電極群が電池缶の内側面を適度に押圧するようになる。この効果と、B/A比の適正化による効果とが相乗的に奏されることにより、第1機能と第2機能とのバランスに特に優れた電池が得られる。   The porosity of the porous heat-resistant layer containing the insulating filler and the binder is preferably 40 to 80% and 45 to 65% from the viewpoint of maintaining the mechanical strength and ensuring ionic conductivity. Further preferred. By controlling the porosity of the porous heat-resistant layer to 40 to 80% and including an appropriate amount of electrolyte in the porous heat-resistant layer, the electrode group expands appropriately. Therefore, an electrode group comes to press the inner surface of a battery can moderately. By synergistically producing this effect and the effect obtained by optimizing the B / A ratio, a battery that is particularly excellent in the balance between the first function and the second function can be obtained.

多孔質耐熱層の空隙率は、絶縁性フィラーのメディアン径を変えたり、結着剤の量を変えたり、原料ペーストの乾燥条件を変えたりすることによって制御できる。例えば、乾燥温度を高くするか、熱風の風量を大きくすれば、空隙率は相対的に高くなる。空隙率は、多孔質耐熱層の厚さ、絶縁性フィラーおよび結着剤の量、絶縁性フィラーおよび結着剤の真比重などから計算により求めることができる。多孔質耐熱層の厚さは、極板断面のSEM写真を数箇所撮影し、例えば10箇所の厚みの平均値から求めることができる。また、水銀ポロシメータにより空隙率を求めることもできる。   The porosity of the porous heat-resistant layer can be controlled by changing the median diameter of the insulating filler, changing the amount of the binder, or changing the drying conditions of the raw material paste. For example, if the drying temperature is increased or the amount of hot air is increased, the porosity is relatively increased. The porosity can be obtained by calculation from the thickness of the porous heat-resistant layer, the amounts of the insulating filler and the binder, the true specific gravity of the insulating filler and the binder, and the like. The thickness of the porous heat-resistant layer can be obtained from, for example, an average value of 10 thicknesses obtained by taking several SEM photographs of the cross section of the electrode plate. Further, the porosity can be obtained by a mercury porosimeter.

正極は、正極芯材とその両面に担持された正極活物質層とを含む。正極芯材は捲回に適した帯状であり、Al、Al合金などからなる。正極活物質層は、正極活物質を必須成分として含み、導電剤、結着剤などを任意成分として含むことができる。これらの材料は、特に限定されない。ただし、正極活物質には、リチウム含有遷移金属酸化物が好ましく用いられる。リチウム含有遷移金属酸化物のなかでも、コバルト酸リチウムおよびその変性体、ニッケル酸リチウムおよびその変性体、マンガン酸リチウムおよびその変性体などが好ましい。   The positive electrode includes a positive electrode core material and a positive electrode active material layer supported on both surfaces thereof. The positive electrode core material has a strip shape suitable for winding, and is made of Al, Al alloy or the like. The positive electrode active material layer includes a positive electrode active material as an essential component, and can include a conductive agent, a binder, and the like as optional components. These materials are not particularly limited. However, a lithium-containing transition metal oxide is preferably used for the positive electrode active material. Of the lithium-containing transition metal oxides, lithium cobaltate and modified products thereof, lithium nickelate and modified products thereof, lithium manganate and modified products thereof are preferable.

負極は、負極芯材とその両面に担持された負極活物質層を含む。負極芯材は捲回に適した帯状であり、Cu、Cu合金などからなる。負極活物質層は、負極活物質を必須成分として含み、導電剤、結着剤などを任意成分として含むことができる。これらの材料は、特に限定されない。ただし、負極活物質には、各種天然黒鉛、各種人造黒鉛、シリサイドなどのシリコン系複合材料、リチウム金属、各種合金材料などが好ましく用いられる。   The negative electrode includes a negative electrode core material and a negative electrode active material layer carried on both sides thereof. The negative electrode core material has a strip shape suitable for winding and is made of Cu, Cu alloy, or the like. The negative electrode active material layer includes a negative electrode active material as an essential component, and can include a conductive agent, a binder, and the like as optional components. These materials are not particularly limited. However, as the negative electrode active material, various natural graphites, various artificial graphites, silicon-based composite materials such as silicide, lithium metal, various alloy materials, and the like are preferably used.

