JP2015053288A - Battery provided with electrolyte holding layer - Google Patents

Battery provided with electrolyte holding layer Download PDF

Info

Publication number
JP2015053288A
JP2015053288A JP2014231936A JP2014231936A JP2015053288A JP 2015053288 A JP2015053288 A JP 2015053288A JP 2014231936 A JP2014231936 A JP 2014231936A JP 2014231936 A JP2014231936 A JP 2014231936A JP 2015053288 A JP2015053288 A JP 2015053288A
Authority
JP
Japan
Prior art keywords
active material
electrolyte solution
layer
material layer
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014231936A
Other languages
Japanese (ja)
Inventor
祐樹 杉本
Yuki Sugimoto
祐樹 杉本
英明 篠田
Hideaki Shinoda
英明 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2014231936A priority Critical patent/JP2015053288A/en
Publication of JP2015053288A publication Critical patent/JP2015053288A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a battery with a long service life, which does not undergo a remarkable decrease in the output thereof.SOLUTION: A lithium ion secondary battery is provided with: a positive electrode active material layer; a negative electrode active material layer; an electrolyte; a resin-made separator; and an electrolyte holding layer that is directly sandwiched between at least one active material layer of the active material layers and the resin-made separator. A solvent of the electrolyte jointly uses three kinds of ethylene carbonate, methyl ethyl carbonate and dimethyl carbonate. The thickness of the electrolyte holding layer is 1-7 μm, the density of the electrolyte holding layer is 1-3 g/cm, the porosity of the electrolyte holding layer is 25-75%, and the solution holding amount per 1 mof the electrolyte holding layer is 20-60 μL.

Description

本発明は電解液保液層を具備する電池に関する。   The present invention relates to a battery including an electrolyte solution holding layer.

従来から、活物質を有する活物質層、正極及び負極間をイオンが移動するための媒体となる電解液、正極及び負極間の短絡を防止するための樹脂製セパレータを具備する電池が広く知られている。これらの電池製造時には、正極活物質層を有する正極、電解液を保持している樹脂製セパレータ、及び負極活物質層を有する負極を重ねた積層体に対し、一定の圧力を加え、積層体を規定の厚みとするのが一般的である。この製造方法においては、樹脂製セパレータに圧力がかかることにより樹脂製セパレータ自体の厚みが減少するとともに、樹脂製セパレータに保持されていた電解液がセパレータ外に押し出される。そうすると、正極及び負極の最短距離間に存在する電解液の量が減少することとなり、結果として電池の性能が低下していた。   Conventionally, batteries having an active material layer having an active material, an electrolytic solution serving as a medium for ions to move between the positive electrode and the negative electrode, and a resin separator for preventing a short circuit between the positive electrode and the negative electrode are widely known. ing. At the time of manufacturing these batteries, a certain pressure was applied to the laminate in which the positive electrode having the positive electrode active material layer, the resin separator holding the electrolytic solution, and the negative electrode having the negative electrode active material layer were stacked. In general, the thickness is a specified thickness. In this manufacturing method, when the pressure is applied to the resin separator, the thickness of the resin separator itself decreases, and the electrolytic solution held in the resin separator is pushed out of the separator. If it does so, the quantity of the electrolyte solution which exists in the shortest distance of a positive electrode and a negative electrode will reduce, As a result, the performance of the battery fell.

また、二次電池の場合、充放電を行うことにより、負極表面に負極活物質と電解液との直接的な接触を防止する固体電解質界面被膜(Solid Electrolyte Interface、以下「SEI」という。)が形成されることが知られている。ここで、SEIの形成に伴い負極の厚みが徐々に増加するため、樹脂製セパレータに圧力がかかり、樹脂製セパレータの厚みは次第に減少する。その結果として、二次電池の充放電サイクルを繰り返すと電池の容量維持率の低下が顕著となっていた。   In the case of a secondary battery, a solid electrolyte interface film (hereinafter referred to as “SEI”) that prevents direct contact between the negative electrode active material and the electrolytic solution on the surface of the negative electrode by performing charge and discharge. It is known to form. Here, since the thickness of the negative electrode gradually increases with the formation of SEI, pressure is applied to the resin separator, and the thickness of the resin separator gradually decreases. As a result, when the charge / discharge cycle of the secondary battery is repeated, the capacity retention rate of the battery decreases significantly.

以上のとおり、樹脂製セパレータを用いた電池においては、樹脂製セパレータの厚みの減少による、正極及び負極の最短距離間に存在する電解液の量の減少が生じており、これが電池性能の低下の原因となっていた。   As described above, in a battery using a resin separator, the thickness of the resin separator is reduced, resulting in a decrease in the amount of electrolytic solution existing between the shortest distance between the positive electrode and the negative electrode, which reduces the battery performance. It was the cause.

他方、特許文献1−3には、電解液保液層を有する電池が具体的に記載されている。   On the other hand, Patent Documents 1-3 specifically describe a battery having an electrolyte solution retaining layer.

しかし、正極及び負極間にセパレータ以外の電解液保液層を採用した電池は、一般的に抵抗増加などによる出力低下を引き起こすため、必ずしも設計どおりの電池性能が発揮されるとはいえなかった。よって、単に特許文献1−3に開示される技術を採用するのみでは、必ずしも高性能の電池が得られなかった。   However, a battery that employs an electrolyte solution retention layer other than a separator between the positive electrode and the negative electrode generally causes a decrease in output due to an increase in resistance or the like, and thus the battery performance as designed is not necessarily exhibited. Therefore, simply adopting the technique disclosed in Patent Documents 1-3 does not necessarily provide a high-performance battery.

特開昭58−163172号公報JP 58-163172 A 特開2004−363048号公報JP 2004-363048 A 特開平6−203819号公報Japanese Patent Laid-Open No. 6-203819

本発明はかかる事情に鑑みてなされたものであり、活物質層及び樹脂製セパレータに直接挟持される電解液保液層を具備するにも関わらず、著しい出力低下を招かない高寿命の電池を提供することを目的とする。   The present invention has been made in view of such circumstances, and a long-life battery that does not cause a significant decrease in output despite having an electrolyte solution retaining layer directly sandwiched between an active material layer and a resin separator. The purpose is to provide.

本発明者は数多くの試行錯誤を重ねながら鋭意検討を行った。そして、本発明者は、特定の範囲の保液量を示す電解液保液層を活物質層及び樹脂製セパレータに直接挟持させた電池が著しい出力低下を招かず且つ高寿命であることを見出し、本発明を完成させるに至った。   The present inventor has intensively studied through many trials and errors. The present inventor has found that a battery in which an electrolyte solution retaining layer showing a retaining amount in a specific range is directly sandwiched between an active material layer and a resin separator does not cause a significant decrease in output and has a long life. The present invention has been completed.

本発明の電池は、活物質層、電解液、樹脂製セパレータ、並びに、前記活物質層及び前記樹脂製セパレータに直接挟持される電解液保液層を具備し、前記電解液保液層1mあたりの保液量が20〜60μLであることを特徴とする。 The battery of the present invention includes an active material layer, an electrolyte solution, a resin separator, and an electrolyte solution holding layer directly sandwiched between the active material layer and the resin separator, and the electrolyte solution holding layer 1 m 2. The amount of the retentate per unit is 20 to 60 μL.

本発明の電池は、活物質層及び樹脂製セパレータに直接挟持される電解液保液層を具備するにも関わらず、著しい出力低下を招かず、高寿命を示す。   The battery of the present invention has a long life without causing a significant decrease in output despite having an electrolyte solution retaining layer directly sandwiched between the active material layer and the resin separator.

