JP2012200768A - Welding method for container and method for manufacturing secondary battery using the same - Google Patents

Welding method for container and method for manufacturing secondary battery using the same Download PDF

Info

Publication number
JP2012200768A
JP2012200768A JP2011068412A JP2011068412A JP2012200768A JP 2012200768 A JP2012200768 A JP 2012200768A JP 2011068412 A JP2011068412 A JP 2011068412A JP 2011068412 A JP2011068412 A JP 2011068412A JP 2012200768 A JP2012200768 A JP 2012200768A
Authority
JP
Japan
Prior art keywords
container
welding
secondary battery
lid
outside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011068412A
Other languages
Japanese (ja)
Inventor
Masaki Koike
小池  将樹
Kazuhisa Namiki
和久 並木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011068412A priority Critical patent/JP2012200768A/en
Publication of JP2012200768A publication Critical patent/JP2012200768A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a welding method for a container capable of preventing generation of pores in the container, and to provide a method for manufacturing a secondary battery using the welding method for a container.SOLUTION: A manufacturing step S1 of the secondary battery 1, which has a container 10 made of a storage section 11 having an open surface and a cover 12 for closing the open surface of the storage section 11, includes a welding step S12 where welding is carried out along the whole circumference of the sides of the airtight container 10 until a section obtained by melting a contact portion between the storage section 11 and the cover 12 reaches to the inside of the airtight container 10 while differential pressure between the inside and outside of the airtight container 10 is generated by using a decompression pump 40 so as to make the inside of the airtight container 10 become at a decompressed state against the outside.

Description

本発明は、容器の溶接方法、及びこれを用いた電池の製造方法に関し、特に金属製の密閉容器の溶接部内における気孔の発生を抑制する技術に関する。   The present invention relates to a container welding method and a battery manufacturing method using the same, and more particularly to a technique for suppressing generation of pores in a welded portion of a metal sealed container.

従来、二次電池の容器のように、上面が開口された収納部と、当該収納部の開口面を塞ぐ蓋部とを具備する金属製の密閉容器に対し、収納部と蓋部とを接合するための溶接が行われている。   Conventionally, a storage part and a lid part are joined to a metal hermetic container including a storage part whose upper surface is opened and a lid part that closes the opening surface of the storage part like a container of a secondary battery. Welding is being performed.

上記のような容器に対する溶接においては、収納部と蓋部とを接触させた状態で、それらの接触部分をレーザによって溶融させ、当該溶融部分を凝固させることで、収納部と蓋部とを接合している。
この時、収納部と蓋部との接合部分の強度を担保するために、溶接深さを所定以上(例えば、0.3mm以上)とする必要がある。そこで、このような溶接深さを実現するために、溶接時における金属の蒸発による反力で生じる穴を利用した、所謂、キーホール型レーザ溶接が行われる。
In welding to the container as described above, the contact portion is melted by a laser in a state where the storage portion and the lid portion are in contact with each other, and the fusion portion is solidified to join the storage portion and the lid portion. is doing.
At this time, in order to ensure the strength of the joint portion between the storage portion and the lid portion, it is necessary to set the welding depth to a predetermined value or more (for example, 0.3 mm or more). Therefore, in order to realize such a welding depth, so-called keyhole type laser welding is performed using a hole generated by a reaction force caused by evaporation of metal during welding.

キーホール型レーザ溶接によれば、上記のような溶接深さを達成できるが、高いパワー密度のレーザにより、溶融される金属(例えば、アルミニウム合金)に含まれる水素等の不純物が気化し、金属の溶融部分が凝固することで形成される溶接部内に気孔として残存することとなる。そのため、溶接部、つまり収納部と蓋部との接合部分の強度を所望のものとすることができない等の問題が生じる。   According to keyhole type laser welding, the welding depth as described above can be achieved, but high power density laser vaporizes impurities such as hydrogen contained in the molten metal (for example, aluminum alloy), and the metal As a result, the molten portion of the material solidifies and remains as a pore in the weld formed. Therefore, there arises a problem that the strength of the welded portion, that is, the joint portion between the storage portion and the lid portion cannot be made desired.

特許文献1には、溶接対象となる金属として、水素の含有量を比較的少なく規制した金属を採用することで、溶接部内における気孔の発生を抑制する技術が開示されている。   Patent Document 1 discloses a technique for suppressing the generation of pores in a welded portion by adopting a metal with a relatively small hydrogen content as a metal to be welded.

しかしながら、特許文献1に記載の技術では、溶接対象となる金属に微量ながら水素が含まれることとなる点で不利である。また、溶接対象となる金属そのものが気化することによって形成される気孔の発生を抑制することができないという点においても不利である。   However, the technique described in Patent Literature 1 is disadvantageous in that hydrogen is contained in the metal to be welded in a trace amount. Moreover, it is disadvantageous in that the generation of pores formed by the vaporization of the metal to be welded cannot be suppressed.