正極または負極の結着剤には、例えばPTFE、PVDF、スチレンブタジエンゴムなどを用いることができる。導電剤には、例えばアセチレンブラック、ケッチェンブラック(登録商標)、各種グラファイトなどを用いることができる。   As the positive electrode or negative electrode binder, for example, PTFE, PVDF, styrene butadiene rubber, or the like can be used. As the conductive agent, for example, acetylene black, ketjen black (registered trademark), various graphites, and the like can be used.

非水電解質は、リチウム塩を非水溶媒に溶解したものが好ましい。リチウム塩は、特に限定されないが、LiPF6、LiBF4などが好ましい。リチウム塩は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。非水溶媒も特に限定されないが、例えばエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)などが好ましく用いられる。非水溶媒は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The non-aqueous electrolyte is preferably a lithium salt dissolved in a non-aqueous solvent. Lithium salt is not particularly limited, LiPF 6, etc. LiBF 4 are preferred. A lithium salt may be used individually by 1 type, and may be used in combination of 2 or more type. The non-aqueous solvent is not particularly limited, however, for example, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and the like are preferably used. A non-aqueous solvent may be used individually by 1 type, and may be used in combination of 2 or more type.

電池缶の材質は、リチウム二次電池の作動電圧範囲において電気化学的に安定でなければならない。例えば、鉄、ステンレス鋼、アルミニウムなどを用いることが好ましい。また、電池缶には、ニッケルやスズによるめっきが施されていてもよい。   The material of the battery can must be electrochemically stable in the operating voltage range of the lithium secondary battery. For example, it is preferable to use iron, stainless steel, aluminum, or the like. The battery can may be plated with nickel or tin.

次に、本発明を実施例に基づいて具体的に説明する。   Next, the present invention will be specifically described based on examples.

《電池1》
(i)正極の作製
コバルト酸リチウム3kgと、呉羽化学(株)製のPVDF#1320(PVDFを12重量%含むN−メチル−2−ピロリドン(以下、NMPと略記)溶液)1kgと、アセチレンブラック90gと、適量のNMPとを、双腕式練合機で攪拌し、正極合剤ペーストを調製した。このペーストを厚さ15μmのアルミニウム箔からなる正極芯材の両面に塗布し、乾燥し、圧延して、正極活物質層を形成し、総厚が160μmの正極を得た。正極は56mm幅の帯状に裁断した。
<Battery 1>
(I) Production of positive electrode 3 kg of lithium cobaltate, 1 kg of PVDF # 1320 (N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) solution containing 12% by weight of PVDF) manufactured by Kureha Chemical Co., Ltd., and acetylene black 90 g and an appropriate amount of NMP were stirred with a double arm kneader to prepare a positive electrode mixture paste. This paste was applied to both sides of a positive electrode core material made of an aluminum foil having a thickness of 15 μm, dried and rolled to form a positive electrode active material layer, whereby a positive electrode having a total thickness of 160 μm was obtained. The positive electrode was cut into a strip having a width of 56 mm.

(ii)負極の作製
人造黒鉛3kgと、日本ゼオン(株)製のBM−400B(変性スチレンブタジエンゴムを40重量%含む水性分散液)75gと、CMC30gと、適量の水とを、双腕式練合機で攪拌し、負極合剤ペーストを調製した。このペーストを厚さ10μmの銅箔からなる負極芯材の両面に塗布し、乾燥し、圧延して、負極活物質層を形成し、総厚が180μmの負極を得た。負極は57mm幅の帯状に裁断した。
(Ii) Preparation of negative electrode 3 kg of artificial graphite, 75 g of BM-400B (aqueous dispersion containing 40% by weight of modified styrene butadiene rubber) manufactured by Nippon Zeon Co., Ltd., 30 g of CMC, and an appropriate amount of water, The mixture was stirred with a kneader to prepare a negative electrode mixture paste. This paste was applied to both sides of a negative electrode core material made of a copper foil having a thickness of 10 μm, dried and rolled to form a negative electrode active material layer, whereby a negative electrode having a total thickness of 180 μm was obtained. The negative electrode was cut into a 57 mm wide strip.