以下に、本発明を実施するための形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a〜b」は、下限aおよび上限bをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに数値範囲内から任意に選択した数値を上限、下限の数値とすることができる。   Below, the form for implementing this invention is demonstrated. Unless otherwise specified, the numerical range “ab” described herein includes the lower limit “a” and the upper limit “b”. The numerical range can be configured by arbitrarily combining these upper limit value and lower limit value and the numerical values listed in the examples. Furthermore, numerical values arbitrarily selected from the numerical value range can be used as upper and lower numerical values.

本発明の電池は、活物質層、電解液、樹脂製セパレータ、並びに、前記活物質層及び前記樹脂製セパレータに直接挟持される電解液保液層を具備し、前記電解液保液層1mあたりの保液量が20〜60μLであることを特徴とする。 The battery of the present invention includes an active material layer, an electrolyte solution, a resin separator, and an electrolyte solution holding layer directly sandwiched between the active material layer and the resin separator, and the electrolyte solution holding layer 1 m 2. The amount of the retentate per unit is 20 to 60 μL.

本発明の電池の種類に関し、活物質層、電解液及び樹脂製セパレータを具備する電池であれば電池の種類について制限されない。本発明の電池は、マンガン電池、アルカリマンガン電池、ニッケル電池、酸化銀電池、水銀電池、リチウム電池などの一次電池でも良いし、リチウムイオン二次電池、ニッケル水素充電池、ニッケルカドミウム蓄電池などの二次電池でも良い。本発明の電池は、充放電を繰り返した後に形成されるSEIが生じる電池についても好適な効果を奏することから、二次電池とするのが好ましく、リチウムイオン二次電池とするのが特に好ましい。   With respect to the type of the battery of the present invention, the type of the battery is not limited as long as the battery includes an active material layer, an electrolytic solution, and a resin separator. The battery of the present invention may be a primary battery such as a manganese battery, an alkaline manganese battery, a nickel battery, a silver oxide battery, a mercury battery, or a lithium battery, or a secondary battery such as a lithium ion secondary battery, a nickel hydrogen rechargeable battery, or a nickel cadmium storage battery. A secondary battery may be used. The battery of the present invention is preferably a secondary battery, and particularly preferably a lithium ion secondary battery, since a battery having SEI formed after repeated charge and discharge has a suitable effect.

本発明の電池は、車両に搭載することができる。車両としては、電池による電気エネルギーを動力源の全部または一部に使用するものであればよく、例えば、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、電動フォークリフト、電気車椅子、電動アシスト自転車、電動二輪車が挙げられる。特に、本発明の電池のうち、電解液保液層1mあたりの保液量が20〜40μLのものは特に出力が高いので、高出力の電池が求められるハイブリッド自動車に搭載するのが好ましい。また、本発明の電池のうち、電解液保液層1mあたりの保液量が40〜60μLのものは特に高寿命であるため、高寿命の電池が求められる電気自動車に搭載するのが好ましい。 The battery of the present invention can be mounted on a vehicle. The vehicle may be any vehicle that uses electric energy from a battery as a whole or a part of a power source. For example, an electric vehicle, a hybrid vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, an electric forklift, an electric wheelchair, and an electric assist. Bicycles and electric motorcycles are examples. In particular, among the batteries of the present invention, those having a liquid retention amount of 20 to 40 μL per 1 m 2 of the electrolyte liquid retention layer are particularly high in output, and thus are preferably mounted on a hybrid vehicle requiring a high output battery. In addition, among the batteries of the present invention, those having a liquid retention amount of 40 to 60 μL per 1 m 2 of the electrolyte liquid retention layer have a particularly long life, and thus are preferably mounted on an electric vehicle that requires a long life battery. .

以下、電池の種類がリチウムイオン二次電池の場合について主に説明するが、本発明の電池はリチウムイオン二次電池に限定されるものでない。   Hereinafter, although the case where the kind of battery is a lithium ion secondary battery is mainly demonstrated, the battery of this invention is not limited to a lithium ion secondary battery.

活物質層は集電体上に形成された活物質を有する層である。   The active material layer is a layer having an active material formed on the current collector.

集電体は、電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。集電体の材料としては、銀、銅、金、アルミニウム、マグネシウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、又はステンレス鋼などの金属材料や、黒鉛等の炭素材料を挙げることができる。特に、電気伝導性、加工性、価格の面から、集電体の材料としてはアルミニウム又は銅が好ましい。集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが10μm〜100μmの範囲内であることが好ましい。   A current collector refers to a chemically inert electronic high conductor that continues to pass current through an electrode during battery discharge or charge. As a material of the current collector, at least one selected from silver, copper, gold, aluminum, magnesium, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, or Examples thereof include metal materials such as stainless steel and carbon materials such as graphite. In particular, aluminum or copper is preferable as the current collector material from the viewpoints of electrical conductivity, workability, and cost. The current collector can take the form of a foil, a sheet, a film, a linear shape, a rod shape, a mesh, or the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector. When the current collector is in the form of foil, sheet or film, the thickness is preferably in the range of 10 μm to 100 μm.

活物質は、電子を送り出す酸化反応及び/又は電子を受け取る還元反応を行う物質である。また、活物質は、上記酸化還元反応に伴い、電解液にイオンを放出する物質又は電解液からイオンを受け取る物質であるとも言える。例えば、リチウムイオン二次電池の活物質とは、リチウムイオンを吸蔵及び放出し得る物質である。正極で用いられる活物質を正極活物質といい、負極で用いられる活物質を負極活物質という。   The active material is a substance that performs an oxidation reaction for sending electrons and / or a reduction reaction for receiving electrons. In addition, it can be said that the active material is a substance that releases ions to the electrolytic solution or a substance that receives ions from the electrolytic solution in accordance with the oxidation-reduction reaction. For example, the active material of a lithium ion secondary battery is a substance that can occlude and release lithium ions. An active material used in the positive electrode is referred to as a positive electrode active material, and an active material used in the negative electrode is referred to as a negative electrode active material.

正極活物質としては、各電池で採用される公知のものを用いれば良い。例えば、リチウムイオン二次電池の正極活物質としては、LiNiCoMn(0.2≦a≦1、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Alから選ばれる少なくとも1の元素、1.7≦f≦2.1)、LiMnO、LiMnO、LiFePO、LiFeSOなどのリチウム含有金属酸化物を挙げることができる。また、リチウムイオン二次電池の正極活物質として、LiMPO、LiMVO又はLiMSiO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種から選択される)で表されるポリアニオン系化合物を挙げることができる。 As the positive electrode active material, a known material employed in each battery may be used. For example, as the positive electrode active material of a lithium ion secondary battery, Li a Ni b Co c Mn d D e O f (0.2 ≦ a ≦ 1, b + c + d + e = 1,0 ≦ e <1, D is Li, Fe , Cr, Cu, Zn, Ca, Mg, S, Si, Na, K, Al, 1.7 ≦ f ≦ 2.1), Li 2 MnO 2 , Li 2 MnO 3 , LiFePO 4 , and lithium-containing metal oxides such as Li 2 FeSO 4 . In addition, the positive electrode active material of the lithium ion secondary battery is represented by LiMPO 4 , LiMVO 4 or Li 2 MSiO 4 (wherein M is selected from at least one of Co, Ni, Mn, and Fe). A polyanionic compound can be mentioned.

