JP2014530299A - Nickel alloy - Google Patents

Nickel alloy Download PDF

Info

Publication number
JP2014530299A
JP2014530299A JP2014532452A JP2014532452A JP2014530299A JP 2014530299 A JP2014530299 A JP 2014530299A JP 2014532452 A JP2014532452 A JP 2014532452A JP 2014532452 A JP2014532452 A JP 2014532452A JP 2014530299 A JP2014530299 A JP 2014530299A
Authority
JP
Japan
Prior art keywords
nickel alloy
nickel
weight
concentration
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014532452A
Other languages
Japanese (ja)
Inventor
デシャンドル,カリーヌ
フカール,ニコール
ラゲ,ミシェル
ティエバン,フランソワ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of JP2014530299A publication Critical patent/JP2014530299A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Mold Materials And Core Materials (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Continuous Casting (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Ceramic Products (AREA)

Abstract

本発明は、鋳造プロセスでの凝固の際のクラックの出現を制限するために、Rene125に由来するが、ある元素(Zr、B、P、S、Si、およびより少ない程度にTiおよびHf)の濃度が低減されたニッケル合金に関する。具体的には、4.80%≦Al≦5.00%、1.48%≦Hf≦1.52%、2.28%≦Ti≦2.33%、0.005%≦B≦0.01%、1.77%≦Mo≦1.97%、およびZr≦0.007%である。他の元素は、Rene125の濃度に匹敵する濃度を有することができる。The present invention is derived from Rene 125 to limit the appearance of cracks during solidification in the casting process, but with certain elements (Zr, B, P, S, Si, and to a lesser extent Ti and Hf). It relates to a nickel alloy having a reduced concentration. Specifically, 4.80% ≦ Al ≦ 5.00%, 1.48% ≦ Hf ≦ 1.52%, 2.28% ≦ Ti ≦ 2.33%, 0.005% ≦ B ≦ 0. 01%, 1.77% ≦ Mo ≦ 1.97%, and Zr ≦ 0.007%. Other elements can have concentrations comparable to those of Rene125.

Description

本発明の主題はニッケル合金である。   The subject of the present invention is a nickel alloy.

航空機におけるエンジンステータで使用されるディストリビュータのブレードなどの複雑な形状のある部品の鋳造製造を改善することが着想された。これらの部品は、プラットフォームに組み込まれたブレードから構成されており、エンジンにおいてそれらのアセンブリーはリングを構成する。これらのある部品は、Rene125として知られたニッケル合金から従来構成されているが、それは溶融金属の凝固中に、鋳造物上にクラックを特に生成しやすく、それは、不良品の重要な原因を構成する可能性がある。   It was conceived to improve the casting production of complex shaped parts such as distributor blades used in engine stators in aircraft. These parts are composed of blades built into the platform, and in the engine their assembly constitutes a ring. Some of these parts are conventionally constructed from a nickel alloy known as Rene 125, which is particularly prone to cracking on the cast during solidification of the molten metal, which constitutes an important cause of defective products there's a possibility that.

Rene125の組成に類似する組成の合金が、主要部品のためにこの合金の有利な特性を保存するために調査され、それはそれほどクラックを形成する傾向にない。   An alloy with a composition similar to that of Rene 125 has been investigated to preserve the advantageous properties of this alloy for the main part, which is less prone to cracking.

本発明によれば、ここで提案された合金は、ニッケルベースで、コバルト9.5重量%から9.90重量%、クロム8.70重量%から9.00重量%、タングステン6.65重量%から7.05重量%、タンタル3.67重量%から3.87重量%、モリブデン1.77重量%から1.97重量%、炭素0.10重量%から0.12重量%を含み、それは、アルミニウム4.80重量%から5.00重量%、ハフニウム1.48重量%から1.52重量%、チタン2.28重量%から2.33重量%、ホウ素0.0005重量%から0.01重量%の濃度で、Rene125の従来の組成とは異なる。合金は、原則として、これまで言及された濃度よりはるかに低い濃度以外で他の成分を含まない、または、他の成分は不純物としてのみ存在する。したがって、Rene125においてかなり多いジルコニウムが、リンおよび硫黄(最大で各0.001重量%)のように、本合金から完全にまたはほとんど完全に除去される(最大で0.007重量%)ことが特に強調される。ある他の基準が本発明の第2の態様に対応し、以下に詳述されるように、さらに有利に配慮されることができる。   According to the invention, the proposed alloy is nickel based, cobalt 9.5% to 9.90% by weight, chromium 8.70% to 9.00% by weight, tungsten 6.65% by weight. From 7.05 wt%, tantalum 3.67 wt% to 3.87 wt%, molybdenum 1.77 wt% to 1.97 wt%, carbon 0.10 wt% to 0.12 wt%, 4.80% to 5.00% aluminum, 1.48% to 1.52% hafnium, 2.28% to 2.33% titanium, 0.0005% to 0.01% boron % Concentration differs from the conventional composition of Rene125. The alloy in principle does not contain other components other than concentrations far below those mentioned so far, or other components are present only as impurities. Therefore, it is particularly important that a significant amount of zirconium in Rene 125 is completely or almost completely removed (up to 0.007% by weight) from the alloy, such as phosphorus and sulfur (up to 0.001% each). To be emphasized. Certain other criteria correspond to the second aspect of the present invention and can be considered more advantageously as detailed below.

