JP2015000415A - Welding member, fuel injection valve and laser welding method - Google Patents

Welding member, fuel injection valve and laser welding method Download PDF

Info

Publication number
JP2015000415A
JP2015000415A JP2013125926A JP2013125926A JP2015000415A JP 2015000415 A JP2015000415 A JP 2015000415A JP 2013125926 A JP2013125926 A JP 2013125926A JP 2013125926 A JP2013125926 A JP 2013125926A JP 2015000415 A JP2015000415 A JP 2015000415A
Authority
JP
Japan
Prior art keywords
welding
width
weld bead
threshold value
laser welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013125926A
Other languages
Japanese (ja)
Other versions
JP6092011B2 (en
JP2015000415A5 (en
Inventor
旭東 張
Xudong Zhang
旭東 張
典洋 矢出
Norihiro Yaide
典洋 矢出
小林 信章
Nobuaki Kobayashi
信章 小林
康広 茂木
Yasuhiro Mogi
康広 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2013125926A priority Critical patent/JP6092011B2/en
Priority to IN1398DE2014 priority patent/IN2014DE01398A/en
Priority to CN201410259340.6A priority patent/CN104227236B/en
Publication of JP2015000415A publication Critical patent/JP2015000415A/en
Publication of JP2015000415A5 publication Critical patent/JP2015000415A5/ja
Application granted granted Critical
Publication of JP6092011B2 publication Critical patent/JP6092011B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/162Means to impart a whirling motion to fuel upstream or near discharging orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2700/00Supplying, feeding or preparing air, fuel, fuel air mixtures or auxiliary fluids for a combustion engine; Use of exhaust gas; Compressors for piston engines
    • F02M2700/07Nozzles and injectors with controllable fuel supply
    • F02M2700/071Injectors having valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Laser Beam Processing (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a welding member reduced in welding deformation, a fuel injection valve with the welding member, and a laser welding method.SOLUTION: A welding member includes: a first welding target material 1 having a recess 13; a second welding target material 2; and a weld bead 3 which is formed by deep penetration laser welding by irradiating with laser beam 5 from the first welding target material 1 side by superposing the first welding target material 1 and the second welding target material 2. When a surface width of the weld bead 3 is W1, a weld penetration width to be a width of the weld bead 3 in a boundary surface 4 of the first welding target material 1 and the second welding target material 2 is W2, and board thickness of the first welding target material 1 is t, a ratio W1/t of the surface width W1 to the board thickness t is equal or less than a first threshold value, and a ratio (W1-W2)/t of a difference between the surface width W1 and the weld penetration width W2 to the board thickness t is equal or less than a second threshold value.

Description

本発明は、複数の被溶接材をレーザ溶接した溶接部材、この溶接部材を備える燃料噴射弁、および、レーザ溶接方法に関する。   The present invention relates to a welding member obtained by laser welding a plurality of workpieces, a fuel injection valve including the welding member, and a laser welding method.

レーザ溶接は、熱源となるレーザ光のエネルギ密度が高いため、低歪み、高速度、高精度の溶接継手が得られることから各方面で使用されている。自動車分野においては、ステンレス鋼や炭素鋼などの鉄鋼材料や、アルミニウム合金や、ニッケル合金などの金属材料に対し、複数の被溶接材を重ねて溶接することが行われている。   Laser welding is used in various directions because the energy density of the laser beam as a heat source is high, and a weld joint with low distortion, high speed, and high accuracy can be obtained. In the automotive field, a plurality of materials to be welded are overlapped and welded to a steel material such as stainless steel or carbon steel, or a metal material such as an aluminum alloy or a nickel alloy.

例えば、燃料噴射弁の噴射ノズル(溶接部材)は、燃料噴射孔を有するノズルプレート(被溶接材)と、燃料経路を提供するノズル本体(被溶接材)と、を溶接して製造される。ノズルプレートとノズル本体との溶接には、低歪み、高精度が要求され、また、溶接速度が高速であることが望ましいから、レーザ溶接が用いられている。   For example, an injection nozzle (welding member) of a fuel injection valve is manufactured by welding a nozzle plate (material to be welded) having fuel injection holes and a nozzle body (material to be welded) that provides a fuel path. Laser welding is used for welding the nozzle plate and the nozzle body because low distortion and high accuracy are required, and it is desirable that the welding speed be high.

特許文献1には、アシストガスの酸素ガス含有量を5〜50容量%に調整して、溶接ビードの表面幅と複数部材(被溶接材)の接合部(境界面)の幅(溶込み幅)との比率をほぼ1に近くすることが開示されている。   In Patent Document 1, the oxygen gas content of the assist gas is adjusted to 5 to 50% by volume, and the surface width of the weld bead and the width (penetration width) of the joint portion (boundary surface) of a plurality of members (materials to be welded). It is disclosed that the ratio of) is close to 1.

特開平10−85974号公報JP-A-10-85974

ところで、レーザ溶接の方法には、熱伝導型レーザ溶接と、深溶込み型(キーホールモード)レーザ溶接と、の2種類の方法がある。ちなみに、特許文献1で開示されたレーザ溶接方法は、熱伝導型レーザ溶接である。   By the way, there are two types of laser welding methods: heat conduction type laser welding and deep penetration type (keyhole mode) laser welding. Incidentally, the laser welding method disclosed in Patent Document 1 is heat conduction type laser welding.

熱伝導型レーザ溶接は、被溶接材の表面にレーザ光を照射し、照射されたレーザ光が被溶接材に吸収され、レーザ光が熱に変換されることで熱エネルギが材料内部まで熱伝導して被溶接材を溶融することにより、被溶接材を溶接する方法である。この溶接方法は、溶接ビードの溶込み深さより溶接ビードの表面幅が広いタイプの溶接であり、溶込み深さが浅く、表面幅が広い溶接ビードが形成しやすい。このため、溶込み深さが深く、表面幅が狭く、溶接変形が小さい溶接が要求されている場合には、熱伝導型レーザ溶接を適用することはできない。   In thermal conduction type laser welding, the surface of the workpiece is irradiated with laser light, the irradiated laser light is absorbed by the workpiece, and the laser light is converted into heat so that heat energy is transferred to the inside of the material. Then, the material to be welded is welded by melting the material to be welded. This welding method is a type of welding in which the surface width of the weld bead is wider than the penetration depth of the weld bead, and a weld bead having a shallow penetration depth and a wide surface width is easily formed. For this reason, heat conduction type laser welding cannot be applied when welding with a deep penetration depth, a narrow surface width, and small welding deformation is required.

一方、深溶込み型(キーホールモード)レーザ溶接は、被溶接材の表面に照射されるレーザ光のパワー密度(単位面積当たりのレーザ出力)が106 W/cm2 以上になると、金属材料からなる被溶接材の金属表面の温度が金属の沸点以上になり、プラズマの発生とともに金属蒸気がレーザ光の照射点から激しく飛び出し、その金属蒸気の反動力で溶融金属面が凹む。そして、レーザ光が凹み(キーホール)の中で反射を繰り返しながら入射して、深く細いキーホールを形成することにより、被溶接材を溶接する方法である。この溶接方法は、熱伝導型レーザ溶接よりも溶接ビードの溶込み深さを深くすることができる。また、この溶接方法は、溶接ビードの溶込み深さを溶接ビードの表面幅の数倍以上とすることができる。 On the other hand, in deep penetration type (keyhole mode) laser welding, when the power density (laser output per unit area) of the laser beam irradiated onto the surface of the workpiece is 10 6 W / cm 2 or more, the metal material The temperature of the metal surface of the welded material consisting of becomes higher than the boiling point of the metal, and with the generation of plasma, the metal vapor jumps out of the laser beam irradiation point, and the molten metal surface is dented by the reaction force of the metal vapor. In this method, the laser beam is incident while repeating reflection in a recess (keyhole) to form a deep and thin keyhole, thereby welding the material to be welded. This welding method can make the penetration depth of the weld bead deeper than that of the heat conduction type laser welding. Moreover, this welding method can make the penetration depth of a weld bead several times the surface width of a weld bead.

ここで、従来の深溶込み型(キーホールモード)レーザ溶接の溶接ビード3の断面形状について図10を用いて説明する。図10は、従来の深溶込み型(キーホールモード)レーザ溶接の溶接ビード3の断面図である。なお、図10は断面図を示しているが、説明の便宜上ハッチングの図示を省略している。ここでは、被溶接材(ノズルプレート)1と被溶接材(ノズル本体)2とが、深溶込み型(キーホールモード)レーザ溶接により溶接され、溶接ビード3が形成されている。なお、W1は溶接ビード3の表面幅であり、W2は被溶接材1と被溶接材2との境界面4における溶接ビード3の幅(溶込み幅)であり、Hは溶接ビード3の溶込み深さであり、Dは境界面4からの溶込み深さであり、tは被溶接材1の板厚である。   Here, the cross-sectional shape of the weld bead 3 of the conventional deep penetration type | mold (keyhole mode) laser welding is demonstrated using FIG. FIG. 10 is a sectional view of a conventional bead 3 of deep penetration type (keyhole mode) laser welding. Although FIG. 10 shows a cross-sectional view, hatching is not shown for convenience of explanation. Here, a material to be welded (nozzle plate) 1 and a material to be welded (nozzle body) 2 are welded by deep penetration type (keyhole mode) laser welding to form a weld bead 3. W1 is the surface width of the weld bead 3, W2 is the width (penetration width) of the weld bead 3 at the boundary surface 4 between the welded material 1 and the welded material 2, and H is the melt width of the weld bead 3. It is a penetration depth, D is a penetration depth from the boundary surface 4, and t is a plate thickness of the workpiece 1.

