JP6091971B2 - Lap weld joint, fuel injection valve, and laser welding method - Google Patents

Lap weld joint, fuel injection valve, and laser welding method Download PDF

Info

Publication number
JP6091971B2
JP6091971B2 JP2013085496A JP2013085496A JP6091971B2 JP 6091971 B2 JP6091971 B2 JP 6091971B2 JP 2013085496 A JP2013085496 A JP 2013085496A JP 2013085496 A JP2013085496 A JP 2013085496A JP 6091971 B2 JP6091971 B2 JP 6091971B2
Authority
JP
Japan
Prior art keywords
weld bead
weld
boundary line
welding
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013085496A
Other languages
Japanese (ja)
Other versions
JP2014205184A (en
Inventor
旭東 張
旭東 張
小林 信章
信章 小林
康広 茂木
康広 茂木
典洋 矢出
典洋 矢出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51705074&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6091971(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2013085496A priority Critical patent/JP6091971B2/en
Priority to CN201410129486.9A priority patent/CN104107980B/en
Priority to IN1038DE2014 priority patent/IN2014DE01038A/en
Publication of JP2014205184A publication Critical patent/JP2014205184A/en
Application granted granted Critical
Publication of JP6091971B2 publication Critical patent/JP6091971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for

Description

本発明は、複数の部材を重ねて接合した重ね溶接継手、この重ね溶接継手を備えた燃料噴射弁およびレーザ溶接方法に関する。   The present invention relates to a lap weld joint in which a plurality of members are joined together, a fuel injection valve including the lap weld joint, and a laser welding method.

レーザ溶接は,熱源となるレーザ光のエネルギー密度が高いため、低歪み、高速度、高精度の溶接継手が得られることから各方面で使用されている。自動車分野においては、ステンレス鋼や炭素鋼などの鉄鋼材料や、アルミニウム合金や、ニッケル合金などの金属材料に対し、複数の被溶接材を重ねて溶接することが行われている。   Laser welding is used in various directions because the energy density of the laser beam as a heat source is high, and a weld joint with low distortion, high speed, and high accuracy can be obtained. In the automotive field, a plurality of materials to be welded are overlapped and welded to a steel material such as stainless steel or carbon steel, or a metal material such as an aluminum alloy or a nickel alloy.

ところで、図9に示すように、熱伝導型レーザ溶接では、被溶接材101と被溶接材102とを重ねて形成した継手において、被溶接材101側の表面からレーザ光104を照射すると、レーザ光104が被溶接材101,102に吸収され、レーザ光104が熱に変換されることで熱エネルギーが被溶接材101,102の内部まで伝導して被溶接材101,102を溶融する。この熱伝導型レーザ溶接では、溶融金属の温度が融点より少し高いが、金属が蒸発する温度よりは低いため、溶接現象が安定し、ポロシティやスパッターなどの溶接欠陥が生じ難くなっている。このように、溶込み深さH100より溶接ビード103の溶接ビード幅W100が広いタイプの溶接であるため、溶込み深さH100を大きくすることができず、一般的に熱伝導型レーザ溶接は薄板部品に使用されることが多くなっている。しかし、燃料を噴射する燃料噴射弁(インジェクタ)のような回転物の周溶接に熱伝導型レーザ溶接を適用した場合、溶接部に溶接割れが発生する問題があった。   By the way, as shown in FIG. 9, in the heat conduction type laser welding, when a laser beam 104 is irradiated from the surface on the welded material 101 side in a joint formed by overlapping the welded material 101 and the welded material 102, a laser beam is emitted. The light 104 is absorbed by the materials to be welded 101 and 102, and the laser light 104 is converted into heat, whereby heat energy is conducted to the inside of the materials to be welded 101 and 102 to melt the materials to be welded 101 and 102. In this heat conduction type laser welding, the temperature of the molten metal is slightly higher than the melting point, but lower than the temperature at which the metal evaporates, so that the welding phenomenon is stabilized and welding defects such as porosity and spatter are less likely to occur. Thus, since the weld bead width W100 of the weld bead 103 is wider than the penetration depth H100, the penetration depth H100 cannot be increased. Generally, heat conduction laser welding is a thin plate. It is increasingly used for parts. However, when heat conduction laser welding is applied to circumferential welding of a rotating object such as a fuel injection valve (injector) that injects fuel, there is a problem that weld cracks occur in the weld.

そこで、このような溶接割れの発生を防止する方法として、例えば、特許文献1では、アシストガスの酸素ガス含有量を5〜50容量%に調整して、溶接ビードの表面幅と複数部材の接合部(境界面)の幅との比率をほぼ1に近くにすることが提案されている。   Thus, as a method for preventing the occurrence of such weld cracks, for example, in Patent Document 1, the oxygen gas content of the assist gas is adjusted to 5 to 50% by volume, and the surface width of the weld bead and the joining of a plurality of members are performed. It has been proposed that the ratio with the width of the part (boundary surface) is close to 1.

特開平10−85974号公報JP-A-10-85974

しかしながら、特許文献1に記載のような熱伝導型レーザ溶接では、溶込み深さH100より溶接ビード103の溶接ビード幅W100が大きいため、厚板を溶接する場合十分な溶込み深さH100を得られない問題がある。また、入熱を増加することや溶接速度を減らすことで溶込み深さH100を増加できる可能性はあるが、溶接変形や割れなどの欠陥が生じ易くなる。さらに、燃料噴射弁などの精密中小製品では、溶接ビード幅W100が制限されており、熱伝導型レーザ溶接を適用できない。   However, in the heat conduction type laser welding as described in Patent Document 1, since the weld bead width W100 of the weld bead 103 is larger than the penetration depth H100, a sufficient penetration depth H100 is obtained when welding thick plates. There is a problem that can not be. Further, although there is a possibility that the penetration depth H100 can be increased by increasing the heat input or decreasing the welding speed, defects such as welding deformation and cracking are likely to occur. Furthermore, in precision small and medium products such as fuel injection valves, the weld bead width W100 is limited, and heat conduction laser welding cannot be applied.

そこで、深溶込み型(キーホール型)のレーザ溶接方法を適用することにより、深い溶込み深さを得ることができる。図10(a)は深溶込み型(キーホール型)のレーザ溶接の概要を示す図である。このレーザ溶接方法では、被溶接材111の表面に照射されたレーザ光114のパワー密度(単位面積当たりのレーザ出力)が10W/cm以上になると、被溶接材111,112の金属表面の温度が金属の沸点以上になり、プラズマの発生と共に金属蒸気116がレーザ光114の照射点から激しく飛び出し、その金属蒸気116の反動力で溶融金属面が凹み、またレーザ光114がキーホール115で反射を繰り返しながら入射して、深く、細い深溶け込み型(キーホール型)レーザ溶接が行われる。このように熱伝導型レーザ溶接による溶接ビード103(図9参照)の形状に比べて、深溶け込み型レーザ溶接では、溶け込み深さH101を深くする溶接が可能で、溶接ビード幅W101より溶け込み深さH101が数倍以上大きくすることも可能である。 Therefore, a deep penetration depth can be obtained by applying a deep penetration type (keyhole type) laser welding method. FIG. 10A is a diagram showing an overview of deep penetration type (keyhole type) laser welding. In this laser welding method, when the power density (laser output per unit area) of the laser beam 114 applied to the surface of the workpiece 111 becomes 10 6 W / cm 2 or more, the metal surfaces of the workpieces 111 and 112 The metal vapor 116 violently jumps from the irradiation point of the laser beam 114 as the plasma is generated, and the molten metal surface is depressed by the reaction force of the metal vapor 116, and the laser beam 114 is emitted from the keyhole 115. The laser beam is incident while repeating reflection, and deep and thin deep penetration type (keyhole type) laser welding is performed. In this way, in comparison with the shape of the weld bead 103 (see FIG. 9) by heat conduction type laser welding, deep penetration type laser welding enables welding with a deeper penetration depth H101, and a penetration depth greater than the weld bead width W101. It is also possible to make H101 several times larger.