特開平7−118783公報JP 7-118783 A

本発明は、溶接部内における気孔の発生を防止可能な容器の溶接方法、及びこれを用いた二次電池の製造方法を提供することを課題とする。   An object of the present invention is to provide a method for welding a container capable of preventing the generation of pores in a welded portion, and a method for manufacturing a secondary battery using the same.

本発明の容器の溶接方法は、開口面を有する収納部と、前記収納部の開口面を塞ぐ蓋部と、を具備する容器の溶接方法であって、密閉した前記容器の内部が外部に対して減圧状態となるように、当該容器の内部と外部との間に差圧を発生させた状態で、前記収納部と前記蓋部との接触部分を溶融させ、当該溶融部分が前記容器の内部に到達するまで、前記接触部分の全域に亘って溶接を行う。   The container welding method of the present invention is a container welding method comprising: a storage portion having an opening surface; and a lid portion that closes the opening surface of the storage portion, wherein the inside of the sealed container is external to the outside. In such a state that a pressure difference is generated between the inside and the outside of the container, the contact portion between the storage portion and the lid portion is melted so that the molten portion is inside the container. Until reaching the contact area.

本発明の容器の溶接方法において、前記容器の溶接には、キーホール型レーザ溶接が適用されることが好ましい。   In the container welding method of the present invention, it is preferable that keyhole laser welding is applied to the container.

本発明の容器の溶接方法において、前記差圧は、22〜70[kPa]とすることが好ましい。   In the container welding method of the present invention, the differential pressure is preferably 22 to 70 [kPa].

本発明の二次電池の製造方法は、前記容器を具備する二次電池の製造方法であって、請求項1乃至請求項3のいずれか一項に記載の容器の溶接方法を用いて、前記容器を溶接する溶接工程を具備する。   A method for manufacturing a secondary battery according to the present invention is a method for manufacturing a secondary battery including the container, wherein the container welding method according to any one of claims 1 to 3 is used. A welding process for welding the container;

本発明に係る容器の溶接方法によれば、溶接部内における気孔の発生を防止できる。
また、本発明に係る二次電池の製造方法によれば、二次電池の容器の強度を向上させることができる。
According to the container welding method of the present invention, generation of pores in the welded portion can be prevented.
Moreover, according to the manufacturing method of the secondary battery which concerns on this invention, the intensity | strength of the container of a secondary battery can be improved.

本発明に係る二次電池を示す図。The figure which shows the secondary battery which concerns on this invention. 本発明に係る二次電池の製造工程を示すフローチャート。The flowchart which shows the manufacturing process of the secondary battery which concerns on this invention. 収納部と蓋部との接触部分を示す端面図。The end view which shows the contact part of an accommodating part and a cover part. 溶接工程における容器の外部の様子を示す図。The figure which shows the mode of the exterior of the container in a welding process. 溶接工程における容器の内部の様子を示す端面図。The end elevation which shows the mode inside the container in a welding process. 容器の内部と外部との差圧が比較的大きい場合における溶接工程の様子を示す端面図。The end elevation which shows the mode of the welding process in case the differential pressure | voltage between the inside of a container and the exterior is comparatively large. 容器の内部と外部との差圧が比較的小さい場合における溶接工程の様子を示す端面図。The end elevation which shows the mode of the welding process in case the differential pressure | voltage between the inside of a container and the exterior is comparatively small. 容器の内部と外部との差圧と、溶接部の溶接肉厚との関係を示す図。The figure which shows the relationship between the differential pressure | voltage of the inside and the exterior of a container, and the weld thickness of a welding part. 収納部の側板に形成された隔壁部を示す端面図。The end view which shows the partition part formed in the side plate of a storage part. 収納部の側板に形成された切欠部を示す端面図。The end view which shows the notch formed in the side plate of a storage part. 収納部の側板に形成された隔壁部及び切欠部を示す図。The figure which shows the partition part and notch part which were formed in the side plate of a storage part. 容器の溶接位置と、容器の内部と外部との差圧との関係を示す図。The figure which shows the relationship between the welding position of a container, and the differential pressure | voltage between the inside of a container, and the exterior.

以下では、図1を参照して、本発明に係る二次電池1について説明する。
なお、説明の便宜上、図1における上下方向を二次電池1の上下方向と規定する。
Below, with reference to FIG. 1, the secondary battery 1 which concerns on this invention is demonstrated.
For convenience of explanation, the vertical direction in FIG. 1 is defined as the vertical direction of the secondary battery 1.

図1に示すように、二次電池1は、図示せぬ電極体、及び電解液が収納される容器10と、前記電極体の正極及び負極に接続される端子20・20とを具備する。   As shown in FIG. 1, the secondary battery 1 includes an electrode body (not shown) and a container 10 in which an electrolytic solution is stored, and terminals 20 and 20 connected to the positive electrode and the negative electrode of the electrode body.

容器10は、アルミニウム合金からなる密閉型の容器であり、二次電池1の外装として用いられる。容器10は、収納部11、及び蓋部12から構成されている。   The container 10 is a sealed container made of an aluminum alloy and is used as an exterior of the secondary battery 1. The container 10 includes a storage part 11 and a lid part 12.