図10に示すように、従来の深溶込み型(キーホールモード)レーザ溶接では、溶接ビード3の表面幅W1が溶接ビード3の溶込み幅W2より大きく上回るワインカップ状の溶接ビード3の断面形状が形成しやすい。これは、深溶込み型(キーホールモード)レーザ溶接時に、キーホールから噴出される高温の金属蒸気(プラズマ)から被溶接材1の金属表面に伝熱して、溶融池表面を広げる効果があるためである。また、金属蒸気の噴出によりキーホール周辺の溶融池をキーホールから外側へ押し出すことにより、溶融金属の流れが外向きになるためである。この二つの作用により、溶接ビード3の断面形状は、表面幅W1が広く、溶込み幅W2が狭いワインカップ状の断面形状となる。   As shown in FIG. 10, in the conventional deep penetration type (keyhole mode) laser welding, the cross section of the wine cup-shaped weld bead 3 in which the surface width W1 of the weld bead 3 is larger than the penetration width W2 of the weld bead 3. Easy to form. This has the effect of spreading the molten pool surface by transferring heat from the high-temperature metal vapor (plasma) ejected from the keyhole to the metal surface of the workpiece 1 during deep penetration (keyhole mode) laser welding. Because. Moreover, it is because the molten metal flow turns outward by pushing the molten pool around the keyhole outward from the keyhole by jetting metal vapor. By these two actions, the cross-sectional shape of the weld bead 3 becomes a wine cup-shaped cross-sectional shape having a wide surface width W1 and a narrow penetration width W2.

このようなワインカップ状の断面形状を有する溶接ビード3は、レーザ溶接中の被溶接材(ノズルプレート)1の表面付近に溶融された面積が、被溶接材(ノズルプレート)1と被溶接材(ノズル本体)2の境界面4の付近に溶融された面積より大幅に上回る。このため、被溶接材(ノズルプレート)1の表面付近と、被溶接材(ノズルプレート)1と被溶接材(ノズル本体)2の境界面4の付近と、の収縮量が大きく異なるため、溶接変形が発生するおそれがある。   The weld bead 3 having such a wine cup-like cross-sectional shape has an area melted in the vicinity of the surface of the material to be welded (nozzle plate) 1 during laser welding, and the material to be welded (nozzle plate) 1 and the material to be welded. (Nozzle body) 2 greatly exceeds the area melted in the vicinity of the boundary surface 4 of the nozzle 2. For this reason, the amount of shrinkage between the vicinity of the surface of the material to be welded (nozzle plate) 1 and the vicinity of the boundary surface 4 between the material to be welded (nozzle plate) 1 and the material to be welded (nozzle body) 2 is greatly different. Deformation may occur.

そこで、本発明は、溶接変形を低減した溶接部材、この溶接部材を備える燃料噴射弁、および、レーザ溶接方法を提供することを課題とする。   Then, this invention makes it a subject to provide the welding member which reduced welding deformation, a fuel injection valve provided with this welding member, and a laser welding method.

このような課題を解決するために、本発明に係る溶接部材は、凹部が設けられた第1被溶接材と、第2被溶接材と、前記第1被溶接材と前記第2被溶接材とを重ね合わせて、前記第1被溶接材の側からレーザ光を照射して深溶込み型レーザ溶接により形成された溶接ビードと、を備え、前記溶接ビードは、前記溶接ビードの表面幅をW1とし、前記第1被溶接材と前記第2被溶接材の境界面における前記溶接ビードの幅である溶込み幅をW2とし、前記第1被溶接材の板厚をtとして、前記表面幅W1と、前記板厚tと、の比率であるW1/tが第1閾値以下であり、前記表面幅W1と前記溶込み幅W2との差分と、前記板厚tの比率である(W1−W2)/tが第2閾値以下であることを特徴とする。   In order to solve such a problem, a welding member according to the present invention includes a first welded material provided with a recess, a second welded material, the first welded material, and the second welded material. And a weld bead formed by deep penetration type laser welding by irradiating a laser beam from the side of the first workpiece to be welded, and the weld bead has a surface width of the weld bead. W1 is the penetration width that is the width of the weld bead at the boundary surface between the first welded material and the second welded material, W2, and the plate thickness of the first welded material is t. W1 / t, which is the ratio between W1 and the plate thickness t, is equal to or less than the first threshold, and is the difference between the surface width W1 and the penetration width W2 and the plate thickness t (W1- W2) / t is less than or equal to the second threshold value.

また、本発明に係る燃料噴射弁は、燃料を旋回させる旋回室が設けられたノズルプレートと、ノズル本体と、前記ノズルプレートと前記ノズル本体とを重ね合わせて、前記ノズルプレートの側からレーザ光を照射して深溶込み型レーザ溶接により形成された溶接ビードと、を備え、前記溶接ビードは、前記溶接ビードの表面幅をW1とし、前記ノズルプレートと前記ノズル本体の境界面における前記溶接ビードの幅である溶込み幅をW2とし、前記ノズルプレートの板厚をtとして、前記表面幅W1と、前記板厚tと、の比率であるW1/tが第1閾値以下であり、前記表面幅W1と前記溶込み幅W2との差分と、前記板厚tの比率である(W1−W2)/tが第2閾値以下であることを特徴とする。   The fuel injection valve according to the present invention includes a nozzle plate provided with a swirl chamber for swirling fuel, a nozzle body, the nozzle plate and the nozzle body, and a laser beam from the nozzle plate side. And a weld bead formed by deep penetration laser welding, wherein the weld bead has a surface width of the weld bead as W1, and the weld bead at the boundary surface between the nozzle plate and the nozzle body. The penetration width which is the width of the nozzle plate is W2, the plate thickness of the nozzle plate is t, W1 / t which is the ratio of the surface width W1 and the plate thickness t is not more than a first threshold value, and the surface The difference between the width W1 and the penetration width W2 and the ratio of the plate thickness t (W1-W2) / t is equal to or less than a second threshold value.

また、本発明に係るレーザ溶接方法は、凹部が設けられた第1被溶接材と第2被溶接材とを重ね合わせて、前記第1被溶接材の側からレーザ光を照射して深溶込み型レーザ溶接により溶接ビードを形成し、前記溶接ビードは、前記溶接ビードの表面幅をW1とし、前記第1被溶接材と前記第2被溶接材の境界面における前記溶接ビードの幅である溶込み幅をW2とし、前記第1被溶接材の板厚をtとして、前記表面幅W1と、前記板厚tと、の比率であるW1/tが第1閾値以下であり、前記表面幅W1と前記溶込み幅W2との差分と、前記板厚tの比率である(W1−W2)/tが第2閾値以下であることを特徴とする。   Further, the laser welding method according to the present invention includes a first welded material provided with a recess and a second welded material overlapped, and a laser beam is irradiated from the side of the first welded material to perform deep melting. A weld bead is formed by embedded laser welding, and the weld bead is a width of the weld bead at a boundary surface between the first welded material and the second welded material, where W1 is a surface width of the weld bead. The penetration width is W2, the plate thickness of the first material to be welded is t, and the ratio of the surface width W1 and the plate thickness t is W1 / t, which is equal to or less than a first threshold value. The difference between W1 and the penetration width W2 and the ratio of the plate thickness t (W1-W2) / t is not more than a second threshold value.

本発明によれば、溶接変形を低減した溶接部材、この溶接部材を備える燃料噴射弁、および、レーザ溶接方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the welding member which reduced welding deformation, a fuel injection valve provided with this welding member, and a laser welding method can be provided.

(a)は本実施形態に係る溶接部材の縦断面図であり、(b)は本実施形態に係る溶接部材の先端側から見た平面図である。(A) is a longitudinal cross-sectional view of the welding member which concerns on this embodiment, (b) is the top view seen from the front end side of the welding member which concerns on this embodiment. 本実施形態に係る溶接部材の重ね溶接継手の構造を説明する断面図である。It is sectional drawing explaining the structure of the lap weld joint of the welding member which concerns on this embodiment. 深溶込み型レーザ溶接の概要を示す断面図である。It is sectional drawing which shows the outline | summary of deep penetration type laser welding. 溶融池3aの温度と表面張力との関係を示すグラフである。It is a graph which shows the relationship between the temperature of the molten pool 3a, and surface tension. 本実施形態に係る溶接部材の溶接ビードの形状を説明する断面図であるIt is sectional drawing explaining the shape of the weld bead of the welding member which concerns on this embodiment. 比較例1に係る溶接部材の溶接ビードの形状を説明する断面図である。It is sectional drawing explaining the shape of the weld bead of the welding member which concerns on the comparative example 1. FIG. 比較例2に係る溶接部材の溶接ビードの形状を説明する断面図である。It is sectional drawing explaining the shape of the weld bead of the welding member which concerns on the comparative example 2. FIG. 溶接変形による変形量と、溶接ビードの表面幅とノズルプレートの板厚の比率と、の関係を示すグラフである。It is a graph which shows the relationship between the deformation | transformation amount by welding deformation, and the ratio of the surface width of a weld bead, and the plate | board thickness of a nozzle plate. 溶接変形による変形量と、溶接ビード幅変化率と、の関係を示すグラフである。It is a graph which shows the relationship between the deformation amount by welding deformation, and the welding bead width change rate. 従来の深溶込み型レーザ溶接の溶接ビードの断面図である。It is sectional drawing of the welding bead of the conventional deep penetration type laser welding. 従来の深溶込み型レーザ溶接を用いた溶接部材の重ね溶接継手の構造を説明する断面図である。It is sectional drawing explaining the structure of the lap weld joint of the welding member using the conventional deep penetration type laser welding.