しかし、図10(b)に示すように、深溶込み型レーザ溶接の場合、溶接金属(溶接ビード113)と被溶接材111,112の境界面119との交差部P100を起点として溶接金属(溶接ビード113)の内部まで、溶接割れ118が発生する。このような溶接割れ発生のメカニズムについて図11を参照して以下に説明する。図11は、被溶接材の境界面付近のデンドライト組織(樹枝状の組織)の成長方向および溶接部に与える応力分布の概要図である。   However, as shown in FIG. 10B, in the case of deep penetration laser welding, the weld metal (starting from the intersection P100 between the weld metal (weld bead 113) and the boundary surface 119 of the workpieces 111 and 112) A weld crack 118 is generated up to the inside of the weld bead 113). The mechanism of the occurrence of such weld cracks will be described below with reference to FIG. FIG. 11 is a schematic view of the growth direction of the dendrite structure (dendritic structure) near the boundary surface of the material to be welded and the stress distribution applied to the weld.

図11に示すように、一般的に、溶接ビード113の溶接ビード幅W101(図10(a)参照)より溶込み深さH101(図10(a)参照)が深いタイプの溶接方法では、溶融金属の冷却凝固に伴う溶接金属の縦方向(深さ方向、図示上下方向)に引張応力σが発生する。また、被溶接材111,112の寸法と材質や、溶融した領域などの差異により、溶融金属の冷却過程において境界面119に沿う方向(図示左右方向)にせん断応力τも発生する。一般的に、溶接部の組織は固液相界面に対し垂直に成長するため、溶接部の界面117と被溶接材111,112の境界面119との角度が90°の場合、凝固組織であるデンドライト110の成長方向が境界面119と平行になる。すなわち、デンドライト110の成長方向はせん断応力τと平行になり、引張応力σと垂直になる。その結果、デンドライト110の組織としては、溶接割れに対しての抵抗力が最も弱いデンドライト粒界に溶接割れ118が発生することになる。   As shown in FIG. 11, generally, in a welding method in which the penetration depth H101 (see FIG. 10 (a)) is deeper than the weld bead width W101 (see FIG. 10 (a)) of the weld bead 113, A tensile stress σ is generated in the longitudinal direction (depth direction, vertical direction in the figure) of the weld metal accompanying the cooling and solidification of the metal. Further, shear stress τ is also generated in the direction along the boundary surface 119 (the left-right direction in the drawing) in the cooling process of the molten metal due to the difference in the size and material of the materials to be welded 111 and 112, the melted region, and the like. Generally, since the structure of the welded portion grows perpendicular to the solid-liquid phase interface, when the angle between the interface 117 of the welded portion and the boundary surface 119 of the workpieces 111 and 112 is 90 °, it is a solidified structure. The growth direction of the dendrite 110 is parallel to the boundary surface 119. That is, the growth direction of the dendrite 110 is parallel to the shear stress τ and perpendicular to the tensile stress σ. As a result, as for the structure of the dendrite 110, the weld crack 118 is generated at the dendrite grain boundary having the weakest resistance to the weld crack.

本発明は、前記した従来技術の問題を解決するものであり、深溶込み型レーザ溶接において、被溶接材における溶接割れの発生を防止することが可能な重ね溶接継手、燃料噴射弁およびレーザ溶接方法を提供することを課題とする。   The present invention solves the above-described problems of the prior art, and in deep penetration laser welding, a lap weld joint, a fuel injection valve, and laser welding capable of preventing the occurrence of weld cracks in a material to be welded It is an object to provide a method.

本発明は、2つの被溶接材を重ね合わせ、前記被溶接材の重ね面の一面側からレーザ光を照射してそれぞれの前記被溶接材を蒸発させることで深溶込み型溶接をし、溶接ビードの断面形状を、(i)前記被溶接材の界面を形成する境界線と、前記溶接ビードと前記境界線との交点における前記溶接ビードの接線とが成す角度θを、90°<θ≦130°とし、かつ、(ii)前記境界線での前記溶接ビードの溶込み幅Lと、前記境界線から前記溶接ビードの底部までの溶込み深さDとの比率D/Lを、0.1<D/L≦1.0となるように構成したことを特徴とする。 The present invention superimposes two materials to be welded, and performs deep penetration welding by evaporating each material to be welded by irradiating a laser beam from one surface side of the material to be welded. The cross-sectional shape of the bead is expressed as follows: (i) An angle θ formed by a boundary line forming the interface of the workpiece and the tangent line of the weld bead at the intersection of the weld bead and the boundary line is 90 ° <θ ≦ And (ii) the ratio D / L between the penetration width L of the weld bead at the boundary line and the penetration depth D from the boundary line to the bottom of the weld bead is 0 .1 <D / L ≦ 1.0 .

本発明によれば、深溶込み型レーザ溶接において、被溶接材における溶接割れの発生を防止することが可能な重ね溶接継手、燃料噴射弁およびレーザ溶接方法を提供できる。   According to the present invention, it is possible to provide a lap weld joint, a fuel injection valve, and a laser welding method capable of preventing the occurrence of weld cracks in a material to be welded in deep penetration laser welding.

本実施形態に係る重ね溶接継手を備えた燃料噴射弁を示し、(a)は縦断面図、(b)は先端側から見た平面図である。The fuel injection valve provided with the lap weld joint which concerns on this embodiment is shown, (a) is a longitudinal cross-sectional view, (b) is the top view seen from the front end side. 第1実施形態に係る重ね溶接継手を示す断面図である。It is sectional drawing which shows the lap weld joint which concerns on 1st Embodiment. 重ね溶接継手の強度試験方法を説明する図である。It is a figure explaining the strength test method of a lap weld joint. 溶接ビードの内部の組織構造を模式的に示す断面図である。It is sectional drawing which shows typically the internal structure of a weld bead. (a)は比較例1に係る溶接ビード断面形状、(b)は比較例2に係る溶接ビード断面形状である。(A) is a weld bead sectional shape according to Comparative Example 1, and (b) is a weld bead sectional shape according to Comparative Example 2. 第2実施形態に係る重ね溶接継手を示す断面図である。It is sectional drawing which shows the lap weld joint which concerns on 2nd Embodiment. 溶融池の温度と表面張力との関係を示すグラフである。It is a graph which shows the relationship between the temperature of a molten pool, and surface tension. 本実施形態に係る効果を説明する図である。It is a figure explaining the effect which concerns on this embodiment. 熱伝導型レーザ溶接により形成される溶接ビードを示す断面図である。It is sectional drawing which shows the weld bead formed by heat conduction type laser welding. 深溶込み型(キーホール型)レーザ溶接の概要を示す断面図である。It is sectional drawing which shows the outline | summary of deep penetration type | mold (keyhole type | mold) laser welding. 従来の深溶込み型レーザ溶接での割れ発生のメカニズムを示す模式図である。It is a schematic diagram which shows the mechanism of the crack generation in the conventional deep penetration type laser welding.

以下、本実施形態に係る重ね溶接継手について、図面を参照して説明する。なお、本実施形態に係る重ね溶接継手は、例えば、自動車の内燃機関に使用される燃料噴射弁(インジェクタともいう)Fの噴射ノズルに適用することができる。図1は本実施形態に係る重ね溶接継手を備えた燃料噴射弁の噴射ノズルを示し、(a)は縦断面図、(b)は先端側から見た平面図である。   Hereinafter, the lap weld joint according to the present embodiment will be described with reference to the drawings. Note that the lap weld joint according to the present embodiment can be applied to, for example, an injection nozzle of a fuel injection valve (also referred to as an injector) F used in an internal combustion engine of an automobile. 1A and 1B show an injection nozzle of a fuel injection valve provided with a lap weld joint according to the present embodiment, wherein FIG. 1A is a longitudinal sectional view and FIG. 1B is a plan view seen from the tip side.

