JP6460381B2 - Non-aqueous secondary battery and manufacturing method thereof - Google Patents

Non-aqueous secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP6460381B2
JP6460381B2 JP2014236561A JP2014236561A JP6460381B2 JP 6460381 B2 JP6460381 B2 JP 6460381B2 JP 2014236561 A JP2014236561 A JP 2014236561A JP 2014236561 A JP2014236561 A JP 2014236561A JP 6460381 B2 JP6460381 B2 JP 6460381B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014236561A
Other languages
Japanese (ja)
Other versions
JP2016100201A (en
Inventor
英二 水谷
英二 水谷
祐樹 杉本
祐樹 杉本
元章 奥田
元章 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2014236561A priority Critical patent/JP6460381B2/en
Publication of JP2016100201A publication Critical patent/JP2016100201A/en
Application granted granted Critical
Publication of JP6460381B2 publication Critical patent/JP6460381B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、非水系二次電池及びその製造方法に関する。   The present invention relates to a non-aqueous secondary battery and a method for manufacturing the same.

リチウムイオン二次電池などの非水系二次電池は、正極活物質を有する正極と、負極活物質を有する負極と、セパレータと、非水系の電解液とを具備する。非水系二次電池に充放電を行うと、電解液中の有機系物質の分解などにより、負極活物質及び正極活物質の表面に皮膜が形成されて、電池の内部抵抗が増加する傾向がある。電解液の分解の原因として、電解液中に微量に含まれる水分が影響していることが知られている。そこで、特許文献1では、電解液中の水分量を200〜500ppmにすることで、電極界面抵抗を抑えることが開示されている。   A non-aqueous secondary battery such as a lithium ion secondary battery includes a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, a separator, and a non-aqueous electrolyte solution. When charging / discharging a non-aqueous secondary battery, a film is formed on the surface of the negative electrode active material and the positive electrode active material due to decomposition of an organic material in the electrolyte solution, and the internal resistance of the battery tends to increase. . As a cause of decomposition of the electrolytic solution, it is known that moisture contained in a minute amount in the electrolytic solution is affected. Therefore, Patent Document 1 discloses that the electrode interface resistance is suppressed by setting the water content in the electrolytic solution to 200 to 500 ppm.

特開2005−228511号公報JP 2005-228511 A

近年、非水系二次電池は、更に高い出力が要求されている。このため、電池の内部抵抗を更に低減させることが求められている。   In recent years, higher output is required for non-aqueous secondary batteries. For this reason, it is required to further reduce the internal resistance of the battery.

本発明はかかる事情に鑑みてなされたものであり、内部抵抗を抑えることができる非水系二次電池を提供することを課題とする。   This invention is made | formed in view of this situation, and makes it a subject to provide the non-aqueous secondary battery which can suppress internal resistance.

本発明の非水系二次電池の製造方法は、正極集電体と、前記正極集電体上に形成した正極活物質を有する正極活物質層とを有する正極、
負極集電体と、前記負極集電体上に形成した負極活物質を有する負極活物質層と、前記負極活物質層の表面を被覆するとともに無機酸化物と結着剤とを有する保護層と、を有する負極、
前記正極と前記負極との間に介在されたセパレータ、及び
電解質と非水溶媒とを有する電解液、を有する非水系二次電池を製造する方法であって、
前記電解液の中の水分量を800ppm以下となるように調整することを特徴とする。
A non-aqueous secondary battery manufacturing method of the present invention includes a positive electrode current collector and a positive electrode active material layer having a positive electrode active material formed on the positive electrode current collector,
A negative electrode current collector, a negative electrode active material layer having a negative electrode active material formed on the negative electrode current collector, a protective layer covering the surface of the negative electrode active material layer and having an inorganic oxide and a binder; A negative electrode having
A method for producing a non-aqueous secondary battery comprising: a separator interposed between the positive electrode and the negative electrode; and an electrolyte having an electrolyte and a non-aqueous solvent,
The water content in the electrolytic solution is adjusted to be 800 ppm or less.

本発明の非水系二次電池は、正極と、負極と、セパレータと、電解質及び非水溶媒をもつ電解液と、を具備する非水系二次電池であって、
前記正極は、正極集電体と、前記正極集電体上に形成した正極活物質を有する正極活物質層とをもち、
前記負極は、負極集電体と、前記負極集電体上に形成した負極活物質を有する負極活物質層と、前記負極活物質層の表面を被覆するとともに無機酸化物と結着剤とを有する保護層とをもち、
前記電解液の中の水分量は800ppm以下であることを特徴とする。
The non-aqueous secondary battery of the present invention is a non-aqueous secondary battery comprising a positive electrode, a negative electrode, a separator, and an electrolyte solution having an electrolyte and a non-aqueous solvent,
The positive electrode has a positive electrode current collector and a positive electrode active material layer having a positive electrode active material formed on the positive electrode current collector,
The negative electrode includes a negative electrode current collector, a negative electrode active material layer having a negative electrode active material formed on the negative electrode current collector, a surface of the negative electrode active material layer, and an inorganic oxide and a binder. Having a protective layer,
The amount of water in the electrolytic solution is 800 ppm or less.

本発明は、上記構成を具備するため、電池の内部抵抗を抑えることができる非水系二次電池及びその製造方法を提供することができる。   Since this invention comprises the said structure, the nonaqueous secondary battery which can suppress the internal resistance of a battery, and its manufacturing method can be provided.

実施例1〜3及び参考例1,2のリチウムイオン二次電池の電解液中の水分量と放電抵抗との関係を示す図である。It is a figure which shows the relationship between the moisture content in the electrolyte solution of Examples 1-3 and the lithium ion secondary battery of Reference Examples 1 and 2, and discharge resistance.

本発明の実施形態に係る非水系二次電池及びその製造方法について詳細に説明する。   A nonaqueous secondary battery and a manufacturing method thereof according to an embodiment of the present invention will be described in detail.

本発明の非水系二次電池によれば、電池の内部抵抗を抑えることができる。その理由は以下のように考えられる。   According to the non-aqueous secondary battery of the present invention, the internal resistance of the battery can be suppressed. The reason is considered as follows.

負極活物質層表面に形成された無機酸化物を有する保護層は、水分と電解質の反応により発生する電解質の分解物を捕獲する機能をもつ。負極活物質層表面に無機酸化物を有する保護層を形成することで、負極活物質の表面に電解質分解物が堆積して皮膜が形成されることを抑制できる。ゆえに、特許文献1に記載した電解液中の水分量の範囲に比べて、800ppm以下という広い範囲の水分量で、電池の内部抵抗の上昇を抑制できる。なお、電解液中の水分量は、電解液の質量を1としたときの電池における電解液中の水分の質量比をいう。   The protective layer having an inorganic oxide formed on the surface of the negative electrode active material layer has a function of capturing a decomposition product of the electrolyte generated by a reaction between moisture and the electrolyte. By forming the protective layer having an inorganic oxide on the surface of the negative electrode active material layer, it is possible to suppress the formation of a film by depositing an electrolyte decomposition product on the surface of the negative electrode active material. Therefore, an increase in the internal resistance of the battery can be suppressed with a water content in a wide range of 800 ppm or less compared to the range of the water content in the electrolytic solution described in Patent Document 1. The amount of water in the electrolytic solution refers to the mass ratio of the water in the electrolytic solution in the battery when the mass of the electrolytic solution is 1.