リチウムイオン二次電池の正極活物質としては、高容量である点から、層状岩塩構造のLiNiCoMn(0.2≦a≦1、b+c+d+e=1、0<b<1、0<c<1、0<d<1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Alから選ばれる少なくとも1の元素、1.7≦f≦2.1)が好ましく、このうち、0<b<70/100、0<c<50/100、10/100<d<1の範囲内のものが好ましく、1/3≦b≦50/100、20/100≦c≦1/3、1/3≦d<1の範囲内のものがより好ましく、b=1/3、c=1/3、d=1/3、または、b=50/100、c=20/100、d=30/100のものが特に好ましい。 As the positive electrode active material of the lithium ion secondary batteries, from the viewpoint of high capacity, Li a Ni b Co c Mn d D e O f (0.2 ≦ a ≦ 1, b + c + d + e = 1,0 of the layered rock-salt structure < b <1, 0 <c <1, 0 <d <1, 0 ≦ e <1, D is selected from Li, Fe, Cr, Cu, Zn, Ca, Mg, S, Si, Na, K, Al Preferably at least one element, 1.7 ≦ f ≦ 2.1), of which 0 <b <70/100, 0 <c <50/100, 10/100 <d <1 Preferably, those within the ranges of 1/3 ≦ b ≦ 50/100, 20/100 ≦ c ≦ 1/3, 1/3 ≦ d <1, more preferably b = 1/3, c = 1/3, Particularly preferred are those where d = 1/3, or b = 50/100, c = 20/100, and d = 30/100.

負極活物質としては、各電池で採用される公知のものを用いれば良い。例えば、リチウムイオン二次電池の負極活物質としては、リチウムを吸蔵及び放出可能な炭素系材料、リチウムと合金化可能な元素、リチウムと合金化可能な元素を有する化合物、あるいは高分子材料を例示することができる。炭素系材料としては、難黒鉛化性炭素、人造黒鉛、天然黒鉛、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭あるいはカーボンブラック類を例示できる。ここで、有機高分子化合物焼成体とは、フェノール類やフラン類などの高分子材料を適当な温度で焼成して炭素化したものをいう。リチウムと合金化可能な元素としては、具体的にNa、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biが例示でき、特に、SiまたはSnが好ましい。リチウムと合金化可能な元素を有する化合物としては、具体的にZnLiAl、AlSb、SiB、SiB、MgSi、MgSn、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、SnO(0<w≦2)、SnSiO、LiSiO あるいはLiSnOを例示でき、特に、SiO(0.5≦x≦1.5)が好ましい。また、リチウムと合金化反応可能な元素を有する化合物として、スズ合金(Cu−Sn合金、Co−Sn合金等)を例示できる。高分子材料としては、具体的にポリアセチレン、ポリピロールを例示できる。 As the negative electrode active material, a known material employed in each battery may be used. For example, as a negative electrode active material of a lithium ion secondary battery, a carbon-based material that can occlude and release lithium, an element that can be alloyed with lithium, a compound that has an element that can be alloyed with lithium, or a polymer material is exemplified. can do. Examples of the carbon-based material include non-graphitizable carbon, artificial graphite, natural graphite, cokes, graphites, glassy carbons, organic polymer compound fired bodies, carbon fibers, activated carbon, and carbon blacks. Here, the organic polymer compound fired body refers to a material obtained by firing and carbonizing a polymer material such as phenols and furans at an appropriate temperature. Specifically, elements that can be alloyed with lithium include Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si. , Ge, Sn, Pb, Sb, Bi can be exemplified, and Si or Sn is particularly preferable. Specific examples of the compound having an element that can be alloyed with lithium include ZnLiAl, AlSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2, CrSi 2, Cu 5 Si, FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO v (0 <v ≦ 2), SnO w (0 <w ≦ 2), SnSiO 3 , LiSiO 2 or LiSnO, and SiO x (0.5 ≦ x ≦ 1.5) is particularly preferable. Moreover, tin compounds (Cu-Sn alloy, Co-Sn alloy, etc.) can be illustrated as a compound which has an element which can be alloyed with lithium. Specific examples of the polymer material include polyacetylene and polypyrrole.

活物質層は必要に応じて結着剤及び/又は導電助剤を含む。   The active material layer includes a binder and / or a conductive aid as necessary.

結着剤は活物質を集電体の表面に繋ぎ止める役割を果たすものである。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、カルボキシメチルセルロース、メチルセルロース、スチレンブタジエンゴム、アルコキシシリル基含有樹脂などの公知のものを用いることができる。これらの結着剤を単独または二種以上組み合わせて活物質層に添加することができる。結着剤の使用量については特に制限はないが、活物質100質量部に対して結着剤1〜50質量部の範囲が好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。   The binder plays a role of binding the active material to the surface of the current collector. As binders, fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, carboxymethylcellulose, methylcellulose and styrene-butadiene rubber Well-known materials such as alkoxysilyl group-containing resins can be used. These binders can be added to the active material layer alone or in combination of two or more. Although there is no restriction | limiting in particular about the usage-amount of a binder, The range of 1-50 mass parts of binders with respect to 100 mass parts of active materials is preferable. This is because when the amount of the binder is too small, the moldability of the electrode is lowered, and when the amount of the binder is too large, the energy density of the electrode is lowered.

導電助剤は導電性を高めるために添加される。導電助剤としては、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック、ケッチェンブラック(登録商標)、気相法炭素繊維(Vapor Grown Carbon Fiber)が例示される。これらの導電助剤を単独または二種以上組み合わせて活物質層に添加することができる。導電助剤の使用量については特に制限はないが、例えば、活物質100質量部に対して導電助剤1〜30質量部とすることができる。   A conductive additive is added to increase conductivity. Examples of the conductive assistant include carbon black, graphite, acetylene black, ketjen black (registered trademark), and vapor grown carbon fiber (Vapor Grown Carbon Fiber) which are carbonaceous fine particles. These conductive assistants can be added to the active material layer alone or in combination of two or more. Although there is no restriction | limiting in particular about the usage-amount of a conductive support agent, For example, it can be set as 1-30 mass parts of conductive support agents with respect to 100 mass parts of active materials.

集電体の表面に活物質層を形成するには、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に活物質を直接塗布すればよい。具体的には、活物質、並びに必要に応じて結着剤及び/又は導電助剤を含む活物質層形成用組成物を調製し、この組成物に適当な溶媒を加えてペースト状の液とする。あらかじめ結着剤を溶媒に溶解させた溶液又は分散させた懸濁液を用いても良い。上記溶媒としては、N−メチル−2−ピロリドン、メタノール、エタノール、メチルイソブチルケトン、水を例示できる。上記ペースト状の液を集電体の表面に塗布後、乾燥する。乾燥は、常圧条件で行っても良いし、真空乾燥機を用いた減圧条件下で行っても良い。乾燥温度は適宜設定すればよく、上記溶媒の沸点以上の温度が好ましい。乾燥時間は塗布量及び乾燥温度に応じ適宜設定すればよい。活物質層の密度を高めるべく、活物質層を形成させた乾燥後の集電体に対し、圧縮工程を加えても良い。   In order to form an active material layer on the surface of the current collector, the surface of the current collector can be formed using a conventionally known method such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method. The active material may be directly applied to the surface. Specifically, a composition for forming an active material layer containing an active material and, if necessary, a binder and / or a conductive aid is prepared, and an appropriate solvent is added to the composition to obtain a paste-like liquid. To do. A solution in which a binder is dissolved in a solvent in advance or a dispersed suspension may be used. Examples of the solvent include N-methyl-2-pyrrolidone, methanol, ethanol, methyl isobutyl ketone, and water. The paste-like liquid is applied to the surface of the current collector and then dried. Drying may be performed under normal pressure conditions or under reduced pressure conditions using a vacuum dryer. What is necessary is just to set drying temperature suitably, and the temperature beyond the boiling point of the said solvent is preferable. What is necessary is just to set drying time suitably according to an application quantity and drying temperature. In order to increase the density of the active material layer, a compression step may be added to the dried current collector on which the active material layer is formed.