収納部11は、上面が開口した略直方体形状を有する箱状部材である。   The storage part 11 is a box-shaped member having a substantially rectangular parallelepiped shape with an upper surface opened.

蓋部12は、収納部11の開口面の外周形状に応じた形状を有する平板状部材である。蓋部12は、収納部11の開口面(上面)を覆うように、前記電極体が内部に収納された状態の収納部11の上端部に当接される。この状態で、レーザ等により収納部11と蓋部12との接触部分が溶融され、当該溶融部分が凝固することで溶接部30が形成されて、収納部11と蓋部12とが接合される。つまり、蓋部12の下面に収納部11の上端部が接触した状態で、収納部11と蓋部12とが溶接されることとなる。   The lid portion 12 is a flat plate-like member having a shape corresponding to the outer peripheral shape of the opening surface of the storage portion 11. The lid portion 12 is brought into contact with the upper end portion of the storage portion 11 in a state where the electrode body is stored therein so as to cover the opening surface (upper surface) of the storage portion 11. In this state, a contact portion between the storage portion 11 and the lid portion 12 is melted by a laser or the like, and the weld portion 30 is formed by solidifying the melted portion, and the storage portion 11 and the lid portion 12 are joined. . That is, the storage portion 11 and the lid portion 12 are welded in a state where the upper end portion of the storage portion 11 is in contact with the lower surface of the lid portion 12.

また、蓋部12には、前記電解液を注液するための開口部である注液口13が容器10の内部と外部とを連通するように形成されている。収納部11と蓋部12とが溶接された後、注液口13から前記電解液が注液され、注液口13が封止材14により封止される。
更に、蓋部12には、端子20・20が貫通可能な開口部が二つ形成されており、これらの開口部に端子20・20を貫装し、固定することによって、最終的に端子20・20が容器10の外部に突出した状態で固定されることとなる。
The lid portion 12 is formed with a liquid inlet 13 which is an opening for injecting the electrolytic solution so as to communicate the inside and the outside of the container 10. After the storage portion 11 and the lid portion 12 are welded, the electrolytic solution is injected from the injection port 13, and the injection port 13 is sealed with the sealing material 14.
Further, the lid portion 12 is formed with two openings through which the terminals 20 and 20 can pass. By inserting and fixing the terminals 20 and 20 into these openings, the terminals 20 and 20 are finally fixed. -20 will be fixed in the state which protruded the exterior of the container 10. FIG.

端子20・20は、アルミ、又は銅等の金属からなる部材である。端子20・20の一端部は、それぞれ前記電極体の正極及び負極と電気的に接続され、端子20・20の他端部は、容器10の外部に向けて蓋部12から突出するように配置される。   The terminals 20 and 20 are members made of metal such as aluminum or copper. One end portions of the terminals 20 and 20 are electrically connected to the positive electrode and the negative electrode of the electrode body, respectively, and the other end portions of the terminals 20 and 20 are disposed so as to protrude from the lid portion 12 toward the outside of the container 10. Is done.

以下では、図2〜図12を参照して、本発明に係る二次電池の製造方法の一実施形態である、二次電池1の製造工程S1について説明する。   Below, with reference to FIGS. 2-12, manufacturing process S1 of the secondary battery 1 which is one Embodiment of the manufacturing method of the secondary battery which concerns on this invention is demonstrated.

図2に示すように、製造工程S1は、収納工程S11、溶接工程S12、注液工程S13を具備する。   As shown in FIG. 2, the manufacturing process S1 includes a storage process S11, a welding process S12, and a liquid injection process S13.

収納工程S11は、前記電極体を容器10の内部に収納する工程である。
収納工程S11においては、端子20・20の一端をそれぞれ前記電極体の正極及び負極に接続すると共に、端子20・20の他端を蓋部12に貫通させて、これらを一体化した状態で、前記電極体を収納部11の開口面から内部へと収納する。
この時、図3に示すように、蓋部12に形成された当接部12aの下端部と、収納部11の側板11aの上端部とが当接するように、収納部11の開口面(上面)が蓋部12によって閉塞される。
当接部12aは、蓋部12の外縁部がその全周に亘って、蓋部12の下面から上方に向けて切り欠けることによって形成されている。つまり、蓋部12において、当接部12aの厚み(上下寸法)は、それ以外の部分の厚みよりも小さくなっている。当接部12aは、蓋部12の外縁部から収納部11の側板11aの内周面よりも若干内側(図3における左側)の位置まで形成されており、当接部12aに側板11aが当接した状態で、側板11aの内周面と蓋部12との間に所定のクリアランスが形成されている。
なお、本実施形態においては、収納工程S11の前に、前記電極体が作製されているものとし、前記電極体は一般的な二次電池に用いられる公知なものであるため、その作製方法についての詳細な説明は省略する。
The storing step S <b> 11 is a step for storing the electrode body in the container 10.
In the storing step S11, one end of each of the terminals 20 and 20 is connected to the positive electrode and the negative electrode of the electrode body, respectively, and the other end of the terminals 20 and 20 is passed through the lid portion 12 so that they are integrated, The electrode body is housed from the opening surface of the housing portion 11 to the inside.
At this time, as shown in FIG. 3, the opening surface (upper surface) of the storage portion 11 is brought into contact with the lower end portion of the contact portion 12a formed on the lid portion 12 and the upper end portion of the side plate 11a of the storage portion 11. ) Is closed by the lid 12.
The contact portion 12a is formed by cutting the outer edge portion of the lid portion 12 upward from the lower surface of the lid portion 12 over the entire circumference. That is, in the cover part 12, the thickness (vertical dimension) of the contact part 12a is smaller than the thickness of other parts. The contact portion 12a is formed from the outer edge portion of the lid portion 12 to a position slightly inward (left side in FIG. 3) from the inner peripheral surface of the side plate 11a of the storage portion 11, and the side plate 11a contacts the contact portion 12a. A predetermined clearance is formed between the inner peripheral surface of the side plate 11a and the lid portion 12 in the contact state.
In the present embodiment, it is assumed that the electrode body is manufactured before the storing step S11, and the electrode body is a known one used for a general secondary battery. The detailed description of is omitted.