電解質として、LiPFなどのフッ化塩を用いる場合には、電解液に水分が含まれていると、フッ化塩と水との反応によりHFが生成する。HFが発生すると、活物質に含まれているLiとHFが反応してLiFが発生する。負極上にLiFが堆積して皮膜が形成され、電池の内部抵抗が上昇する。 When a fluoride such as LiPF 6 is used as the electrolyte, HF is generated by the reaction between the fluoride and water if the electrolyte contains moisture. When HF is generated, Li and HF contained in the active material react to generate LiF. LiF is deposited on the negative electrode to form a film, and the internal resistance of the battery is increased.

本発明のように電解液中の水分量を800ppm以下にすることで、電解質であるフッ化塩と水との反応が抑制され、負極上にLiFが堆積しにくくなり、抵抗上昇が抑制される。   By setting the amount of water in the electrolytic solution to 800 ppm or less as in the present invention, the reaction between the electrolyte fluoride salt and water is suppressed, LiF is difficult to deposit on the negative electrode, and the resistance increase is suppressed. .

また、電解液中の水分量を800ppm以下とすることで、正極活物質の表面に電解質分解物が堆積することも抑制される。このことによっても電池の内部抵抗の上昇が抑制される。例えば、リチウムを含む正極活物質を用いる場合には、正極活物質中のリチウムと電解液中の水分とが反応して、LiOHが形成される。LiOHとCOが反応して、LiCOが生成する。COは、製造過程中で混入するものや電解液の分解により生成するものである。LiCOが生成すると、正極活物質表面にLiCOを有する皮膜が形成され、電池の内部抵抗が上昇する。 In addition, by setting the water content in the electrolytic solution to 800 ppm or less, it is possible to suppress the deposition of electrolyte decomposition products on the surface of the positive electrode active material. This also suppresses an increase in the internal resistance of the battery. For example, when a positive electrode active material containing lithium is used, LiOH in the positive electrode active material reacts with moisture in the electrolytic solution to form LiOH. LiOH and CO 2 react to produce Li 2 CO 3 . CO 2 is produced during the manufacturing process or produced by decomposition of the electrolytic solution. When Li 2 CO 3 is generated, a film having Li 2 CO 3 is formed on the surface of the positive electrode active material, and the internal resistance of the battery is increased.

本発明のように電解液中の水分量が800ppm以下にすることで、正極活物質中のリチウムと水分との反応が抑制され、正極活物質表面に皮膜が形成されにくくなり、抵抗上昇を抑制できる。   By making the amount of water in the electrolytic solution 800 ppm or less as in the present invention, the reaction between lithium and water in the positive electrode active material is suppressed, and a film is hardly formed on the surface of the positive electrode active material, thereby suppressing an increase in resistance. it can.

電解液中の水分量が800ppmを超える場合には、電池の内部抵抗が上昇するおそれがある。電解液中の水分量は、50ppm以上800ppm以下であることがよく、更には、200ppm以上800ppm以下が好ましい。電解液中の水分量が過少の場合には、電解液から水を除去するための乾燥に多大なエネルギーを必要とし、コスト高の原因となるおそれがある。特に、電解液中の水分量は500ppmを超えて800ppm以下であることが最も好ましい。この場合には、効果的に電池の内部抵抗を抑えることができる。   If the amount of water in the electrolyte exceeds 800 ppm, the internal resistance of the battery may increase. The amount of water in the electrolytic solution is preferably from 50 ppm to 800 ppm, and more preferably from 200 ppm to 800 ppm. If the amount of water in the electrolytic solution is too small, a large amount of energy is required for drying to remove water from the electrolytic solution, which may cause high costs. In particular, the amount of water in the electrolytic solution is most preferably more than 500 ppm and not more than 800 ppm. In this case, the internal resistance of the battery can be effectively suppressed.

電解液中の水分量を測定するために、例えば、カールフィッシャー法を行うとよい。   In order to measure the amount of water in the electrolytic solution, for example, the Karl Fischer method may be performed.

電解液中の水分量を調整するためには、例えば、電解液の調製を、湿度が管理された環境で行うとよい。電解液の調製を行う環境の相対湿度は、35〜55%がよい。電解液の調製を行う環境の温度は、5〜35℃がよい。電解液中の水分量を低減させるためには、調製された電解液を乾燥してもよい。電解液の乾燥は、電解液中の非水溶媒が蒸発し難い程度の温度で行うとよく、例えば80〜300℃で行うことがよい。   In order to adjust the amount of water in the electrolytic solution, for example, the electrolytic solution may be prepared in an environment in which humidity is controlled. The relative humidity of the environment in which the electrolytic solution is prepared is preferably 35 to 55%. The temperature of the environment in which the electrolytic solution is prepared is preferably 5 to 35 ° C. In order to reduce the amount of water in the electrolytic solution, the prepared electrolytic solution may be dried. The electrolyte solution is preferably dried at a temperature at which the non-aqueous solvent in the electrolyte solution is difficult to evaporate, for example, at 80 to 300 ° C.

また、電池組み付け後の電解液中の水分量は、正極、負極及びセパレータに含まれる水分によっても変動する。このため、正極、負極及びセパレータも、湿度が管理された環境で作製されるとよく、また、水分低減のために乾燥を行つてもよい。更に、正極、負極、セパレータ及び電解液を電池ケースに収容する組付工程を行う場合には、組付工程の環境の湿度を上記と同様に調整するとよい。これにより、電解液中の水分量を確実に800ppm以下に調整することができる。   Further, the amount of water in the electrolytic solution after assembling the battery also varies depending on the water contained in the positive electrode, the negative electrode, and the separator. For this reason, the positive electrode, the negative electrode, and the separator may be manufactured in an environment in which humidity is controlled, and may be dried to reduce moisture. Furthermore, when performing the assembly | attachment process which accommodates a positive electrode, a negative electrode, a separator, and electrolyte solution in a battery case, it is good to adjust the humidity of the environment of an assembly | attachment process similarly to the above. Thereby, the moisture content in electrolyte solution can be adjusted to 800 ppm or less reliably.

組付工程の前に、電解液中の水分量を確認することがよい。電池を組付けたときを想定すると、電解液中の水分量は電極、セパレータに含まれる水分も影響する。このため、電池を組付けたときの電池内の電解液中の水分量を確認するには、電解液だけでなく、電極、セパレータに含まれる水分量(質量)も測定する。電解液、電極及びセパレータについて測定した水分量の合計を電解液の質量で除した値を求める。この値を、電池内の電解液中の水分量として算出することができる。   Before the assembly process, it is preferable to confirm the amount of water in the electrolytic solution. Assuming that the battery is assembled, the amount of water in the electrolyte also affects the water contained in the electrodes and separator. For this reason, in order to confirm the moisture content in the electrolyte solution in the battery when the battery is assembled, not only the electrolyte solution but also the moisture content (mass) contained in the electrode and the separator is measured. A value obtained by dividing the total amount of moisture measured for the electrolyte solution, the electrode, and the separator by the mass of the electrolyte solution is obtained. This value can be calculated as the amount of water in the electrolyte in the battery.

また、組付工程の後にも、適宜、電解液中の水分量を確認するとよい。組付後の電解液中の水分量を確認するには、電池を分解する。分解後の正極、負極、セパレータ及び電解液に含まれる水分量(質量)を測定し、測定した水分量の合計を電解液の質量で除した値を、電池内の電解液中の水分量として求めることができる。   Moreover, it is good to confirm the moisture content in electrolyte solution after an assembly | attachment process suitably. To check the amount of water in the electrolyte after assembly, disassemble the battery. The amount of water (mass) contained in the positive electrode, negative electrode, separator and electrolyte after decomposition was measured, and the value obtained by dividing the total amount of water measured by the mass of the electrolyte was used as the amount of water in the electrolyte in the battery. Can be sought.