電解液は溶媒と該溶媒に溶解された電解質とを含む液である。電解液としては、各電池で採用される公知のものを用いれば良い。   The electrolytic solution is a solution containing a solvent and an electrolyte dissolved in the solvent. As the electrolytic solution, a known one used in each battery may be used.

リチウムイオン二次電池の電解液に用いられる溶媒としては、環状エステル類、鎖状エステル類、エーテル類等の非水系溶媒を挙げることができる。環状エステル類としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2−メチル−ガンマブチロラクトン、アセチル−ガンマブチロラクトン、ガンマバレロラクトンを例示できる。鎖状エステル類としては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステルを例示できる。エーテル類としては、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジブトキシエタンを例示できる。電解液の溶媒として、上述のものを複数併用してもよい。特に、エチレンカーボネート、メチルエチルカーボネート、ジメチルカーボネートの3種を併用するのが好ましい。   Examples of the solvent used for the electrolyte solution of the lithium ion secondary battery include non-aqueous solvents such as cyclic esters, chain esters, and ethers. Examples of cyclic esters include ethylene carbonate, propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone. Examples of chain esters include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester. Examples of ethers include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane. A plurality of the above-described solvents may be used in combination as the solvent for the electrolytic solution. In particular, it is preferable to use three types of ethylene carbonate, methyl ethyl carbonate, and dimethyl carbonate in combination.

リチウムイオン二次電池の電解質としては、LiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(CFSO等のリチウム塩を挙げることができる。電解液中の電解質の濃度は、0.5〜1.7mol/Lの範囲が好ましい。 Examples of the electrolyte of the lithium ion secondary battery include lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2 . The concentration of the electrolyte in the electrolytic solution is preferably in the range of 0.5 to 1.7 mol / L.

樹脂製セパレータは、正極と負極とを隔離し、両極の接触による電流の短絡を防止しつつ、イオンを通過させるものである。樹脂製セパレータとしては、各電池で採用される公知のものを用いれば良く、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリエステル、ポリアミドなどの合成樹脂を1種又は複数用いた多孔質膜を例示できる。樹脂製セパレータは、単一の合成樹脂を用いた単層構造でも良いし、複数の合成樹脂の層を重ねた積層構造でも良い。樹脂製セパレータの厚みは特に制限されないが、5μm〜100μmの範囲が好ましく、10μm〜50μmの範囲がより好ましく、20μm〜30μmの範囲が特に好ましい。   The resin separator separates the positive electrode and the negative electrode, and allows ions to pass while preventing a short circuit of current due to contact between the two electrodes. As the resin separator, a known separator employed in each battery may be used, for example, a porous film using one or more synthetic resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyester, polyamide, etc. it can. The resin separator may have a single-layer structure using a single synthetic resin or a laminated structure in which a plurality of synthetic resin layers are stacked. The thickness of the resin separator is not particularly limited, but is preferably in the range of 5 μm to 100 μm, more preferably in the range of 10 μm to 50 μm, and particularly preferably in the range of 20 μm to 30 μm.

電解液保液層は電解液を保持できる空間を有する層である。そして、本発明の電解液保液層は電解液保液層1mあたりの保液量が20〜60μLであることを特徴とする。電解液保液層1mあたりの保液量は30〜50μLであることがより好ましい。 The electrolyte solution holding layer is a layer having a space capable of holding the electrolyte solution. The electrolyte solution retaining layer of the present invention is characterized in that the amount of retained solution per 1 m 2 of the electrolyte solution retaining layer is 20 to 60 μL. It is more preferable that the liquid retention amount per 1 m 2 of the electrolyte liquid retention layer is 30 to 50 μL.

電解液保液層はAl、SiO、TiO、ZrO、MgO、SiC、AlN、BN、CaCO、MgCO、BaCO、タルク、マイカ、カオリナイト、CaSO、MgSO、BaSO、CaO、ZnO、ゼオライトから選択される無機化合物の1種若しくは複数、又は使用する樹脂製セパレータよりも硬度の高い樹脂化合物からなる粒子、及び、必要により結着剤により構成される。 The electrolyte solution retaining layer is made of Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2 , MgO, SiC, AlN, BN, CaCO 3 , MgCO 3 , BaCO 3 , talc, mica, kaolinite, CaSO 4 , MgSO 4 , One or more inorganic compounds selected from BaSO 4 , CaO, ZnO, and zeolite, or particles composed of a resin compound having a hardness higher than that of the resin separator used, and a binder as necessary.

樹脂化合物からなる粒子としては、ポリフルオロエチレン、ポリプロピレン、ポリエチレン、ポリエステル、ポリアミド、ポリエチレンテレフタラートなどの公知の粒子状の樹脂化合物のうち、使用する樹脂製セパレータよりも硬度の高いものを適宜選択すれば良い。   As particles composed of a resin compound, a known particulate resin compound such as polyfluoroethylene, polypropylene, polyethylene, polyester, polyamide, polyethylene terephthalate, and the like having a higher hardness than the resin separator to be used is appropriately selected. It ’s fine.

電解液保液層に用いる結着剤としては、活物質層についての説明で述べた結着剤を単独で採用又は複数を併用すれば良い。電解液保液層に用いる結着剤としては、電気化学的な安定性などの面から、ポリフッ化ビニリデンが特に好ましい。   As the binder used in the electrolyte solution retaining layer, the binder described in the description of the active material layer may be employed singly or in combination. As the binder used for the electrolyte solution retaining layer, polyvinylidene fluoride is particularly preferable from the viewpoint of electrochemical stability.

無機化合物又は樹脂化合物からなる粒子の粒径としては、平均粒子径が0.1〜10μmのものが好ましく、0.2〜5μmのものがより好ましく、0.5〜3μmのものが特に好ましい。平均粒子径が小さすぎると、電解液を保持できる空間を形成するのが困難になる場合がある。平均粒子径が大きすぎると電解液保液層の厚みが増加するため、厚みの増加に因り生じる抵抗が電池出力に悪影響を与える恐れがある。なお、平均粒子径は、レーザー回折式粒度分布測定装置などの一般的な粒度分布測定装置にて測定すればよい。   As a particle diameter of the particle | grains which consist of an inorganic compound or a resin compound, a thing with an average particle diameter of 0.1-10 micrometers is preferable, a 0.2-5 micrometers thing is more preferable, and a 0.5-3 micrometers thing is especially preferable. If the average particle size is too small, it may be difficult to form a space capable of holding the electrolytic solution. If the average particle size is too large, the thickness of the electrolyte solution retaining layer increases, and thus the resistance caused by the increase in thickness may adversely affect the battery output. In addition, what is necessary is just to measure an average particle diameter with general particle size distribution measuring apparatuses, such as a laser diffraction type particle size distribution measuring apparatus.