以下、本発明を実施するための形態(以下「実施形態」という)について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。   Hereinafter, modes for carrying out the present invention (hereinafter referred to as “embodiments”) will be described in detail with reference to the drawings as appropriate. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.

≪燃料噴射弁の噴射ノズル(溶接部材)F≫
本実施形態に係る溶接部材Fについて、図1を用いて説明する。なお、本実施形態に係る溶接部材Fは、例えば、自動車の内燃機関に使用される燃料噴射弁(インジェクタともいう)の噴射ノズルFである。以下、本実施形態に係る溶接部材Fは、燃料噴射弁の噴射ノズルFであるものとして説明する。図1(a)は本実施形態に係る溶接部材Fの縦断面図であり、図1(b)は本実施形態に係る溶接部材Fの先端側から見た平面図である。なお、図1(a)は図1(b)のA−A線で切断した縦断面図であり、図1(b)は溶接部材Fを図1(a)の矢印B方向に見た平面図である。
≪Injection nozzle (welding member) F of fuel injection valve≫
The welding member F which concerns on this embodiment is demonstrated using FIG. In addition, the welding member F which concerns on this embodiment is the injection nozzle F of the fuel injection valve (it is also called an injector) used for the internal combustion engine of a motor vehicle, for example. Hereinafter, the welding member F which concerns on this embodiment is demonstrated as what is the injection nozzle F of a fuel injection valve. Fig.1 (a) is a longitudinal cross-sectional view of the welding member F which concerns on this embodiment, FIG.1 (b) is the top view seen from the front end side of the welding member F which concerns on this embodiment. 1A is a longitudinal sectional view taken along line AA in FIG. 1B, and FIG. 1B is a plan view of the welding member F viewed in the direction of arrow B in FIG. 1A. FIG.

図1(a)に示すように、燃料噴射弁の噴射ノズル(溶接部材)Fは、ノズルプレート(被溶接材)1とノズル本体(被溶接材)2とを、深溶込み型(キーホールモード)レーザ溶接により溶接ビード3を形成して、重ね継手(重ね溶接継手)で接合した溶接部材である。なお、図1では、燃料噴射弁の先端部の噴射ノズルFのみを図示しており、燃料噴射弁の他の構成部分である、ニードル(弁体)、プランジャ、ソレノイドなどは、公知の技術によって構成されているものとして説明を省略する。   As shown in FIG. 1 (a), an injection nozzle (welding member) F of a fuel injection valve includes a nozzle plate (welded material) 1 and a nozzle body (welded material) 2 which are deep-penetrating (keyholes). Mode) A welding member in which a weld bead 3 is formed by laser welding and joined by a lap joint (lap weld joint). In FIG. 1, only the injection nozzle F at the tip of the fuel injection valve is shown, and other components of the fuel injection valve, such as a needle (valve element), a plunger, a solenoid, etc., are well-known in the art. Description is omitted as it is configured.

<ノズルプレート1、ノズル本体2>
ノズルプレート1は、オーステナイト系ステンレス鋼などの鉄鋼材料で円板形状に形成され、板厚tが例えば0.35mmの薄板材である。ノズル本体2は、マルテンサイト系ステンレス鋼などの鋼鉄材料で略筒状に形成されている。
<Nozzle plate 1, nozzle body 2>
The nozzle plate 1 is a thin plate material made of a steel material such as austenitic stainless steel in a disc shape and having a plate thickness t of, for example, 0.35 mm. The nozzle body 2 is formed in a substantially cylindrical shape with a steel material such as martensitic stainless steel.

図1(a)に示すように、略筒状に形成されるノズル本体2は、その内部の連通路にニードル(弁体)が当接する弁座21を有し、先端中心部に後述するノズルプレート1の中央室11と連通する連通孔22が形成されている。   As shown in FIG. 1 (a), a nozzle body 2 formed in a substantially cylindrical shape has a valve seat 21 with which a needle (valve element) abuts a communication path inside the nozzle body, and a nozzle to be described later in the center of the tip. A communication hole 22 communicating with the central chamber 11 of the plate 1 is formed.

図1(a)に示すように、ノズルプレート1の裏面(ノズル本体2と接する側の面)には、凹部が設けられており、ノズルプレート1とノズル本体2を接合することにより、中央室11と、連通路12(図1(b)参照)と、スワール室(旋回室)13と、が形成される。また、スワール室13からノズルプレート1の表面(ノズル本体2と接する側と反対側の面)に連通する噴射孔14が形成されている。中央室11は、ノズル本体2の連通孔22に対応する位置に形成されている。図1(b)に示すように、連通路12は、中央室11からノズルプレート1の径方向に延びて、スワール室13と連通するように形成されている。スワール室13は、4つ形成されており、各スワール室13の中心に燃料を噴射する噴射孔14が形成されている。   As shown in FIG. 1A, a concave portion is provided on the back surface of the nozzle plate 1 (the surface in contact with the nozzle body 2), and the central chamber is formed by joining the nozzle plate 1 and the nozzle body 2 together. 11, a communication passage 12 (see FIG. 1B), and a swirl chamber (swirl chamber) 13 are formed. In addition, an injection hole 14 that communicates from the swirl chamber 13 to the surface of the nozzle plate 1 (the surface opposite to the side in contact with the nozzle body 2) is formed. The central chamber 11 is formed at a position corresponding to the communication hole 22 of the nozzle body 2. As shown in FIG. 1B, the communication path 12 extends from the central chamber 11 in the radial direction of the nozzle plate 1 and is formed to communicate with the swirl chamber 13. Four swirl chambers 13 are formed, and an injection hole 14 for injecting fuel is formed at the center of each swirl chamber 13.

噴射ノズル(溶接部材)Fから噴射される燃料は、ノズル本体2の連通孔22から、ノズルプレート1の中央室11に流れ、その後、4つの連通路12を経由してスワール室13に流れる。そして、連通路12からスワール室13に流入した燃料は、スワール室13の内部で旋回し、スワール室13の中心にある噴射孔14から噴射されるようになっている。なお、図1(a)において、燃料は噴射孔14から紙面の上方に噴射される。   The fuel injected from the injection nozzle (welding member) F flows from the communication hole 22 of the nozzle body 2 to the central chamber 11 of the nozzle plate 1 and then flows to the swirl chamber 13 via the four communication paths 12. The fuel that has flowed into the swirl chamber 13 from the communication path 12 swirls inside the swirl chamber 13 and is injected from the injection hole 14 at the center of the swirl chamber 13. In FIG. 1A, fuel is injected from the injection hole 14 above the plane of the drawing.

なお、図1において、噴射ノズル(溶接部材)Fは、ノズルプレート1に4つの噴射孔14が形成されているものとして説明したが、これに限られるものではなく、3つ以下であってもよく、5つ以上であってもよい。また、1つのスワール室13に対して1つの噴射孔14が形成されているものとして説明したが、これに限られるものではなく、1つのスワール室13に対して2つ以上の噴射孔14が形成されていてもよい。また、中央室11に噴射孔14が形成されていてもよい。また、噴射孔14の形状は、円形に限定されるものではなく、楕円形、多角形、長孔形状、円弧形状など適宜変更することができる。また、噴射孔14の位置や径についても適宜変更することができる。   In FIG. 1, the injection nozzle (welding member) F has been described as having four injection holes 14 formed in the nozzle plate 1. However, the present invention is not limited to this, and the number of injection nozzles F may be three or less. It may be 5 or more. In addition, although it has been described that one injection hole 14 is formed for one swirl chamber 13, the present invention is not limited to this, and two or more injection holes 14 are provided for one swirl chamber 13. It may be formed. Further, the injection hole 14 may be formed in the central chamber 11. Moreover, the shape of the injection hole 14 is not limited to a circle, and can be appropriately changed to an ellipse, a polygon, a long hole, an arc, or the like. Further, the position and diameter of the injection hole 14 can be changed as appropriate.