本発明の非水系二次電池に用いられる電解液は、電解質及び非水溶媒を有する。電解質は、リチウムイオンを含むとよい。リチウムイオンを含む電解質としては、例えば、フッ化塩が用いられる。かかるフッ化塩としては、例えば、LiAsF、LiPF、LiBF、LiCFSO、LiN(CFSOが挙げられる。電解液中の電解質の濃度は、0.5〜1.7mol/Lの範囲が好ましい。 The electrolytic solution used for the non-aqueous secondary battery of the present invention has an electrolyte and a non-aqueous solvent. The electrolyte may contain lithium ions. As the electrolyte containing lithium ions, for example, a fluoride salt is used. Examples of such fluoride salts include LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2 . The concentration of the electrolyte in the electrolytic solution is preferably in the range of 0.5 to 1.7 mol / L.

非水溶媒としては、環状エステル類、鎖状エステル類、エーテル類等の非水溶媒を用いることができる。環状エステル類としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2−メチル−ガンマブチロラクトン、アセチル−ガンマブチロラクトン、ガンマバレロラクトンを例示できる。鎖状エステル類としては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、エチルメチルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステルを例示できる。エーテル類としては、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジブトキシエタンを例示できる。電解液の溶媒として、上述のものを複数併用してもよい。特に、エチレンカーボネート、メチルエチルカーボネート、ジメチルカーボネートの3種を併用するのが好ましい。   As the non-aqueous solvent, non-aqueous solvents such as cyclic esters, chain esters and ethers can be used. Examples of cyclic esters include ethylene carbonate, propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone. Examples of chain esters include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, ethyl methyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester. Examples of ethers include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane. A plurality of the above-described solvents may be used in combination as the solvent for the electrolytic solution. In particular, it is preferable to use three types of ethylene carbonate, methyl ethyl carbonate, and dimethyl carbonate in combination.

負極活物質表面に形成される保護層は、無機酸化物と結着剤とを有する。保護層に用いられる無機酸化物としては、例えば、Al、SiO、TiO、ZrO、MgO、SiC、AlN、BN、CaCO、MgCO、BaCO、タルク、マイカ、カオリナイト、CaSO、MgSO、BaSO、CaO、ZnO、及びゼオライトが挙げられる。これらの無機酸化物は1種若しくは複数組み合わせて使用される。この中、Alが好ましい。Alは、電解液の分解物を捕獲する機能が特に高い。 The protective layer formed on the surface of the negative electrode active material has an inorganic oxide and a binder. Examples of the inorganic oxide used in the protective layer include Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2 , MgO, SiC, AlN, BN, CaCO 3 , MgCO 3 , BaCO 3 , talc, mica, and kaolinite. , CaSO 4 , MgSO 4 , BaSO 4 , CaO, ZnO, and zeolite. These inorganic oxides are used alone or in combination. Of these, Al 2 O 3 is preferable. Al 2 O 3 has a particularly high function of capturing a decomposition product of the electrolytic solution.

無機酸化物の平均粒径は、0.1〜10μmが好ましく、0.2〜5μmがより好ましく、0.3〜3μmが特に好ましい。無機酸化物の平均粒子径が小さすぎると、保護層に電解液を保持できる空間を形成するのが困難になる場合がある。無機酸化物の平均粒子径が大きすぎると保護層の厚みが増加するため、厚みの増加に因り生じる抵抗が電池出力に悪影響を与える恐れがある。なお、平均粒子径は、各成分のD50、即ち体積基準で測定したメディアン径を意味する。平均粒子径は、レーザー回折式粒度分布測定装置などの一般的な粒度分布測定装置にて測定すればよい。   The average particle size of the inorganic oxide is preferably 0.1 to 10 μm, more preferably 0.2 to 5 μm, and particularly preferably 0.3 to 3 μm. If the average particle size of the inorganic oxide is too small, it may be difficult to form a space capable of holding the electrolytic solution in the protective layer. If the average particle size of the inorganic oxide is too large, the thickness of the protective layer increases, and thus the resistance caused by the increase in thickness may adversely affect the battery output. In addition, an average particle diameter means D50 of each component, ie, the median diameter measured on the volume basis. The average particle diameter may be measured with a general particle size distribution measuring device such as a laser diffraction particle size distribution measuring device.

負極は、負極集電体と、負極集電体上に形成した負極活物質を有する負極活物質層と、負極活物質層の表面を被覆するとともに無機酸化物と結着剤とを有する保護層とをもつ。   The negative electrode includes a negative electrode current collector, a negative electrode active material layer having a negative electrode active material formed on the negative electrode current collector, and a protective layer covering the surface of the negative electrode active material layer and having an inorganic oxide and a binder. And have.

保護層に用いる結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、カルボキシメチルセルロース、メチルセルロース、スチレンブタジエンゴム、及びアルコキシシリル基含有樹脂が挙げられる。これらの結着剤は、単独で採用又は複数を併用すれば良い。保護層に用いる結着剤としては、電気化学的な安定性などの面から、ポリフッ化ビニリデンが特に好ましい。   Examples of the binder used in the protective layer include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, and carboxymethylcellulose. , Methyl cellulose, styrene butadiene rubber, and alkoxysilyl group-containing resin. These binders may be employed alone or in combination. As the binder used for the protective layer, polyvinylidene fluoride is particularly preferable from the viewpoint of electrochemical stability.

保護層における無機酸化物と結着剤との好ましい質量比は5:1〜200:1であり、より好ましくは10:1〜150:1であり、特に好ましくは15:1〜100:1である。   A preferable mass ratio of the inorganic oxide and the binder in the protective layer is 5: 1 to 200: 1, more preferably 10: 1 to 150: 1, and particularly preferably 15: 1 to 100: 1. is there.

保護層の厚みは、0.1〜12μmが好ましく、0.5〜10μmがより好ましく、1〜8μmが特に好ましい。保護層の厚みが過小の場合には、保護層の、電解液の分解物を捕獲する機能が低下するおそれがある。保護層の厚みが過大の場合には、電解液中の電解質が保護層を通過しにくくなり、負極活物質層に到達しにくくなって、電池の抵抗が高くなるおそれがある。   The thickness of the protective layer is preferably from 0.1 to 12 μm, more preferably from 0.5 to 10 μm, particularly preferably from 1 to 8 μm. When the thickness of the protective layer is too small, the function of capturing the decomposition product of the electrolytic solution of the protective layer may be reduced. When the thickness of the protective layer is excessive, the electrolyte in the electrolytic solution is difficult to pass through the protective layer, and is difficult to reach the negative electrode active material layer, which may increase the battery resistance.

保護層の密度は、0.1g/cm以上3g/cm以下が好ましく、0.3g/cm以上2.5g/cm以下がより好ましく、0.6g/cm以上2g/cm以下が特に好ましい。 The density of the protective layer, 0.1 g / cm 3 or more 3 g / cm 3 or less are preferred, 0.3 g / cm 3 or more 2.5 g / cm 3 and more preferably less, 0.6 g / cm 3 or more 2 g / cm 3 The following are particularly preferred:

保護層は、負極活物質層の表面を被覆している。保護層は、電解液を流通させる空隙をもつとよい。   The protective layer covers the surface of the negative electrode active material layer. The protective layer may have a gap through which the electrolytic solution flows.

保護層の空隙率は特に制限が無いが、5〜95%が好ましく、20〜90%がより好ましく、35〜85%がさらに好ましく、40〜80%が特に好ましい。   Although there is no restriction | limiting in particular in the porosity of a protective layer, 5-95% is preferable, 20-90% is more preferable, 35-85% is further more preferable, 40-80% is especially preferable.