電解液保液層が無機化合物を含む場合には、電解液保液層に結着剤を加えることが好ましい。その場合の無機化合物と結着剤との好ましい質量比は5:1〜200:1であり、より好ましくは10:1〜150:1であり、特に好ましくは15:1〜100:1である。   When the electrolytic solution holding layer contains an inorganic compound, it is preferable to add a binder to the electrolytic solution holding layer. In this case, the preferred mass ratio between the inorganic compound and the binder is 5: 1 to 200: 1, more preferably 10: 1 to 150: 1, and particularly preferably 15: 1 to 100: 1. .

電解液保液層の厚みは特に制限が無いが、0.1〜10μmが好ましく、0.5〜8μmがより好ましく、1〜7μmが特に好ましい。   The thickness of the electrolyte solution retaining layer is not particularly limited, but is preferably 0.1 to 10 μm, more preferably 0.5 to 8 μm, and particularly preferably 1 to 7 μm.

電解液保液層の密度は特に制限が無いが、0.1〜3g/cmが好ましく、0.5〜2.5g/cmがより好ましく、1〜2g/cmが特に好ましい。 Although the density of the electrolyte solution holding layer is not particularly limited but is preferably 0.1 to 3 g / cm 3, more preferably 0.5~2.5g / cm 3, 1~2g / cm 3 is particularly preferred.

電解液保液層の空隙率は特に制限が無いが、5〜90%が好ましく、15〜85%がより好ましく、20〜80%がさらに好ましく、25〜75%が特に好ましい。   The porosity of the electrolyte solution retaining layer is not particularly limited, but is preferably 5 to 90%, more preferably 15 to 85%, further preferably 20 to 80%, and particularly preferably 25 to 75%.

本発明の電解液保液層は、活物質層及び樹脂製セパレータに直接挟持されている。活物質層は正極活物質層でもよいし負極活物質層でもよく、両活物質層であっても良い。   The electrolyte solution retaining layer of the present invention is directly sandwiched between the active material layer and the resin separator. The active material layer may be a positive electrode active material layer, a negative electrode active material layer, or both active material layers.

本発明の電池の製造方法に関し、活物質層又は樹脂製セパレータ上に電解液保液層を設けるには、例えば、電解液保液層の構成成分を溶媒に分散させて電解液保液層形成用組成物を調製する工程、及び、当該電解液保液層形成用組成物を活物質層又は樹脂製セパレータ上に塗布する工程を実施した後、乾燥工程を実施すれば良い。電解液保液層形成用組成物における電解液保液層の構成成分の配合量は10〜50質量%の範囲内が好ましい。上記配合量を変えることで、形成する電解液保液層の密度及び空隙率を変化させることができる。上記電解液保液層形成用組成物の調製に用いる溶媒としては、無機化合物又は樹脂化合物からなる粒子が溶解しないものが好ましく、例えば、N−メチル−2−ピロリドン、メタノール、エタノール、メチルイソブチルケトン、水から適宜選択すればよい。塗布工程では、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いればよい。乾燥工程は、常圧条件で行っても良いし、真空乾燥機を用いた減圧条件下で行っても良い。乾燥温度は結着剤が分解しない範囲内で適宜設定すればよく、上記溶媒の沸点以上の温度が好ましい。乾燥時間は塗布量及び乾燥温度に応じ適宜設定すればよい。   In order to provide an electrolytic solution holding layer on an active material layer or a resin separator, the electrolytic solution holding layer is formed by dispersing constituent components of the electrolytic solution holding layer in a solvent. After performing the process of preparing the composition for a liquid and the process of apply | coating the said composition for electrolyte solution liquid retention layer formation on an active material layer or a resin-made separator, what is necessary is just to implement a drying process. The blending amount of the constituent components of the electrolyte solution retention layer in the composition for forming an electrolyte solution retention layer is preferably in the range of 10 to 50% by mass. By changing the blending amount, the density and porosity of the electrolyte solution retaining layer to be formed can be changed. As the solvent used for the preparation of the electrolyte solution retaining layer forming composition, those in which particles composed of an inorganic compound or a resin compound are not dissolved are preferable. For example, N-methyl-2-pyrrolidone, methanol, ethanol, methyl isobutyl ketone What is necessary is just to select suitably from water. In the coating process, a conventionally known method such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method may be used. The drying step may be performed under normal pressure conditions or under reduced pressure conditions using a vacuum dryer. The drying temperature may be appropriately set within a range where the binder does not decompose, and a temperature equal to or higher than the boiling point of the solvent is preferable. What is necessary is just to set drying time suitably according to an application quantity and drying temperature.

そして、電解液保液層を有する活物質層の電解液保液層上に樹脂製セパレータを設置する工程、又は、電解液保液層を有する樹脂製セパレータの電解液保液層上に活物質層を設置する工程、並びに従来の電池の製造方法で採用される工程を経て、本発明の電池は製造される。   And the process of installing a resin separator on the electrolyte solution holding layer of the active material layer having the electrolyte solution holding layer, or the active material on the electrolyte solution holding layer of the resin separator having the electrolyte solution holding layer The battery of the present invention is manufactured through a step of installing a layer and a step employed in a conventional battery manufacturing method.

以上、本発明の電池の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   As mentioned above, although embodiment of the battery of this invention was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.

以下に実施例を示し、本発明をより具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited to a following example.

(実施例1)
本発明の電池を以下のとおり製造した。
Example 1
The battery of the present invention was manufactured as follows.

Al96質量部及びポリフッ化ビニリデン4質量部を混合し、混合物を調製した。当該混合物にN−メチル−2−ピロリドンを加え、前記混合物を32質量%含む電解液保液層形成用組成物を調整した。 96 parts by mass of Al 2 O 3 and 4 parts by mass of polyvinylidene fluoride were mixed to prepare a mixture. N-methyl-2-pyrrolidone was added to the mixture to prepare an electrolyte solution retention layer forming composition containing 32% by mass of the mixture.

負極活物質である天然黒鉛98.3質量部、並びに結着剤であるスチレンブタジエンゴム1質量部及びカルボキシメチルセルロース0.7質量部を混合した。この混合物を適量のイオン交換水に分散させて、スラリーを作製した。負極集電体として厚み20μmの銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を乾燥して水を除去し、その後、銅箔をプレスし、接合物を得た。得られた接合物を真空乾燥機で120℃、6時間加熱乾燥して、負極活物質層が形成された銅箔を得た。当該銅箔1cmあたりの負極活物質層の質量は11.1mgであり、負極活物質層の密度は1.4g/cmであった。銅箔の負極活物質層上に、ドクターブレードを用いて、上記電解液保液層形成用組成物を膜状に塗布した。これを120℃で6時間乾燥して、負極活物質層上に膜厚4μm、密度2g/cm、空隙率50%の電解液保液層が形成された銅箔を得た。これを負極とした。 98.3 parts by mass of natural graphite as a negative electrode active material, 1 part by mass of styrene butadiene rubber as a binder, and 0.7 parts by mass of carboxymethylcellulose were mixed. This mixture was dispersed in an appropriate amount of ion-exchanged water to prepare a slurry. A copper foil having a thickness of 20 μm was prepared as a negative electrode current collector. The slurry was applied in a film form on the surface of the copper foil using a doctor blade. The copper foil coated with the slurry was dried to remove water, and then the copper foil was pressed to obtain a bonded product. The obtained joined product was heat-dried at 120 ° C. for 6 hours with a vacuum dryer to obtain a copper foil on which a negative electrode active material layer was formed. The mass of the negative electrode active material layer per 1 cm 2 of the copper foil was 11.1 mg, and the density of the negative electrode active material layer was 1.4 g / cm 3 . On the negative electrode active material layer of copper foil, the said composition for electrolyte solution retention layer formation was apply | coated to the film form using the doctor blade. This was dried at 120 ° C. for 6 hours to obtain a copper foil in which an electrolyte solution retaining layer having a film thickness of 4 μm, a density of 2 g / cm 3 and a porosity of 50% was formed on the negative electrode active material layer. This was used as a negative electrode.