図2に示すように、収納工程S11の後は、溶接工程S12が行われる。
溶接工程S12は、容器10に対して溶接を行う工程であり、本発明に係る容器の溶接方法の実施の一形態である。
As shown in FIG. 2, after the storing step S11, a welding step S12 is performed.
The welding step S12 is a step of welding the container 10, and is an embodiment of the container welding method according to the present invention.

図4に示すように、溶接工程S12においては、まず、蓋部12に対して、収納部11をエアシリンダ等のアクチュエータ(不図示)により所定の押圧力で当接させると共に、吸引管41を介して注液口13に減圧ポンプ40を取り付けて容器10を密閉する。
減圧ポンプ40は、容器10の内部を減圧するポンプであり、容器10の内部が外部に対して減圧状態となるように、容器10の内部と外部との間に差圧を発生させる手段として機能する。
吸引管41は、容器10の内部と減圧ポンプ40とを連通する管である。
As shown in FIG. 4, in the welding step S <b> 12, first, the storage portion 11 is brought into contact with the lid portion 12 by an actuator (not shown) such as an air cylinder with a predetermined pressing force, and the suction pipe 41 is set. Then, a vacuum pump 40 is attached to the liquid injection port 13 to seal the container 10.
The decompression pump 40 is a pump that decompresses the inside of the container 10 and functions as a means for generating a differential pressure between the inside and the outside of the container 10 so that the inside of the container 10 is in a decompressed state with respect to the outside. To do.
The suction pipe 41 is a pipe that communicates the inside of the container 10 with the decompression pump 40.

次に、減圧ポンプ40によって、容器10の内部を減圧する。
この状態で、容器10の側面全周に亘って、収納部11と蓋部12との溶接が行われる。
詳細には、図5に示すように、収納部11の側板11aと、蓋部12の当接部12aとの接触部分がその全域に亘ってレーザによって溶融される。
この時、レーザによる容器10の溶融部分が容器10の内部まで到達するように、容器10を成すアルミニウム合金の蒸発による反力で生じる穴を利用した、所謂、キーホール型レーザ溶接が行われる。
ここで、キーホール型レーザ溶接は、深溶け込みが可能な溶接方法であり、レーザの出力を大きくすること、又はレーザの集光径を小さくすること等を行い、溶接対象となる金属を急激に蒸発させる程度にまでレーザのパワー密度を高めることによって実現される。
Next, the inside of the container 10 is decompressed by the decompression pump 40.
In this state, the storage portion 11 and the lid portion 12 are welded over the entire side surface of the container 10.
Specifically, as shown in FIG. 5, the contact portion between the side plate 11a of the storage portion 11 and the contact portion 12a of the lid portion 12 is melted by the laser over the entire area.
At this time, so-called keyhole type laser welding is performed using a hole generated by a reaction force due to evaporation of the aluminum alloy forming the container 10 so that the melted portion of the container 10 by the laser reaches the inside of the container 10.
Here, keyhole type laser welding is a welding method that allows deep penetration, and by increasing the laser output or reducing the laser condensing diameter, the metal to be welded is rapidly changed. This is realized by increasing the power density of the laser to such an extent that it can be evaporated.