(iii)多孔質耐熱層の形成
メディアン径0.3μmのアルミナ(絶縁性フィラー)970gと、日本ゼオン(株)製のBM−720H(変性ポリアクリロニトリルゴム(結着剤)を8重量%含むNMP溶液)375gと、適量のNMPとを、双腕式練合機で攪拌し、原料ペーストを調製した。この原料ペーストを、負極活物質層の表面に塗布し、120℃真空減圧下で10時間乾燥し、厚さ0.5μmの多孔質耐熱層を形成した。
多孔質耐熱層の空隙率は48%であった。空隙率は、断面SEM撮影により求めた多孔質耐熱層の厚みと、蛍光X線分析によって求めた一定面積の多孔質耐熱層中に存在するアルミナ量と、アルミナおよび結着剤の真比重と、アルミナと結着剤との重量比から計算により求めた。
(Iii) Formation of porous heat-resistant layer 970 g of alumina (insulating filler) with a median diameter of 0.3 μm and NMP containing 8% by weight of BM-720H (modified polyacrylonitrile rubber (binder)) manufactured by Nippon Zeon Co., Ltd. Solution) 375 g and an appropriate amount of NMP were stirred with a double-arm kneader to prepare a raw material paste. This raw material paste was applied to the surface of the negative electrode active material layer and dried at 120 ° C. under vacuum under reduced pressure for 10 hours to form a porous heat-resistant layer having a thickness of 0.5 μm.
The porosity of the porous heat resistant layer was 48%. The porosity is the thickness of the porous heat-resistant layer determined by cross-sectional SEM imaging, the amount of alumina present in the porous heat-resistant layer of a certain area determined by fluorescent X-ray analysis, the true specific gravity of alumina and the binder, It calculated | required by calculation from the weight ratio of an alumina and a binder.

(iv)非水電解質の調製
エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、エチルメチルカーボネート(EMC)との体積比1:1:1の混合溶媒に、1モル/リットルの濃度でLiPF6を溶解させ、さらに全体の3重量%相当のビニレンカーボネートを添加して、非水電解質を得た。
(Iv) Preparation of non-aqueous electrolyte LiPF in a mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in a volume ratio of 1: 1: 1 at a concentration of 1 mol / liter. 6 was dissolved, and further vinylene carbonate equivalent to 3% by weight of the total was added to obtain a non-aqueous electrolyte.

(v)電池の組み立て
図2を参照しながら説明する。
正極5と、両面に多孔質耐熱層(図示せず)が設けられた負極6とを、厚さ20μmのポリエチレン製の微多孔質フィルムからなるセパレータ7(セルガード(株)製のA089(商品名))を介して捲回し、円柱状の電極群を構成した。
電極群の上下にそれぞれ絶縁板8aおよび8bを配置し、ニッケルめっきを施した鉄製の円筒型の電池缶1に、電極群を挿入した。電池缶1の側壁の厚みは50μmとし、内径は18mmとした。
正極5には正極リード5aの一端を接続し、他端は、安全弁を有する封口板2の下面に溶接した。負極6には負極リード6aの一端を接続し、他端は、電池缶1の内底面に溶接した。次に、電極群の中心の空洞部に、非水電解質を5.5g注入し、電極群に電解質を含浸させた。
その後、電池缶1の開口を、周囲にガスケット3を配した封口板2で塞ぎ、電池缶1の開口端をガスケット3にかしめた。こうして、直径18mm、高さ65mm、設計容量2000mAhの円筒型リチウム二次電池を完成させた。
(V) Assembling the battery The battery will be described with reference to FIG.
The positive electrode 5 and the negative electrode 6 provided with a porous heat-resistant layer (not shown) on both sides are combined with a separator 7 made of a polyethylene microporous film having a thickness of 20 μm (A089 manufactured by Celgard Co., Ltd. (trade name) )) To form a cylindrical electrode group.
Insulating plates 8a and 8b were respectively arranged above and below the electrode group, and the electrode group was inserted into an iron cylindrical battery can 1 plated with nickel. The thickness of the side wall of the battery can 1 was 50 μm, and the inner diameter was 18 mm.
One end of a positive electrode lead 5a was connected to the positive electrode 5, and the other end was welded to the lower surface of the sealing plate 2 having a safety valve. One end of a negative electrode lead 6 a was connected to the negative electrode 6, and the other end was welded to the inner bottom surface of the battery can 1. Next, 5.5 g of a non-aqueous electrolyte was injected into the central cavity of the electrode group, and the electrode group was impregnated with the electrolyte.
Thereafter, the opening of the battery can 1 was closed with a sealing plate 2 having a gasket 3 disposed around it, and the opening end of the battery can 1 was caulked to the gasket 3. Thus, a cylindrical lithium secondary battery having a diameter of 18 mm, a height of 65 mm, and a design capacity of 2000 mAh was completed.