負極活物質層の表面に保護層を形成するには、例えば、保護層の構成成分を溶媒に分散させて保護層形成用組成物を調製する工程、及び、当該保護層形成用組成物を負極活物質層又はセパレータ上に塗布する工程を実施した後、乾燥工程を実施すれば良い。保護層形成用組成物における保護層の構成成分の配合量は10〜50質量%の範囲内が好ましい。上記配合量を変えることで、形成する保護層の密度及び空隙率を変化させることができる。上記保護層形成用組成物の調製に用いる溶媒としては、無機化合物又は樹脂化合物からなる粒子が溶解しないものが好ましく、例えば、N−メチル−2−ピロリドン、メタノール、エタノール、メチルイソブチルケトン、水から適宜選択すればよい。塗布工程では、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いればよい。乾燥工程は、常圧条件で行っても良いし、真空乾燥機を用いた減圧条件下で行っても良い。乾燥温度は結着剤が分解しない範囲内で適宜設定すればよく、上記溶媒の沸点以上の温度が好ましく、例えば80〜300℃がよい。乾燥時間は塗布量及び乾燥温度に応じ適宜設定すればよい。   In order to form a protective layer on the surface of the negative electrode active material layer, for example, a step of preparing a protective layer forming composition by dispersing the constituent components of the protective layer in a solvent, and the protective layer forming composition as the negative electrode What is necessary is just to implement a drying process, after implementing the process apply | coated on an active material layer or a separator. The blending amount of the constituent components of the protective layer in the protective layer forming composition is preferably within the range of 10 to 50% by mass. By changing the blending amount, the density and porosity of the protective layer to be formed can be changed. As the solvent used for the preparation of the protective layer-forming composition, those in which particles composed of an inorganic compound or a resin compound are not dissolved are preferable, for example, from N-methyl-2-pyrrolidone, methanol, ethanol, methyl isobutyl ketone, and water. What is necessary is just to select suitably. In the coating process, a conventionally known method such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method may be used. The drying step may be performed under normal pressure conditions or under reduced pressure conditions using a vacuum dryer. The drying temperature may be appropriately set within a range where the binder does not decompose, and is preferably a temperature equal to or higher than the boiling point of the solvent, for example, 80 to 300 ° C. What is necessary is just to set drying time suitably according to an application quantity and drying temperature.

負極活物質層は、負極活物質を有する。負極活物質としては、各電池で採用される公知のものを用いれば良い。例えば、リチウムイオン二次電池の負極活物質としては、リチウムを吸蔵及び放出可能な炭素系材料、リチウムと合金化可能な元素、リチウムと合金化可能な元素を有する化合物、あるいは高分子材料を例示することができる。炭素系材料を用いた場合には、負極活物質層を形成するために用いる溶媒が水であることが多い。この場合には、負極活物質層に水分が多く含まれやすく、これを用いて電池を組付けたときには、負極活物質層中の水が電解液中にも含まれることになり、結果として電解液の水分量が増加しやすくなる。この場合には、特に、負極活物質層内の水分を管理するなどして、電池組み付け後の電解液の水分量を800ppm以下となるように調整することがよい。   The negative electrode active material layer has a negative electrode active material. As the negative electrode active material, a known material employed in each battery may be used. For example, as a negative electrode active material of a lithium ion secondary battery, a carbon-based material that can occlude and release lithium, an element that can be alloyed with lithium, a compound that has an element that can be alloyed with lithium, or a polymer material is exemplified. can do. When a carbon-based material is used, the solvent used for forming the negative electrode active material layer is often water. In this case, the negative electrode active material layer is likely to contain a large amount of water, and when the battery is assembled using this, the water in the negative electrode active material layer is also contained in the electrolyte, resulting in electrolysis. The amount of water in the liquid tends to increase. In this case, in particular, it is preferable to adjust the water content of the electrolytic solution after assembling the battery to 800 ppm or less by managing the water content in the negative electrode active material layer.

炭素系材料としては、難黒鉛化性炭素、人造黒鉛、天然黒鉛、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭あるいはカーボンブラック類を例示できる。ここで、有機高分子化合物焼成体とは、フェノール類やフラン類などの高分子材料を適当な温度で焼成して炭素化したものをいう。   Examples of the carbon-based material include non-graphitizable carbon, artificial graphite, natural graphite, cokes, graphites, glassy carbons, organic polymer compound fired bodies, carbon fibers, activated carbon, and carbon blacks. Here, the organic polymer compound fired body refers to a material obtained by firing and carbonizing a polymer material such as phenols and furans at an appropriate temperature.

リチウムと合金化可能な元素としては、具体的にNa、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biが例示でき、特に、SiまたはSnが好ましい。リチウムと合金化可能な元素を有する化合物としては、具体的にZnLiAl、AlSb、SiB、SiB、MgSi、MgSn、NiSi、TiSi、MoSi、 CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、SnO(0<w≦2)、SnSiO、LiSiO あるいはLiSnOを例示でき、特に、SiO(0.5≦x≦1.5)が好ましい。また、リチウムと合金化反応可能な元素を有する化合物として、スズ合金(Cu−Sn合金、Co−Sn合金等)を例示できる。高分子材料としては、具体的にポリアセチレン、ポリピロールを例示できる。 Specifically, elements that can be alloyed with lithium include Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si. , Ge, Sn, Pb, Sb, Bi can be exemplified, and Si or Sn is particularly preferable. Specific examples of compounds having elements that can be alloyed with lithium include ZnLiAl, AlSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2, CrSi 2, Cu 5 Si, FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO v (0 <v ≦ 2), SnO w (0 <w ≦ 2), SnSiO 3 , LiSiO 2 or LiSnO, and SiO x (0.5 ≦ x ≦ 1.5) is particularly preferable. Moreover, tin compounds (Cu-Sn alloy, Co-Sn alloy, etc.) can be illustrated as a compound which has an element which can be alloyed with lithium. Specific examples of the polymer material include polyacetylene and polypyrrole.

負極活物質層は必要に応じて結着剤及び/又は導電助剤を含む。結着剤としては、保護層に用いられるものと同様のものを用いることができる。結着剤の使用量については特に制限はないが、活物質100質量部に対して結着剤1〜50質量部の範囲が好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。   The negative electrode active material layer includes a binder and / or a conductive aid as necessary. As a binder, the thing similar to what is used for a protective layer can be used. Although there is no restriction | limiting in particular about the usage-amount of a binder, The range of 1-50 mass parts of binders with respect to 100 mass parts of active materials is preferable. This is because when the amount of the binder is too small, the moldability of the electrode is lowered, and when the amount of the binder is too large, the energy density of the electrode is lowered.

導電助剤は導電性を高めるために添加される。導電助剤としては、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック、ケッチェンブラック(登録商標)、気相法炭素繊維(Vapor Grown Carbon Fiber)が例示される。これらの導電助剤を単独または二種以上組み合わせて活物質層に添加することができる。導電助剤の使用量については特に制限はないが、例えば、活物質100質量部に対して導電助剤1〜30質量部とすることができる。   A conductive additive is added to increase conductivity. Examples of the conductive assistant include carbon black, graphite, acetylene black, ketjen black (registered trademark), and vapor grown carbon fiber (Vapor Grown Carbon Fiber) which are carbonaceous fine particles. These conductive assistants can be added to the active material layer alone or in combination of two or more. Although there is no restriction | limiting in particular about the usage-amount of a conductive support agent, For example, it can be set as 1-30 mass parts of conductive support agents with respect to 100 mass parts of active materials.