このように、減圧ポンプ40によって容器10の内部を減圧しつつ、容器10の内部まで到達するように容器10の溶融が行われるため、側板11aの内周面と蓋部12との間に形成されたクリアランスから容器10の内部に向けて容器10の溶融部分が吸引される。
ここで、容器10の溶融部分には、容器10を成すアルミニウム合金に含まれる水素等の不純物、及びアルミニウム合金そのものが気化することによって発生した気体が含まれており、当該気体は、容器10の溶融部分におけるレーザの照射部から遠い部分、つまり容器10の内部に近い部分に多く残存することが明らかとなっている。
そのため、上記のように、減圧ポンプ40によって容器10の内部から容器10の溶融部分を吸引しつつ溶接を行うことで、前記気体が容器10の溶融部分から除去されることとなる。
これにより、容器10の溶融部分が凝固し、溶接部30が形成された際に、溶接部30内に前記気体が気孔C(図7参照)として残存することを防止することができる。
したがって、溶接部30の溶接肉厚(溶接部30の外側面から容器10の内部までの寸法であって、図5におけるD参照)を充分な値(本実施形態においては、0.3mm以上)とすることができ、容器10の強度の低下を防止することができる。
なお、本実施形態においては、減圧ポンプ40によって容器10の内部を減圧することで、容器10の内部と外部との間に差圧を設けたが、容器10の内部を外部に対して減圧状態とすることができれば、その手段は問わない。例えば、密閉状態とした容器10の外部を加圧することによって、容器10の内部と外部との間に差圧を設けてもよい。
In this way, the container 10 is melted so as to reach the inside of the container 10 while the inside of the container 10 is decompressed by the decompression pump 40, so that it is formed between the inner peripheral surface of the side plate 11 a and the lid 12. The melted portion of the container 10 is sucked from the clearance thus formed toward the inside of the container 10.
Here, the molten portion of the container 10 includes impurities such as hydrogen contained in the aluminum alloy constituting the container 10 and a gas generated by vaporization of the aluminum alloy itself. It is clear that a large amount remains in a portion of the melted portion far from the laser irradiation portion, that is, a portion close to the inside of the container 10.
Therefore, as described above, the gas is removed from the melted portion of the container 10 by performing welding while sucking the melted portion of the container 10 from the inside of the container 10 by the decompression pump 40.
Thereby, when the fusion | melting part of the container 10 solidifies and the welding part 30 is formed, it can prevent that the said gas remains in the welding part 30 as a pore C (refer FIG. 7).
Therefore, the weld thickness of the welded portion 30 (the dimension from the outer surface of the welded portion 30 to the inside of the container 10 and refer to D in FIG. 5) is a sufficient value (in this embodiment, 0.3 mm or more). And a reduction in strength of the container 10 can be prevented.
In the present embodiment, the pressure inside the container 10 is reduced by the pressure reducing pump 40, thereby providing a differential pressure between the inside and the outside of the container 10. If it can be said, the means will not be ask | required. For example, a pressure difference may be provided between the inside and the outside of the container 10 by pressurizing the outside of the container 10 in a sealed state.

なお、減圧ポンプ40による容器10の内部の減圧は、容器10の内部と外部との差圧が適切な値となるように行われる。
例えば、容器10の内部と外部との差圧が適切な値よりも大きい場合には、図6の如く、容器10の溶融部分に対して過剰吸引となって、溶接部30の外側面が容器10の内部側へと過剰に窪み、充分な溶接肉厚(図6におけるD参照)を有する溶接部30を形成できないばかりか、容器10の溶融部分が容器10の内部へと落下し、容器10の内部に収納された前記電極体等に悪影響を及ぼすおそれがある。
また、容器10の内部と外部との差圧が適切な値よりも小さい場合には、図7の如く、容器10の溶融部分に対して吸引不足となって、前記気体を容器10の溶融部分から充分に除去できず、溶接部30に形成された気孔Cの分だけ溶接部30の溶接肉厚(図7におけるD参照)が薄くなるという問題が生じる。
そのため、図8に示すように、容器10の内部と外部との差圧が22〜70[kPa]となるように、減圧ポンプ40による容器10の内部の減圧を行うことが好ましい。
図8は、容器10の内部と外部との差圧と、溶接部30の溶接肉厚との関係を示す図であり、容器10の内部と外部との差圧が22〜70[kPa]の範囲にあるときは、溶接肉厚が0.3mm以上の溶接部30を形成できることが確認できる。
Note that the internal pressure of the container 10 is reduced by the vacuum pump 40 so that the differential pressure between the inside and the outside of the container 10 becomes an appropriate value.
For example, when the differential pressure between the inside and the outside of the container 10 is larger than an appropriate value, as shown in FIG. In addition to being able to form a welded portion 30 that is excessively depressed toward the inside of the container 10 and has a sufficient weld thickness (see D in FIG. 6), the molten portion of the container 10 falls into the container 10, and the container 10 There is a possibility of adversely affecting the electrode body and the like housed in the interior of the housing.
Further, when the pressure difference between the inside and the outside of the container 10 is smaller than an appropriate value, as shown in FIG. Therefore, there is a problem that the weld thickness (see D in FIG. 7) of the welded portion 30 is reduced by the amount of the pores C formed in the welded portion 30.
Therefore, as shown in FIG. 8, it is preferable to perform decompression of the interior of the container 10 by the decompression pump 40 so that the differential pressure between the interior and the exterior of the container 10 is 22 to 70 [kPa].
FIG. 8 is a diagram showing the relationship between the pressure difference between the inside and the outside of the container 10 and the weld thickness of the welded portion 30, and the pressure difference between the inside and the outside of the container 10 is 22 to 70 [kPa]. When it is within the range, it can be confirmed that the welded portion 30 having a weld thickness of 0.3 mm or more can be formed.