《電池2》
電池缶の側壁の厚みを80μmとした以外は、電池1と同様の円筒型リチウム二次電池を作製した。
<Battery 2>
A cylindrical lithium secondary battery similar to the battery 1 was produced except that the thickness of the side wall of the battery can was 80 μm.

《電池3》
電池缶の側壁の厚みを150μmとした以外は、電池1と同様の円筒型リチウム二次電池を作製した。
<Battery 3>
A cylindrical lithium secondary battery similar to the battery 1 was produced except that the thickness of the side wall of the battery can was 150 μm.

《電池4》
電池缶の側壁の厚みを300μmとした以外は、電池1と同様の円筒型リチウム二次電池を作製した。
<Battery 4>
A cylindrical lithium secondary battery similar to the battery 1 was produced except that the thickness of the side wall of the battery can was 300 μm.

《電池5》
電池缶の側壁の厚みを600μmとした以外は、電池1と同様の円筒型リチウム二次電池を作製した。
<Battery 5>
A cylindrical lithium secondary battery similar to the battery 1 was produced except that the thickness of the side wall of the battery can was 600 μm.

《電池6》
電池缶の側壁の厚みを1000μmとした以外は、電池1と同様の円筒型リチウム二次電池を作製した。
<Battery 6>
A cylindrical lithium secondary battery similar to the battery 1 was produced except that the thickness of the side wall of the battery can was 1000 μm.

《電池7〜12》
多孔質耐熱層の厚みを1μmとした以外は、電池1、2、3、4、5および6と同様の円筒型リチウム二次電池(電池7、8、9、10、11および12)を作製した。
<Batteries 7-12>
Cylindrical lithium secondary batteries (batteries 7, 8, 9, 10, 11 and 12) similar to batteries 1, 2, 3, 4, 5 and 6 except that the thickness of the porous heat-resistant layer was 1 μm were produced. did.

《電池13〜18》
多孔質耐熱層の厚みを2μmとした以外は、電池1、2、3、4、5および6と同様の円筒型リチウム二次電池(電池13、14、15、16、17および18)を作製した。
<< Batteries 13-18 >>
Cylindrical lithium secondary batteries (batteries 13, 14, 15, 16, 17, and 18) similar to the batteries 1, 2, 3, 4, 5, and 6 except that the thickness of the porous heat-resistant layer was 2 μm were produced. did.

《電池19〜24》
多孔質耐熱層の厚みを3μmとした以外は、電池1、2、3、4、5および6と同様の円筒型リチウム二次電池(電池19、20、21、22、23および24)を作製した。
<Batteries 19 to 24>
Cylindrical lithium secondary batteries (batteries 19, 20, 21, 22, 23, and 24) similar to batteries 1, 2, 3, 4, 5, and 6 except that the thickness of the porous heat-resistant layer was set to 3 μm did.

《電池25〜32》
多孔質耐熱層の厚みを4μmとし、電池缶の側壁の厚みをそれぞれ50μm、80μm、150μm、200μm、300μm、500μm、600μmおよび1000μmとした以外は、電池1と同様の円筒型リチウム二次電池(電池25、26、27、28、29、30、31および32)を作製した。
<< Battery 25-32 >>
Cylindrical lithium secondary battery similar to battery 1 except that the thickness of the porous heat-resistant layer is 4 μm and the thickness of the side wall of the battery can is 50 μm, 80 μm, 150 μm, 200 μm, 300 μm, 500 μm, 600 μm and 1000 μm, respectively Batteries 25, 26, 27, 28, 29, 30, 31 and 32) were produced.

《電池33〜40》
多孔質耐熱層の厚みを7μmとし、電池缶の側壁の厚みをそれぞれ50μm、80μm、150μm、200μm、300μm、500μm、600μmおよび1000μmとした以外は、電池1と同様の円筒型リチウム二次電池(電池33、34、35、36、37、38、39および40)を作製した。
<Batteries 33 to 40>
Cylindrical lithium secondary battery (same as battery 1) except that the thickness of the porous heat-resistant layer is 7 μm and the thickness of the side wall of the battery can is 50 μm, 80 μm, 150 μm, 200 μm, 300 μm, 500 μm, 600 μm and 1000 μm, respectively Batteries 33, 34, 35, 36, 37, 38, 39 and 40) were produced.