<溶接ビード3>
図2は、本実施形態に係る溶接部材Fの重ね溶接継手の構造を説明する断面模式図である。
図2に示すように、燃料噴射弁の噴射ノズル(溶接部材)Fは、ノズルプレート1とノズル本体2とを重ね合わせて、その重ね面のノズルプレート1の表面(ノズル本体2と接する側と反対側の面)側からレーザ光5を照射して金属材料が溶融した溶融池3aを形成することにより、深溶込み型(キーホールモード)レーザ溶接で溶接ビード3(図1(a)参照)が形成され、ノズルプレート1とノズル本体2とが重ね継手(重ね溶接継手)で接合されている。また、図1(b)に示すように、溶接ビード3は、ノズルプレート1の周縁部(中央室11、連通路12、スワール室13を囲む範囲)に沿って周溶接(全周溶接)されている。このようにして周溶接することにより、ノズルプレート1とノズル本体2との境界面4の隙間が封止されることにより、境界面4から燃料が漏れ出るのを確実に防止できる。
<Welding bead 3>
FIG. 2 is a schematic cross-sectional view illustrating the structure of the lap weld joint of the welding member F according to this embodiment.
As shown in FIG. 2, the injection nozzle (welding member) F of the fuel injection valve overlaps the nozzle plate 1 and the nozzle main body 2, and the surface of the overlapping nozzle plate 1 (the side in contact with the nozzle main body 2). The weld bead 3 (see FIG. 1 (a)) is formed by deep penetration type (keyhole mode) laser welding by irradiating the laser beam 5 from the opposite side) to form a molten pool 3a in which the metal material is melted. ) And the nozzle plate 1 and the nozzle body 2 are joined by a lap joint (lap weld joint). Further, as shown in FIG. 1B, the weld bead 3 is circumferentially welded (entirely welded) along the peripheral edge of the nozzle plate 1 (the area surrounding the central chamber 11, the communication path 12, and the swirl chamber 13). ing. By circumferential welding in this way, the gap between the boundary surface 4 between the nozzle plate 1 and the nozzle body 2 is sealed, so that fuel can be reliably prevented from leaking from the boundary surface 4.

なお、レーザ溶接の途中でノズルプレート1とノズル本体2の滑りや、ずれなどの発生を防ぐために、レーザ溶接前に、あらかじめ拘束治具(図示せず)を使用して、ノズルプレート1とノズル本体2を重ね合わせた継手を拘束(固定)している。   In order to prevent the nozzle plate 1 and the nozzle body 2 from slipping or shifting during laser welding, a restraining jig (not shown) is used in advance before laser welding, so that the nozzle plate 1 and the nozzle The joint on which the main body 2 is overlapped is restrained (fixed).

ここで、ノズルプレート1とノズル本体2とを拘束治具(図示せず)で拘束(固定)する際、ノズルプレート1とノズル本体2と間に隙間を形成させないために、ノズルプレート1とノズル本体2の縁端部の面取りLを、可能な限り、ゼロとしている。例えば、面取りLを0.1mm以下とすることが望ましい。これは、ノズル縁端部の面取りLを0.1以上と設定した場合、溶接前に、拘束治具(図示せず)の影響によりノズルプレート1のスワール室13付近位置において、ノズル本体2の間に隙間が生じ、溶接後にこの隙間が残ってしまい、燃料の流れに大きく影響するためである。   Here, when the nozzle plate 1 and the nozzle body 2 are restrained (fixed) by a restraining jig (not shown), the nozzle plate 1 and the nozzle body 2 are not formed so that no gap is formed between the nozzle plate 1 and the nozzle body 2. The chamfer L at the edge of the main body 2 is set to zero as much as possible. For example, it is desirable that the chamfer L is 0.1 mm or less. This is because, when the chamfering L of the nozzle edge is set to 0.1 or more, the nozzle body 2 is positioned near the swirl chamber 13 of the nozzle plate 1 due to the influence of a restraining jig (not shown) before welding. This is because a gap is formed between them, and this gap remains after welding, greatly affecting the flow of fuel.

拘束治具(図示せず)の取り付け終了後にレーザ溶接の工程に入る。図3を用いて、深溶込み型(キーホールモード)レーザ溶接について更に説明する。図3は、深溶込み型(キーホールモード)レーザ溶接の概要を示す断面図である。なお、図3は断面図を示しているが、説明の便宜上ハッチングの図示を省略している。
ノズルプレート1の表面に照射されるレーザ光のパワー密度(単位面積当たりのレーザ出力)が例えば106 W/cm2 以上になることで、ノズルプレート1およびノズル本体2の金属表面の温度が金属の沸点以上になり、プラズマの発生とともに金属蒸気7がレーザ光5の照射点から激しく飛び出し、その金属蒸気7の反動力で溶融池3aの溶融金属面が凹んでキーホール6を形成する。そして、レーザ光5がキーホール6の中で反射を繰り返しながら入射して、深く細いキーホール6を形成することにより、深く細い溶融池3aを形成する。その後、深く細い溶融池3aが再凝固することにより、深く細い溶接ビード3(図1(a)参照)を得ることができる。
After the attachment of the restraining jig (not shown), the laser welding process is started. The deep penetration type (keyhole mode) laser welding will be further described with reference to FIG. FIG. 3 is a sectional view showing an outline of deep penetration type (keyhole mode) laser welding. 3 shows a cross-sectional view, but hatching is not shown for convenience of explanation.
When the power density (laser output per unit area) of the laser light applied to the surface of the nozzle plate 1 is, for example, 10 6 W / cm 2 or more, the temperature of the metal surfaces of the nozzle plate 1 and the nozzle body 2 is metal. As the plasma is generated, the metal vapor 7 jumps out of the irradiation point of the laser beam 5, and the molten metal surface of the molten pool 3 a is recessed by the reaction force of the metal vapor 7 to form the keyhole 6. Then, the laser beam 5 is incident while being repeatedly reflected in the keyhole 6 to form the deep and thin keyhole 6, thereby forming the deep and thin molten pool 3a. Thereafter, the deep and thin molten pool 3a is solidified again, whereby a deep and thin weld bead 3 (see FIG. 1A) can be obtained.

この深溶込み型(キーホールモード)レーザ溶接では、例えば、波長が1070〜1080nmのファイバーレーザを用いることができるが、他の波長のレーザ光5を使用してもよい。また、図示しないレーザ発信器からレーザ光を発生させ、転送経路を経由し、集光レンズ(図示せず)により集光し、ノズルプレート1の表面にレーザ光5を照射する。   In this deep penetration type (keyhole mode) laser welding, for example, a fiber laser having a wavelength of 1070 to 1080 nm can be used, but laser light 5 of other wavelengths may be used. Further, laser light is generated from a laser transmitter (not shown), is condensed by a condenser lens (not shown) via a transfer path, and the surface of the nozzle plate 1 is irradiated with the laser light 5.

また、溶接条件としては、例えば、レーザピーク出力を100W〜600W、溶接速度を4.0mm/s〜100mm/s、ノズルプレート1の表面に照射されるレーザ光5のスポット径を0.05mm〜0.3mmで適宜設定することができる。なお、このレーザ溶接では、連続波、またはパルス波のいずれを使用してもよい。   As welding conditions, for example, the laser peak output is 100 W to 600 W, the welding speed is 4.0 mm / s to 100 mm / s, and the spot diameter of the laser beam 5 irradiated on the surface of the nozzle plate 1 is 0.05 mm to It can be set appropriately at 0.3 mm. In this laser welding, either continuous wave or pulse wave may be used.

また、シールドガスとして窒素と酸素の混合ガスを用いる。なお、シールドガスとしては、窒素と酸素の混合ガスに限定されるものでなく、窒素、Ar(アルゴン)、He(ヘリウム)、Airまたはこれら混合ガスを使用してもよい。   Further, a mixed gas of nitrogen and oxygen is used as the shielding gas. The shielding gas is not limited to a mixed gas of nitrogen and oxygen, and nitrogen, Ar (argon), He (helium), Air, or a mixed gas thereof may be used.

ここで、本実施形態では、シールドガスとして酸素と窒素の混合ガスを使用しているが、シールドガスを使用しないでも構わない。つまり、Fe(鉄)などの金属元素と酸化反応できるガス(例えば、酸素、CO2 )を含有するシールドガスを使用した結果得られるものである。すなわち、シールドガスを使用しない場合、前記のようなシールドガスを使用する場合には、適切な被溶接材を選択する必要があり、実施形態のように、鉄(Fe)を多く含むステンレス鋼などに適用することができる。 Here, in this embodiment, a mixed gas of oxygen and nitrogen is used as the shielding gas, but the shielding gas may not be used. That is, it is obtained as a result of using a shielding gas containing a gas (for example, oxygen, CO 2 ) that can oxidize with a metal element such as Fe (iron). That is, when shield gas is not used, when using shield gas as described above, it is necessary to select an appropriate material to be welded, such as stainless steel containing a large amount of iron (Fe), as in the embodiment, etc. Can be applied to.