この合金は、Rene125よりはるかに良好にクラックの熱間形成を抑制し、したがって、それは、複雑な形状の部品を鋳造製造するプロセスにおいて採用されてもよい。   This alloy suppresses the hot formation of cracks much better than Rene 125, and thus it may be employed in the process of casting complex shaped parts.

以下の表は、合金のRene125(公称値で)および本発明による合金のそれぞれの組成を最小値および最大値で示す。重要な元素のみが報告され、他は不純物として一般的に存在する。   The following table shows the respective compositions of the alloy Rene 125 (in nominal values) and the alloy according to the invention in terms of minimum and maximum values. Only important elements are reported, others are generally present as impurities.

Figure 2014530299
Figure 2014530299

得られた効果についてのいくつかの傾向は下記の通りである。テストの間にホウ素、ジルコニウム、シリコン、硫黄、リン、ハフニウム、およびチタンが、熱い間にクラックの出現に有利であると思われ、これは、これらの元素の濃度が出発合金Rene125の組成と比較して低下されるからである。量的観点から、チタンおよびハフニウムは、それらの濃度が最も低減されたと考えられ、ジルコニウム、リン、および硫黄は微量としてのみ存在する元素となり、一方、ジルコニウムは必ず存在し、出発合金において無視できない濃度であった。ある他の元素の濃度が、他の元素がクラックの出現に有利であると見なされず、クラックが高いニッケル濃度で数が少ないことが留意されたので、ニッケルベースでの濃度を増加させるために著しく低下された。   Some trends in the resulting effect are as follows. During testing, boron, zirconium, silicon, sulfur, phosphorus, hafnium, and titanium appear to favor the appearance of cracks while hot, which is compared to the composition of the starting alloy Rene125 in the concentration of these elements. This is because it is lowered. From a quantitative point of view, titanium and hafnium are considered to have their concentrations reduced most, while zirconium, phosphorus, and sulfur are elements that are present only in trace amounts, while zirconium is necessarily present and is a concentration that is not negligible in the starting alloy. Met. It was noted that the concentration of certain other elements was not considered advantageous for the appearance of cracks, and that cracks were few at high nickel concentrations, so notably to increase the concentration on a nickel basis It was lowered.

これらの元素の低減または類似の除去の有利な効果は、このように説明されてもよい:それらが形成する粒子は凝固中に合金の粒子の結合部に蓄積する。凝固中に発生する内部応力は、粒子結合部で、それらがまだ溶解されている間に、いっそう容易に亀裂を生じる傾向がある。これらの元素の濃度の低減は、粒子の温度に近い温度での粒子結合部の凝固に有利に働き、したがって合金の結合を向上する。   The beneficial effects of the reduction or similar removal of these elements may thus be explained: the particles they form accumulate at the joints of the alloy particles during solidification. Internal stresses that occur during solidification tend to crack more easily at the particle joints while they are still dissolved. Reduction of the concentration of these elements favors the solidification of the particle bond at temperatures close to the temperature of the particles, thus improving the bond of the alloy.

さまざまな異なる元素に関するより詳細な傾向は下記の通りである。   More detailed trends for a variety of different elements are as follows.