正極活物質であるLiNi5/10Co2/10Mn3/10で表される層状岩塩構造のリチウム含有金属酸化物94質量部、導電助剤であるアセチレンブラック3質量部、および結着剤であるポリフッ化ビニリデン3質量部を混合した。この混合物を適量のN−メチル−2−ピロリドンに分散させて、スラリーを作製した。正極集電体として厚み20μmのアルミニウム箔を準備した。このアルミニウム箔の表面に、ドクターブレードを用いて上記スラリーが膜状になるように塗布した。スラリーが塗布されたアルミニウム箔を80℃で20分間乾燥することでN−メチル−2−ピロリドンを揮発により除去し、正極活物質層が形成されたアルミニウム箔を得た。当該アルミニウム箔1cmあたりの正極活物質層の質量は18.4mgであり、正極活物質層の密度は3.3g/cmであった。この正極活物質層が形成されたアルミニウム箔を正極とした。 94 parts by mass of a lithium-containing metal oxide having a layered rock salt structure represented by LiNi 5/10 Co 2/10 Mn 3/10 O 2 as a positive electrode active material, 3 parts by mass of acetylene black as a conductive auxiliary agent, and a binder 3 parts by mass of polyvinylidene fluoride as an agent was mixed. This mixture was dispersed in an appropriate amount of N-methyl-2-pyrrolidone to prepare a slurry. An aluminum foil having a thickness of 20 μm was prepared as a positive electrode current collector. The slurry was applied to the surface of the aluminum foil using a doctor blade so as to form a film. The aluminum foil coated with the slurry was dried at 80 ° C. for 20 minutes to remove N-methyl-2-pyrrolidone by volatilization to obtain an aluminum foil on which a positive electrode active material layer was formed. The mass of the positive electrode active material layer per 1 cm 2 of the aluminum foil was 18.4 mg, and the density of the positive electrode active material layer was 3.3 g / cm 3 . The aluminum foil on which this positive electrode active material layer was formed was used as the positive electrode.

樹脂製セパレータとしてポリエチレン製樹脂膜からなる矩形状シート(27×32mm、厚さ25μm)を準備した。   A rectangular sheet (27 × 32 mm, thickness 25 μm) made of a polyethylene resin film was prepared as a resin separator.

負極の電解液保液層の上に樹脂製セパレータを設置し、次いで、正極を設置して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに電解液を注入した。電解液としては、エチレンカーボネート30容量部、メチルエチルカーボネート30容量部及びジメチルカーボネート40容量部を混合した溶媒にLiPF6を1mol/Lとなるよう溶解した溶液を用いた。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉されたリチウムイオン二次電池を得た。この電池を実施例1の電池とした。実施例1の電池における電解液保液層1mあたりの電解液の保液量は40μLであった。 A resin separator was installed on the electrolyte solution holding layer of the negative electrode, and then the positive electrode was installed to form an electrode plate group. The electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then an electrolyte solution was injected into the bag-like laminated film. As an electrolytic solution, a solution in which LiPF 6 was dissolved to 1 mol / L in a solvent obtained by mixing 30 parts by volume of ethylene carbonate, 30 parts by volume of methyl ethyl carbonate, and 40 parts by volume of dimethyl carbonate was used. Thereafter, the remaining one side was sealed to obtain a lithium ion secondary battery in which the four sides were hermetically sealed and the electrode plate group and the electrolyte were sealed. This battery was referred to as the battery of Example 1. The amount of electrolyte solution retained per 1 m 2 of electrolyte solution retaining layer in the battery of Example 1 was 40 μL.

なお、実施例1の電池の正極および負極は外部と電気的に接続可能なタブを備え、このタブの一部はリチウムイオン二次電池の外側に延出している。   In addition, the positive electrode and negative electrode of the battery of Example 1 are provided with a tab that can be electrically connected to the outside, and a part of this tab extends to the outside of the lithium ion secondary battery.

(実施例2)
負極活物質層上の電解液保液層を膜厚2μm、密度2g/cm、空隙率50%とした以外は、実施例1と同様の方法で、実施例2の電池を得た。実施例2の電池における電解液保液層1mあたりの電解液の保液量は20μLであった。
(Example 2)
A battery of Example 2 was obtained in the same manner as in Example 1 except that the electrolyte solution retaining layer on the negative electrode active material layer was changed to a film thickness of 2 μm, a density of 2 g / cm 3 , and a porosity of 50%. The amount of electrolyte solution retained per 1 m 2 of electrolyte solution retaining layer in the battery of Example 2 was 20 μL.

(実施例3)
負極活物質層上の電解液保液層を膜厚3μm、密度2g/cm、空隙率50%とした以外は、実施例1と同様の方法で、実施例3の電池を得た。実施例3の電池における電解液保液層1mあたりの電解液の保液量は30μLであった。
(Example 3)
A battery of Example 3 was obtained in the same manner as in Example 1 except that the electrolyte solution holding layer on the negative electrode active material layer was changed to a film thickness of 3 μm, a density of 2 g / cm 3 , and a porosity of 50%. The amount of electrolyte solution retained per 1 m 2 of the electrolyte solution retaining layer in the battery of Example 3 was 30 μL.

(実施例4)
負極活物質層上の電解液保液層を膜厚5μm、密度2g/cm、空隙率50%とした以外は、実施例1と同様の方法で、実施例4の電池を得た。実施例4の電池における電解液保液層1mあたりの電解液の保液量は50μLであった。
Example 4
A battery of Example 4 was obtained in the same manner as in Example 1 except that the electrolyte solution retaining layer on the negative electrode active material layer was changed to a film thickness of 5 μm, a density of 2 g / cm 3 , and a porosity of 50%. The amount of electrolyte solution retained per 1 m 2 of electrolyte solution retaining layer in the battery of Example 4 was 50 μL.

(実施例5)
負極活物質層上の電解液保液層を膜厚6μm、密度2g/cm、空隙率50%とした以外は、実施例1と同様の方法で、実施例5の電池を得た。実施例5の電池における電解液保液層1mあたりの電解液の保液量は60μLであった。
(Example 5)
A battery of Example 5 was obtained in the same manner as in Example 1 except that the electrolyte solution retention layer on the negative electrode active material layer was changed to a film thickness of 6 μm, a density of 2 g / cm 3 , and a porosity of 50%. The amount of electrolyte solution retained per 1 m 2 of electrolyte solution retaining layer in the battery of Example 5 was 60 μL.

(実施例6)
負極活物質層上の電解液保液層を膜厚4μm、密度2.8g/cm、空隙率30%とした以外は、実施例1と同様の方法で、実施例6の電池を得た。実施例6の電池における電解液保液層1mあたりの電解液の保液量は24μLであった。
(Example 6)
A battery of Example 6 was obtained in the same manner as in Example 1 except that the electrolyte solution retention layer on the negative electrode active material layer was changed to a film thickness of 4 μm, a density of 2.8 g / cm 3 , and a porosity of 30%. . The amount of the electrolyte solution retained per 1 m 2 of the electrolyte solution retaining layer in the battery of Example 6 was 24 μL.