図4は、溶融池3aの温度と表面張力との関係を示すグラフである。
一般的に、シールドガス(窒素など:酸素量低)を使用した場合、図4のグラフA(実線)に示すように、溶融鉄(Fe)の表面張力は、温度Tの上昇とともに低下する。そのため、溶融池3aの表面における湯流れ(溶融金属の流れ)は、温度の高い中央部から温度の低い外周部に向かって流れることになる。その結果、溶接幅(表面幅W1)が広く形成される。これに対して、シールドガスに酸素やCO2 を含有させると、溶融金属の酸素量が多くなる(酸素量高)。これにより、図4のグラフB(破線)に示すように、溶融金属の表面張力は、グラフAとは逆に、温度Tの上昇とともに増加する。その結果、溶融池3aの表面における湯流れが、温度が低い溶融池3aの外周から、温度の高い中央部に向かって流れることになる。このように、中央部に向かった湯流れの結果、溶融池3aの幅が狭くなり、凝固後形成される溶接ビード3の表面幅W1の広がりを抑制することができる。なお、シールドガスを使用しない場合においても、空気に含まれる酸素によって溶融金属の酸素量が多くなるので、同様に、表面幅W1の狭い溶接ビード3が得られることになる。
FIG. 4 is a graph showing the relationship between the temperature of the molten pool 3a and the surface tension.
In general, when a shielding gas (nitrogen or the like: low oxygen amount) is used, the surface tension of molten iron (Fe) decreases as the temperature T increases, as shown in graph A (solid line) in FIG. Therefore, the hot water flow (molten metal flow) on the surface of the molten pool 3a flows from the central portion having a high temperature toward the outer peripheral portion having a low temperature. As a result, a wide welding width (surface width W1) is formed. On the other hand, when oxygen or CO 2 is contained in the shielding gas, the amount of oxygen in the molten metal increases (the amount of oxygen is high). Thereby, as shown in the graph B (broken line) in FIG. 4, the surface tension of the molten metal increases as the temperature T increases, contrary to the graph A. As a result, the hot water flow on the surface of the molten pool 3a flows from the outer periphery of the molten pool 3a having a low temperature toward the central portion having a high temperature. Thus, as a result of the hot water flow toward the center, the width of the molten pool 3a becomes narrow, and the spread of the surface width W1 of the weld bead 3 formed after solidification can be suppressed. Even when the shield gas is not used, the amount of oxygen in the molten metal is increased by the oxygen contained in the air, so that a weld bead 3 having a narrow surface width W1 is similarly obtained.

[従来例の溶接ビード]
ここで、従来のワインカップ状の溶接ビード3(図10参照)をノズルプレート1とノズル本体2の溶接に適用した場合について図11を用いて説明する。図11は、従来の深溶込み型(キーホールモード)レーザ溶接を用いた溶接部材の重ね溶接継手の構造を説明する断面図である。なお、図11のX方向はノズルプレート1およびノズル本体2の軸方向であり、R方向はノズルプレート1およびノズル本体2の径方向である。
[Conventional weld bead]
Here, the case where the conventional wine cup-shaped welding bead 3 (refer FIG. 10) is applied to the welding of the nozzle plate 1 and the nozzle main body 2 is demonstrated using FIG. FIG. 11 is a cross-sectional view illustrating the structure of a lap weld joint of welded members using conventional deep penetration type (keyhole mode) laser welding. The X direction in FIG. 11 is the axial direction of the nozzle plate 1 and the nozzle body 2, and the R direction is the radial direction of the nozzle plate 1 and the nozzle body 2.

前述したように、このようなワインカップ状の断面形状を有する溶接ビード3は、レーザ溶接中のノズルプレート1の表面付近に溶融された面積が、ノズルプレート1とノズル本体2の境界面4の付近に溶融された面積より大幅に上回る。このため、ノズルプレート1の表面付近と、ノズルプレート1とノズル本体2の境界面4の付近と、の収縮量が大きく異なるため、溶接変形が発生する。特に、本実施形態に係るノズルプレート1とノズル本体2の溶接に適用した場合、溶接ビード3の表面幅W1が広くなり、スワール室13との距離が非常に小さくなる。また、ノズルプレート1に凹部を形成してスワール室13としているため、スワール室13の板厚t13 はノズルプレート1の板厚tよりも薄くなっている。このため、スワール室13付近に変形が生じやすくなっている。 As described above, the weld bead 3 having such a wine cup-like cross-sectional shape has an area melted in the vicinity of the surface of the nozzle plate 1 during laser welding of the boundary surface 4 between the nozzle plate 1 and the nozzle body 2. Significantly greater than the area melted nearby. For this reason, the amount of shrinkage between the vicinity of the surface of the nozzle plate 1 and the vicinity of the boundary surface 4 between the nozzle plate 1 and the nozzle body 2 is greatly different, so that welding deformation occurs. In particular, when applied to the welding of the nozzle plate 1 and the nozzle body 2 according to the present embodiment, the surface width W1 of the weld bead 3 is widened and the distance from the swirl chamber 13 is very small. Further, since the concave portion is formed in the nozzle plate 1 to form the swirl chamber 13, the plate thickness t 13 of the swirl chamber 13 is thinner than the plate thickness t of the nozzle plate 1. For this reason, deformation is likely to occur near the swirl chamber 13.

ここで、有限要素法を利用して溶接変形のシミュレーションを実施した結果、図11に示すように、溶接後にスワール室13付近に軸方向(X方向)のマイナス方向に変形εx が生じている。すなわち、ノズルプレート1の表面からみると、ノズルプレート1の中心付近に凹み変形が生じる。
また、ノズルプレート1の表面付近は径方向(R方向)のマイナス方向に変形εy1 が生じ、ノズルプレート1とノズル本体2の境界面4の付近に径方向(R方向)のプラス方向に変形εy2 が生じている。その結果、ノズルプレート1全体にうねり変形が発生し、燃料を旋回させるスワール室13も変形するため、燃料の旋回パターンまたは旋回安定性に大きな影響を及ぼす。その結果、燃料噴射弁の燃料噴射性能も低下するおそれがある。
Here, as a result of the simulation of welding deformation using the finite element method, as shown in FIG. 11, deformation ε x occurs in the negative direction in the axial direction (X direction) in the vicinity of the swirl chamber 13 after welding. . That is, when viewed from the surface of the nozzle plate 1, a dent deformation occurs near the center of the nozzle plate 1.
Further, a deformation ε y1 occurs in the negative direction in the radial direction (R direction) near the surface of the nozzle plate 1, and the deformation in the positive direction in the radial direction (R direction) occurs in the vicinity of the boundary surface 4 between the nozzle plate 1 and the nozzle body 2. ε y2 is generated. As a result, waviness deformation occurs in the entire nozzle plate 1 and the swirl chamber 13 for swirling the fuel is also deformed, which greatly affects the swirl pattern or swirl stability of the fuel. As a result, the fuel injection performance of the fuel injection valve may also decrease.

[本実施形態の溶接ビード]
これに対し本実施形態では、ノズルプレート1およびノズル本体2を、酸化反応するガスを含むシールドガスを使用して溶接し、または、シールガスを使用することなく空気雰囲気中で溶接して、溶接ビード3を得ることで、細い溶接ビード3を得ることができる。これにより、噴射ノズルFのような、溶接幅(表面幅W1)を広くできない部分の溶接に好適に適用できる。また、溶接ビード3の表面幅W1の広がりを抑制することにより、溶接ビード3の幅が、深さ方向について、均一に近づけることができる。即ち、ノズルプレート1の一端面側の溶接ビード3の幅である表面幅W1と、ノズルプレート1の他端面側の溶接ビード3の幅である溶込み幅W2と、の差を小さくなるようにすることにより、スワール室13に生じる変形を抑制し、燃料噴射弁の燃料噴射性能を確保することができる。
[Welding bead of this embodiment]
On the other hand, in this embodiment, the nozzle plate 1 and the nozzle body 2 are welded using a shield gas containing an oxidation reaction gas, or welded in an air atmosphere without using a seal gas. By obtaining the bead 3, a thin weld bead 3 can be obtained. Thereby, it can apply suitably to the welding of the part which cannot widen welding width (surface width W1) like the injection nozzle F. FIG. Further, by suppressing the spread of the surface width W1 of the weld bead 3, the width of the weld bead 3 can be made uniform in the depth direction. That is, the difference between the surface width W1 which is the width of the weld bead 3 on the one end surface side of the nozzle plate 1 and the penetration width W2 which is the width of the weld bead 3 on the other end surface side of the nozzle plate 1 is reduced. By doing so, the deformation | transformation which arises in the swirl chamber 13 can be suppressed, and the fuel injection performance of a fuel injection valve can be ensured.

(本実施形態に係る溶接ビード3の断面形状)
図5は、本実施形態に係る溶接部材Fの溶接ビード3の形状を説明する断面図である。なお、図5(および後述する図6、図7)は断面図を示しているが、説明の便宜上ハッチングの図示を省略している。
(Cross-sectional shape of weld bead 3 according to this embodiment)
FIG. 5 is a cross-sectional view illustrating the shape of the weld bead 3 of the welding member F according to the present embodiment. 5 (and FIG. 6 and FIG. 7 described later) are sectional views, but hatching is not shown for convenience of explanation.