負極集電体の表面に負極活物質層を形成するには、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、負極集電体の表面に負極活物質を直接塗布すればよい。具体的には、負極活物質、並びに必要に応じて負極結着剤及び/又は導電助剤を含む負極活物質層形成用組成物を調製し、この組成物に適当な溶媒を加えてペーストとする。あらかじめ結着剤を溶媒に溶解させた溶液又は分散させた懸濁液を用いても良い。上記溶媒としては、N−メチル−2−ピロリドン、メタノール、エタノール、メチルイソブチルケトン、水を例示できる。上記ペーストを負極集電体の表面に塗布後、乾燥する。乾燥は、常圧条件で行っても良いし、真空乾燥機を用いた減圧条件下で行っても良い。乾燥温度は適宜設定すればよく、上記溶媒の沸点以上の温度が好ましく、例えば、80〜300℃がよい。乾燥時間は塗布量及び乾燥温度に応じ適宜設定すればよい。負極活物質層の密度を高めるべく、負極活物質層を形成させた乾燥後の集電体に対し、圧縮工程を加えても良い。   In order to form the negative electrode active material layer on the surface of the negative electrode current collector, a conventionally known method such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method is used. What is necessary is just to apply | coat an anode active material directly on the surface of a body. Specifically, a composition for forming a negative electrode active material layer containing a negative electrode active material and, if necessary, a negative electrode binder and / or a conductive aid is prepared, and an appropriate solvent is added to the composition to add a paste and To do. A solution in which a binder is dissolved in a solvent in advance or a dispersed suspension may be used. Examples of the solvent include N-methyl-2-pyrrolidone, methanol, ethanol, methyl isobutyl ketone, and water. The paste is applied to the surface of the negative electrode current collector and then dried. Drying may be performed under normal pressure conditions or under reduced pressure conditions using a vacuum dryer. What is necessary is just to set drying temperature suitably, and the temperature beyond the boiling point of the said solvent is preferable, for example, 80-300 degreeC is good. What is necessary is just to set drying time suitably according to an application quantity and drying temperature. In order to increase the density of the negative electrode active material layer, a compression step may be added to the dried current collector on which the negative electrode active material layer is formed.

正極は、正極集電体と、正極集電体上に形成した正極活物質を有する正極活物質層とを有する。正極集電体は、負極集電体と同様のものを用いることができる。   The positive electrode includes a positive electrode current collector and a positive electrode active material layer having a positive electrode active material formed on the positive electrode current collector. As the positive electrode current collector, the same one as the negative electrode current collector can be used.

正極活物質は、金属イオンを吸蔵及び放出し得る材料である。正極活物質は、リチウムイオンを吸蔵及び放出し得る材料であるとよい。かかる正極活物質は、リチウムと遷移金属とを有するリチウム複合金属酸化物からなるとよい。   The positive electrode active material is a material that can occlude and release metal ions. The positive electrode active material may be a material that can occlude and release lithium ions. Such a positive electrode active material is preferably made of a lithium composite metal oxide having lithium and a transition metal.

リチウム複合金属酸化物としては、例えば、一般式:LiNiCoMn(0.2≦a≦1.2、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Zr、Ti、P、Ga、Ge、V、Mo、Nb、W、Laから選ばれる少なくとも1の元素、1.7≦f≦2.1) で表される層状化合物、LiMnOを挙げることができる。また、リチウム複合金属酸化物は、一般式:LiMn2-y4(Aは、遷移金属元素、Ca、Mg、S、Si、Na、K、Al、P、Ga、及びGeから選ばれる少なくとも1種の元素、0<x<2、0≦y≦1)で表されるスピネル型化合物、及びスピネル型化合物と層状化合物の混合物で構成される固溶体、LiMPO、LiMVO又はLiMSiO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種から選択される)などで表されるポリアニオン系化合物であってもよい。 Examples of the lithium composite metal oxide include, for example, the general formula: Li a Ni b Co c Mn d De O f (0.2 ≦ a ≦ 1.2, b + c + d + e = 1, 0 ≦ e <1, D is Li, At least one element selected from Fe, Cr, Cu, Zn, Ca, Mg, S, Si, Na, K, Al, Zr, Ti, P, Ga, Ge, V, Mo, Nb, W, and La; .7 ≦ f ≦ 2.1) and Li 2 MnO 3 can be mentioned. The lithium composite metal oxide has a general formula: Li x A y Mn 2 -y O 4 (A is a transition metal element, Ca, Mg, S, Si, Na, K, Al, P, Ga, and Ge. At least one element selected from the group consisting of: a spinel compound represented by 0 <x <2, 0 ≦ y ≦ 1), and a solid solution composed of a mixture of a spinel compound and a layered compound, LiMPO 4 , LiMVO 4 or A polyanionic compound represented by Li 2 MSiO 4 (wherein M is selected from at least one of Co, Ni, Mn, and Fe) may be used.

層状化合物としては、例えば、LiNi0.5Co0.2Mn0.3、LiNi1/3Co1/3Mn1/3、LiNi0.5Mn0.5、LiNi0.75Co0.1Mn0.15、LiMnO、LiNiO、及びLiCoOから選ばれる少なくとも一種が挙げられる。スピネル型化合物としては、例えば、LiNi0.5Mn1.5、LiMnが挙げられる。ポリアニオン系化合物としては、例えば、LiFePO、LiCoPO、LiCoPOF、LiMnSiO、LiFeSiOが挙げられる。 Examples of the layer compound include LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Mn 0.5 O 2 , LiNi 0. And at least one selected from .75 Co 0.1 Mn 0.15 O 2 , LiMnO 2 , LiNiO 2 , and LiCoO 2 . Examples of the spinel compound include LiNi 0.5 Mn 1.5 O 4 and LiMn 2 O 4 . Examples of the polyanion compound include LiFePO 4 , LiCoPO 4 , Li 2 CoPO 4 F, Li 2 MnSiO 4 , and Li 2 FeSiO 4 .

正極活物質として用いられるいずれのリチウム金属酸化物も上記の組成式を基本組成とすればよく、基本組成に含まれる金属元素を他の金属元素で置換したものも使用可能である。また、正極活物質として、電荷担体(例えば充放電に寄与するリチウムイオン)を含まないものを用いても良い。例えば、硫黄単体(S)、硫黄と炭素を複合化した化合物、TiSなどの金属硫化物、V、MnOなどの酸化物、ポリアニリン及びアントラキノン並びにこれら芳香族を化学構造に含む化合物、共役二酢酸系有機物などの共役系材料、その他公知の材料を用いることもできる。さらに、ニトロキシド、ニトロニルニトロキシド、ガルビノキシル、フェノキシルなどの安定なラジカルを有する化合物を正極活物質として採用してもよい。リチウム等の電荷担体を含まない正極活物質材料を用いる場合には、正極及び/又は負極に、公知の方法により、予め電荷担体を添加しておく必要がある。電荷担体は、イオンの状態で添加しても良いし、金属等の非イオンの状態で添加しても良い。例えば、電荷担体がリチウムである場合には、リチウム箔を正極集電体の表面に被覆してもよい。 Any lithium metal oxide used as the positive electrode active material may have the above composition formula as a basic composition, and a metal element included in the basic composition may be substituted with another metal element. Moreover, you may use as a positive electrode active material the thing which does not contain a charge carrier (for example, lithium ion which contributes to charging / discharging). For example, sulfur alone (S), a compound in which sulfur and carbon are compounded, a metal sulfide such as TiS 2 , an oxide such as V 2 O 5 and MnO 2 , a compound containing polyaniline and anthraquinone, and these aromatics in the chemical structure In addition, conjugated materials such as conjugated diacetate-based organic substances and other known materials can also be used. Further, a compound having a stable radical such as nitroxide, nitronyl nitroxide, galvinoxyl, phenoxyl, etc. may be adopted as the positive electrode active material. When using a positive electrode active material that does not contain a charge carrier such as lithium, it is necessary to add a charge carrier to the positive electrode and / or the negative electrode in advance by a known method. The charge carrier may be added in an ionic state or in a non-ionic state such as a metal. For example, when the charge carrier is lithium, a lithium foil may be coated on the surface of the positive electrode current collector.