図1(a)に示すように、燃料噴射弁Fは、ノズルプレート1(被溶接材)とノズル本体2(被溶接材)とを、深溶込み型(キーホール型)レーザ溶接により接合したものである。なお、図1では、燃料噴射弁Fの先端部の噴射ノズルのみを図示しており、燃料噴射弁Fの他の部分である、ニードル、プランジャ、ソレノイドなどは、公知の技術によって構成されているものとして説明を省略する。   As shown in FIG. 1A, the fuel injection valve F joins a nozzle plate 1 (a material to be welded) and a nozzle body 2 (a material to be welded) by deep penetration type (keyhole type) laser welding. Is. In FIG. 1, only the injection nozzle at the tip of the fuel injection valve F is shown, and the other parts of the fuel injection valve F, such as a needle, a plunger, and a solenoid, are configured by known techniques. The description is omitted.

ノズルプレート1は、オーステナイト系ステンレス鋼などの材料で形成され、例えば板厚が0.35mmのものである。ノズル本体2は、マルテンサイト系ステンレス鋼などの材料で略筒状に形成されている。   The nozzle plate 1 is made of a material such as austenitic stainless steel, and has a plate thickness of 0.35 mm, for example. The nozzle body 2 is formed in a substantially cylindrical shape with a material such as martensitic stainless steel.

また、ノズルプレート1は、燃料が噴射する噴射孔1aを有する円板形状である。ノズル本体2は、その内部の連通路にニードル(弁体)が当接する弁座2aを有し、先端中心部に前記噴射孔1aと連通する連通孔2bが形成されている。   The nozzle plate 1 has a disk shape having an injection hole 1a through which fuel is injected. The nozzle body 2 has a valve seat 2a with which a needle (valve element) abuts in an internal communication passage, and a communication hole 2b communicating with the injection hole 1a is formed at the center of the tip.

図1(b)に示すように、ノズルプレート1には、ノズル本体2の連通孔2bに対応する位置に、複数の噴射孔1aが形成されている。つまり、すべての噴射孔1aは、連通孔2bの内側に位置するように形成されている。なお、この噴射孔1aの個数は、4個に限定されるものではなく、3個以下であっても5個以上であってもよい。また、噴射孔1aの形状は、円形に限定されるものではなく、楕円形、多角形、長孔形状、円弧形状など適宜変更することができる。また、噴射孔1aの位置や径についても適宜変更することができる。   As shown in FIG. 1B, the nozzle plate 1 is formed with a plurality of injection holes 1 a at positions corresponding to the communication holes 2 b of the nozzle body 2. That is, all the injection holes 1a are formed so as to be located inside the communication holes 2b. The number of the injection holes 1a is not limited to four, and may be three or less or five or more. Moreover, the shape of the injection hole 1a is not limited to a circle, and can be appropriately changed to an ellipse, a polygon, a long hole, an arc, or the like. Further, the position and diameter of the injection hole 1a can be changed as appropriate.

また、燃料噴射弁Fは、深溶込み型(キーホール型)レーザ溶接によって、ノズルプレート1とノズル本体2とを重ね合わせて、その重ね面のノズルプレート1側(一側)から、ノズルプレート1の周縁部(連通孔2bの周囲)に沿ってレーザ光を照射して周溶接(全周溶接、図1(b)参照)を行うことで、重ね溶接継手10Aを備えるように構成したものである。このようにして周溶接することにより、ノズルプレート1とノズル本体2との境界面の隙間が封止されることにより、境界面から燃料が漏れ出るのを確実に防止できる。   Further, the fuel injection valve F is formed by superposing the nozzle plate 1 and the nozzle body 2 by deep penetration type (keyhole type) laser welding, and from the nozzle plate 1 side (one side) of the overlapping surface, the nozzle plate. 1 is configured to have a lap weld joint 10A by irradiating laser light along the peripheral edge of 1 (periphery of the communication hole 2b) and performing circumferential welding (full circumference welding, see FIG. 1B). It is. By circumferential welding in this way, the gap at the boundary surface between the nozzle plate 1 and the nozzle body 2 is sealed, so that fuel can be reliably prevented from leaking from the boundary surface.

この深溶込み型レーザ溶接では、例えば、波長が1070〜1080nmのファイバーレーザを用いることができるが、他の波長のレーザ光を使用してもよい。また、図示しないレーザ発信器からレーザ光を発生させ、転送経路を経由し、集光レンズ(不図示)により集光し、燃料噴射弁Fのノズルプレート1の表面にレーザ光を照射する。   In this deep penetration laser welding, for example, a fiber laser with a wavelength of 1070 to 1080 nm can be used, but laser light with other wavelengths may be used. Further, laser light is generated from a laser transmitter (not shown), is condensed through a transfer path, is collected by a condenser lens (not shown), and the surface of the nozzle plate 1 of the fuel injection valve F is irradiated with the laser light.

なお、本実施形態の深溶込み型レーザ溶接では、溶融金属の酸化を防止するために、シールドガスとして窒素を用いることができる。なお、シールドガスとしては、窒素に限定されるものでなく、Ar(アルゴン)、He(ヘリウム)、CO、Airまたはこれら混合ガスを使用してもよい。ちなみに、シールドガスにAirを所定量(例えば、50質量%)含ませることにより、溶接部が冷却して凝固する際に発生する収縮力を低減できる。 In the deep penetration laser welding of this embodiment, nitrogen can be used as a shielding gas in order to prevent oxidation of the molten metal. The shielding gas is not limited to nitrogen, and Ar (argon), He (helium), CO 2 , Air, or a mixed gas thereof may be used. Incidentally, by including a predetermined amount (eg, 50% by mass) of Air in the shielding gas, the contraction force generated when the welded portion is cooled and solidified can be reduced.

溶接条件としては、例えば、レーザ出力を100W〜600W、溶接速度を4.0mm/s〜100mm/s、ノズルプレート1の表面に照射されるレーザ光のスポット径を0.05mm〜0.3mmで適宜設定することができる。なお、このレーザ溶接では、連続波、またはパルス波のいずれを使用してもよい。   As the welding conditions, for example, the laser output is 100 W to 600 W, the welding speed is 4.0 mm / s to 100 mm / s, and the spot diameter of the laser beam irradiated on the surface of the nozzle plate 1 is 0.05 mm to 0.3 mm. It can be set appropriately. In this laser welding, either continuous wave or pulse wave may be used.

図2は、第1実施形態に係る重ね溶接継手を示す断面図である。なお、図2は断面図を示すが、説明の便宜上、ハッチングの図示を省略している。第1実施形態では、前記したように、ノズルプレート1の表面に照射されたレーザ光114(図10(a)参照)のパワー密度(単位面積当たりのレーザ出力)が例えば10W/cm以上になることで、ノズルプレート1およびノズル本体2の金属表面の温度が金属の沸点以上になり、プラズマの発生と共に金属蒸気116(図10(a)参照)がレーザ光114の照射点から激しく飛び出し、その金属蒸気116の反動力で溶融金属面が凹み、またレーザ光114がキーホール115(図10(a)参照)で反射を繰り返しながら入射して、深く、細い溶接部を得ることができる。 FIG. 2 is a cross-sectional view showing the lap weld joint according to the first embodiment. Although FIG. 2 shows a cross-sectional view, hatching is not shown for convenience of explanation. In the first embodiment, as described above, the power density (laser output per unit area) of the laser beam 114 (see FIG. 10A) irradiated on the surface of the nozzle plate 1 is, for example, 10 6 W / cm 2. As a result, the temperature of the metal surfaces of the nozzle plate 1 and the nozzle body 2 becomes equal to or higher than the boiling point of the metal, and the metal vapor 116 (see FIG. 10A) is intense from the irradiation point of the laser beam 114 as plasma is generated. The molten metal surface is depressed by the reaction force of the metal vapor 116, and the laser beam 114 is incident while being repeatedly reflected by the keyhole 115 (see FIG. 10A) to obtain a deep and thin welded portion. it can.