図5に示すように、本実施形態に係る深溶込み型(キーホールモード)レーザ溶接により、溶接ビード3を備えた重ね溶接継手を得た。この重ね溶接継手において、例えば、ノズルプレート1の表面に形成される溶接ビード3の断面形状の表面幅W1は、0.32mmであり、ノズルプレート1の表面から溶接ビード3の底部までの全体の溶込み深さHは、0.42mmであった。また、ノズルプレート1とノズル本体2との境界を形成する境界線(境界面4)の深さ位置における溶接ビード3の溶込み幅W2は、0.28mmであった。また、ノズルプレート1の厚みtが0.35mmであり、境界線(境界面4)から溶接ビード3の底部までの深さD(境界面4以下のノズル本体2側の溶込み深さ)は、0.07mmであった。   As shown in FIG. 5, the lap weld joint provided with the weld bead 3 was obtained by the deep penetration type | mold (keyhole mode) laser welding which concerns on this embodiment. In this lap weld joint, for example, the surface width W1 of the cross-sectional shape of the weld bead 3 formed on the surface of the nozzle plate 1 is 0.32 mm, and the entire surface from the surface of the nozzle plate 1 to the bottom of the weld bead 3 is formed. The penetration depth H was 0.42 mm. The penetration width W2 of the weld bead 3 at the depth position of the boundary line (boundary surface 4) that forms the boundary between the nozzle plate 1 and the nozzle body 2 was 0.28 mm. The thickness t of the nozzle plate 1 is 0.35 mm, and the depth D from the boundary line (boundary surface 4) to the bottom of the weld bead 3 (the penetration depth on the nozzle body 2 side below the boundary surface 4) is 0.07 mm.

その結果、溶接ビード3の表面幅W1とノズルプレート1の板厚tの比率W1/tは、0.91であり、閾値1.0以下であった。また、溶接ビード3の表面幅W1、ノズルプレート1とノズル本体2との境界面4の溶接ビード3の溶込み幅W2とノズルプレート1の板厚tの関係(W1−W2)/tは、0.114であり、閾値0.4以下であった。
なお、以下の説明において、(W1−W2)/tを溶接ビード幅変化率を称する。また、比率W1/tの閾値1.0および溶接ビード幅変化率の閾値0.4の意義については、図8および図9を用いて後述する。
As a result, the ratio W1 / t between the surface width W1 of the weld bead 3 and the plate thickness t of the nozzle plate 1 was 0.91, and the threshold value was 1.0 or less. The relationship (W1-W2) / t of the surface width W1 of the weld bead 3, the penetration width W2 of the weld bead 3 at the boundary surface 4 between the nozzle plate 1 and the nozzle body 2 and the plate thickness t of the nozzle plate 1 is It was 0.114, and the threshold value was 0.4 or less.
In the following description, (W1-W2) / t is referred to as a welding bead width change rate. Further, the significance of the threshold value 1.0 of the ratio W1 / t and the threshold value 0.4 of the weld bead width change rate will be described later with reference to FIGS.

このような溶接ビード3(溶接ビード3の断面形状)を有する重ね溶接継手について、溶接後にノズルプレート1、特に、スワール室13付近の変形を測定した。その結果、ノズルプレート1またはスワール室13にほとんど変形が生じていないことを確認した。また、顕微鏡で溶接部の組織および欠陥を観察した。その結果、溶接部に溶接割れ、ポロシティ、接合不良などの溶接欠陥は認められなかった。   About the lap weld joint which has such a weld bead 3 (cross-sectional shape of the weld bead 3), the deformation | transformation of the nozzle plate 1, especially the swirl chamber 13 vicinity was measured after welding. As a result, it was confirmed that the nozzle plate 1 or the swirl chamber 13 hardly deformed. Further, the structure and defects of the weld were observed with a microscope. As a result, no weld defects such as weld cracks, porosity, and poor bonding were found in the weld.

(比較例に係る溶接ビード3の断面形状)
図6は、比較例1に係る溶接部材Fの溶接ビード3の形状を説明する断面図である。図7は、比較例2に係る溶接部材Fの溶接ビード3の形状を説明する断面図である。
(Cross-sectional shape of weld bead 3 according to comparative example)
FIG. 6 is a cross-sectional view illustrating the shape of the weld bead 3 of the welding member F according to Comparative Example 1. FIG. 7 is a cross-sectional view illustrating the shape of the weld bead 3 of the welding member F according to Comparative Example 2.

図6に示す比較例1の溶接ビード3の断面形状は、表面幅W1が0.65mmであり、全体の溶込み深さHが0.46mmであり、溶込み幅W2が0.53mmであり、深さDが0.11mmであった。なお。ノズルプレート1の厚みtは0.35mmである。   The cross-sectional shape of the weld bead 3 of Comparative Example 1 shown in FIG. 6 is that the surface width W1 is 0.65 mm, the entire penetration depth H is 0.46 mm, and the penetration width W2 is 0.53 mm. The depth D was 0.11 mm. Note that. The thickness t of the nozzle plate 1 is 0.35 mm.

その結果、溶接ビード幅変化率(W1−W2)/tは0.34であり、閾値0.4以下であった。一方、比率W1/tは1.86であり、閾値1.0より大きかった。
このように、溶接ビード3の表面幅W1および溶込み幅W2が共にノズルプレート1の板厚tより大きくなると、溶接途中でスワール室13の周縁の熱影響が大きくなり、スワール室13の溶接変形も大きくなっている。
As a result, the weld bead width change rate (W1-W2) / t was 0.34, and the threshold value was 0.4 or less. On the other hand, the ratio W1 / t was 1.86, which was larger than the threshold value 1.0.
As described above, when the surface width W1 and the penetration width W2 of the weld bead 3 are both larger than the plate thickness t of the nozzle plate 1, the thermal influence on the periphery of the swirl chamber 13 is increased during welding, and the welding deformation of the swirl chamber 13 is increased. Is also getting bigger.

図7に示す比較例2の溶接ビード3の断面形状は、表面幅W1が0.30mmであり、全体の溶込み深さHが0.38mmであり、溶込み幅W2が0.12mmであり、深さDが0.03mmであった。なお。ノズルプレート1の厚みtは0.35mmである。   The cross-sectional shape of the weld bead 3 of Comparative Example 2 shown in FIG. 7 is that the surface width W1 is 0.30 mm, the entire penetration depth H is 0.38 mm, and the penetration width W2 is 0.12 mm. The depth D was 0.03 mm. Note that. The thickness t of the nozzle plate 1 is 0.35 mm.

その結果、比率W1/tは0.86であり、閾値1.0以下であった。一方、溶接ビード幅変化率(W1−W2)/tは0.51であり、閾値0.4より大きかった。
このような溶接ビード3の形状は、表面幅W1がノズルプレート1の板厚tより小さく、スワール室13に対しての熱影響が小さいが、表面幅W1と溶込み幅W2の差が大きいため、ノズルプレート1の表面付近(スワール室13上部付近)の変形と、ノズルプレート1とノズル本体2の境界面4付近(スワール室13下部付近)の変形と、の差が大きく、スワール室13の内周縁部に凹みのような変形を生じる可能性が大きくなる。
As a result, the ratio W1 / t was 0.86, and the threshold value was 1.0 or less. On the other hand, the weld bead width change rate (W1-W2) / t was 0.51, which was larger than the threshold value 0.4.
The shape of the weld bead 3 is such that the surface width W1 is smaller than the plate thickness t of the nozzle plate 1 and the thermal effect on the swirl chamber 13 is small, but the difference between the surface width W1 and the penetration width W2 is large. The difference between the deformation near the surface of the nozzle plate 1 (near the upper part of the swirl chamber 13) and the deformation near the boundary surface 4 (near the lower part of the swirl chamber 13) between the nozzle plate 1 and the nozzle body 2 is large. There is a greater possibility of deformation such as a dent in the inner peripheral edge.

これらの結果をまとめたものを図8および図9に示す。図8は、溶接変形による変形量と、溶接ビード3の表面幅W1とノズルプレート1の板厚5の比率W1/tと、の関係を示すグラフである。図9は、溶接変形による変形量と、溶接ビード幅変化率(W1−W2)/Tと、の関係を示すグラフである。   A summary of these results is shown in FIGS. FIG. 8 is a graph showing the relationship between the amount of deformation caused by welding deformation and the ratio W1 / t of the surface width W1 of the weld bead 3 and the plate thickness 5 of the nozzle plate 1. FIG. 9 is a graph showing the relationship between the amount of deformation due to welding deformation and the weld bead width change rate (W1-W2) / T.

図8に示すように、比率W1/tが閾値1.0以下の場合、溶接変形による変形量は変形許容量よりも小さくなり、燃料噴射弁の噴射性能を確保することができる。一方、比率W1/tが閾値1.0より大きくなると、溶接変形による変形量は変形許容量よりも大きくなり、変形量も急に大きくなっている。   As shown in FIG. 8, when the ratio W1 / t is equal to or less than the threshold value 1.0, the deformation amount due to welding deformation becomes smaller than the deformation allowable amount, and the injection performance of the fuel injection valve can be ensured. On the other hand, when the ratio W1 / t is larger than the threshold value 1.0, the deformation amount due to welding deformation is larger than the deformation allowable amount, and the deformation amount is rapidly increased.