(実施例7)
負極活物質層上の電解液保液層を膜厚4μm、密度2.4g/cm、空隙率40%とした以外は、実施例1と同様の方法で、実施例7の電池を得た。実施例7の電池における電解液保液層1mあたりの電解液の保液量は32μLであった。
(Example 7)
A battery of Example 7 was obtained in the same manner as in Example 1 except that the electrolyte solution retention layer on the negative electrode active material layer was changed to a film thickness of 4 μm, a density of 2.4 g / cm 3 , and a porosity of 40%. . The amount of the electrolyte solution retained per 1 m 2 of the electrolyte solution retaining layer in the battery of Example 7 was 32 μL.

(実施例8)
負極活物質層上の電解液保液層を膜厚4μm、密度1.6g/cm、空隙率60%とした以外は、実施例1と同様の方法で、実施例8の電池を得た。実施例8の電池における電解液保液層1mあたりの電解液の保液量は48μLであった。
(Example 8)
A battery of Example 8 was obtained in the same manner as in Example 1 except that the electrolyte solution retention layer on the negative electrode active material layer was changed to a film thickness of 4 μm, a density of 1.6 g / cm 3 , and a porosity of 60%. . The amount of the electrolyte solution retained per 1 m 2 of the electrolyte solution retaining layer in the battery of Example 8 was 48 μL.

(実施例9)
負極活物質層上の電解液保液層を膜厚4μm、密度1.2g/cm、空隙率70%とした以外は、実施例1と同様の方法で、実施例9の電池を得た。実施例9の電池における電解液保液層1mあたりの電解液の保液量は56μLであった。
Example 9
A battery of Example 9 was obtained in the same manner as in Example 1 except that the electrolyte solution retaining layer on the negative electrode active material layer was changed to a film thickness of 4 μm, a density of 1.2 g / cm 3 , and a porosity of 70%. . The amount of electrolyte solution retained per 1 m 2 of electrolyte solution retaining layer in the battery of Example 9 was 56 μL.

(比較例1)
負極活物質層上に電解液保液層を形成させなかったこと以外は、実施例1と同様の方法で、比較例1の電池を得た。
(Comparative Example 1)
A battery of Comparative Example 1 was obtained in the same manner as in Example 1 except that the electrolyte solution retaining layer was not formed on the negative electrode active material layer.

(比較例2)
負極活物質層上の電解液保液層を膜厚10μm、密度2g/cm、空隙率50%とした以外は、実施例1と同様の方法で、比較例2の電池を得た。比較例2の電池における電解液保液層1mあたりの電解液の保液量は100μLであった。
(Comparative Example 2)
A battery of Comparative Example 2 was obtained in the same manner as in Example 1 except that the electrolyte solution holding layer on the negative electrode active material layer was changed to a film thickness of 10 μm, a density of 2 g / cm 3 , and a porosity of 50%. The amount of the electrolyte solution retained per 1 m 2 of the electrolyte solution retaining layer in the battery of Comparative Example 2 was 100 μL.

<電池の評価>
実施例1、2、5、比較例1、2の電池につき、以下の試験を行い、電池の容量維持率及び出力を測定した。結果を表1に示す。
<Battery evaluation>
The batteries of Examples 1, 2, and 5 and Comparative Examples 1 and 2 were subjected to the following test, and the capacity retention rate and output of the battery were measured. The results are shown in Table 1.

<容量維持率>
測定する電池に対し、25℃、1Cレート、電圧4.1VまでCCCV充電(定電流定電圧充電)し、そして、0.33Cレートで3VまでCCCV放電(定電流定電圧放電)を行ったときの放電容量を測定し、これを初期容量とした。
<Capacity maintenance rate>
When the battery to be measured is CCCV charged (constant current constant voltage charge) to 25 ° C, 1C rate, voltage 4.1V, and CCCV discharge (constant current constant voltage discharge) to 3V at a 0.33C rate The discharge capacity was measured and used as the initial capacity.

電池に対し、25℃、0.5Cレート、電圧4.0VまでCC充電(定電流充電)し、0.5Cレートで3.5VまでCC放電(定電流放電)を行うサイクルを1サイクルとし、これを300サイクル繰り返した。300サイクル後の電池の放電容量を初期容量の測定と同様の方法で測定して、容量維持率を算出した。容量維持率(%)は以下の式で求めた。
容量維持率(%)=300サイクル後の放電容量/初期容量×100
A cycle in which the battery is CC charged (constant current charge) to 25 ° C., 0.5 C rate, voltage 4.0 V, and CC discharged (constant current discharge) to 3.5 V at 0.5 C rate is defined as one cycle. This was repeated for 300 cycles. The discharge capacity of the battery after 300 cycles was measured by the same method as the measurement of the initial capacity, and the capacity retention rate was calculated. The capacity retention rate (%) was obtained by the following formula.
Capacity retention rate (%) = discharge capacity after 300 cycles / initial capacity × 100

<出力>
電池の充電率が20%のときの5秒間の放出電力(W)を、正極活物質層の質量で除したものを出力(W/g)とした。
<Output>
The output (W / g) was obtained by dividing the discharge power (W) for 5 seconds when the charging rate of the battery was 20% by the mass of the positive electrode active material layer.

Figure 2015053288
Figure 2015053288

表1の結果から、電解液保液層を有する電池は容量維持率が向上すること、すなわち高寿命であることがわかる。比較例1及び比較例2の結果から、一般的に認識されているように、比較例2の電池は、正極活物質層と負極活物質層の間に電解液保液層を有するがゆえに、著しい出力低下を引き起したことがわかる。   From the results in Table 1, it can be seen that the battery having the electrolyte solution retaining layer has an improved capacity retention rate, that is, a long life. As generally recognized from the results of Comparative Example 1 and Comparative Example 2, the battery of Comparative Example 2 has an electrolyte solution holding layer between the positive electrode active material layer and the negative electrode active material layer. It can be seen that a significant decrease in output was caused.

しかしながら、実施例1、2、5の結果から明らかなように、電解液保液層を有する電池であっても、電解液保液層1mあたりの電解液の保液量が20〜60μLの範囲内であれば、著しい出力低下を招かず、電解液保液層を有さない電池と同等の出力を示すことがわかる。特に、電解液保液層1mあたりの電解液の保液量が20〜40μLの範囲内の電池は、出力の低下が観察されず、高出力を維持しているのがわかる。また、電解液保液層1mあたりの電解液の保液量が40〜60μLの範囲内の電池は特に優れた容量維持率を示しており、格段に高寿命であることがわかる。 However, as is clear from the results of Examples 1, 2, and 5, even in the case of a battery having an electrolyte solution retaining layer, the amount of the electrolyte solution retained per 1 m 2 of the electrolyte solution retaining layer is 20 to 60 μL. Within the range, it can be seen that the output is not significantly reduced and the output is equivalent to that of the battery having no electrolyte solution retention layer. In particular, it can be seen that the battery in which the amount of the electrolyte solution retained per 1 m 2 of the electrolyte solution retaining layer is in the range of 20 to 40 μL maintains a high output without a decrease in output. Moreover, the battery in which the amount of electrolyte solution retained per 1 m 2 of the electrolyte solution retaining layer is in the range of 40 to 60 μL exhibits a particularly excellent capacity retention rate, which indicates that the battery has an extremely long life.

本発明の電池は活物質層及び樹脂製セパレータに直接挟持される電解液保液層を具備するにも関わらず、著しい出力低下を招かず、高寿命を示すことが裏付けられた。   It was confirmed that the battery of the present invention has a long life without causing a significant decrease in output even though it has an electrolyte solution retention layer directly sandwiched between the active material layer and the resin separator.