図2に示すように、深溶け込み型(キーホール型)レーザ溶接により、溶接ビード3Aを備えた重ね溶接継手10Aを得た。この重ね溶接継手10Aにおいて、例えば、ノズルプレート1の表面に形成される溶接ビード3Aの断面形状の表面幅W1は、0.35mmであり、ノズルプレート1の表面から溶接ビード3Aの底部3aまでの全体の溶込み深さH1は、0.5mmであった。また、ノズルプレート1とノズル本体2との境界を形成する境界線4(境界面)の深さ位置における溶接ビード3Aの溶込み幅L1は、0.2mmであった。また、前記したように、ノズルプレート1の厚みtが0.35mmであり、境界線4(境界面)から溶接ビード3Aの底部3aまでの深さD1(境界面以下のノズル本体2側の溶込み深さ)は、0.15mmであった。   As shown in FIG. 2, the lap weld joint 10A provided with the weld bead 3A was obtained by deep penetration type (keyhole type) laser welding. In this lap weld joint 10A, for example, the surface width W1 of the cross-sectional shape of the weld bead 3A formed on the surface of the nozzle plate 1 is 0.35 mm, and it extends from the surface of the nozzle plate 1 to the bottom 3a of the weld bead 3A. The total penetration depth H1 was 0.5 mm. Further, the penetration width L1 of the weld bead 3A at the depth position of the boundary line 4 (boundary surface) that forms the boundary between the nozzle plate 1 and the nozzle body 2 was 0.2 mm. Further, as described above, the thickness t of the nozzle plate 1 is 0.35 mm, and the depth D1 from the boundary line 4 (boundary surface) to the bottom 3a of the weld bead 3A (dissolution on the nozzle body 2 side below the boundary surface). The depth of insertion) was 0.15 mm.

その結果、境界線4での溶接ビード3Aの溶込み幅L1と、境界線4から溶接ビード3Aの底部3aまでの溶込み深さD1との比率D1/L1(比率D/L)は、0.75であり、1.0以下であった。また、ノズルプレート1とノズル本体2との界面を形成する境界線4と、溶接ビード3Aと境界線4との交点P1における溶接ビード3Aの接線TL1とが成す角度θ1(角度θ)は、110°であり、90°より大きかった。   As a result, the ratio D1 / L1 (ratio D / L) between the penetration width L1 of the weld bead 3A at the boundary line 4 and the penetration depth D1 from the boundary line 4 to the bottom 3a of the weld bead 3A is 0. .75 and 1.0 or less. Further, the angle θ1 (angle θ) formed by the boundary line 4 that forms the interface between the nozzle plate 1 and the nozzle body 2 and the tangent line TL1 of the weld bead 3A at the intersection P1 of the weld bead 3A and the boundary line 4 is 110. ° and greater than 90 °.

このような溶接ビード3A(溶接ビード断面形状)を有する重ね溶接継手10Aについて、顕微鏡で溶接部の組織および欠陥を観察した。その結果、溶接部に溶接割れ、ポロシティ、接合不良などの溶接欠陥は認められなかった。   For the lap weld joint 10A having such a weld bead 3A (weld bead cross-sectional shape), the structure and defects of the welded portion were observed with a microscope. As a result, no weld defects such as weld cracks, porosity, and poor bonding were found in the weld.

また、重ね溶接継手10Aの強度試験を実施した結果、母材が破断したため、重ね溶接継手10Aの強度が母材より高いことが確認された。図3は、重ね溶接継手の強度試験方法を説明する図である。図3に示すように、重ね溶接継手10Aを備えた燃料噴射弁Fを固定した状態において、押圧ピンPをノズル本体2の連通孔2b(図1参照)から挿入して、押圧ピンPをノズルプレート1に当接させ、押圧ピンPに所定の荷重F1を与える。なお、押圧ピンPに与える所定の荷重F1は、燃料噴射弁Fの燃料噴射圧力に耐えられる圧力に設定される。   Further, as a result of conducting the strength test of the lap weld joint 10A, it was confirmed that the strength of the lap weld joint 10A was higher than that of the base material because the base material was broken. FIG. 3 is a diagram illustrating a strength test method for a lap weld joint. As shown in FIG. 3, in a state where the fuel injection valve F provided with the lap weld joint 10A is fixed, the pressing pin P is inserted from the communication hole 2b (see FIG. 1) of the nozzle body 2, and the pressing pin P is inserted into the nozzle. A predetermined load F1 is applied to the pressing pin P by contacting the plate 1. The predetermined load F1 applied to the pressing pin P is set to a pressure that can withstand the fuel injection pressure of the fuel injection valve F.

図4は、溶接ビードの内部の組織構造を模式的に示す断面図である。ちなみに、溶接割れ(溶接欠陥)の発生原因のひとつは、図11で説明したように、デンドライト110の成長方向が、せん断応力τと平行であり、かつ、引張応力σと垂直であるためである。そこで、第1実施形態では、図4に示すように、デンドライト10の成長方向Rとせん断応力τとの角度を0°からある程度の角度、つまり境界線4と接線TL1とが成す角度θ1を90°より大きく設定することにより、溶接割れに対して抵抗力が最も弱いデンドライト粒界の経路方向(デンドライト10の成長方向R)がせん断応力τに対して斜めになり、溶接割れを発生し難くできる。   FIG. 4 is a cross-sectional view schematically showing the internal structure of the weld bead. Incidentally, one of the causes of the occurrence of weld cracks (welding defects) is that the growth direction of the dendrite 110 is parallel to the shear stress τ and perpendicular to the tensile stress σ as described with reference to FIG. . Therefore, in the first embodiment, as shown in FIG. 4, the angle between the growth direction R of the dendrite 10 and the shear stress τ is set to a certain angle from 0 °, that is, the angle θ1 formed by the boundary line 4 and the tangent line TL1 is set to 90. By setting the angle larger than °, the path direction of the dendrite grain boundary (the growth direction R of the dendrite 10) having the weakest resistance to the weld crack is inclined with respect to the shear stress τ, and it is difficult to generate the weld crack. .

さらに、第1実施形態に係る重ね溶接継手10Aでは、境界線4での溶接ビード3Aの溶込み幅L1と、境界線4から溶接ビード3Aの底部3aまでの溶込み深さD1との比率D1/L1が1.0以下に設定されている。このように比率D1/L1を1.0以下に設定する理由は、D1/L1が1.0を超える場合、溶接ビード3A(溶接ビード断面形状)の縦方向(溶接ビード3Aの深さ方向)に生じる引張応力σが大きくなり過ぎて、溶接ビード3Aの接線TL1と境界線4との角度θ1を90°より大きくしたとしても、溶接割れ発生の可能性が高くなるからである。   Furthermore, in the lap weld joint 10A according to the first embodiment, the ratio D1 between the penetration width L1 of the weld bead 3A at the boundary line 4 and the penetration depth D1 from the boundary line 4 to the bottom 3a of the weld bead 3A. / L1 is set to 1.0 or less. The reason why the ratio D1 / L1 is set to 1.0 or less in this way is that when D1 / L1 exceeds 1.0, the longitudinal direction of the weld bead 3A (weld bead cross-sectional shape) (the depth direction of the weld bead 3A). This is because the possibility of weld cracking increases even if the tensile stress [sigma] generated in is too large and the angle [theta] 1 between the tangent TL1 of the weld bead 3A and the boundary line 4 is greater than 90 [deg.].