また、図9に示すように、側板11aの内周面と蓋部12との間に形成されたクリアランスを確保した状態で、当該クリアランスと容器10の内部とが連通しないように、側板11aの内周面に隔壁部11bを形成してもよい。
隔壁部11bは、側板11aの内周面における蓋部12の下端部以下に位置する部分を容器10の内部に向けて突出させ、当該突出部分と蓋部12の下端部とが接触するように形成される。
なお、隔壁部11bを側板11aの内周面全周に亘って形成すると、前記クリアランスと容器10の内部とが連通せず、減圧ポンプ40による容器10の溶融部分の吸引が不可能となる。そのため、図10及び図11に示すように、前記クリアランスと容器10の内部とを連通させるための切欠部11cが隔壁部11bの一部分に形成される。
切欠部11cは、隔壁部11bにおける蓋部12の下端部との接触部分を切り欠くように形成され、側板11aの内周面における一箇所に配置される。
Further, as shown in FIG. 9, in a state where a clearance formed between the inner peripheral surface of the side plate 11a and the lid portion 12 is secured, the clearance of the side plate 11a is prevented from communicating with the interior of the container 10. The partition wall 11b may be formed on the inner peripheral surface.
The partition wall portion 11b projects a portion located below the lower end portion of the lid portion 12 on the inner peripheral surface of the side plate 11a toward the inside of the container 10 so that the projecting portion and the lower end portion of the lid portion 12 are in contact with each other. It is formed.
If the partition wall portion 11b is formed over the entire inner peripheral surface of the side plate 11a, the clearance and the inside of the container 10 do not communicate with each other, and the decompression pump 40 cannot suck the melted portion of the container 10. Therefore, as shown in FIGS. 10 and 11, a notch portion 11c for communicating the clearance with the inside of the container 10 is formed in a part of the partition wall portion 11b.
The notch portion 11c is formed so as to cut out a contact portion with the lower end portion of the lid portion 12 in the partition wall portion 11b, and is arranged at one place on the inner peripheral surface of the side plate 11a.

このように、収納部11の側板11aに隔壁部11b及び切欠部11cを形成することで、減圧ポンプ40による容器10の溶融部分の吸引が行われた際に、当該溶融部分の一部が容器10の内部に落下することを抑制することができる。
なお、本実施形態においては、収納部11の側板11aに隔壁部11bを形成したが、その代わりとして蓋部12に同様の隔壁部を形成することも可能である。
Thus, by forming the partition part 11b and the notch part 11c in the side plate 11a of the storage part 11, when the melted part of the container 10 is sucked by the vacuum pump 40, a part of the melted part becomes a container. 10 can be prevented from falling into the interior.
In the present embodiment, the partition wall 11b is formed on the side plate 11a of the storage unit 11. However, a similar partition wall can be formed on the lid 12 instead.

なお、図12に示すように、容器10における切欠部11c近傍の部分に対して溶接を行う際には、容器10の内部と外部との差圧を比較的小さく設定し、溶接位置が切欠部11cから離間するに従って、容器10の内部と外部との差圧を徐々に大きく設定することが好ましく、この時設定される差圧の範囲は、隔壁部11b及び切欠部11cが形成されていない場合と同様に、22〜70[kPa]とすることが更に好ましい。
これにより、切欠部11cから容器10の溶融部分が容器10の内部に落下することを抑制しつつ、良好に容器10の溶接を行うことができる。
なお、図12は、容器10の溶接位置と、容器10の内部と外部との差圧との関係を示す図であり、容器10の側面における切欠部11cが位置する部分から溶接を開始し、容器10の側面全周に対して連続的に溶接を行い、再び容器10の側面における切欠部11cが位置する部分に戻ってくるまでの間における、容器10の内部と外部との差圧の変化が示されている。
As shown in FIG. 12, when welding is performed on a portion of the container 10 near the notch 11c, the pressure difference between the inside and the outside of the container 10 is set to be relatively small, and the welding position is set to the notch. It is preferable to gradually increase the differential pressure between the inside and the outside of the container 10 as the distance from 11c increases, and the range of the differential pressure set at this time is when the partition wall 11b and the notch 11c are not formed. Similarly, it is more preferable to set it as 22-70 [kPa].
Thereby, welding of the container 10 can be favorably performed while suppressing the molten portion of the container 10 from dropping into the container 10 from the notch 11c.
FIG. 12 is a diagram showing the relationship between the welding position of the container 10 and the differential pressure between the inside and the outside of the container 10, and welding is started from the portion where the notch 11c is located on the side surface of the container 10, Change in pressure difference between the inside and the outside of the container 10 until welding is continuously performed on the entire circumference of the side surface of the container 10 and the side surface of the container 10 is returned to the portion where the notch 11c is located again. It is shown.