《電池41〜48》
多孔質耐熱層の厚みを10μmとし、電池缶の側壁の厚みをそれぞれ50μm、80μm、150μm、200μm、300μm、500μm、600μmおよび1000μmとした以外は、電池1と同様の円筒型リチウム二次電池(電池41、42、43、44、45、46、47および48)を作製した。
<Batteries 41 to 48>
Cylindrical lithium secondary battery (same as battery 1) except that the thickness of the porous heat-resistant layer is 10 μm and the thickness of the side wall of the battery can is 50 μm, 80 μm, 150 μm, 200 μm, 300 μm, 500 μm, 600 μm and 1000 μm. Batteries 41, 42, 43, 44, 45, 46, 47 and 48) were produced.

《電池49〜54》
多孔質耐熱層の厚みを20μmとした以外は、電池1、2、3、4、5および6と同様の円筒型リチウム二次電池(電池49、50、51、52、53および54)を作製した。
なお、電池2〜54において、多孔質耐熱層の空隙率は、46〜49%であった。
<Battery 49-54>
Cylindrical lithium secondary batteries (batteries 49, 50, 51, 52, 53 and 54) similar to the batteries 1, 2, 3, 4, 5 and 6 except that the thickness of the porous heat-resistant layer was 20 μm were produced. did.
In batteries 2 to 54, the porosity of the porous heat-resistant layer was 46 to 49%.

[評価]
各電池に対し、慣らし充放電を2度行った後、45℃環境下で7日間保存した。その後、以下の評価を行った。多孔質耐熱層の厚みA、電池缶の側壁の厚みBおよび評価結果を表1に示す。
[Evaluation]
Each battery was conditioned and discharged twice and then stored for 7 days in a 45 ° C. environment. Then, the following evaluation was performed. Table 1 shows the thickness A of the porous heat-resistant layer, the thickness B of the side wall of the battery can, and the evaluation results.

(釘刺し試験)
各電池に対して、充電電流値2000mAで、終止電圧4.35Vまたは4.45Vまで充電を行った。20℃環境下において、充電状態の電池の側面に、直径2.7mmの鉄釘を5mm/秒の速度で突き刺し、電池温度を電池の側面に付した熱電対で測定した。90秒後の到達温度を求めた。
(Nail penetration test)
Each battery was charged to a final voltage of 4.35 V or 4.45 V at a charging current value of 2000 mA. Under a 20 ° C. environment, an iron nail having a diameter of 2.7 mm was pierced at a speed of 5 mm / second on the side surface of the charged battery, and the battery temperature was measured with a thermocouple attached to the side surface of the battery. The temperature reached after 90 seconds was determined.

(サイクル寿命試験)
20℃環境下で、以下の条件(1)または(2)で、充放電を500サイクル繰り返した。初期の放電容量に対する500サイクル目の放電容量の割合(容量維持率)を百分率で求めた。
条件(1)
定電流充電:充電電流値1400mA/充電終止電圧4.2V
定電圧充電:充電電圧値4.2V/充電終止電流100mA
定電流放電:放電電流値2000mA/放電終止電圧3V
(Cycle life test)
Charging / discharging was repeated 500 cycles under the following condition (1) or (2) in a 20 ° C. environment. The ratio (capacity maintenance ratio) of the discharge capacity at the 500th cycle to the initial discharge capacity was obtained as a percentage.
Condition (1)
Constant current charging: Charging current value 1400mA / end-of-charge voltage 4.2V
Constant voltage charging: Charging voltage value 4.2V / end-of-charge current 100mA
Constant current discharge: discharge current value 2000 mA / discharge end voltage 3 V

条件(2)
定電流充電:充電電流値1400mA/充電終止電圧4.2V
定電圧充電:充電電圧値4.2V/充電終止電流100mA
定電流放電:放電電流値4000mA/放電終止電圧3V
Condition (2)
Constant current charging: Charging current value 1400mA / end-of-charge voltage 4.2V
Constant voltage charging: Charging voltage value 4.2V / end-of-charge current 100mA
Constant current discharge: discharge current value 4000 mA / discharge end voltage 3 V

Figure 0004839117
Figure 0004839117

多孔質耐熱層の厚みA(μm)の電池缶の側壁の厚みB(μm)に対する比(A/B)が0.005未満の電池3〜6、10〜12、17、18、24および32は、サイクル寿命特性の低下が顕著であった。この結果は、多孔質耐熱層の厚みが、電池缶に対して、相対的に薄いことと関連している。薄い多孔質耐熱層は、保持できる電解質量が少ない上に、電池缶の側壁からの圧力により電解質が搾り出されやすい。よって、電極群中の電解質が枯渇したと考えられる。   Batteries 3-6, 10-12, 17, 18, 24, and 32 having a ratio (A / B) of the thickness A (μm) of the porous heat-resistant layer to the thickness B (μm) of the side wall of the battery can is less than 0.005. The deterioration of the cycle life characteristics was remarkable. This result is related to the fact that the thickness of the porous heat-resistant layer is relatively thin with respect to the battery can. The thin porous heat-resistant layer has a small electrolytic mass that can be held, and the electrolyte is easily squeezed out by the pressure from the side wall of the battery can. Therefore, it is considered that the electrolyte in the electrode group has been exhausted.