正極活物質層は、正極活物質、並びに必要に応じて結着剤及び/又は導電助剤を含む。正極活物質層に必要に応じて含まれる結着剤及び導電助剤は、負極活物質に必要に応じて含まれる結着剤及び導電助剤と同様のものを用いることが出来る。正極集電体の表面に正極活物質層を形成するには、負極活物質層を形成する方法と同様に行うことが出来る。   The positive electrode active material layer includes a positive electrode active material and, if necessary, a binder and / or a conductive aid. As the binder and the conductive additive included in the positive electrode active material layer as necessary, the same binder and conductive additive as necessary included in the negative electrode active material can be used. Forming the positive electrode active material layer on the surface of the positive electrode current collector can be performed in the same manner as the method of forming the negative electrode active material layer.

セパレータは、正極と負極との間に介設される。セパレータは、樹脂製であることがよい。樹脂製のセパレータとしては、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリエステル、ポリアミドなどの合成樹脂を1種又は複数用いた多孔質膜を例示できる。樹脂製セパレータは、単一の合成樹脂を用いた単層構造でも良いし、複数の合成樹脂の層を重ねた積層構造でも良い。樹脂製セパレータの厚みは特に制限されないが、5μm〜100μmの範囲が好ましく、10μm〜50μmの範囲がより好ましく、20μm〜30μmの範囲が特に好ましい。   The separator is interposed between the positive electrode and the negative electrode. The separator is preferably made of resin. Examples of the resin separator include a porous film using one or more synthetic resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyester, and polyamide. The resin separator may have a single-layer structure using a single synthetic resin or a laminated structure in which a plurality of synthetic resin layers are stacked. The thickness of the resin separator is not particularly limited, but is preferably in the range of 5 μm to 100 μm, more preferably in the range of 10 μm to 50 μm, and particularly preferably in the range of 20 μm to 30 μm.

正極及び負極にセパレータを挟装させ電極体とする。電極体は、正極、セパレータ及び負極を重ねた積層型、又は、正極、セパレータ及び負極を捲いた捲回型のいずれの型にしても良い。正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後に、電極体に電解液を加えて非水系二次電池とするとよい。   A separator is sandwiched between the positive electrode and the negative electrode to form an electrode body. The electrode body may be either a stacked type in which the positive electrode, the separator and the negative electrode are stacked, or a wound type in which the positive electrode, the separator and the negative electrode are sandwiched. After connecting between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal leading to the outside using a current collecting lead or the like, an electrolyte is added to the electrode body to form a non-aqueous secondary battery. Good.

本発明の非水系二次電池の形状は特に限定されるものでなく、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。   The shape of the nonaqueous secondary battery of the present invention is not particularly limited, and various shapes such as a cylindrical shape, a square shape, a coin shape, and a laminate shape can be adopted.

本発明の非水系二次電池は、車両に搭載してもよい。車両は、その動力源の全部あるいは一部に非水系二次電池による電気エネルギーを使用している車両であればよく、たとえば、電気車両、ハイブリッド車両などであるとよい。車両に非水系二次電池を搭載する場合には、非水系二次電池を複数直列に接続して組電池とするとよい。非水系二次電池を搭載する機器としては、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。さらに、本発明の非水系二次電池は、風力発電、太陽光発電、水力発電その他電力系統の蓄電装置及び電力平滑化装置、船舶等の動力及び/又は補機類の電力供給源、航空機、宇宙船等の動力及び/又は補機類の電力供給源、電気を動力源に用いない車両の補助用電源、移動式の家庭用ロボットの電源、システムバックアップ用電源、無停電電源装置の電源、電動車両用充電ステーションなどにおいて充電に必要な電力を一時蓄える蓄電装置に用いてもよい。   The non-aqueous secondary battery of the present invention may be mounted on a vehicle. The vehicle may be a vehicle that uses electric energy from a non-aqueous secondary battery for all or a part of its power source. For example, the vehicle may be an electric vehicle or a hybrid vehicle. When a non-aqueous secondary battery is mounted on a vehicle, a plurality of non-aqueous secondary batteries may be connected in series to form an assembled battery. Examples of devices equipped with non-aqueous secondary batteries include various home appliances driven by batteries such as personal computers and portable communication devices, office equipment, and industrial equipment, in addition to vehicles. Further, the non-aqueous secondary battery of the present invention includes wind power generation, solar power generation, hydroelectric power generation and other power system power storage devices and power smoothing devices, power of ships and / or power supply sources of auxiliary machinery, aircraft, Power supply for spacecraft and / or auxiliary equipment, auxiliary power supply for vehicles that do not use electricity as a power source, power supply for mobile home robots, power supply for system backup, power supply for uninterruptible power supply, You may use for the electrical storage apparatus which stores temporarily the electric power required for charge in the charging station for electric vehicles.

以上、本発明の非水系二次電池の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   As mentioned above, although embodiment of the non-aqueous secondary battery of this invention was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.

(実施例1)
本発明の電池を以下のとおり製造した。
Example 1
The battery of the present invention was manufactured as follows.

以下のリチウムイオン二次電池を作成するすべての工程は、相対湿度25%、温度50℃で行った。   All the steps for producing the following lithium ion secondary battery were performed at a relative humidity of 25% and a temperature of 50 ° C.

負極活物質である平均粒径20μmの天然黒鉛98質量部、並びに結着剤であるスチレンブタジエンゴム1質量部及びカルボキシメチルセルロース1質量部を混合した。この混合物を適量のイオン交換水に分散させて、スラリーを作製した。負極集電体として厚み20μmの銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を乾燥して水を除去し、その後、銅箔をプレスし、接合物を得た。得られた接合物を真空乾燥機で120℃、6時間加熱乾燥して、負極活物質層が形成された銅箔を得た。当該銅箔1cmあたりの負極活物質層の質量は11.1mgであり、負極活物質層の密度は1.4g/cmであった。 98 parts by mass of natural graphite having an average particle size of 20 μm as a negative electrode active material, and 1 part by mass of styrene butadiene rubber as a binder and 1 part by mass of carboxymethyl cellulose were mixed. This mixture was dispersed in an appropriate amount of ion-exchanged water to prepare a slurry. A copper foil having a thickness of 20 μm was prepared as a negative electrode current collector. The slurry was applied in a film form on the surface of the copper foil using a doctor blade. The copper foil coated with the slurry was dried to remove water, and then the copper foil was pressed to obtain a bonded product. The obtained joined product was heat-dried at 120 ° C. for 6 hours with a vacuum dryer to obtain a copper foil on which a negative electrode active material layer was formed. The mass of the negative electrode active material layer per 1 cm 2 of the copper foil was 11.1 mg, and the density of the negative electrode active material layer was 1.4 g / cm 3 .

保護層形成用組成物を調製するために、平均粒径0.5μmのAl96質量部及びポリフッ化ビニリデン4質量部を混合し、混合物を調製した。当該混合物にN−メチル−2−ピロリドンを加えて、前記混合物を32質量%含む保護層形成用組成物を得た。 In order to prepare the composition for forming a protective layer, 96 parts by mass of Al 2 O 3 having an average particle diameter of 0.5 μm and 4 parts by mass of polyvinylidene fluoride were mixed to prepare a mixture. N-methyl-2-pyrrolidone was added to the mixture to obtain a protective layer forming composition containing 32% by mass of the mixture.