図5(a)は、比較例1に係る溶接ビード断面形状、図5(b)は、比較例2に係る溶接ビード断面形状である。なお、実施形態と同様の構成については、同一の符号を付して重複した説明を省略する。   FIG. 5A shows a weld bead cross-sectional shape according to Comparative Example 1, and FIG. 5B shows a weld bead cross-sectional shape according to Comparative Example 2. In addition, about the structure similar to embodiment, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

図5(a)に示す比較例1としての重ね溶接継手100Aは、溶接ビード103Aの断面形状が、境界線4と、溶接ビード103Aと境界線4との交点P10における溶接ビード103Aの接線TL10とが成す角度θ10を90°とした場合を図示している。なお、溶込み幅L10と溶込み深さD10(=H10−t)との比率D10/L10については、1.0以下に設定されている。しかし、比率D10/L10が1.0以下に設定されている場合であっても、溶接ビード103Aにおける角度θ10が90°に設定されていると、溶接ビード103Aと境界線4との交点P10から溶接ビード103A(溶接金属)の内部まで溶接割れが発生する。これは、図11で説明したように、角度θ10が90°の場合、デンドライト110の成長方向がせん断応力τと平行になり、引張応力σと垂直になるため、デンドライト110の組織としては、溶接割れに対しての抵抗力が最も弱いデンドライト粒界に溶接割れ108が発生する。   In the lap weld joint 100A as Comparative Example 1 shown in FIG. 5A, the cross-sectional shape of the weld bead 103A is the boundary line 4, and the tangent TL10 of the weld bead 103A at the intersection P10 of the weld bead 103A and the boundary line 4. The case where the angle θ10 formed by is 90 ° is illustrated. In addition, about ratio D10 / L10 of penetration width L10 and penetration depth D10 (= H10-t), it is set to 1.0 or less. However, even when the ratio D10 / L10 is set to 1.0 or less, if the angle θ10 in the weld bead 103A is set to 90 °, the intersection P10 between the weld bead 103A and the boundary line 4 A weld crack occurs up to the inside of the weld bead 103A (welded metal). As described with reference to FIG. 11, when the angle θ10 is 90 °, the growth direction of the dendrite 110 is parallel to the shear stress τ and is perpendicular to the tensile stress σ. A weld crack 108 is generated at a dendrite grain boundary having the weakest resistance to cracking.

図5(b)に示す比較例2としての重ね溶接継手100Bは、溶接ビード103Bの断面形状が、溶込み幅L20と溶込み深さD20(=H20−t)との比率D20/L20(比率D/L)を1.0より大きくした場合(D20/L20>1)を図示している。なお、境界線4と、溶接ビード103Bと境界線4との交点P20における溶接ビード103Bの接線TL20とが成す角度θ20を90°より大きく設定している。しかし、角度θ20が90°より大きく設定されている場合であっても、溶接ビード103Bの断面形状における比率D20/L20が1.0より大きく設定されていると、溶接ビード103Bと境界線4との交点P20から溶接ビード103B(溶接金属)の内部まで溶接割れが発生する。これは、前記したように、D20/L20が1.0を超える場合、溶接ビード3B(溶接ビード断面形状)の縦方向(溶接ビード3Aの深さ方向)に生じる引張応力σが大きくなり過ぎるからである。   In the lap weld joint 100B as the comparative example 2 shown in FIG. 5B, the cross-sectional shape of the weld bead 103B is a ratio D20 / L20 (ratio between the penetration width L20 and the penetration depth D20 (= H20-t). (D / L) is greater than 1.0 (D20 / L20> 1). The angle θ20 formed by the boundary line 4 and the tangent line TL20 of the weld bead 103B at the intersection P20 between the weld bead 103B and the boundary line 4 is set to be larger than 90 °. However, even when the angle θ20 is set larger than 90 °, if the ratio D20 / L20 in the cross-sectional shape of the weld bead 103B is set larger than 1.0, the weld bead 103B and the boundary line 4 A weld crack occurs from the intersection P20 to the inside of the weld bead 103B (welded metal). This is because, as described above, when D20 / L20 exceeds 1.0, the tensile stress σ generated in the longitudinal direction (depth direction of the weld bead 3A) of the weld bead 3B (weld bead cross-sectional shape) becomes too large. It is.

以上説明したように、第1実施形態に係る重ね溶接継手10Aによれば、溶接ビード3Aの断面形状を、角度θ1を90°より大きくし、かつ、比率D1/L1を1.0以下となるように構成することにより、深溶込み型レーザ溶接において、溶接割れの発生を防止することが可能になる。また、燃料噴射弁F(図1参照)に重ね溶接継手10Aを適用することにより、ノズルプレート1とノズル本体2とを溶接する際に溶接割れの発生を防止することが可能になる。   As described above, according to the lap weld joint 10A according to the first embodiment, the cross-sectional shape of the weld bead 3A is such that the angle θ1 is greater than 90 ° and the ratio D1 / L1 is 1.0 or less. With this configuration, it is possible to prevent weld cracking in deep penetration laser welding. Further, by applying the lap weld joint 10A to the fuel injection valve F (see FIG. 1), it is possible to prevent the occurrence of weld cracks when the nozzle plate 1 and the nozzle body 2 are welded.

また、第1実施形態に係る重ね溶接継手10Aを燃料噴射弁(噴射ノズル)F(図1参照)に適用することにより、ノズルプレート1の噴射孔1aの孔形状を適宜変更するだけで、多種類の燃料噴射弁Fを得ることが可能になる。例えば、燃料噴射弁Fは、車種、排気量などに応じて適宜変更することができる。   In addition, by applying the lap weld joint 10A according to the first embodiment to the fuel injection valve (injection nozzle) F (see FIG. 1), simply changing the shape of the injection hole 1a of the nozzle plate 1 as appropriate. It becomes possible to obtain the fuel injection valve F of a kind. For example, the fuel injection valve F can be appropriately changed according to the vehicle type, the exhaust amount, and the like.

図6は、第2実施形態に係る重ね溶接継手を示す断面図である。なお、図6は断面図を示すが、説明の便宜上、ハッチングの図示を省略している。第2実施形態についても、図10(a)で説明したように、ノズルプレート1の表面に照射されたレーザ光114のパワー密度(単位面積当たりのレーザ出力)が例えば10W/cm以上になることで、ノズルプレート1およびノズル本体2の金属表面の温度が金属の沸点以上になり、プラズマの発生と共に金属蒸気116がレーザ光114の照射点から激しく飛び出し、その金属蒸気116の反動力で溶融金属面が凹み、またレーザ光114がキーホール115で反射を繰り返しながら入射して、深く、細い溶接部を得ることができる。 FIG. 6 is a cross-sectional view showing a lap weld joint according to the second embodiment. Although FIG. 6 shows a cross-sectional view, hatching is not shown for convenience of explanation. Also in the second embodiment, as described with reference to FIG. 10A, the power density (laser output per unit area) of the laser light 114 applied to the surface of the nozzle plate 1 is, for example, 10 6 W / cm 2 or more. As a result, the temperature of the metal surfaces of the nozzle plate 1 and the nozzle body 2 becomes equal to or higher than the boiling point of the metal, and with the generation of plasma, the metal vapor 116 violently jumps out from the irradiation point of the laser beam 114 and the reaction force of the metal vapor 116 Thus, the molten metal surface is recessed, and the laser beam 114 is incident while being repeatedly reflected by the keyhole 115, so that a deep and thin weld can be obtained.

溶接条件としては、例えば、レーザ出力を150W〜800W、溶接速度を4.0mm/s〜100mm/s、ノズルプレート1の表面に照射されるレーザ光のスポット径を0.15mm〜0.6mmとした。なお、第2実施形態では、シールドガスを使用しなかった。また、連続波、またはパルス波いずれを使用してもよい。   As welding conditions, for example, the laser output is 150 W to 800 W, the welding speed is 4.0 mm / s to 100 mm / s, and the spot diameter of the laser light irradiated on the surface of the nozzle plate 1 is 0.15 mm to 0.6 mm. did. In the second embodiment, no shielding gas is used. Further, either a continuous wave or a pulse wave may be used.

ところで、シールドガスを使用しない深溶け込み型(キーホール型)レーザ溶接により、図6に示す溶接ビード3Bを有する重ね溶接継手10Bを得た。例えば、ノズルプレート1の表面に形成される溶接ビード3Bの断面形状の表面幅W2は、0.3mmであり、ノズルプレート1の表面から溶接ビード3Bの底部までの全溶込み深さH2は、0.43mmであった。また、ノズルプレート1とノズル本体2との境界を形成する境界線4(境界面)の深さ位置における溶接ビード3Bの溶込み幅L2は、0.25mmであった。また、ノズルプレート1の厚みtが0.35mmであることから、境界線4(境界面)から溶接ビード3Bの底部3aまでの深さD2(境界面以下のノズル本体2側の溶込み深さ)は、0.08mmであった。   By the way, the lap weld joint 10B which has the weld bead 3B shown in FIG. 6 was obtained by the deep penetration type | mold (keyhole type | mold) laser welding which does not use shielding gas. For example, the surface width W2 of the cross-sectional shape of the weld bead 3B formed on the surface of the nozzle plate 1 is 0.3 mm, and the total penetration depth H2 from the surface of the nozzle plate 1 to the bottom of the weld bead 3B is It was 0.43 mm. Further, the penetration width L2 of the weld bead 3B at the depth position of the boundary line 4 (boundary surface) that forms the boundary between the nozzle plate 1 and the nozzle body 2 was 0.25 mm. Further, since the thickness t of the nozzle plate 1 is 0.35 mm, the depth D2 from the boundary line 4 (boundary surface) to the bottom 3a of the weld bead 3B (the penetration depth on the nozzle body 2 side below the boundary surface) ) Was 0.08 mm.

その結果、境界線4での溶接ビード3Bの溶込み幅L2と、境界線4から溶接ビード3Bの底部3aまでの溶込み深さD2との比率D2/L2(比率D/L)は、0.32であり、1.0以下であった。また、ノズルプレート1とノズル本体2との界面を形成する境界線4と、溶接ビード3Bと境界線4との交点P2における溶接ビード3Bの接線TL2とが成す角度θ2(角度θ)は、120°であり、90°より大きかった。   As a result, the ratio D2 / L2 (ratio D / L) between the penetration width L2 of the weld bead 3B at the boundary line 4 and the penetration depth D2 from the boundary line 4 to the bottom 3a of the weld bead 3B is 0. .32 and 1.0 or less. Further, the angle θ2 (angle θ) formed by the boundary line 4 forming the interface between the nozzle plate 1 and the nozzle body 2 and the tangent line TL2 of the weld bead 3B at the intersection P2 of the weld bead 3B and the boundary line 4 is 120. ° and greater than 90 °.

ところで、図6に示す断面形状の溶接ビード3Bが得られる理由について以下に説明する。第2実施形態に係る溶接ビード3Bは、シールドガスを使用しない場合、またはFe(鉄)などの金属元素と酸化反応できるガス(例えば、酸素、CO)を含有するシールドガスを使用した結果得られるものである。すなわち、シールドガスを使用しない場合、前記のようなシールドガスを使用する場合には、適切な被溶接材を選択する必要があり、実施形態のように、鉄(Fe)を多く含むステンレス鋼などに適用することができる。 Now, the reason why the weld bead 3B having the cross-sectional shape shown in FIG. 6 is obtained will be described below. The weld bead 3B according to the second embodiment is obtained when a shield gas is not used, or when a shield gas containing a gas (for example, oxygen, CO 2 ) that can be oxidized with a metal element such as Fe (iron) is used. It is That is, when shield gas is not used, when using shield gas as described above, it is necessary to select an appropriate material to be welded, such as stainless steel containing a large amount of iron (Fe), as in the embodiment, etc. Can be applied to.

一般的に、シールドガス(窒素など)を使用した場合、図7のグラフA(実線)に示すように、溶融鉄(Fe)の表面張力は、温度Tの上昇とともに低下するため、溶融池の表面における湯流れ(金属の流れ)は、温度の高い中央部から温度の低い外周部に向かって流れることになり、その結果、溶接幅が広く形成される。これに対して、シールドガスに酸素やCOを含有させると、溶融金属の酸素量が多くなり、図7のグラフB(破線)に示すように、溶融金属の表面張力は、グラフAとは逆に、温度の上昇とともに増加する。その結果、溶融池の表面における湯流れが、温度が低い溶融池の外周から、温度の高い中央部に向かって流れることになる。このように、中央部に向かった湯流れの結果、溶融池の幅が狭くなり、凝固後形成される溶接ビード3Bの表面幅W2(図6参照)が、溶接ビード3Aの表面幅W1(図2参照)よりも狭くなることになる。なお、シールドガスを使用しない場合においても、空気に含まれる酸素によって溶融金属の酸素量が多くなるので、前記と同様に、表面幅W2の狭い溶接ビード3Bが得られることになる。 In general, when a shielding gas (such as nitrogen) is used, the surface tension of the molten iron (Fe) decreases as the temperature T increases as shown in the graph A (solid line) in FIG. The hot water flow (metal flow) on the surface flows from the central portion having a high temperature toward the outer peripheral portion having a low temperature, and as a result, a wide welding width is formed. On the other hand, when oxygen or CO 2 is contained in the shielding gas, the amount of oxygen in the molten metal increases. As shown in graph B (broken line) in FIG. Conversely, it increases with increasing temperature. As a result, the hot water flow on the surface of the molten pool flows from the outer periphery of the molten pool having a low temperature toward the central portion having a high temperature. Thus, as a result of the hot water flow toward the center, the width of the molten pool becomes narrower, and the surface width W2 (see FIG. 6) of the weld bead 3B formed after solidification is the surface width W1 (see FIG. 6) of the weld bead 3A. 2). Even when the shield gas is not used, the oxygen content of the molten metal is increased by the oxygen contained in the air, so that a weld bead 3B having a narrow surface width W2 is obtained as described above.

このように、溶接ビード3Bを、シールドガスを使用することなく溶接し、またはノズルプレート1およびノズル本体2と酸化反応するガスを含むシールドガスを使用して溶接して得ることで、細い溶接ビード3Bを得ることができ、燃料噴射弁Fの噴射ノズルのような、溶接幅を広くできない部分の溶接に好適に適用できる。   As described above, the weld bead 3B is obtained by welding without using the shield gas or by using the shield gas containing the gas that oxidizes and reacts with the nozzle plate 1 and the nozzle body 2 to obtain a thin weld bead. 3B can be obtained, and can be suitably applied to welding of a portion where the welding width cannot be increased, such as the injection nozzle of the fuel injection valve F.

このような溶接ビード3B(溶接ビード断面形状)を有する重ね溶接継手10Bについて、第1実施形態と同様にして、顕微鏡で溶接部の組織および欠陥を観察した。その結果、溶接部に溶接割れ、ポロシティ、接合不良などの溶接欠陥が認められなかった。また、重ね溶接継手10Bの強度試験を図3に示す方法により実施した結果、母材が破断したため、重ね溶接継手10Bの強度が母材より高いことが確認された。   About the lap weld joint 10B which has such a weld bead 3B (weld bead cross-sectional shape), the structure | tissue and the defect of the welding part were observed with the microscope similarly to 1st Embodiment. As a result, no weld defects such as weld cracks, porosity, and poor bonding were found in the weld. Moreover, as a result of carrying out the strength test of the lap weld joint 10B by the method shown in FIG. 3, it was confirmed that the strength of the lap weld joint 10B was higher than that of the base material because the base material was broken.

以上の結果を纏めたものを図8に示す。図8は、本実施形態に係る効果を説明する図である。なお、すべての溶接サンプルに対して、研磨とエッチングの作業を行った後、光学顕微鏡で観察して、溶接金属の内部において割れの有無を調べた。図8に記載の「割れ」は、溶接割れが確認されたことを示し、「良好」は、溶接割れが確認されなかったことを示し、「接合不良」は、ノズルプレート1とノズル本体2との接合ができていなかったことを示す。   A summary of the above results is shown in FIG. FIG. 8 is a diagram for explaining the effect according to the present embodiment. In addition, after performing the grinding | polishing and the etching operation | work with respect to all the welding samples, it observed with the optical microscope and investigated the presence or absence of the crack in the inside of a weld metal. “Crack” shown in FIG. 8 indicates that a weld crack was confirmed, “good” indicates that a weld crack was not confirmed, and “joint failure” indicates that the nozzle plate 1 and the nozzle body 2 This indicates that the bonding was not completed.

図8に示すように、第1実施形態の重ね溶接継手10Aおよび第2実施形態の重ね溶接継手10Bでは、D/L≦1.0、かつ、θ>90°の場合、溶接欠陥(溶接割れ)が発生することのない良好な溶接が行われることが確認された。なお、D/L>1.0の場合には、溶接割れが発生し、θ=90°の場合にも、溶接割れが発生した。   As shown in FIG. 8, in the lap weld joint 10A of the first embodiment and the lap weld joint 10B of the second embodiment, when D / L ≦ 1.0 and θ> 90 °, a weld defect (weld crack) It was confirmed that good welding was performed without occurrence of). Note that when D / L> 1.0, weld cracks occurred, and when θ = 90 °, weld cracks also occurred.

重ね溶接継手10Aおよび重ね溶接継手10Bでは、0.1<D/L≦1.0、かつ、90°<θ≦130°に設定することが好ましい。なお、D/L≦0.1の場合には、接合不良が発生し、θ>130°の場合には、溶接割れが発生した。なお、θが130°を超える場合には、一定の溶込み幅を担保するために、溶接ビードの表面幅が顕著に増加することになる。このように溶接ビードの表面幅と溶込み幅との差が大きい場合にも溶接ビードと境界線との交点から溶接ビードの内部に向けて溶接割れが発生する。なお、図6に示す、D/Lの下限値(>0.1)およびθの上限値(≦130°)については、一例であり、本実施形態に限定されるものではなく、ノズルプレート1およびノズル本体2に使用される金属材料の種類、溶接条件などに応じて変動するものである。よって、D/Lの下限値については、接合不良が発生することない比率(値)に設定され、θの上限値については、溶接割れが発生することがない角度に設定される。   In the lap weld joint 10A and the lap weld joint 10B, it is preferable to set 0.1 <D / L ≦ 1.0 and 90 ° <θ ≦ 130 °. In addition, when D / L ≦ 0.1, poor bonding occurred, and when θ> 130 °, weld cracks occurred. When θ exceeds 130 °, the surface width of the weld bead is remarkably increased in order to ensure a constant penetration width. Thus, even when the difference between the surface width and the penetration width of the weld bead is large, a weld crack is generated from the intersection of the weld bead and the boundary line toward the inside of the weld bead. Note that the lower limit value (> 0.1) of D / L and the upper limit value (≦ 130 °) of θ shown in FIG. 6 are merely examples, and are not limited to the present embodiment. It varies depending on the type of metal material used for the nozzle body 2 and welding conditions. Therefore, the lower limit value of D / L is set to a ratio (value) at which no joint failure occurs, and the upper limit value of θ is set to an angle at which no weld crack occurs.

1 ノズルプレート(被溶接材)
2 ノズル本体(被溶接材)
3A,3B 溶接ビード
3a 底部
4 境界線
10A,10B 重ね溶接継手
D1,D2 溶込み深さ
F 燃料噴射弁
L1,L2 溶込み幅
P1,P2 交点
TL1,TL2 接線
θ1,θ2 角度
1 Nozzle plate (material to be welded)
2 Nozzle body (material to be welded)
3A, 3B Weld bead 3a Bottom 4 Boundary line 10A, 10B Lap weld joint D1, D2 Penetration depth F Fuel injection valve L1, L2 Penetration width P1, P2 Intersection TL1, TL2 Tangent θ1, θ2 Angle

Claims (5)

2つの被溶接材を重ね合わせ、前記被溶接材の重ね面の一面側からレーザ光を照射してそれぞれの前記被溶接材を蒸発させることで深溶込み型溶接をし、溶接ビードの断面形状を、
(i)前記被溶接材の界面を形成する境界線と、前記溶接ビードと前記境界線との交点における前記溶接ビードの接線とが成す角度θを、90°<θ≦130°とし、かつ、
(ii)前記境界線での前記溶接ビードの溶込み幅Lと、前記境界線から前記溶接ビードの底部までの溶込み深さDとの比率D/Lを、0.1<D/L≦1.0となるように構成したことを特徴とする重ね溶接継手。
Cross-sectional shape of the weld bead by superimposing two welded materials, irradiating laser beam from one surface side of the welded material to evaporate each of the welded materials, and performing deep penetration welding The
(I) An angle θ formed between a boundary line forming the interface of the workpiece and a tangent line of the weld bead at an intersection of the weld bead and the boundary line is 90 ° <θ ≦ 130 ° , and ,
(Ii) The ratio D / L between the penetration width L of the weld bead at the boundary line and the penetration depth D from the boundary line to the bottom of the weld bead is 0.1 <D / L ≦ A lap weld joint characterized by being configured to be 1.0 .
前記溶接ビードは、シールドガスを使用することなく溶接、または前記被溶接材と酸化反応するガスを含むシールドガスを使用して溶接されていることを特徴とする請求項1に記載の重ね溶接継手。   2. The lap weld joint according to claim 1, wherein the weld bead is welded without using a shield gas or using a shield gas containing a gas that oxidizes and reacts with the workpiece. . 燃料を噴射させる噴射ノズルを備えた燃料噴射弁であって、
前記噴射ノズルは、
噴射孔が形成されたノズルプレートと、
前記ノズルプレートが重ねられ、前記噴射孔と連通する連通路を有するノズル本体と、を備え、
前記ノズルプレートと前記ノズル本体とは、前記ノズルプレート側からレーザ光を照射することで請求項1又は請求項2に記載の重ね溶接継手を周溶接によって構成したことを特徴とする燃料噴射弁。
A fuel injection valve having an injection nozzle for injecting fuel,
The spray nozzle is
A nozzle plate formed with injection holes;
A nozzle body on which the nozzle plates are stacked and having a communication path communicating with the injection hole,
The fuel injection valve according to claim 1, wherein the nozzle plate and the nozzle body are formed by circumferential welding of the lap weld joint according to claim 1 or 2 by irradiating laser light from the nozzle plate side.
2つの被溶接材を重ね合わせ、前記被溶接材の重ね面の一面側からレーザ光を照射してそれぞれの前記被溶接材を蒸発させることで深溶込み型溶接をし、溶接ビードの断面形状を、
(i)前記被溶接材の界面を形成する境界線と、前記溶接ビードと前記境界線との交点における前記溶接ビードの接線とが成す角度θを、90°<θ≦130°とし、かつ、
(ii)前記境界線での前記溶接ビードの溶込み幅Lと、前記境界線から前記溶接ビードの底部までの溶込み深さDとの比率D/Lを、0.1<D/L≦1.0にすることを特徴とするレーザ溶接方法。
Cross-sectional shape of the weld bead by superimposing two welded materials, irradiating laser beam from one surface side of the welded material to evaporate each of the welded materials, and performing deep penetration welding The
(I) An angle θ formed between a boundary line forming the interface of the workpiece and a tangent line of the weld bead at an intersection of the weld bead and the boundary line is 90 ° <θ ≦ 130 ° , and ,
(Ii) The ratio D / L between the penetration width L of the weld bead at the boundary line and the penetration depth D from the boundary line to the bottom of the weld bead is 0.1 <D / L ≦ A laser welding method, characterized by being 1.0 .
シールドガスを使用することなく溶接、または前記被溶接材と酸化反応するガスを含むシールドガスを使用して溶接することを特徴とする請求項4に記載のレーザ溶接方法。   The laser welding method according to claim 4, wherein welding is performed without using a shielding gas, or welding is performed using a shielding gas containing a gas that oxidizes and reacts with the workpiece.
JP2013085496A 2013-04-16 2013-04-16 Lap weld joint, fuel injection valve, and laser welding method Active JP6091971B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013085496A JP6091971B2 (en) 2013-04-16 2013-04-16 Lap weld joint, fuel injection valve, and laser welding method
CN201410129486.9A CN104107980B (en) 2013-04-16 2014-04-02 Overlapping welding joint, Fuelinjection nozzle and method for laser welding
IN1038DE2014 IN2014DE01038A (en) 2013-04-16 2014-04-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013085496A JP6091971B2 (en) 2013-04-16 2013-04-16 Lap weld joint, fuel injection valve, and laser welding method

Publications (2)

Publication Number Publication Date
JP2014205184A JP2014205184A (en) 2014-10-30
JP6091971B2 true JP6091971B2 (en) 2017-03-08

Family

ID=51705074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013085496A Active JP6091971B2 (en) 2013-04-16 2013-04-16 Lap weld joint, fuel injection valve, and laser welding method

Country Status (3)

Country Link
JP (1) JP6091971B2 (en)
CN (1) CN104107980B (en)
IN (1) IN2014DE01038A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10107243B2 (en) 2014-10-28 2018-10-23 Mitsubishi Electric Corporation Fuel injection valve
JP6463980B2 (en) * 2015-02-16 2019-02-06 日立オートモティブシステムズ株式会社 Joint and fuel supply pump
JP2019089232A (en) * 2017-11-14 2019-06-13 エスアイアイ・プリンテック株式会社 Jet hole plate, liquid jet head, and liquid jet recording device
WO2019202829A1 (en) * 2018-04-20 2019-10-24 日立オートモティブシステムズ株式会社 Component for flow rate control device, and fuel injection valve
CN112135706B (en) * 2018-05-21 2022-05-10 杰富意钢铁株式会社 Lap laser welded joint, method for manufacturing lap laser welded joint, and automobile frame member
CN110253145A (en) * 2019-05-17 2019-09-20 东莞材料基因高等理工研究院 The method for welding dissimilar metal of mild steel and cast iron
CN114247999A (en) * 2020-09-23 2022-03-29 中国科学院上海光学精密机械研究所 Laser spot welding method for high-strength steel lamination
CN114643431B (en) * 2020-12-02 2023-11-03 中国航发商用航空发动机有限责任公司 Combined welding method for aeroengine fuel nozzle assembly
CN113020261B (en) * 2021-03-25 2022-11-08 太原理工大学 Rolling method of metal composite plate with prefabricated corrugated interface

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3750126B2 (en) * 1996-03-26 2006-03-01 株式会社デンソー Fuel injection valve
JPH09285885A (en) * 1996-04-24 1997-11-04 Mitsubishi Heavy Ind Ltd Metal pallet and production of metal pallet
JP3671544B2 (en) * 1996-09-19 2005-07-13 株式会社デンソー Laser welding method
JP3886596B2 (en) * 1997-04-15 2007-02-28 住友軽金属工業株式会社 Manufacturing method of ribbed aluminum products
JP3276072B2 (en) * 1998-05-25 2002-04-22 日産自動車株式会社 Overlap welding method of carburized parts
JP2000262021A (en) * 1999-03-11 2000-09-22 Denso Corp Connection structure and connection method of armature coil
JP2004169653A (en) * 2002-11-21 2004-06-17 Hitachi Unisia Automotive Ltd Fuel injection valve
JP2005040853A (en) * 2003-07-25 2005-02-17 Matsushita Electric Ind Co Ltd Laser welding method
US7306172B2 (en) * 2003-10-27 2007-12-11 Siemens Vdo Automotive Corporation Fluidic flow controller orifice disc with dual-flow divider for fuel injector
WO2005120761A1 (en) * 2004-06-02 2005-12-22 Alcoa Inc. Gas metal buried arc welding of lap-penetration joints
US7588837B2 (en) * 2005-04-29 2009-09-15 The Timken Company Welding together low and high carbon steels
JP2012170989A (en) * 2011-02-22 2012-09-10 Suzuki Motor Corp Laser lap welding method
CN102179626A (en) * 2011-04-27 2011-09-14 清华大学 Lap laser welding method for zinc-plated NdFeB permanent magnet and zinc-plated low-carbon steel
US20130088071A1 (en) * 2011-10-07 2013-04-11 Lincoln Global, Inc. Fabrication of welded wheels without filler material

Also Published As

Publication number Publication date
CN104107980B (en) 2016-06-01
CN104107980A (en) 2014-10-22
IN2014DE01038A (en) 2015-07-24
JP2014205184A (en) 2014-10-30

Similar Documents

Publication Publication Date Title
JP6091971B2 (en) Lap weld joint, fuel injection valve, and laser welding method
EP2666579B1 (en) Hybrid laser arc welding process and apparatus
US8681923B2 (en) Method of manufacturing core shroud for nuclear power plant and structure of nuclear power plant
EP2651596B1 (en) Laser beam welding
US20100243621A1 (en) High-powered laser beam welding and assembly therefor
JP2011092944A (en) Fusion welding method and fusion welding apparatus
JP5495118B2 (en) Laser lap welding method of galvanized steel sheet
EP1160046A1 (en) Application of a laser-arc hybrid process to tube welding
CN104439686B (en) A kind of friction stir welding method locking base ring seam for carrier rocket tank
JP2005334974A (en) Laser welding method
FR2830477A1 (en) Overlapping welding of coated metal sheets e.g., steel strip coated with zinc involves splitting high density energy beam to produce two molten metal baths and injecting neutral gas jet onto second bath to form sink at its surface
JP2011230158A (en) Laser lap welding method for galvanized steel sheet
Krasnoperov et al. Weld pool geometry during keyhole laser welding of thin steel sheets
CN108463308A (en) The method of laser spot welding coated steel
JP6092011B2 (en) Welding member, fuel injection valve, and laser welding method
Sadeghian et al. Blue laser welding of low thickness Ni-coated copper and mild steel for electric vehicle (EV) battery manufacturing
JP2001353587A (en) Method of welding high-carbon steel and low-carbon steel together
JP6411013B2 (en) Laser welding method and fuel injection valve manufacturing method
Coste et al. Deep-penetration laser welding with Nd: YAG laser combination up to 11-kW laser power
WO2016031274A1 (en) Laser welding method and container
JP6684548B2 (en) Chip joining method
Yang et al. Semi-cutting-assisted laser welding of zinc-coated steels in a zero root opening lap joint configuration
JP4998634B1 (en) Laser welding method
JP2017006957A (en) Welding method and welding structure
JP2020015053A (en) Welding method, welding device and welding steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151104

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170208

R150 Certificate of patent or registration of utility model

Ref document number: 6091971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250