Claims (7)

正極活物質層、負極活物質層、電解液、樹脂製セパレータ、並びに、前記活物質層のうち少なくとも1つの活物質層及び前記樹脂製セパレータに直接挟持される電解液保液層を具備し、
前記電解液の溶媒がエチレンカーボネート、メチルエチルカーボネート、ジメチルカーボネートの3種を併用したものであり、
前記電解液保液層の厚みが1〜7μmであり、
前記電解液保液層の密度が1〜3g/cmであり、
前記電解液保液層の空隙率が25〜75%であり、
前記電解液保液層1mあたりの保液量が20〜60μLであることを特徴とするリチウムイオン二次電池。
A positive electrode active material layer, a negative electrode active material layer, an electrolyte solution, a resin separator, and at least one active material layer of the active material layer and an electrolyte solution holding layer directly sandwiched between the resin separator;
The solvent of the electrolytic solution is a combination of ethylene carbonate, methyl ethyl carbonate, and dimethyl carbonate,
The electrolyte solution retention layer has a thickness of 1 to 7 μm,
The density of the electrolyte solution retaining layer is 1 to 3 g / cm 3 ,
The porosity of the electrolyte solution retaining layer is 25 to 75%,
The lithium ion secondary battery is characterized in that a liquid retention amount per 1 m 2 of the electrolyte solution retention layer is 20 to 60 μL.
前記電解液保液層がAl、SiO、TiO、ZrO、MgO、SiC、AlN、BN、CaCO、MgCO、BaCO、タルク、マイカ、カオリナイト、CaSO、MgSO、BaSO、CaO、ZnO、ゼオライトから選択される無機化合物及び結着剤を含む請求項1に記載のリチウムイオン二次電池。 The electrolyte solution retention layer is Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2 , MgO, SiC, AlN, BN, CaCO 3 , MgCO 3 , BaCO 3 , talc, mica, kaolinite, CaSO 4 , MgSO 4. , BaSO 4, CaO, ZnO, lithium ion secondary battery according to claim 1 comprising an inorganic compound and the binder is selected from zeolite. 前記電解液保液層における前記無機化合物及び前記結着剤の含有量の質量比が5:1〜200:1である請求項2に記載のリチウムイオン二次電池。   3. The lithium ion secondary battery according to claim 2, wherein a mass ratio of the content of the inorganic compound and the binder in the electrolyte solution retaining layer is 5: 1 to 200: 1. 前記結着剤がポリフッ化ビニリデンを含む請求項2又は3に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 2 or 3, wherein the binder contains polyvinylidene fluoride. 前記樹脂製セパレータを直接挟持する前記活物質層が負極活物質層である請求項1〜4のいずれかに記載のリチウムイオン二次電池。   The lithium ion secondary battery according to any one of claims 1 to 4, wherein the active material layer directly sandwiching the resin separator is a negative electrode active material layer. 前記樹脂製セパレータを直接挟持する前記活物質層が正極活物質層である請求項1〜4のいずれかに記載のリチウムイオン二次電池。   The lithium ion secondary battery according to any one of claims 1 to 4, wherein the active material layer directly sandwiching the resin separator is a positive electrode active material layer. 請求項1〜6のいずれかに記載のリチウムイオン二次電池の製造方法であって、
電解液保液層形成用組成物を調製する工程と、
前記電解液保液層形成用組成物を活物質層に塗布する工程を含む製造方法。
It is a manufacturing method of the lithium ion secondary battery in any one of Claims 1-6,
Preparing a composition for forming an electrolyte solution retention layer;
The manufacturing method including the process of apply | coating the said composition for electrolyte solution retention layer formation to an active material layer.
JP2014231936A 2014-11-14 2014-11-14 Battery provided with electrolyte holding layer Withdrawn JP2015053288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014231936A JP2015053288A (en) 2014-11-14 2014-11-14 Battery provided with electrolyte holding layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014231936A JP2015053288A (en) 2014-11-14 2014-11-14 Battery provided with electrolyte holding layer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013113814A Division JP5656093B2 (en) 2013-05-30 2013-05-30 Batteries having an electrolyte solution holding layer

Publications (1)

Publication Number Publication Date
JP2015053288A true JP2015053288A (en) 2015-03-19

Family

ID=52702133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014231936A Withdrawn JP2015053288A (en) 2014-11-14 2014-11-14 Battery provided with electrolyte holding layer

Country Status (1)

Country Link
JP (1) JP2015053288A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021051987A (en) * 2019-09-19 2021-04-01 株式会社東芝 Electrode group, nonaqueous electrolyte secondary battery, battery pack and vehicle
CN114512633A (en) * 2022-01-13 2022-05-17 珠海冠宇电池股份有限公司 Negative plate and battery comprising same
US11605807B2 (en) 2019-09-19 2023-03-14 Kabushiki Kaisha Toshiba Electrode group, nonaqueous electrolyte secondary battery, battery pack, and vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021051987A (en) * 2019-09-19 2021-04-01 株式会社東芝 Electrode group, nonaqueous electrolyte secondary battery, battery pack and vehicle
US11605807B2 (en) 2019-09-19 2023-03-14 Kabushiki Kaisha Toshiba Electrode group, nonaqueous electrolyte secondary battery, battery pack, and vehicle
JP7286559B2 (en) 2019-09-19 2023-06-05 株式会社東芝 Electrode group, non-aqueous electrolyte secondary battery, battery pack and vehicle
CN114512633A (en) * 2022-01-13 2022-05-17 珠海冠宇电池股份有限公司 Negative plate and battery comprising same

Similar Documents

Publication Publication Date Title
JPWO2019131195A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2019149269A (en) Lithium ion secondary battery
JP6044427B2 (en) Current collector for positive electrode of lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5656093B2 (en) Batteries having an electrolyte solution holding layer
JP5392585B2 (en) Non-aqueous electrolyte type lithium ion secondary battery
JP2015056208A (en) Electrode having protective layer formed on active material layer
JP6327011B2 (en) Electrode for power storage device, power storage device, and method for manufacturing electrode for power storage device
JP6061143B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2015002008A (en) Electrode including protective layer formed on active material layer
JP6597267B2 (en) Lithium ion secondary battery
JP6300021B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP5643996B1 (en) Lithium ion secondary battery having a positive electrode comprising a thermal runaway suppression layer on a positive electrode active material layer
JP2015060803A (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2015053288A (en) Battery provided with electrolyte holding layer
JP2015005353A (en) Power storage device
JP6600938B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP6011634B2 (en) Nonaqueous electrolyte secondary battery
WO2014112329A1 (en) Positive electrode for lithium ion secondary batteries and lithium ion secondary battery
JP6202191B2 (en) A positive electrode active material layer having a first positive electrode active material and a second positive electrode active material, and a method for producing a positive electrode comprising the positive electrode active material layer
JP6187824B2 (en) Method for producing composition comprising first positive electrode active material, second positive electrode active material, conductive additive, binder and solvent
WO2021124651A1 (en) Non-aqueous electrolyte power storage element and manufacturing method therefor
JP7182288B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5857943B2 (en) Nonaqueous electrolyte secondary battery
JP6124076B2 (en) Method for forming protective layer on aluminum foil, current collector for lithium ion secondary battery, and lithium ion secondary battery
JP2011181234A (en) Nonaqueous electrolyte type lithium ion secondary battery

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20150331