図2に示すように、溶接工程S12の後は、注液工程S13が行われる。
注液工程S13は、前記電極体が収納された容器10の内部に前記電解液を注液する工程である。
注液工程S13においては、容器10の蓋部12に形成された注液口13から容器10の内部に前記電解液を注液する。その後、注液口13を封止材14で塞いだ状態で、蓋部12に封止材14を溶接等により固定することで、注液口13を封止する。
As shown in FIG. 2, after the welding step S12, a liquid injection step S13 is performed.
The liquid injection step S13 is a step of injecting the electrolytic solution into the container 10 in which the electrode body is accommodated.
In the liquid injection step S <b> 13, the electrolytic solution is injected into the container 10 from the liquid injection port 13 formed in the lid portion 12 of the container 10. Thereafter, the liquid injection port 13 is sealed by fixing the sealing material 14 to the lid 12 by welding or the like in a state where the liquid injection port 13 is closed with the sealing material 14.

注液工程S13の後は、公知の所定の工程(初期充電工程、エージング工程等)を経ることで二次電池1が製造されることとなる。   After the liquid injection step S13, the secondary battery 1 is manufactured through a known predetermined step (initial charging step, aging step, etc.).

以上のように、二次電池1の製造工程S1において、溶接工程S12を行うことにより、容器10に形成される溶接部30の溶接肉厚を良好な値とすることができ、延いては二次電池1の容器10の強度を向上させることができる。   As described above, by performing the welding step S12 in the manufacturing process S1 of the secondary battery 1, the weld thickness of the welded portion 30 formed in the container 10 can be set to a good value, and eventually two. The strength of the container 10 of the secondary battery 1 can be improved.

なお、本実施形態における二次電池1の容器10は、所謂、角型の容器であって、収納部11の上端部と蓋部12の下面とが接触する構成となっているが、円筒状の容器又は、蓋部の外縁部が収納部の内周面に接触するように構成された容器等に対しても同様に本発明を適用可能である。   In addition, the container 10 of the secondary battery 1 in the present embodiment is a so-called square container, and is configured such that the upper end portion of the storage portion 11 and the lower surface of the lid portion 12 are in contact with each other. The present invention can be similarly applied to the container or the like configured such that the outer edge portion of the lid portion or the outer peripheral portion of the lid portion contacts the inner peripheral surface of the storage portion.

1 二次電池
10 容器
11 収納部
11a 側板
11b 隔壁部
11c 切欠部
12 蓋部
12a 当接部
13 注液口
14 封止材
20 端子
30 溶接部
40 減圧ポンプ
41 吸引管
DESCRIPTION OF SYMBOLS 1 Secondary battery 10 Container 11 Storage part 11a Side plate 11b Partition part 11c Notch part 12 Lid part 12a Contact part 13 Injection port 14 Sealing material 20 Terminal 30 Welding part 40 Pressure reduction pump 41 Suction pipe

Claims (4)

開口面を有する収納部と、
前記収納部の開口面を塞ぐ蓋部と、を具備する容器の溶接方法であって、
密閉した前記容器の内部が外部に対して減圧状態となるように、当該容器の内部と外部との間に差圧を発生させた状態で、
前記収納部と前記蓋部との接触部分を溶融させ、当該溶融部分が前記容器の内部に到達するまで、前記接触部分の全域に亘って溶接を行うことを特徴とする容器の溶接方法。
A storage portion having an opening surface;
A container that includes a lid that closes an opening surface of the storage unit,
In a state where a differential pressure is generated between the inside and outside of the container so that the inside of the sealed container is in a reduced pressure state with respect to the outside,
A container welding method, wherein a contact portion between the storage portion and the lid portion is melted and welding is performed over the entire contact portion until the molten portion reaches the inside of the container.
前記容器の溶接には、キーホール型レーザ溶接が適用されることを特徴とする請求項1に記載の容器の溶接方法。   2. The container welding method according to claim 1, wherein keyhole type laser welding is applied to the container welding. 前記差圧は、22〜70[kPa]とすることを特徴とする請求項1又は請求項2に記載の容器の溶接方法。   The said differential pressure shall be 22-70 [kPa], The welding method of the container of Claim 1 or Claim 2 characterized by the above-mentioned. 前記容器を具備する二次電池の製造方法であって、
請求項1乃至請求項3のいずれか一項に記載の容器の溶接方法を用いて、前記容器を溶接する溶接工程を具備することを特徴とする二次電池の製造方法。
A method for producing a secondary battery comprising the container,
A method for manufacturing a secondary battery, comprising a welding step of welding the container using the container welding method according to any one of claims 1 to 3.
JP2011068412A 2011-03-25 2011-03-25 Welding method for container and method for manufacturing secondary battery using the same Pending JP2012200768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011068412A JP2012200768A (en) 2011-03-25 2011-03-25 Welding method for container and method for manufacturing secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011068412A JP2012200768A (en) 2011-03-25 2011-03-25 Welding method for container and method for manufacturing secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2012200768A true JP2012200768A (en) 2012-10-22