一方、A/B比が0.1を超える電池33、41、42、49、50および51は、釘刺し試験における過熱が顕著であった。これらの電池を分解したところ、釘刺しを行った箇所に限らず、一様に多孔質耐熱層が脱落していた。この結果は、多孔質耐熱層の厚みが、電池缶に対して、相対的に厚いことと関連している。厚い多孔質耐熱層は、脆くなるため、高率充電時に電極群が変形する際に崩れやすくなる。さらに、電池缶の側壁が薄いため、電極群を押し返す力も脆弱である。そのため、多孔質耐熱層が破損したと考えられる。   On the other hand, in the batteries 33, 41, 42, 49, 50 and 51 having an A / B ratio exceeding 0.1, overheating in the nail penetration test was significant. When these batteries were disassembled, the porous heat-resistant layer was uniformly removed not only at the place where the nail was pierced. This result is related to the thickness of the porous heat-resistant layer being relatively thick with respect to the battery can. Since the thick porous heat-resistant layer becomes brittle, it tends to collapse when the electrode group is deformed during high rate charging. Furthermore, since the side wall of the battery can is thin, the force to push back the electrode group is also fragile. Therefore, it is considered that the porous heat-resistant layer was damaged.

電池缶の側壁の厚みにかかわらず、電池1〜12は、4000mAで放電を行う厳しい充放電条件(2)では、サイクル寿命特性の低下が顕著であった。よって、多孔質耐熱層が1μm以下では薄すぎて、本発明の効果が小さくなると考えられる。ただし、条件(1)の場合、多孔質耐熱層が1μm以下でも、比較的良好な値が得られている。   Regardless of the thickness of the side wall of the battery can, the batteries 1 to 12 exhibited a significant decrease in cycle life characteristics under severe charge / discharge conditions (2) in which discharge was performed at 4000 mA. Therefore, if the porous heat-resistant layer is 1 μm or less, the effect of the present invention is considered to be too thin. However, in the case of the condition (1), a relatively good value is obtained even when the porous heat-resistant layer is 1 μm or less.

電池缶の側壁の厚みにかかわらず、電池49〜54は、条件(2)では、サイクル寿命特性の低下が顕著であった。また、4.45Vまで充電した電池の釘刺し試験における過熱も、比較的顕著であった。よって、多孔質耐熱層が20μm以上では、厚すぎて、本発明の効果が小さくなると考えられる。   Regardless of the thickness of the side wall of the battery can, the batteries 49 to 54 had a significant decrease in cycle life characteristics under the condition (2). In addition, overheating in a nail penetration test of a battery charged to 4.45 V was relatively significant. Therefore, when the porous heat-resistant layer is 20 μm or more, it is considered that the thickness of the porous heat-resistant layer is too thick and the effect of the present invention is reduced.

全体的に、電池缶が厚すぎると(例えば300μm超)、条件(2)におけるサイクル寿命特性が低下する傾向が見られた。また、電池缶が薄すぎると(例えば50μm)、4.45Vまで充電した電池の釘刺し試験における過熱が進む傾向が見られた。   Overall, when the battery can was too thick (for example, more than 300 μm), the cycle life characteristics in the condition (2) tended to be reduced. Moreover, when the battery can was too thin (for example, 50 μm), overheating in the nail penetration test of the battery charged to 4.45 V was observed.

本発明の円筒型リチウム二次電池は、耐短絡性に優れ、高度な安全性を有し、かつ高率放電特性にも優れていることから、あらゆるポータブル機器(例えば携帯情報端末、携帯電子機器など)の電源として利用可能である。ただし、本発明の円筒型リチウム二次電池の用途は特に限定されず、家庭用小型電力貯蔵装置、自動二輪車、電気自動車、ハイブリッド電気自動車などの電源に用いることもできる。   Since the cylindrical lithium secondary battery of the present invention has excellent short-circuit resistance, high safety, and excellent high rate discharge characteristics, it can be used in all portable devices (for example, portable information terminals and portable electronic devices). Etc.) can be used as a power source. However, the use of the cylindrical lithium secondary battery of the present invention is not particularly limited, and can be used as a power source for a small household electric power storage device, a motorcycle, an electric vehicle, a hybrid electric vehicle, and the like.