銅箔の負極活物質層上に、ドクターブレードを用いて、上記保護層形成用組成物を膜状に塗布した。これを120℃で6時間乾燥して、負極活物質層上に膜厚6μmの保護層を形成した。負極活物質層1cmあたりの保護層の質量は11.1mgであり、保護層の密度は1.2g/cm、保護層の空隙率は70%であった。これを負極とした。 The said protective layer formation composition was apply | coated to the film form on the negative electrode active material layer of copper foil using the doctor blade. This was dried at 120 ° C. for 6 hours to form a protective layer having a thickness of 6 μm on the negative electrode active material layer. The mass of the protective layer per 1 cm 2 of the negative electrode active material layer was 11.1 mg, the density of the protective layer was 1.2 g / cm 3 , and the porosity of the protective layer was 70%. This was used as a negative electrode.

正極活物質であるLiNi5/10Co2/10Mn3/10で表される平均粒径10μmの層状岩塩構造のリチウム含有金属酸化物94質量部、導電助剤であるアセチレンブラック3質量部、および結着剤であるポリフッ化ビニリデン3質量部を混合した。この混合物を適量のN−メチル−2−ピロリドンに分散させて、スラリーを作製した。正極集電体として厚み20μmのアルミニウム箔を準備した。このアルミニウム箔の表面に、ドクターブレードを用いて上記スラリーが膜状になるように塗布した。スラリーが塗布されたアルミニウム箔を80℃で20分間乾燥することでN−メチル−2−ピロリドンを揮発により除去し、正極活物質層を形成した。アルミニウム箔1cmあたりの正極活物質層の質量は18.4mgであり、正極活物質層の密度は3.1g/cmであった。この正極活物質層が形成されたアルミニウム箔を正極とした。 94 parts by mass of lithium-containing metal oxide having a layered rock salt structure with an average particle diameter of 10 μm represented by LiNi 5/10 Co 2/10 Mn 3/10 O 2 as a positive electrode active material, and 3 masses of acetylene black as a conductive auxiliary Part and 3 parts by mass of polyvinylidene fluoride as a binder were mixed. This mixture was dispersed in an appropriate amount of N-methyl-2-pyrrolidone to prepare a slurry. An aluminum foil having a thickness of 20 μm was prepared as a positive electrode current collector. The slurry was applied to the surface of the aluminum foil using a doctor blade so as to form a film. The aluminum foil coated with the slurry was dried at 80 ° C. for 20 minutes to remove N-methyl-2-pyrrolidone by volatilization to form a positive electrode active material layer. The mass of the positive electrode active material layer per 1 cm 2 of aluminum foil was 18.4 mg, and the density of the positive electrode active material layer was 3.1 g / cm 3 . The aluminum foil on which this positive electrode active material layer was formed was used as the positive electrode.

樹脂製セパレータとしてポリエチレン製樹脂膜からなる矩形状シート(112×136mm、厚さ25μm)を準備した。   A rectangular sheet (112 × 136 mm, thickness 25 μm) made of a polyethylene resin film was prepared as a resin separator.

電解液を作製する為に、エチレンカーボネート30容量部、エチルメチルカーボネート30容量部及びジメチルカーボネート40容量部を混合して混合溶媒を調製した。混合溶媒にLiPF6を1mol/Lとなるよう溶解した。得られた溶液を電解液とした。 In order to prepare an electrolytic solution, 30 volume parts of ethylene carbonate, 30 volume parts of ethyl methyl carbonate, and 40 volume parts of dimethyl carbonate were mixed to prepare a mixed solvent. LiPF 6 was dissolved to 1 mol / L in the mixed solvent. The obtained solution was used as an electrolytic solution.

次に、1つの電池に含まれる正極、負極、セパレータ及び電解液の水分量(g)をカール・フィッシャー装置を用いて測定した。1つの電池に含まれる電解液の質量(g)を測定した。正極、負極、セパレータ及び電解液の水分量の測定値の合計を、電解液の質量で除した値を、電池内の電解液に含まれる水分量として、算出した。実施例1の電池内の電解液に含まれる水分量は、質量比で、323ppmであった。   Next, the moisture content (g) of the positive electrode, negative electrode, separator, and electrolyte contained in one battery was measured using a Karl Fischer device. The mass (g) of the electrolyte contained in one battery was measured. A value obtained by dividing the total of the measured values of the water content of the positive electrode, the negative electrode, the separator, and the electrolytic solution by the mass of the electrolytic solution was calculated as the amount of water contained in the electrolytic solution in the battery. The amount of water contained in the electrolyte solution in the battery of Example 1 was 323 ppm in terms of mass ratio.

次に、正極、負極、セパレータ及び電解液を電池ケースに収容する組付工程を行った。組付工程は、ドライルーム環境下で行った。組付工程の詳細は以下のようである。負極の保護層の上に樹脂製セパレータを設置し、次いで、正極を設置して極板群とした。この極板群を複数積層した極板積層体をアルミニウム製で板厚が3mmの金属缶(123mm×141mm×26.5mm)に挿入し、さらに金属缶に電解液を注入し密閉してリチウムイオン二次電池とした。なお正極および負極は外部と電気的に接続可能なタブを備え、このタブの一部はリチウムイオン二次電池の外側に延出している。   Next, an assembly process for accommodating the positive electrode, the negative electrode, the separator, and the electrolytic solution in the battery case was performed. The assembly process was performed in a dry room environment. The details of the assembly process are as follows. A resin separator was installed on the protective layer of the negative electrode, and then a positive electrode was installed to form an electrode plate group. The electrode plate laminate obtained by laminating a plurality of electrode plate groups is inserted into a metal can (123 mm × 141 mm × 26.5 mm) made of aluminum and having a plate thickness of 3 mm. A secondary battery was obtained. The positive electrode and the negative electrode have a tab that can be electrically connected to the outside, and a part of the tab extends to the outside of the lithium ion secondary battery.

(実施例2)
実施例2のリチウムイオン二次電池は、金属缶の密閉前に相対湿度50%、25℃の環境下に7時間静置したことを除いて、実施例1のリチウムイオン二次電池と同様である。
(Example 2)
The lithium ion secondary battery of Example 2 is the same as the lithium ion secondary battery of Example 1 except that it was left for 7 hours in an environment of 50% relative humidity and 25 ° C. before sealing the metal can. is there.

実施例2のリチウムイオン二次電池に含まれる電解液の水分量は623ppmであった。   The water content of the electrolyte contained in the lithium ion secondary battery of Example 2 was 623 ppm.

(実施例3)
実施例3のリチウムイオン二次電池は、金属缶の密閉前に相対湿度50%、25℃の環境下に12時間静置したことを除いて、実施例1のリチウムイオン二次電池と同様である。
(Example 3)
The lithium ion secondary battery of Example 3 is the same as the lithium ion secondary battery of Example 1 except that it was left to stand for 12 hours in an environment of 50% relative humidity and 25 ° C. before sealing the metal can. is there.

実施例3のリチウムイオン二次電池に含まれる電解液の水分量は800ppmであった。   The water content of the electrolyte contained in the lithium ion secondary battery of Example 3 was 800 ppm.

(参考例1)
参考例1のリチウムイオン二次電池は、金属缶の密閉前に相対湿度50%、25℃の環境下に20時間静置したことを除いて、実施例1のリチウムイオン二次電池と同様である。
(Reference Example 1)
The lithium ion secondary battery of Reference Example 1 is the same as the lithium ion secondary battery of Example 1 except that it was left to stand in an environment of 50% relative humidity and 25 ° C. for 20 hours before sealing the metal can. is there.

参考例1のリチウムイオン二次電池に含まれる電解液の水分量は1131ppmであった。   The water content of the electrolyte contained in the lithium ion secondary battery of Reference Example 1 was 1131 ppm.