また、図9に示すように、溶接ビード幅変化率(W1−W2)/tが閾値0.4以下の場合、溶接変形による変形量は変形許容量よりも小さくなり、燃料噴射弁の噴射性能を確保することができる。一方、溶接ビード幅変化率(W1−W2)/tが閾値0.4より大きくなると、溶接変形による変形量は変形許容量よりも大きくなり、変形量も急に大きくなっている。   As shown in FIG. 9, when the weld bead width change rate (W1-W2) / t is equal to or less than the threshold value 0.4, the deformation amount due to welding deformation becomes smaller than the allowable deformation amount, and the injection performance of the fuel injection valve Can be secured. On the other hand, when the welding bead width change rate (W1-W2) / t becomes larger than the threshold value 0.4, the deformation amount due to welding deformation becomes larger than the deformation allowable amount, and the deformation amount suddenly increases.

以上に説明したように、比率W1/tおよび溶接ビード幅変化率(W1−W2)/tを所定の範囲内に設定することにより、スワール室13を設けたノズルプレート1とノズル本体2のレーザ溶接において、スワール室13の溶接変形を抑制することができ、高品質な燃料噴射弁が得られる。   As described above, by setting the ratio W1 / t and the weld bead width change rate (W1-W2) / t within a predetermined range, the laser of the nozzle plate 1 provided with the swirl chamber 13 and the nozzle body 2 is provided. In welding, welding deformation of the swirl chamber 13 can be suppressed, and a high-quality fuel injection valve can be obtained.

≪変形例≫
なお、本実施形態に係る溶接部材Fは、上記実施形態の構成に限定されるものではなく、発明の趣旨を逸脱しない範囲内で種々の変更が可能である。
≪Modification≫
In addition, the welding member F which concerns on this embodiment is not limited to the structure of the said embodiment, A various change is possible within the range which does not deviate from the meaning of invention.

比率W1/tの閾値は1.0であるものとして説明したが、これに限られるものではなく、スワール室13の変形許容量に応じて変更してもよい。   The threshold value of the ratio W1 / t has been described as being 1.0, but is not limited to this, and may be changed according to the deformation allowable amount of the swirl chamber 13.

溶接ビード幅変化率(W1−W2)/tの閾値は0.4であるものとして説明したが、これに限られるものではなく、スワール室13の変形許容量に応じて変更してもよい。   Although the threshold value of the weld bead width change rate (W1-W2) / t has been described as 0.4, it is not limited to this and may be changed according to the deformation allowance of the swirl chamber 13.

1 ノズルプレート(被溶接材、第1被溶接材)
2 ノズル本体(被溶接材、第2被溶接材)
3 溶接ビード
3a 溶融池
4 境界面
5 レーザ光
6 キーホール
7 金属蒸気
11 中央室
12 連通路
13 スワール室(凹部、旋回室)
14 噴射孔
21 弁座
22 連通孔
F 噴射ノズル(溶接部材、燃料噴射弁)
W1 表面幅
W2 溶込み幅
H 溶込み深さ
D 深さ
t 板厚
L 面取り
1 Nozzle plate (material to be welded, first material to be welded)
2 Nozzle body (welded material, second welded material)
3 weld bead 3a molten pool 4 boundary surface 5 laser beam 6 keyhole 7 metal vapor 11 central chamber 12 communication path 13 swirl chamber (recess, swirl chamber)
14 Injection hole 21 Valve seat 22 Communication hole F Injection nozzle (welding member, fuel injection valve)
W1 Surface width W2 Penetration width H Penetration depth D Depth t Plate thickness L Chamfering

Claims (13)

凹部が設けられた第1被溶接材と、
第2被溶接材と、
前記第1被溶接材と前記第2被溶接材とを重ね合わせて、前記第1被溶接材の側からレーザ光を照射して深溶込み型レーザ溶接により形成された溶接ビードと、を備え、
前記溶接ビードは、
前記溶接ビードの表面幅をW1とし、前記第1被溶接材と前記第2被溶接材の境界面における前記溶接ビードの幅である溶込み幅をW2とし、前記第1被溶接材の板厚をtとして、
前記表面幅W1と、前記板厚tと、の比率であるW1/tが第1閾値以下であり、
前記表面幅W1と前記溶込み幅W2との差分と、前記板厚tの比率である(W1−W2)/tが第2閾値以下である
ことを特徴とする溶接部材。
A first material to be welded provided with a recess;
A second welded material;
A welding bead formed by deep penetration laser welding by irradiating a laser beam from the side of the first welded material with the first welded material and the second welded material overlapped with each other. ,
The weld bead is
The surface width of the weld bead is W1, the penetration width that is the width of the weld bead at the boundary surface between the first welded material and the second welded material is W2, and the plate thickness of the first welded material. T
W1 / t which is a ratio of the surface width W1 and the plate thickness t is equal to or less than a first threshold value,
The welding member, wherein (W1−W2) / t, which is a ratio between the difference between the surface width W1 and the penetration width W2 and the thickness t, is equal to or less than a second threshold value.
前記第1閾値および前記第2閾値は、前記凹部の変形許容量に基づいて設定される
ことを特徴とする請求項1に記載の溶接部材。
The welding member according to claim 1, wherein the first threshold value and the second threshold value are set based on a deformation allowable amount of the recess.
前記第1閾値は、1.0であり、
前記第2閾値は、0.4である
ことを特徴とする請求項2に記載の溶接部材。
The first threshold is 1.0,
The welding member according to claim 2, wherein the second threshold value is 0.4.
前記第2被溶接材の前記第1被溶接材と重ね合わされる面の縁端部に形成される面取りは、
0.1mm以下とする
ことを特徴とする請求項1に記載の溶接部材。
The chamfer formed at the edge of the surface of the second workpiece to be overlapped with the first workpiece is:
The welding member according to claim 1, wherein the welding member is 0.1 mm or less.
燃料を旋回させる旋回室が設けられたノズルプレートと、
ノズル本体と、
前記ノズルプレートと前記ノズル本体とを重ね合わせて、前記ノズルプレートの側からレーザ光を照射して深溶込み型レーザ溶接により形成された溶接ビードと、を備え、
前記溶接ビードは、
前記溶接ビードの表面幅をW1とし、前記ノズルプレートと前記ノズル本体の境界面における前記溶接ビードの幅である溶込み幅をW2とし、前記ノズルプレートの板厚をtとして、
前記表面幅W1と、前記板厚tと、の比率であるW1/tが第1閾値以下であり、
前記表面幅W1と前記溶込み幅W2との差分と、前記板厚tの比率である(W1−W2)/tが第2閾値以下である
ことを特徴とする燃料噴射弁。
A nozzle plate provided with a swirl chamber for swirling fuel;
A nozzle body;
The nozzle plate and the nozzle body are overlapped, and a welding bead formed by deep penetration laser welding by irradiating laser light from the nozzle plate side,
The weld bead is
W1 is the surface width of the weld bead, W2 is the penetration width of the weld bead at the interface between the nozzle plate and the nozzle body, and t is the thickness of the nozzle plate.
W1 / t which is a ratio of the surface width W1 and the plate thickness t is equal to or less than a first threshold value,
A fuel injection valve characterized in that a difference between the surface width W1 and the penetration width W2 and a ratio of the plate thickness t (W1-W2) / t is equal to or less than a second threshold value.
前記第1閾値および前記第2閾値は、前記旋回室の変形許容量に基づいて設定される
ことを特徴とする請求項5に記載の燃料噴射弁。
6. The fuel injection valve according to claim 5, wherein the first threshold value and the second threshold value are set based on a deformation allowable amount of the swirl chamber.
前記第1閾値は、1.0であり、
前記第2閾値は、0.4である
ことを特徴とする請求項6に記載の燃料噴射弁。
The first threshold is 1.0,
The fuel injection valve according to claim 6, wherein the second threshold value is 0.4.
前記ノズル本体の前記ノズルプレートと重ね合わされる面の縁端部に形成される面取りは、
0.1mm以下とする
ことを特徴とする請求項5に記載の燃料噴射弁。
The chamfer formed at the edge of the surface of the nozzle body that is overlapped with the nozzle plate is:
6. The fuel injection valve according to claim 5, wherein the fuel injection valve is 0.1 mm or less.
凹部が設けられた第1被溶接材と第2被溶接材とを重ね合わせて、前記第1被溶接材の側からレーザ光を照射して深溶込み型レーザ溶接により溶接ビードを形成し、
前記溶接ビードは、
前記溶接ビードの表面幅をW1とし、前記第1被溶接材と前記第2被溶接材の境界面における前記溶接ビードの幅である溶込み幅をW2とし、前記第1被溶接材の板厚をtとして、
前記表面幅W1と、前記板厚tと、の比率であるW1/tが第1閾値以下であり、
前記表面幅W1と前記溶込み幅W2との差分と、前記板厚tの比率である(W1−W2)/tが第2閾値以下である
ことを特徴とするレーザ溶接方法。
The first welded material provided with the recess and the second welded material are overlapped, a laser beam is irradiated from the first welded material side to form a weld bead by deep penetration laser welding,
The weld bead is
The surface width of the weld bead is W1, the penetration width that is the width of the weld bead at the boundary surface between the first welded material and the second welded material is W2, and the plate thickness of the first welded material. T
W1 / t which is a ratio of the surface width W1 and the plate thickness t is equal to or less than a first threshold value,
A laser welding method characterized in that (W1-W2) / t, which is a ratio of the difference between the surface width W1 and the penetration width W2 and the plate thickness t, is equal to or less than a second threshold value.
前記第1閾値および前記第2閾値は、前記旋回室の変形許容量に基づいて設定される
ことを特徴とする請求項9に記載のレーザ溶接方法。
The laser welding method according to claim 9, wherein the first threshold value and the second threshold value are set based on an allowable deformation amount of the swirl chamber.
前記第1閾値は、1.0であり、
前記第2閾値は、0.4である
ことを特徴とする請求項10に記載のレーザ溶接方法。
The first threshold is 1.0,
The laser welding method according to claim 10, wherein the second threshold value is 0.4.
前記深溶込み型レーザ溶接は、
シールドガスとして酸素と窒素の混合ガスを用いる
ことを特徴とする請求項9に記載のレーザ溶接方法。
The deep penetration type laser welding is
The laser welding method according to claim 9, wherein a mixed gas of oxygen and nitrogen is used as the shielding gas.
前記深溶込み型レーザ溶接は、
シールドガスを使用せず、空気雰囲気中で行う
ことを特徴とする請求項9に記載のレーザ溶接方法。
The deep penetration type laser welding is
The laser welding method according to claim 9, wherein the method is performed in an air atmosphere without using a shielding gas.
JP2013125926A 2013-06-14 2013-06-14 Welding member, fuel injection valve, and laser welding method Active JP6092011B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013125926A JP6092011B2 (en) 2013-06-14 2013-06-14 Welding member, fuel injection valve, and laser welding method
IN1398DE2014 IN2014DE01398A (en) 2013-06-14 2014-05-27
CN201410259340.6A CN104227236B (en) 2013-06-14 2014-06-12 Welded unit, Fuelinjection nozzle and method for laser welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013125926A JP6092011B2 (en) 2013-06-14 2013-06-14 Welding member, fuel injection valve, and laser welding method