本発明の円筒型リチウム二次電池の部分断面概念図である。It is a partial section conceptual diagram of the cylindrical lithium secondary battery of the present invention. 本発明の実施例に係る円筒型リチウム二次電池の縦断面図である。It is a longitudinal cross-sectional view of the cylindrical lithium secondary battery which concerns on the Example of this invention.

符号の説明Explanation of symbols

1、19 電池缶
2 封口板
3 ガスケット
5、13 正極
5a 正極リード
6、16 負極
6a 負極リード
7、17 セパレータ
8a、8b 絶縁板
11 正極芯材
12 正極活物質層
14 負極芯材
14a 負極芯材の露出部
15 負極活物質層
18 多孔質耐熱層
DESCRIPTION OF SYMBOLS 1, 19 Battery can 2 Sealing plate 3 Gasket 5, 13 Positive electrode 5a Positive electrode lead 6, 16 Negative electrode 6a Negative electrode lead 7, 17 Separator 8a, 8b Insulating plate 11 Positive electrode core material 12 Positive electrode active material layer 14 Negative electrode core material 14a Negative electrode core material Exposed portion 15 Negative electrode active material layer 18 Porous heat resistant layer

Claims (4)

底部と側壁と上部開口とを有する円筒型の電池缶と、電極群と、非水電解質と、前記電極群および前記非水電解質を収容した前記電池缶の上部開口を覆う封口板とを含むリチウム二次電池であって、
前記電池缶の材質は、鉄またはステンレス鋼であり、
前記電極群は、帯状の正極と帯状の負極とを、これらの間に介在する多孔質耐熱層およびセパレータとともに捲回してなり、前記正極は、正極芯材とその両面に担持された正極活物質層とを含み、前記負極は、負極芯材とその両面に担持された負極活物質層とを含み、
前記正極活物質層は、正極活物質として、リチウム含有遷移金属酸化物を含み、前記負極活物質層は、負極活物質として、天然黒鉛または人造黒鉛を含み、
前記多孔質耐熱層は、絶縁性フィラーと結着剤とを含み、前記結着剤の量は、前記絶縁性フィラー100重量部あたり1〜10重量部であり、前記多孔質耐熱層の空隙率は40〜80%であり、
前記多孔質耐熱層の厚みAと、前記電池缶の側壁の厚みBとが、0.005≦A/B≦0.1を満たす、円筒型リチウム二次電池。
Lithium including a cylindrical battery can having a bottom, a side wall, and an upper opening, an electrode group, a non-aqueous electrolyte, and a sealing plate covering the upper opening of the battery can containing the electrode group and the non-aqueous electrolyte A secondary battery,
The material of the battery can is iron or stainless steel,
The electrode group is formed by winding a strip-shaped positive electrode and a strip-shaped negative electrode together with a porous heat-resistant layer and a separator interposed therebetween, and the positive electrode comprises a positive electrode core material and a positive electrode active material carried on both surfaces thereof A negative electrode core material and a negative electrode active material layer carried on both sides thereof,
The positive electrode active material layer includes a lithium-containing transition metal oxide as a positive electrode active material, the negative electrode active material layer includes natural graphite or artificial graphite as a negative electrode active material,
The porous heat-resistant layer includes an insulating filler and a binder, and the amount of the binder is 1 to 10 parts by weight per 100 parts by weight of the insulating filler, and the porosity of the porous heat-resistant layer Is 40-80%,
A cylindrical lithium secondary battery in which a thickness A of the porous heat-resistant layer and a thickness B of a side wall of the battery can satisfy 0.005 ≦ A / B ≦ 0.1.
前記多孔質耐熱層の厚みAが、2〜10μmであり、前記電池缶の側壁の厚みBが、80〜300μmであり、0.01≦A/B≦0.05である、請求項1記載の円筒型リチウム二次電池。   2. The thickness A of the porous heat-resistant layer is 2 to 10 μm, the thickness B of the side wall of the battery can is 80 to 300 μm, and 0.01 ≦ A / B ≦ 0.05. Cylindrical lithium secondary battery. 前記正極および前記負極の少なくとも一方の電極において、前記芯材の両面に担持された2つの活物質層のうちの少なくとも一方の表面に、前記多孔質耐熱層が担持されている、請求項1記載の円筒型リチウム二次電池。   The porous heat-resistant layer is supported on at least one surface of two active material layers supported on both surfaces of the core material in at least one of the positive electrode and the negative electrode. Cylindrical lithium secondary battery. 前記絶縁性フィラーは、無機酸化物からなる、請求項記載の円筒型リチウム二次電池。 The insulating filler is made of an inorganic oxide, cylindrical lithium secondary battery according to claim 1, wherein.
JP2006092657A 2005-04-04 2006-03-30 Cylindrical lithium secondary battery Active JP4839117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006092657A JP4839117B2 (en) 2005-04-04 2006-03-30 Cylindrical lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005107255 2005-04-04
JP2005107255 2005-04-04
JP2006092657A JP4839117B2 (en) 2005-04-04 2006-03-30 Cylindrical lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2006313739A JP2006313739A (en) 2006-11-16
JP4839117B2 true JP4839117B2 (en) 2011-12-21