(参考例2)
参考例2のリチウムイオン二次電池は、金属缶の密閉前に相対湿度50%、25℃の環境下に35時間静置したことを除いて、実施例1のリチウムイオン二次電池と同様である。
(Reference Example 2)
The lithium ion secondary battery of Reference Example 2 is the same as the lithium ion secondary battery of Example 1 except that it was left to stand for 35 hours in an environment of 50% relative humidity and 25 ° C. before sealing the metal can. is there.

参考例2のリチウムイオン二次電池に含まれる電解液の水分量は1696ppmであった。   The water content of the electrolyte contained in the lithium ion secondary battery of Reference Example 2 was 1696 ppm.

<抵抗測定>
実施例1〜3及び参考例1,2のリチウムイオン二次電池の放電抵抗を測定した。放電抵抗(Ω)は、SOC(State of charge)20%時の電圧にて、10秒間1C相当の電流を放電させたときの電圧変化量を電流値で除した値である。測定結果を図1に示した。
<Resistance measurement>
The discharge resistance of the lithium ion secondary batteries of Examples 1 to 3 and Reference Examples 1 and 2 was measured. The discharge resistance (Ω) is a value obtained by dividing a voltage change amount when a current corresponding to 1 C is discharged for 10 seconds at a voltage of 20% SOC (State of charge) by the current value. The measurement results are shown in FIG.

実施例1〜3のリチウムイオン二次電池は、低い抵抗を維持した。参考例1,2は、実施例1〜3よりも放電抵抗が高かった。電解液中の水分量が800ppm以下の場合には、リチウムイオン二次電池の放電抵抗は、低く維持したが、800ppmを超えると上昇することがわかった。   The lithium ion secondary batteries of Examples 1 to 3 maintained low resistance. The reference examples 1 and 2 had higher discharge resistance than Examples 1-3. It was found that when the water content in the electrolytic solution was 800 ppm or less, the discharge resistance of the lithium ion secondary battery was kept low, but increased when it exceeded 800 ppm.

Claims (6)

正極と、負極と、セパレータと、電解質及び非水溶媒をもつ電解液と、を具備する非水系二次電池であって、
前記正極は、正極集電体と、前記正極集電体上に形成した正極活物質を有する正極活物質層とをもち、
前記負極は、負極集電体と、前記負極集電体上に形成した負極活物質を有する負極活物質層と、前記負極活物質層の表面を被覆するとともにAl 含フッ素樹脂とを有する保護層とをもち、
前記電解液の中の水分量は500ppmを超えて800ppm以下であることを特徴とする非水系二次電池。
A non-aqueous secondary battery comprising a positive electrode, a negative electrode, a separator, and an electrolyte solution having an electrolyte and a non-aqueous solvent,
The positive electrode has a positive electrode current collector and a positive electrode active material layer having a positive electrode active material formed on the positive electrode current collector,
The negative electrode includes a negative electrode current collector, a negative electrode active material layer having a negative electrode active material formed on the negative electrode current collector, a surface of the negative electrode active material layer, and Al 2 O 3 and a fluorine-containing resin . With a protective layer having
The non-aqueous secondary battery, wherein the amount of water in the electrolytic solution is more than 500 ppm and not more than 800 ppm.
前記保護層の厚みが0.1〜12μmであるか、前記保護層の密度が0.1〜3g/cm であるか、または、前記保護層の空隙率が5〜95%である請求項1に記載の非水系二次電池。 The thickness of the protective layer is 0.1 to 12 µm, the density of the protective layer is 0.1 to 3 g / cm 3 , or the porosity of the protective layer is 5 to 95%. non-aqueous secondary battery according to 1. 前記負極活物質は、炭素系材料を有する請求項1又は2に記載の非水系二次電池。 The non-aqueous secondary battery according to claim 1 , wherein the negative electrode active material includes a carbon-based material. 前記セパレータは、樹脂製である請求項1〜3のいずれか1項に記載の非水系二次電池。 The non-aqueous secondary battery according to claim 1 , wherein the separator is made of resin. 請求項1〜4のいずれか1項に記載の非水系二次電池を製造する方法であって、
前記電解液の中の水分量を、500ppmを超えて800ppm以下となるように調整することを特徴とする非水系二次電池の製造方法。
A method for manufacturing the non-aqueous secondary battery according to claim 1,
A method for producing a non-aqueous secondary battery, characterized in that the amount of water in the electrolytic solution is adjusted to be more than 500 ppm and not more than 800 ppm.
相対湿度35〜55%の環境下で調整を行う、請求項5に記載の非水系二次電池の製造方法 The method for producing a non-aqueous secondary battery according to claim 5, wherein the adjustment is performed in an environment with a relative humidity of 35 to 55% .
JP2014236561A 2014-11-21 2014-11-21 Non-aqueous secondary battery and manufacturing method thereof Expired - Fee Related JP6460381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014236561A JP6460381B2 (en) 2014-11-21 2014-11-21 Non-aqueous secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014236561A JP6460381B2 (en) 2014-11-21 2014-11-21 Non-aqueous secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016100201A JP2016100201A (en) 2016-05-30
JP6460381B2 true JP6460381B2 (en) 2019-01-30

Family

ID=56078088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014236561A Expired - Fee Related JP6460381B2 (en) 2014-11-21 2014-11-21 Non-aqueous secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6460381B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180372A1 (en) * 2017-03-28 2018-10-04 日本電気株式会社 Secondary battery and manufacturing method thereof
WO2018180145A1 (en) * 2017-03-28 2018-10-04 日本電気株式会社 Secondary battery and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3719277B2 (en) * 1995-11-20 2005-11-24 宇部興産株式会社 Non-aqueous secondary battery
JPH10189009A (en) * 1996-12-24 1998-07-21 Shin Kobe Electric Mach Co Ltd Manufacture for organic electrolyte battery
JP3994497B2 (en) * 1998-01-30 2007-10-17 株式会社ジーエス・ユアサコーポレーション Non-aqueous electrolyte battery

Also Published As

Publication number Publication date
JP2016100201A (en) 2016-05-30

Similar Documents

Publication Publication Date Title
CN108475774A (en) It is formed with the negative electrode for lithium secondary battery of double protective layers and the lithium secondary battery comprising it thereon
KR102231209B1 (en) Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same
JP6044427B2 (en) Current collector for positive electrode of lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6327011B2 (en) Electrode for power storage device, power storage device, and method for manufacturing electrode for power storage device
JP2015011922A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6061143B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6597267B2 (en) Lithium ion secondary battery
JP6136809B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP5643996B1 (en) Lithium ion secondary battery having a positive electrode comprising a thermal runaway suppression layer on a positive electrode active material layer
EP3098822B1 (en) Energy storage device
JP2015002008A (en) Electrode including protective layer formed on active material layer
JP5656093B2 (en) Batteries having an electrolyte solution holding layer
JP6460381B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP2016115403A (en) Lithium ion secondary battery and method for manufacturing the same
JP5556554B2 (en) Nonaqueous electrolyte secondary battery
JP6600938B2 (en) Lithium ion secondary battery and manufacturing method thereof
WO2015198519A1 (en) Electricity storage device electrode, electricity storage device and electricity storage device electrode production method
JP5557067B1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6016029B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
EP3121883B1 (en) Electrode for non-aqueous electrolyte secondary battery
JP5610031B1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
WO2015151145A1 (en) All-solid lithium secondary cell
JPWO2019088171A1 (en) Lithium ion secondary battery
JP6048312B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR102210219B1 (en) Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181219

R151 Written notification of patent or utility model registration

Ref document number: 6460381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees