JP2001353587A - Method of welding high-carbon steel and low-carbon steel together - Google Patents

Method of welding high-carbon steel and low-carbon steel together

Info

Publication number
JP2001353587A
JP2001353587A JP2000177060A JP2000177060A JP2001353587A JP 2001353587 A JP2001353587 A JP 2001353587A JP 2000177060 A JP2000177060 A JP 2000177060A JP 2000177060 A JP2000177060 A JP 2000177060A JP 2001353587 A JP2001353587 A JP 2001353587A
Authority
JP
Japan
Prior art keywords
carbon steel
low
welding
steel
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000177060A
Other languages
Japanese (ja)
Inventor
Shinji Nishino
野 眞 司 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000177060A priority Critical patent/JP2001353587A/en
Publication of JP2001353587A publication Critical patent/JP2001353587A/en
Pending legal-status Critical Current

Links

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)
  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of welding by which the generation of a crack at the weld zone is effectively prevented and a desired penetration depth is secured without using a filler wire, adding such processes as the prevention process of carbon, removing process of a carburized part, preheating, and post heating, when such a high-carbon steel as carburized steel and a low-carbon steel are welded together with a laser beam or an electron beam. SOLUTION: A gap t is given between the high-carbon steel Sb and the low-carbon steel Sa to be welded, the position closer to the side of the low- carbon steel Sa, shifted from the center line C located between the high-carbon steel Sb and the low-carbon steel Sa, is irradiated with a high-energy beam B with an inclination angle θfrom the side of the low-carbon steel Sa, thus the molten amount of the low-carbon steel Sa is made larger than that of the high-carbon steel Sb.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子ビームやレー
ザビームなどの高エネルギービームを用いて、炭素を多
く含有する高炭素鋼や浸炭処理を施した鋼と一般の低炭
素鋼とを溶接するに際し、溶接割れを発生させることな
く溶接することができる高炭素鋼と低炭素鋼との溶接方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention welds a high carbon steel containing a large amount of carbon or a carburized steel to a general low carbon steel using a high energy beam such as an electron beam or a laser beam. The present invention relates to a method for welding high-carbon steel and low-carbon steel that can be welded without causing weld cracks.

【0002】[0002]

【発明が解決しようとする課題】例えば、自動車のオー
トマチックトランスミッションに用いられる歯車伝達系
部品においては、低炭素鋼からなるハブ部材の外周部分
に浸炭処理を施した歯車部材を電子ビーム溶接、あるい
はレーザビーム溶接によって接合したものが使用されて
いる。
For example, in a gear transmission system component used in an automatic transmission of an automobile, a gear member having a carburized outer peripheral portion of a hub member made of low carbon steel is welded by electron beam welding or laser. What is joined by beam welding is used.

【0003】このような浸炭部材のように炭素含有量の
多い高炭素鋼と通常の低炭素鋼との溶接においては、高
炭素鋼に含まれる炭素が溶融金属部に移行することによ
って溶接割れが発生することがないとは言えず、これを
防止するため、溶融部の炭素量を抑えることや、凝固速
度を遅らせて凝固時の応力を緩和するなどの方策が実施
されている。
In the welding of high carbon steel having a high carbon content such as such a carburized member and ordinary low carbon steel, welding cracks occur due to the transfer of carbon contained in the high carbon steel to a molten metal portion. It cannot be said that it does not occur, and in order to prevent this, measures such as suppressing the amount of carbon in the melted portion and slowing the solidification speed to relieve stress during solidification have been implemented.

【0004】すなわち、溶融部の炭素量を抑えるための
方策のひとつとして、純鉄フィラーワイヤを溶接部に供
給しながら溶接を行い、溶融部全体の炭素量を希釈する
方法があるが、消耗品として純鉄フィラーワイヤを使用
するため、コスト高となるという問題がある。
[0004] That is, as one of the measures for suppressing the carbon content of the fusion zone, there is a method of performing welding while supplying a pure iron filler wire to the welding zone to dilute the carbon content of the entire fusion zone. However, since a pure iron filler wire is used, the cost increases.

【0005】また、溶融部の炭素量を抑えるための他の
方策として、浸炭処理時の防炭処理を行ったり、浸炭部
を除去したりして溶接部の炭素量を低減する方法がある
が、防炭処理工程や、浸炭部の除去工程が必要となって
工数が増し、同様にコスト高となるという問題がある。
[0005] As another measure for suppressing the carbon content of the molten portion, there is a method of reducing the carbon content of the welded portion by performing carburizing treatment during carburizing treatment or removing the carburized portion. In addition, there is a problem that a carburization treatment process and a carburized portion removal process are required, which increases man-hours and similarly increases costs.

【0006】さらに、溶融部の炭素量を抑えるための別
の方策としては、図4に示すように、低炭素鋼との組み
合わせ溶接時に、電子ビームやレーザビームBの照射位
置を図4(a)に示すような高炭素鋼Sbと低炭素鋼Sa
との接合部位置から、図4(b)に示すような低炭素鋼
Saの側にずらすことによって低炭素鋼Saを多く溶融
し、溶融部全体の炭素量を希釈する方法もあるが、ビー
ムBの照射位置をずらすことによって、溶融金属の最深
部も低炭素鋼Saの側にずれることになって、溶着長が
図4(a)に示すL1から図4(b)に示すL2に減少
し、溶接強度が得られなくなるため、必要な溶着長を確
保するには深い溶け込みとするために入熱を増やさなけ
ればならないという問題がある。
Further, as another measure for suppressing the amount of carbon in the molten portion, as shown in FIG. 4, the position of irradiation of the electron beam or the laser beam B at the time of combination welding with low carbon steel is changed as shown in FIG. ) High carbon steel Sb and low carbon steel Sa
There is also a method of melting a large amount of the low-carbon steel Sa by displacing the low-carbon steel Sa from the position of the joint with the low-carbon steel Sa as shown in FIG. By shifting the irradiation position of B, the deepest part of the molten metal also shifts to the side of the low carbon steel Sa, and the weld length decreases from L1 shown in FIG. 4 (a) to L2 shown in FIG. 4 (b). However, since the welding strength cannot be obtained, there is a problem that it is necessary to increase the heat input to achieve a deep penetration in order to secure a necessary welding length.

【0007】なお、図5は、このような高炭素鋼Sbと
低炭素鋼Saとのレーザビーム溶接における低炭素鋼Sa
の溶融面積率と割れ発生率との関係を示すグラフであっ
て、この例では割れ発生を完全に防止するためには、低
炭素鋼Saの溶融面積率を80%まで高くする必要があ
ることを示している。なお、低炭素鋼Saの溶融面積率
とは、低炭素鋼Saと高炭素鋼Sbの溶融面積を図4に示
すように、それぞれaおよびbとするとき、100a/
(a+b)として定義される。
[0007] Fig. 5 shows low carbon steel Sa in laser beam welding of such high carbon steel Sb and low carbon steel Sa.
5 is a graph showing the relationship between the melting area ratio and the crack occurrence ratio of the low carbon steel Sa in this example, in order to completely prevent the occurrence of cracks, it is necessary to increase the melting area ratio of the low carbon steel Sa to 80%. Is shown. The melting area ratio of the low-carbon steel Sa is defined as 100 a / b when the melting areas of the low-carbon steel Sa and the high-carbon steel Sb are a and b, respectively, as shown in FIG.
Defined as (a + b).

【0008】そして、凝固速度を遅らせ、凝固時の応力
を緩和するための方策としては、溶接前または溶接後に
加熱(予熱,後熱)を行い、凝固速度を遅らせる方法が
あるが、溶接熱源に加えて予熱や後熱のための熱源が必
要になると共に、工数が増えてコストの上昇要因となる
という問題があり、これらの問題点の解消が上記のよう
な高炭素鋼と低炭素鋼との溶接における課題となってい
た。
As a measure for slowing the solidification rate and relieving the stress at the time of solidification, there is a method in which heating (preheating, post-heating) is performed before or after welding to slow the solidification rate. In addition, a heat source for preheating and after-heating is required, and there is a problem that the number of man-hours increases, which causes an increase in cost, and the elimination of these problems requires the use of high-carbon steel and low-carbon steel as described above. Has been an issue in welding.

【0009】[0009]

【発明の目的】本発明は、レーザ溶接などの高エネルギ
ービームによる高炭素鋼と低酸素鋼との溶接における上
記課題に着目してなされたものであって、フィラーワイ
ヤのような溶接材料を使用したり、防炭処理や浸炭部の
除去、さらには予熱や後熱といった工程を追加すること
なく、溶接部の割れ発生を効果的に防止することがで
き、しかも入熱量を増すことなく十分に深い溶け込みを
得ることができて、溶接強度不足を来すことのない高炭
素鋼と低酸素鋼との溶接方法を提供することを目的とし
ている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems in welding high carbon steel and low oxygen steel by high energy beams such as laser welding, and uses a welding material such as filler wire. Without cracking, removing the carburized part, removing the carburized part, and further adding the steps of preheating and post-heating, it is possible to effectively prevent the occurrence of cracks in the welded part, and sufficiently increase the heat input. It is an object of the present invention to provide a method for welding high-carbon steel and low-oxygen steel that can obtain deep penetration and does not cause insufficient welding strength.

【0010】[0010]

【課題を解決するための手段】本発明の請求項1に係わ
る高炭素鋼と低炭素鋼との溶接方法は、高炭素鋼と低炭
素鋼とをレーザビームや電子ビームなどの高エネルギー
ビームを照射して溶接するに際し、高炭素鋼と低炭素鋼
との間に隙間を設けると共に、高エネルギービームを傾
けた状態で低炭素鋼側から、高炭素鋼と低炭素鋼との間
の中心線よりも低炭素鋼側の位置に照射する構成とした
ことを特徴としており、高炭素鋼と低酸素鋼との溶接方
法におけるこのような構成を前述した従来の課題を解決
するための手段としている。
According to a first aspect of the present invention, there is provided a method for welding a high carbon steel and a low carbon steel using a high energy beam such as a laser beam or an electron beam. When irradiating and welding, a gap is provided between the high carbon steel and the low carbon steel, and the center line between the high carbon steel and the low carbon steel from the low carbon steel side with the high energy beam tilted It is characterized in that it is configured to irradiate the position on the low carbon steel side than the above, and such a configuration in the welding method of high carbon steel and low oxygen steel is a means for solving the above-mentioned conventional problems. .

【0011】本発明に係わる高炭素鋼と低酸素鋼との溶
接方法実施の一形態として、請求項2に係わる溶接方法
においては、高炭素鋼が浸炭処理鋼である構成とし、同
じく実施形態として、請求項3に係わる溶接方法におい
ては、高エネルギービームの傾斜角度θが2°<θ<1
0°の範囲である構成とし、請求項4に係わる溶接方法
においては、高炭素鋼と低炭素鋼との間の隙間tが高エ
ネルギービームのビーム径dよりも小さい構成とし、高
炭素鋼と低酸素鋼との溶接方法におけるこのような構成
を前述した従来の課題を解決するための手段としたこと
を特徴としている。
[0011] As one embodiment of the welding method for high carbon steel and low oxygen steel according to the present invention, in the welding method according to claim 2, the high carbon steel is carburized steel. In the welding method according to the third aspect, the inclination angle θ of the high energy beam is 2 ° <θ <1.
In the welding method according to the fourth aspect, the gap t between the high-carbon steel and the low-carbon steel is smaller than the beam diameter d of the high-energy beam. The present invention is characterized in that such a configuration in a method of welding with low oxygen steel is used as means for solving the above-described conventional problems.

【0012】[0012]

【発明の作用】本発明に係わる高炭素鋼と低炭素鋼との
溶接方法においては、溶接しようとする高炭素鋼と低炭
素鋼の間に隙間を設けた状態で、低炭素鋼側に傾けた高
エネルギービームを高炭素鋼と低炭素鋼との間の中心線
よりも低炭素鋼側の位置に、低炭素鋼側から照射するよ
うにしていることから、電子ビームやレーザビームなど
の高エネルギービームが高炭素鋼と低炭素鋼の間の隙間
に入りこみ、高炭素鋼と低炭素鋼の接合面で交互に反射
を繰返しながらキーホールの底部に侵入するので、ビー
ムの照射位置を高炭素鋼と低炭素鋼の中心線よりも低炭
素鋼側の位置に照射するにも拘わらず、入熱量を上げる
ことなく高炭素鋼と低炭素鋼の接合部における溶け込み
深さ、すなわち溶着長が増加することになる。また、上
記のようにビームを中心線よりも低炭素鋼側の位置に照
射するようにしているので、低炭素鋼の溶融量が増加し
て溶融金属部の炭素量が減少して、溶接割れの発生が防
止される。
In the method for welding high-carbon steel and low-carbon steel according to the present invention, with the gap provided between the high-carbon steel and low-carbon steel to be welded, the steel is tilted toward the low-carbon steel. The high-energy beam is irradiated from the low-carbon steel side to the low-carbon steel side of the center line between the high-carbon steel and the low-carbon steel. The energy beam penetrates into the gap between the high carbon steel and the low carbon steel and penetrates into the bottom of the keyhole while repeatedly reflecting at the joining surface of the high carbon steel and the low carbon steel. Despite irradiation at the low carbon steel side of the steel and low carbon steel center line, the penetration depth, that is, the weld length, increases at the joint between the high carbon steel and the low carbon steel without increasing the heat input Will do. In addition, since the beam is irradiated to the position on the low carbon steel side from the center line as described above, the amount of melting of the low carbon steel increases, the carbon amount of the molten metal decreases, and welding cracks occur. Is prevented from occurring.

【0013】本発明に係わる高炭素鋼と低炭素鋼との溶
接方法においては、請求項2に記載しているように、炭
素含有量が全体的に多い通常の高炭素鋼のみならず、炭
素量が部材表面において富化されている浸炭処理鋼にも
適用することができる。
According to the method for welding high carbon steel and low carbon steel according to the present invention, not only ordinary high carbon steel having a large carbon content but also carbon It can also be applied to carburized steel whose amount is enriched on the member surface.

【0014】本発明の請求項3に係わる高炭素鋼と低炭
素鋼との溶接方法においては、高エネルギービームの傾
斜角度θを2°よりも大きく10°よりも小さい角度範
囲としているので、上記作用がより確実なものとなっ
て、深い溶着長が得られると共に、高炭素鋼側の溶融量
が減じて割れの発生が効果的に防止されるようになる。
すなわち、ビームの傾斜角度θが2°以下の場合には、
ビームを傾斜させない場合と実質的に差がなく、深い溶
け込み(溶着長)を得ることができず、逆に傾斜角度θ
が10°以上の場合には、鋼の接合面におけるビーム反
射時のエネルギー吸収が多くなって高炭素鋼の溶融量が
増し、溶融金属部の炭素量が増加して、割れ発生の危険
性が増すと共に、溶け込み深さが浅くなる傾向がある。
In the method for welding high-carbon steel and low-carbon steel according to claim 3 of the present invention, the inclination angle θ of the high-energy beam is set to an angle range larger than 2 ° and smaller than 10 °. The action becomes more reliable, a deep weld length can be obtained, and the amount of melting on the high carbon steel side is reduced, so that the occurrence of cracks is effectively prevented.
That is, when the beam inclination angle θ is 2 ° or less,
There is substantially no difference from the case where the beam is not tilted, a deep penetration (welding length) cannot be obtained, and conversely, the tilt angle θ
When the angle is 10 ° or more, the energy absorption at the time of beam reflection at the joint surface of the steel increases, the amount of melting of the high carbon steel increases, the carbon amount of the molten metal increases, and there is a risk of cracking. As it increases, the penetration depth tends to be shallower.

【0015】本発明の請求項4に係わる高炭素鋼と低炭
素鋼との溶接方法においては、高炭素鋼と低酸素鋼との
間の隙間tを高エネルギービームのビーム径dよりも小
さくしているので、接合不良のない健全な溶接部が得や
すくなる。すなわち、隙間tがビーム径d以上となる
と、被溶接部材間を埋める溶融金属量が不足がちとなっ
て、十分な接合強度が得られなくなる傾向がある。
In the method for welding high carbon steel and low carbon steel according to claim 4 of the present invention, the gap t between the high carbon steel and the low oxygen steel is set smaller than the beam diameter d of the high energy beam. As a result, it is easy to obtain a sound weld having no joint failure. That is, when the gap t is equal to or larger than the beam diameter d, the amount of molten metal filling the gap between the members to be welded tends to be insufficient, and a sufficient joining strength tends to be not obtained.

【0016】[0016]

【発明の効果】本発明の請求項1に係わる高炭素鋼と低
酸素鋼との溶接方法は、上記構成、すなわち電子ビーム
やレーザビームなどの高エネルギービームを傾斜させた
状態で、接合面間に隙間を設けた高炭素鋼と低炭素鋼に
低炭素鋼の側から照射するようにしているので、高エネ
ルギービームが高炭素鋼と低炭素鋼の接合面の底部にま
で達し、入熱量を上げることなく、溶着長を増加させる
ことができる。また、ビームを中心線よりも低炭素鋼側
の位置に照射するようにしているので、低炭素鋼の溶融
量に対する高炭素鋼の溶融量が少なくなって溶融金属部
の炭素量が減少し、溶接割れの発生を効率的に防止する
ことができるという極めて優れた効果をもたらすもので
ある。
The method for welding high carbon steel and low oxygen steel according to claim 1 of the present invention has the above-mentioned structure, that is, a method of welding a high energy beam such as an electron beam or a laser beam in a state where the high energy beam is inclined. The high-energy beam reaches the bottom of the joint between the high-carbon steel and the low-carbon steel because the high-carbon steel and the low-carbon steel are irradiated from the low-carbon steel side with a gap between them. The welding length can be increased without raising. In addition, since the beam is irradiated to a position on the low carbon steel side from the center line, the amount of melting of the high carbon steel relative to the amount of melting of the low carbon steel decreases, and the carbon amount of the molten metal portion decreases, This provides an extremely excellent effect that the occurrence of welding cracks can be efficiently prevented.

【0017】本発明の実施の形態として請求項2に係わ
る高炭素鋼と低炭素鋼との溶接方法は、高炭素鋼として
浸炭処理を施した鋼と低炭素鋼との溶接に適用すること
ができる。
According to an embodiment of the present invention, the method for welding high-carbon steel and low-carbon steel according to claim 2 can be applied to welding of low-carbon steel and carburized steel as high-carbon steel. it can.

【0018】同じく実施の形態として、請求項3に係わ
る高炭素鋼と低炭素鋼との溶接方法においては、2°を
超え、10°未満の角度の傾斜角度θで高エネルギービ
ームを照射するようにしているので、溶着長を確実に増
すことができると共に、高炭素鋼の溶融量を抑えて溶融
部の炭素量を少なくして、割れ発生を着実に防止するこ
とができ、請求項4に係わる溶接方法においては、高炭
素鋼と低酸素鋼との間の隙間tを高エネルギービームの
ビーム径dよりも小さくしているので、接合不良のない
健全な溶接部をより確実に得るがことができるという優
れた効果がもたらされる。
According to another embodiment of the present invention, in the method for welding high-carbon steel and low-carbon steel according to claim 3, the high-energy beam is irradiated at an inclination angle θ of more than 2 ° and less than 10 °. Therefore, the welding length can be reliably increased, and the amount of high carbon steel melted can be suppressed to reduce the amount of carbon in the melted portion, thereby reliably preventing cracking. In the related welding method, the gap t between the high-carbon steel and the low-oxygen steel is made smaller than the beam diameter d of the high-energy beam, so that it is possible to more reliably obtain a sound weld without a joint failure. The excellent effect that it can do is brought.

【0019】[0019]

【実施例】以下に、本発明を実施例に基づいてより具体
的に説明する。
The present invention will be described below in more detail with reference to examples.

【0020】すなわち、図1に示すように、板厚それぞ
れ5mmの低炭素鋼Saと高炭素鋼Sbとを突き合わせる
とに共に、両鋼の隙間tを種々に設定した溶接試験板を
用意し、レーザ発振器により発生した出力5kWのCO
2レーザビームBを種々の角度θで照射することによ
り、毎分1.5mの溶接速度で低炭素鋼Saと高炭素鋼
Sbとを突き合わせ溶接した。そして、このときの溶融
金属形状および溶接部における割れ発生の有無について
調査した。
That is, as shown in FIG. 1, a low-carbon steel Sa and a high-carbon steel Sb each having a thickness of 5 mm were abutted against each other, and at the same time, a welding test plate having variously set gaps t between the two steels was prepared. , Output of 5kW CO generated by laser oscillator
2 By irradiating the laser beam B at various angles θ, the low carbon steel Sa and the high carbon steel Sb were butt-welded at a welding speed of 1.5 m / min. At this time, the shape of the molten metal and the occurrence of cracks in the welded portion were examined.

【0021】なお、高炭素鋼Pbとしては、炭素含有量
0.4%の機械構造用鋼に浸炭処理を施すことにより、
深さ1mm、表面炭素量0.7%の浸炭層を形成させた
ものを使用すると共に、低炭素鋼Saとしては、炭素含
有量0.1%のものを使用した。
The high-carbon steel Pb is obtained by carburizing a steel for machine structural use having a carbon content of 0.4%.
The one having a carburized layer having a depth of 1 mm and a surface carbon amount of 0.7% was used, and the low-carbon steel Sa having a carbon content of 0.1% was used.

【0022】また、CO2レーザビームBの加工点にお
けるビーム径dを0.2mmとすると共に、図1(b)
に拡大して示すように、低炭素鋼Saと高炭素鋼Sbの間
の中心線C上における板厚表面からs=1.5mmの深
さ位置Pをビーム照射の狙い位置とした。
Further, the beam diameter d at the processing point of the CO 2 laser beam B is set to 0.2 mm, and FIG.
As shown in the enlarged view, a depth position P of s = 1.5 mm from the plate thickness surface on the center line C between the low carbon steel Sa and the high carbon steel Sb was set as a target position of beam irradiation.

【0023】図2は、この結果を示すものであって、レ
ーザビームBの傾斜角度θが、2°を超え、10°に満
たない角度範囲であって、低炭素鋼Saと高炭素鋼Sbの
間の隙間tが0を超え、ビーム径d、すなわち0.2m
mを超えない範囲において、深い溶着長が得られると共
に、溶接割れの発生を防止できることが判明した。
FIG. 2 shows the result, in which the inclination angle θ of the laser beam B is more than 2 ° but less than 10 °, and the low-carbon steel Sa and the high-carbon steel Sb Is greater than 0 and the beam diameter d, ie, 0.2 m
It has been found that within a range not exceeding m, a deep weld length can be obtained and the occurrence of welding cracks can be prevented.

【0024】このとき、レーザビームBの傾斜角度θが
小さい場合や、隙間tがない場合には、図3(a)に示
すように、溶融金属形状がビームBの中心軸に対して概
ね左右対称となり易く、高炭素鋼Sb側を多く溶融する
と共に、溶着長が浅くなる傾向が認められた。これに対
し、傾斜角度θおよび隙間tを上記範囲として溶接を実
施した本発明の溶接方法の場合には、図3(b)に示す
ように、溶融金属形状がビームBの中心軸に対して非対
称となり、低炭素鋼Sa側を多く溶かす溶融金属形状と
なる傾向が確認され、溶着長を確保しながら、効率良く
低炭素鋼Saを溶融することができ、溶融金属全体の炭
素量を低く抑えて溶接割れを効果的に防止することがで
きることが判明した。
At this time, when the inclination angle θ of the laser beam B is small or when there is no gap t, the shape of the molten metal is substantially right and left with respect to the center axis of the beam B as shown in FIG. It was easy to be symmetrical, and it was recognized that a large amount of the high carbon steel Sb was melted and the weld length tended to be short. On the other hand, in the case of the welding method according to the present invention in which the welding is performed with the inclination angle θ and the gap t being in the above ranges, the molten metal shape is shifted with respect to the central axis of the beam B as shown in FIG. It has been confirmed that there is a tendency for the molten metal to become asymmetric and to melt much of the low-carbon steel Sa side, so that the low-carbon steel Sa can be efficiently melted while securing the welding length, and the carbon content of the entire molten metal is kept low. It has been found that welding cracks can be effectively prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a) 本発明に係わる高炭素鋼と低酸素鋼と
の溶接方法の実施要領を示す概略説明である。 (b) レーザビームの照射位置を示す図1(a)の拡
大説明図である。
FIG. 1 (a) is a schematic illustration showing the method of welding a high carbon steel and a low oxygen steel according to the present invention. FIG. 2B is an enlarged explanatory view of FIG. 1A showing an irradiation position of a laser beam.

【図2】高炭素鋼と低酸素鋼との溶接方法において、高
炭素鋼と低酸素鋼の間に形成する隙間とビーム傾斜角度
の適正範囲を示すグラフである。
FIG. 2 is a graph showing a gap formed between high-carbon steel and low-oxygen steel and an appropriate range of a beam inclination angle in a welding method of high-carbon steel and low-oxygen steel.

【図3】(a) 高炭素鋼と低酸素鋼の間に形成する隙
間とビーム傾斜角度とが適正でない場合の溶融金属形状
を示す溶接部の断面図である。 (b) 本発明に係わる高炭素鋼と低酸素鋼との溶接方
法による溶融金属形状を示す溶接部の断面図である。
FIG. 3A is a cross-sectional view of a welded portion showing a molten metal shape when a gap formed between high-carbon steel and low-oxygen steel and a beam inclination angle are not appropriate. (B) It is sectional drawing of the welding part which shows the molten metal shape by the welding method of the high carbon steel and the low oxygen steel concerning this invention.

【図4】(a)および(b)は従来の高炭素鋼と低酸素
鋼との溶接方法における溶融金属形状を示す溶接部の断
面図である。従来の高炭素鋼と低酸素鋼との溶接方法に
おける希釈による割れ対策結果を示すグラフである。
FIGS. 4A and 4B are cross-sectional views of a welded portion showing a molten metal shape in a conventional welding method for high carbon steel and low oxygen steel. It is a graph which shows the crack countermeasures result by dilution in the conventional welding method of high carbon steel and low oxygen steel.

【符号の説明】[Explanation of symbols]

Sa 低炭素鋼 Sb 鋼炭素鋼 t 隙間 d ビーム径 θ 傾斜角度 C 中心線 Sa Low carbon steel Sb steel Carbon steel t Clearance d Beam diameter θ Tilt angle C Center line

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年7月4日(2000.7.4)[Submission date] July 4, 2000 (200.7.4)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a) 本発明に係わる高炭素鋼と低酸素鋼と
の溶接方法の実施要領を示す概略説明である。 (b) レーザビームの照射位置を示す図1(a)の拡
大説明図である。
FIG. 1 (a) is a schematic illustration showing the method of welding a high carbon steel and a low oxygen steel according to the present invention. FIG. 2B is an enlarged explanatory view of FIG. 1A showing an irradiation position of a laser beam.

【図2】高炭素鋼と低酸素鋼との溶接方法において、高
炭素鋼と低酸素鋼の間に形成する隙間とビーム傾斜角度
の適正範囲を示すグラフである。
FIG. 2 is a graph showing a gap formed between high-carbon steel and low-oxygen steel and an appropriate range of a beam inclination angle in a welding method of high-carbon steel and low-oxygen steel.

【図3】(a) 高炭素鋼と低酸素鋼の間に形成する隙
間とビーム傾斜角度とが適正でない場合の溶融金属形状
を示す溶接部の断面図である。 (b) 本発明に係わる高炭素鋼と低酸素鋼との溶接方
法による溶融金属形状を示す溶接部の断面図である。
FIG. 3A is a cross-sectional view of a welded portion showing a molten metal shape when a gap formed between high-carbon steel and low-oxygen steel and a beam inclination angle are not appropriate. (B) It is sectional drawing of the welding part which shows the molten metal shape by the welding method of the high carbon steel and the low oxygen steel concerning this invention.

【図4】(a)および(b)は従来の高炭素鋼と低酸素
鋼との溶接方法における溶融金属形状を示す溶接部の断
面図である。
FIGS. 4A and 4B are cross-sectional views of a welded portion showing a molten metal shape in a conventional welding method for high carbon steel and low oxygen steel.

【図5】従来の高炭素鋼と低酸素鋼との溶接方法におけ
る希釈による割れ対策結果を示すグラフである。
FIG. 5 is a graph showing the results of measures against cracking due to dilution in a conventional method for welding high carbon steel and low oxygen steel.

【符号の説明】 Sa 低炭素鋼 Sb 鋼炭素鋼 t 隙間 d ビーム径 θ 傾斜角度 C 中心線[Description of Signs] Sa Low Carbon Steel Sb Steel Carbon Steel t Clearance d Beam Diameter θ Inclination Angle C Centerline

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高炭素鋼と低炭素鋼とをレーザビームや
電子ビームなどの高エネルギービームを照射して溶接す
るに際し、高炭素鋼と低炭素鋼との間に隙間を設けると
共に、高エネルギービームを傾けた状態で低炭素鋼側か
ら、高炭素鋼と低炭素鋼との間の中心線よりも低炭素鋼
側の位置に照射することを特徴とする高炭素鋼と低炭素
鋼との溶接方法。
When welding a high carbon steel and a low carbon steel by irradiating them with a high energy beam such as a laser beam or an electron beam, a gap is provided between the high carbon steel and the low carbon steel. The high-carbon steel and the low-carbon steel are characterized in that the beam is irradiated from the low-carbon steel side to the position on the low-carbon steel side from the center line between the high-carbon steel and the low-carbon steel while the beam is tilted. Welding method.
【請求項2】 高炭素鋼が浸炭処理鋼であることを特徴
とする請求項1記載の高炭素鋼と低炭素鋼との溶接方
法。
2. The method for welding high carbon steel and low carbon steel according to claim 1, wherein the high carbon steel is carburized steel.
【請求項3】 高エネルギービームの傾斜角度θが2°
<θ<10°の範囲であることを特徴とする請求項1ま
たは請求項2記載の高炭素鋼と低炭素鋼との溶接方法。
3. The high energy beam has an inclination angle θ of 2 °.
3. The method for welding high carbon steel and low carbon steel according to claim 1 or 2, wherein the angle is in the range of <θ <10 °.
【請求項4】 高炭素鋼と低炭素鋼との間の隙間tが高
エネルギービームのビーム径dよりも小さいことを特徴
とする請求項1ないし請求項3のいずれかに記載の高炭
素鋼と低炭素鋼との溶接方法。
4. The high carbon steel according to claim 1, wherein a gap t between the high carbon steel and the low carbon steel is smaller than a beam diameter d of the high energy beam. And welding method with low carbon steel.
JP2000177060A 2000-06-13 2000-06-13 Method of welding high-carbon steel and low-carbon steel together Pending JP2001353587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000177060A JP2001353587A (en) 2000-06-13 2000-06-13 Method of welding high-carbon steel and low-carbon steel together

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000177060A JP2001353587A (en) 2000-06-13 2000-06-13 Method of welding high-carbon steel and low-carbon steel together

Publications (1)

Publication Number Publication Date
JP2001353587A true JP2001353587A (en) 2001-12-25

Family

ID=18678707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000177060A Pending JP2001353587A (en) 2000-06-13 2000-06-13 Method of welding high-carbon steel and low-carbon steel together

Country Status (1)

Country Link
JP (1) JP2001353587A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149157A (en) * 2008-12-25 2010-07-08 Nippon Sharyo Seizo Kaisha Ltd Laser welding joint for double skin panel
US8028889B2 (en) * 2005-04-29 2011-10-04 The Timken Company Welding together low and high carbon steels
JP2013184206A (en) * 2012-03-09 2013-09-19 Toyota Motor Corp Method for evaluating hardness in welded part
JP2014140853A (en) * 2013-01-22 2014-08-07 Nissan Motor Co Ltd Welding method and welding product
WO2016047008A1 (en) * 2014-09-26 2016-03-31 日新製鋼株式会社 Method for laser welding of materials with different thicknesses and welded member having different thicknesses produced by said method
JP2016087688A (en) * 2014-10-30 2016-05-23 ヂュジィ スーベイダー マシーナリー カンパニーリミテッドZhuji Sibeida Machinery Co., Ltd Welding method of copper and steel and application of the same
KR20180073104A (en) * 2016-12-22 2018-07-02 주식회사 포스코 Gas metal arc welding joint and method for manufacturing the same
CN110238525A (en) * 2019-05-17 2019-09-17 东莞材料基因高等理工研究院 A kind of method for welding dissimilar metal of mild steel and cast iron
CN110238511A (en) * 2018-03-09 2019-09-17 上海海立电器有限公司 A kind of method for laser welding
CN110253145A (en) * 2019-05-17 2019-09-20 东莞材料基因高等理工研究院 The method for welding dissimilar metal of mild steel and cast iron
JP2019162663A (en) * 2018-03-19 2019-09-26 アイシン・エィ・ダブリュ株式会社 Welding method and welding joined body
CN111531278A (en) * 2019-02-06 2020-08-14 通用汽车环球科技运作有限责任公司 Laser welding of steel to ductile iron
CN113245559A (en) * 2021-06-22 2021-08-13 北京煜鼎增材制造研究院有限公司 Laser additive manufacturing method for high-carbon high-strength gradient steel member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711787A (en) * 1980-06-27 1982-01-21 Toshiba Corp Electron beam welding of alloy for bimetal
JPH01205893A (en) * 1988-02-12 1989-08-18 Toyota Motor Corp Method for welding high carbon steel sheet
JPH0284287A (en) * 1988-06-10 1990-03-26 Aisan Ind Co Ltd Method for welding metallic material
JPH05131283A (en) * 1991-11-13 1993-05-28 Sekisui Chem Co Ltd Butt welding method with laser beam
JPH07266068A (en) * 1994-03-30 1995-10-17 Kobe Steel Ltd Method for laser beam welding aluminum or aluminum alloy member
JPH11333571A (en) * 1998-05-25 1999-12-07 Nissan Motor Co Ltd Lap welding method for carburized part

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711787A (en) * 1980-06-27 1982-01-21 Toshiba Corp Electron beam welding of alloy for bimetal
JPH01205893A (en) * 1988-02-12 1989-08-18 Toyota Motor Corp Method for welding high carbon steel sheet
JPH0284287A (en) * 1988-06-10 1990-03-26 Aisan Ind Co Ltd Method for welding metallic material
JPH05131283A (en) * 1991-11-13 1993-05-28 Sekisui Chem Co Ltd Butt welding method with laser beam
JPH07266068A (en) * 1994-03-30 1995-10-17 Kobe Steel Ltd Method for laser beam welding aluminum or aluminum alloy member
JPH11333571A (en) * 1998-05-25 1999-12-07 Nissan Motor Co Ltd Lap welding method for carburized part

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8028889B2 (en) * 2005-04-29 2011-10-04 The Timken Company Welding together low and high carbon steels
JP2010149157A (en) * 2008-12-25 2010-07-08 Nippon Sharyo Seizo Kaisha Ltd Laser welding joint for double skin panel
JP2013184206A (en) * 2012-03-09 2013-09-19 Toyota Motor Corp Method for evaluating hardness in welded part
JP2014140853A (en) * 2013-01-22 2014-08-07 Nissan Motor Co Ltd Welding method and welding product
CN107073649B (en) * 2014-09-26 2018-07-10 日新制钢株式会社 The method for laser welding of poor thickness material
WO2016047008A1 (en) * 2014-09-26 2016-03-31 日新製鋼株式会社 Method for laser welding of materials with different thicknesses and welded member having different thicknesses produced by said method
CN107073649A (en) * 2014-09-26 2017-08-18 日新制钢株式会社 The method for laser welding of poor thickness material and the thick welding assembly of difference using this method
EP3184231A4 (en) * 2014-09-26 2017-08-23 Nisshin Steel Co., Ltd. Method for laser welding of materials with different thicknesses and welded member having different thicknesses produced by said method
US20170297145A1 (en) * 2014-09-26 2017-10-19 Nisshin Steel Co., Ltd. Method for laser welding of materials having different thicknesses
KR101831584B1 (en) * 2014-09-26 2018-02-23 닛신 세이코 가부시키가이샤 Method for laser welding of materials with different thicknesses
US9993896B2 (en) 2014-09-26 2018-06-12 Nisshin Steel Co., Ltd. Method for laser welding of materials having different thicknesses
JP2016087688A (en) * 2014-10-30 2016-05-23 ヂュジィ スーベイダー マシーナリー カンパニーリミテッドZhuji Sibeida Machinery Co., Ltd Welding method of copper and steel and application of the same
KR101977448B1 (en) * 2016-12-22 2019-05-10 주식회사 포스코 Gas metal arc welding joint and method for manufacturing the same
KR20180073104A (en) * 2016-12-22 2018-07-02 주식회사 포스코 Gas metal arc welding joint and method for manufacturing the same
CN110238511A (en) * 2018-03-09 2019-09-17 上海海立电器有限公司 A kind of method for laser welding
CN110238511B (en) * 2018-03-09 2021-05-07 上海海立电器有限公司 Laser welding method
JP2019162663A (en) * 2018-03-19 2019-09-26 アイシン・エィ・ダブリュ株式会社 Welding method and welding joined body
JP7238437B2 (en) 2018-03-19 2023-03-14 株式会社アイシン Welding method and welded joint
CN111531278A (en) * 2019-02-06 2020-08-14 通用汽车环球科技运作有限责任公司 Laser welding of steel to ductile iron
US11517980B2 (en) 2019-02-06 2022-12-06 GM Global Technology Operations LLC Laser welding steel to ductile iron
CN110238525A (en) * 2019-05-17 2019-09-17 东莞材料基因高等理工研究院 A kind of method for welding dissimilar metal of mild steel and cast iron
CN110253145A (en) * 2019-05-17 2019-09-20 东莞材料基因高等理工研究院 The method for welding dissimilar metal of mild steel and cast iron
CN113245559A (en) * 2021-06-22 2021-08-13 北京煜鼎增材制造研究院有限公司 Laser additive manufacturing method for high-carbon high-strength gradient steel member
CN113245559B (en) * 2021-06-22 2021-09-21 北京煜鼎增材制造研究院有限公司 Laser additive manufacturing method for high-carbon high-strength gradient steel member

Similar Documents

Publication Publication Date Title
JP6034490B2 (en) Weld blank assembly and method
JP5873658B2 (en) Hybrid laser arc welding process and apparatus
JP2001353587A (en) Method of welding high-carbon steel and low-carbon steel together
US5211327A (en) Method of welding
JP2012135794A (en) Laser lap welding method
JP2002514511A (en) Method for joining a cast part and a part made of case-hardened steel and a part produced by this method
WO2010084665A1 (en) Laser welding method
JP4764786B2 (en) Laser welding method
JP2011230158A (en) Laser lap welding method for galvanized steel sheet
WO2012132024A1 (en) Laser welding method
JP2014018816A (en) Welded steel pipe and method of manufacturing the same
JP2011161506A (en) Welding method
JP2007229740A (en) Overlap laser welding method
JP3596326B2 (en) Welding method of aluminum alloy
WO2018003341A1 (en) Laser welded joint and method for manufacturing laser welded joint
JP2013000751A (en) Butt welding method of steel member
JP5000578B2 (en) Laser welding method for thin steel sheets
JPS61293691A (en) Welding method by laser
JP6759749B2 (en) Welding method and manufacturing method of welded products
JP2002018583A (en) Method of laser beam welding
JP7330660B1 (en) laser welding method
JP2792340B2 (en) Laser welding method
JPH06285657A (en) Laser welding process
JPH01205893A (en) Method for welding high carbon steel sheet
JPS62254992A (en) Laser welding method of aluminum member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100405