Publications (3)

Publication Number Publication Date
JP2015000415A true JP2015000415A (en) 2015-01-05
JP2015000415A5 JP2015000415A5 (en) 2015-12-17
JP6092011B2 JP6092011B2 (en) 2017-03-08

Family

ID=52216614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013125926A Active JP6092011B2 (en) 2013-06-14 2013-06-14 Welding member, fuel injection valve, and laser welding method

Country Status (3)

Country Link
JP (1) JP6092011B2 (en)
CN (1) CN104227236B (en)
IN (1) IN2014DE01398A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017200110A1 (en) * 2016-05-19 2017-11-23 株式会社日本プレミアム Diesel power generation system using biofuel
CN113097661A (en) * 2021-03-31 2021-07-09 珠海冠宇电池股份有限公司 Battery with a battery cell
CN115922061A (en) * 2022-12-07 2023-04-07 长沙大科激光科技有限公司 Copper-aluminum dissimilar metal lap welding method based on ultrasonic real-time measurement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11945130B2 (en) * 2021-05-03 2024-04-02 The Gillette Company Llc Methods of forming a razor blade assembly

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679484A (en) * 1992-07-14 1994-03-22 Mitsubishi Electric Corp Laser welding method
JP2003088969A (en) * 2001-09-18 2003-03-25 Hitachi Zosen Corp Thick plate lap welding method and equipment
JP2003320468A (en) * 2002-05-08 2003-11-11 Kobe Steel Ltd Method for laser beam welding of aluminum alloy plate
JP2010158717A (en) * 2008-12-09 2010-07-22 Nippon Steel Corp Laser welded lap joint made of high-strength steel sheets and method for manufacturing the same
JP2012158995A (en) * 2011-01-31 2012-08-23 Hitachi Automotive Systems Ltd Fuel injection valve
JP2012200768A (en) * 2011-03-25 2012-10-22 Toyota Motor Corp Welding method for container and method for manufacturing secondary battery using the same
JP2012211541A (en) * 2011-03-31 2012-11-01 Hitachi Automotive Systems Ltd Fuel injection valve
US20120298638A1 (en) * 2009-12-11 2012-11-29 Daimler Ag Method for welding two metal parts and connecting arrangement with two metal components
JP2013024176A (en) * 2011-07-25 2013-02-04 Hitachi Automotive Systems Ltd Fuel injection valve

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3941269B2 (en) * 1997-12-11 2007-07-04 株式会社デンソー Laser welding structure and method of metal member, and fuel injection valve
JP4076494B2 (en) * 2003-12-22 2008-04-16 株式会社日本自動車部品総合研究所 Auxiliary fuel injection device and control device for auxiliary fuel injection device in internal combustion engine
JP4987453B2 (en) * 2006-12-21 2012-07-25 新日本製鐵株式会社 Lap laser welding joint of steel plates and lap laser welding method
JP4594338B2 (en) * 2007-01-30 2010-12-08 日立オートモティブシステムズ株式会社 Injection valve, orifice plate of injection valve, and manufacturing method thereof
JP5505369B2 (en) * 2011-05-19 2014-05-28 新日鐵住金株式会社 Laser welded joint with excellent joint strength and manufacturing method thereof
US20130088071A1 (en) * 2011-10-07 2013-04-11 Lincoln Global, Inc. Fabrication of welded wheels without filler material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679484A (en) * 1992-07-14 1994-03-22 Mitsubishi Electric Corp Laser welding method
JP2003088969A (en) * 2001-09-18 2003-03-25 Hitachi Zosen Corp Thick plate lap welding method and equipment
JP2003320468A (en) * 2002-05-08 2003-11-11 Kobe Steel Ltd Method for laser beam welding of aluminum alloy plate
JP2010158717A (en) * 2008-12-09 2010-07-22 Nippon Steel Corp Laser welded lap joint made of high-strength steel sheets and method for manufacturing the same
US20120298638A1 (en) * 2009-12-11 2012-11-29 Daimler Ag Method for welding two metal parts and connecting arrangement with two metal components
JP2012158995A (en) * 2011-01-31 2012-08-23 Hitachi Automotive Systems Ltd Fuel injection valve
JP2012200768A (en) * 2011-03-25 2012-10-22 Toyota Motor Corp Welding method for container and method for manufacturing secondary battery using the same
JP2012211541A (en) * 2011-03-31 2012-11-01 Hitachi Automotive Systems Ltd Fuel injection valve
JP2013024176A (en) * 2011-07-25 2013-02-04 Hitachi Automotive Systems Ltd Fuel injection valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017200110A1 (en) * 2016-05-19 2017-11-23 株式会社日本プレミアム Diesel power generation system using biofuel
CN113097661A (en) * 2021-03-31 2021-07-09 珠海冠宇电池股份有限公司 Battery with a battery cell
CN115922061A (en) * 2022-12-07 2023-04-07 长沙大科激光科技有限公司 Copper-aluminum dissimilar metal lap welding method based on ultrasonic real-time measurement

Also Published As

Publication number Publication date
JP6092011B2 (en) 2017-03-08
CN104227236A (en) 2014-12-24
IN2014DE01398A (en) 2015-06-12
CN104227236B (en) 2016-10-05

Similar Documents

Publication Publication Date Title
JP6091971B2 (en) Lap weld joint, fuel injection valve, and laser welding method
JP6092011B2 (en) Welding member, fuel injection valve, and laser welding method
JP5725723B2 (en) High power laser beam welding and its assembly
JP6159147B2 (en) Hybrid laser arc welding process and apparatus
JP5267320B2 (en) Steel plate lap welding method and steel plate lap weld joint
FR2830477A1 (en) Overlapping welding of coated metal sheets e.g., steel strip coated with zinc involves splitting high density energy beam to produce two molten metal baths and injecting neutral gas jet onto second bath to form sink at its surface
US20120211474A1 (en) Laser lap welding method
JP5495118B2 (en) Laser lap welding method of galvanized steel sheet
US20220234139A1 (en) Laser welding for corner joins of workpiece parts
JP2004223543A (en) Compound welding method of laser beam and arc, and groove shape of welded joint used for the same
JP6480470B2 (en) Method for manufacturing piston for internal combustion engine
Yang et al. Vacuum-assisted laser welding of zinc-coated steels in a gap-free lap joint configuration
JP2011230158A (en) Laser lap welding method for galvanized steel sheet
KR20210089680A (en) Splash-free welding method, especially with solid-state lasers
JP4026452B2 (en) Laser and arc combined welding method and groove shape of welded joint used therefor
JP6411013B2 (en) Laser welding method and fuel injection valve manufacturing method
EP3216552B1 (en) Laser welding methods, method of manufacturing a welded body, method of manufacturing electrode for spark plug, and method of manufacturing spark plug based on such laser welding methods
CN113967787B (en) Laser welding method
JP2001353587A (en) Method of welding high-carbon steel and low-carbon steel together
WO2016031274A1 (en) Laser welding method and container
Katayama et al. Fundamentals and Features of Laser Welding
Rüttimann et al. Reliable laser welding of highly reflective materials
Li et al. Study on Appearance of Weld during Deep-Penetration Laser Welding of 304 Stainless Steel
CN115106655A (en) Laser welding method for medium plate
JPH09297192A (en) Nuclear fuel rod

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160714

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170208

R150 Certificate of patent or registration of utility model

Ref document number: 6092011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250