Family

ID=37535129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006092657A Active JP4839117B2 (en) 2005-04-04 2006-03-30 Cylindrical lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4839117B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5230108B2 (en) * 2007-01-26 2013-07-10 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2008192497A (en) 2007-02-06 2008-08-21 Matsushita Electric Ind Co Ltd Internal short circuit safety evaluation method, internal short circuit safety evaluation device, battery, and battery pack
CN102077107B (en) 2009-01-19 2013-07-24 松下电器产业株式会社 Battery internal short-circuit evaluating device
JP6600938B2 (en) * 2014-11-25 2019-11-06 株式会社豊田自動織機 Lithium ion secondary battery and manufacturing method thereof
US9508976B2 (en) 2015-01-09 2016-11-29 Applied Materials, Inc. Battery separator with dielectric coating
KR102593300B1 (en) * 2015-06-05 2023-10-25 어플라이드 머티어리얼스, 인코포레이티드 Battery separator with dielectric coating

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3371301B2 (en) * 1994-01-31 2003-01-27 ソニー株式会社 Non-aqueous electrolyte secondary battery
EP0836238B1 (en) * 1995-06-28 2005-11-16 Ube Industries, Ltd. Nonaqueous secondary battery
JPH09245836A (en) * 1996-03-08 1997-09-19 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JPH1021889A (en) * 1996-06-27 1998-01-23 Toyota Central Res & Dev Lab Inc Container of lithium ion secondary battery and electrode collector
JP4207451B2 (en) * 2002-04-19 2009-01-14 パナソニック株式会社 Cylindrical lithium ion secondary battery and manufacturing method thereof
JP4023213B2 (en) * 2002-05-20 2007-12-19 松下電器産業株式会社 Lithium ion secondary battery
US7396612B2 (en) * 2003-07-29 2008-07-08 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery

Also Published As

Publication number Publication date
JP2006313739A (en) 2006-11-16

Similar Documents

Publication Publication Date Title
JP4519796B2 (en) Square lithium secondary battery
JP4839116B2 (en) Cylindrical lithium secondary battery
US7378185B2 (en) Prismatic lithium secondary battery having a porous heat resistant layer
US7419743B2 (en) Cylindrical lithium battery resistant to breakage of the porous heat resistant layer
JP4839111B2 (en) Lithium secondary battery
US20110281161A1 (en) Lithium secondary battery
JP5365842B2 (en) Lithium ion battery
JP5924541B2 (en) Secondary battery
JP2010092820A (en) Lithium secondary cell and its manufacturing method
JP2004259636A (en) Nonaqueous electrolyte secondary battery
JPWO2012131883A1 (en) Lithium ion secondary battery
JP4839117B2 (en) Cylindrical lithium secondary battery
EP1780824B1 (en) Lithium secondary battery
JP6094815B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5999433B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP6008188B2 (en) Non-aqueous electrolyte secondary battery
JP4824450B2 (en) Nonaqueous electrolyte secondary battery
JP2007172879A (en) Battery and its manufacturing method
JP2015153535A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2007172878A (en) Battery and its manufacturing method
JP7296042B2 (en) Non-aqueous electrolyte secondary battery
JPWO2019220985A1 (en) Electrodes for lithium-ion secondary batteries
JP2019091603A (en) Nonaqueous electrolyte secondary battery
JP2008234852A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4839117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150