Family

ID=47182277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011068412A Pending JP2012200768A (en) 2011-03-25 2011-03-25 Welding method for container and method for manufacturing secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2012200768A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015000415A (en) * 2013-06-14 2015-01-05 日立オートモティブシステムズ株式会社 Welding member, fuel injection valve and laser welding method
CN105723542A (en) * 2013-11-15 2016-06-29 日立汽车系统株式会社 Prismatic battery
JP2018099734A (en) * 2016-11-22 2018-06-28 株式会社神戸製鋼所 Aluminum structural member
WO2021230250A1 (en) * 2020-05-13 2021-11-18 株式会社村田製作所 Secondary battery and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123875A (en) * 1990-09-11 1992-04-23 Mitsubishi Electric Corp Narrow mouth vessel welding and assembling method and its equipment
JPH09259841A (en) * 1996-03-25 1997-10-03 Shin Kobe Electric Mach Co Ltd Seared battery
JPH11111246A (en) * 1997-08-06 1999-04-23 Toshiba Corp Sealed battery and manufacture thereof
JP2001079660A (en) * 1999-09-17 2001-03-27 Nok Corp Manufacture of pressure vessel
JP2005116208A (en) * 2003-10-03 2005-04-28 Nec Tokin Corp Secondary battery and its manufacturing method
JP2005211962A (en) * 2004-01-30 2005-08-11 Toyota Motor Corp Method for drilling injector nozzle, and injector nozzle
JP2006205275A (en) * 2005-01-25 2006-08-10 Suzuki Motor Corp Method of manufacturing assembly and assembling assisting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123875A (en) * 1990-09-11 1992-04-23 Mitsubishi Electric Corp Narrow mouth vessel welding and assembling method and its equipment
JPH09259841A (en) * 1996-03-25 1997-10-03 Shin Kobe Electric Mach Co Ltd Seared battery
JPH11111246A (en) * 1997-08-06 1999-04-23 Toshiba Corp Sealed battery and manufacture thereof
JP2001079660A (en) * 1999-09-17 2001-03-27 Nok Corp Manufacture of pressure vessel
JP2005116208A (en) * 2003-10-03 2005-04-28 Nec Tokin Corp Secondary battery and its manufacturing method
JP2005211962A (en) * 2004-01-30 2005-08-11 Toyota Motor Corp Method for drilling injector nozzle, and injector nozzle
JP2006205275A (en) * 2005-01-25 2006-08-10 Suzuki Motor Corp Method of manufacturing assembly and assembling assisting device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015000415A (en) * 2013-06-14 2015-01-05 日立オートモティブシステムズ株式会社 Welding member, fuel injection valve and laser welding method
CN105723542A (en) * 2013-11-15 2016-06-29 日立汽车系统株式会社 Prismatic battery
EP3070760A4 (en) * 2013-11-15 2017-10-04 Hitachi Automotive Systems, Ltd. Prismatic battery
US9905819B2 (en) 2013-11-15 2018-02-27 Hitachi Automotive Systems, Ltd. Prismatic battery
JP2018099734A (en) * 2016-11-22 2018-06-28 株式会社神戸製鋼所 Aluminum structural member
WO2021230250A1 (en) * 2020-05-13 2021-11-18 株式会社村田製作所 Secondary battery and manufacturing method thereof
JPWO2021230250A1 (en) * 2020-05-13 2021-11-18
JP7355235B2 (en) 2020-05-13 2023-10-03 株式会社村田製作所 Secondary battery and its manufacturing method

Similar Documents

Publication Publication Date Title
CN104641487A (en) Rectangular secondary battery
US8597823B2 (en) Battery, vehicle using the battery, and battery manufacturing method
JP2009146645A (en) Welded structure manufacturing method and battery manufacturing method
JP5777093B2 (en) Secondary battery and method for manufacturing secondary battery
KR101605652B1 (en) Battery
JP5967453B2 (en) Sealed battery and manufacturing method thereof
JP5492653B2 (en) Secondary battery
JP2011204396A (en) Sealed battery and method for manufacturing the same
JP2010086776A (en) Sealed type secondary battery, and method of manufacturing the same
JPWO2015072010A1 (en) Square battery
JP2012200768A (en) Welding method for container and method for manufacturing secondary battery using the same
JP6217979B2 (en) Manufacturing method of sealed battery
JP2015225839A (en) Square secondary battery
JP5452151B2 (en) Sealed battery
JP2010049913A (en) Manufacturing method of sealed battery
JP2013143332A (en) Battery
JP2005190776A (en) Sealed type battery
WO2019186933A1 (en) Battery assembly, battery, lid, and case
KR101850230B1 (en) Sealed battery and manufacturing method thereof
JP2017147064A (en) Secondary battery manufacturing method
JP2003257414A (en) Sealed battery and its manufacturing method
JP6031958B2 (en) Sealed container and method for manufacturing sealed container
JP2018037187A (en) Manufacturing method of sealed battery
JP2019175613A (en) Battery and housing member
JP5879373B2 (en) Prismatic secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150203