ホウ素およびジルコニウム:これらの元素は粒子結合部で最も凝固を防ぎ、したがってRene125において粒子自体の温度よりはるかに下の温度で凝固に関与すると思われた。それらの濃度は、したがって本発明の合金においてかなり低減またはさらに除去される。   Boron and Zirconium: These elements seemed to prevent solidification most at the particle junctions and therefore participate in solidification at temperatures much below the temperature of the particles themselves in Rene 125. Their concentration is therefore considerably reduced or even eliminated in the alloys of the invention.

それにもかかわらず、ホウ素については、Rene125におけるよりもクラックのはるかに低い(4倍低い、またはさらに低い)可能性が本発明で提案された濃度で観察され、したがって、この元素の全消失は推奨されない。   Nevertheless, for boron, a much lower (4 times lower or even lower) probability of cracking than in Rene 125 is observed at the concentrations proposed in the present invention, and therefore the total disappearance of this element is recommended Not.

リンおよび硫黄は同じ解釈の評価に値するが、それらの濃度はRene125において既に低減されているので、それらの重要性はより少ない。   Phosphorus and sulfur deserve the same interpretation, but their concentration is less important because their concentrations are already reduced in Rene125.

チタンおよびハフニウム:それらの効果は同じであったが、それほど重要はなく、それらの全消失は推奨されず、濃度のわずかな低減は、クラックの可能性を非常に低減するのに十分である。ホウ素に関してと同様に、本発明で提案された濃度は、Rene125におけるよりも少なくとも4倍少ないクラックの可能性をもたらした(比較テストは単一の異なる元素に毎回関連する)。   Titanium and hafnium: their effects were the same, but less important, their total disappearance is not recommended, and a slight reduction in concentration is sufficient to greatly reduce the possibility of cracking. As with boron, the concentration proposed in the present invention resulted in the possibility of at least 4 times fewer cracks than in Rene 125 (comparative tests are associated with a single different element each time).

ハフニウム、チタン、およびアルミニウムの全体濃度:不良品の割合は、約8.73%と8.77%(濃度全体)との間で低い安定状態を有しており、次いで、急激に増加し、次いで、少なくとも約4倍となる。アルミニウムは、上に言及された他の元素の有害な役割をそれ自体で有しておらず、その濃度は本発明でさらに増加されるが、この基準は、それが過剰であることができないことを示す。全体濃度は有利には8.77%より低い。   Overall concentration of hafnium, titanium, and aluminum: the proportion of defective products has a low steady state between about 8.73% and 8.77% (total concentration), then increases rapidly, It is then at least about 4 times. Aluminum does not itself have the detrimental role of the other elements mentioned above, and its concentration is further increased in the present invention, but this criterion is that it cannot be excessive Indicates. The overall concentration is advantageously lower than 8.77%.

ニッケル:クラックによる部品の不良品の割合はニッケルの59.71%の濃度から落ち、約59.83%からの非常に低い不良品割合に相当する安定状態に達した。濃度は、有利には約59.83%より上である。   Nickel: The proportion of defective parts due to cracks dropped from a concentration of 59.71% of nickel and reached a stable state corresponding to a very low percentage of defective products from about 59.83%. The concentration is advantageously above about 59.83%.

シリコン:それはRene125において最大でも0.10重量%であり、有利には本発明において微量で存在する。   Silicon: It is at most 0.10% by weight in Rene 125 and is preferably present in trace amounts in the present invention.

ブレードディストリビュータの鋳造による製造に関するテストに使用された熱処理は、T3Rであり、すなわち、1175℃への30分間の加熱、次いで、1095℃への6から10分間の冷却、次いで、オーブン中での650℃への冷却、次いで、空気中での冷却、および真空または保護雰囲気下での815℃での16時間の焼きなましであった。   The heat treatment used in the test for manufacturing by blade distributor casting was T3R, ie heating to 1175 ° C. for 30 minutes, then cooling to 1095 ° C. for 6 to 10 minutes, then 650 in oven Cooling to 0 ° C. followed by cooling in air and annealing at 815 ° C. for 16 hours in a vacuum or protective atmosphere.

Claims (6)

コバルト9.50重量%から9.90重量%、クロム8.70重量%から9.00重量%、タングステン6.65重量%から7.05重量%、タンタル3.67重量%から3.87重量%、炭素0.10重量%から0.12重量%、モリブデン1.77重量%から1.97重量%を含むニッケル合金であって、
ニッケル合金は、アルミニウム4.80重量%から5.00重量%、ハフニウム1.48重量%から1.52重量%、チタン2.28重量%から2.33重量%、ホウ素0.005重量%から0.01重量%、ジルコニウム0.007重量%未満を含み、残部はニッケルおよび不純物として存在する任意の他の元素であることを特徴とする、ニッケル合金。
Cobalt 9.50% to 9.90%, Chromium 8.70% to 9.00%, Tungsten 6.65% to 7.05%, Tantalum 3.67% to 3.87% A nickel alloy comprising: carbon, 0.10 wt% to 0.12 wt%, molybdenum 1.77 wt% to 1.97 wt%,
Nickel alloys are comprised of 4.80% to 5.00% aluminum, 1.48% to 1.52% hafnium, 2.28% to 2.33% titanium, 0.005% boron. Nickel alloy characterized in that it contains 0.01% by weight, less than 0.007% by weight of zirconium, the balance being nickel and any other elements present as impurities.
ニッケル合金がリンをさらに0.001重量%未満、硫黄0.001重量%未満を含むことを特徴とする請求項1に記載のニッケル合金。   The nickel alloy according to claim 1, wherein the nickel alloy further contains less than 0.001% by weight of phosphorus and less than 0.001% by weight of sulfur. ニッケル合金が59.83重量%より多いニッケルを含むことを特徴とする請求項1または2に記載のニッケル合金。   3. Nickel alloy according to claim 1 or 2, characterized in that the nickel alloy contains more than 59.83% by weight of nickel. ニッケル合金がチタン、ハフニウム、およびアルミニウムの全体で8.77重量%未満を含むことを特徴とする請求項1から3のいずれか一項に記載のニッケル合金。   The nickel alloy according to any one of claims 1 to 3, wherein the nickel alloy contains less than 8.77 wt% of titanium, hafnium, and aluminum as a whole. ニッケル合金が航空エンジンステータのブレードディストリビュータ部品を鋳造製造するために使用されることを特徴とする請求項1から4のいずれか一項に記載のニッケル合金。   Nickel alloy according to any one of the preceding claims, characterized in that the nickel alloy is used for casting manufacture of blade distributor parts of aircraft engine stators. ニッケル合金がT3R熱処理で使用されることを特徴とする請求項5に記載のニッケル合金。   The nickel alloy according to claim 5, wherein the nickel alloy is used in a T3R heat treatment.
JP2014532452A 2011-09-28 2012-09-27 Nickel alloy Pending JP2014530299A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1158705 2011-09-28
FR1158705A FR2980485B1 (en) 2011-09-28 2011-09-28 NICKEL ALLOY

Publications (1)

Publication Number Publication Date
JP2014530299A true JP2014530299A (en) 2014-11-17

Family

ID=47071360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014532452A Pending JP2014530299A (en) 2011-09-28 2012-09-27 Nickel alloy

Country Status (9)

Country Link
US (1) US20140241936A1 (en)
EP (1) EP2761044B1 (en)
JP (1) JP2014530299A (en)
CN (1) CN103827331B (en)
BR (1) BR112014007419A2 (en)
CA (1) CA2850238A1 (en)
FR (1) FR2980485B1 (en)
RU (1) RU2014116986A (en)
WO (1) WO2013045847A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3565914B1 (en) 2017-03-31 2020-12-16 Siemens Aktiengesellschaft High-temperature nickel-based alloys
CN113265564B (en) * 2021-05-06 2022-04-29 中国联合重型燃气轮机技术有限公司 High-temperature alloy with good long-term stability and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858242A (en) * 1981-10-02 1983-04-06 ゼネラル・エレクトリツク・コンパニ− Single crystal nickel base superalloy, product and manufacture
JPH0559473A (en) * 1986-03-27 1993-03-09 General Electric Co <Ge> Improved nickel-base super alloy with low angle intergranular resistance for producing single crystal product
JPH05179378A (en) * 1991-12-27 1993-07-20 Sumitomo Metal Ind Ltd Ni-base alloy excellent in room temperature and high temperature strength
JPH07145703A (en) * 1993-08-06 1995-06-06 Hitachi Ltd Moving blade for gas turbine, manufacture thereof, and gas turbine using same
JPH07278709A (en) * 1992-09-14 1995-10-24 Cannon Muskegon Corp Low-yttrium alloy for high-temperature service
JPH11158602A (en) * 1997-09-25 1999-06-15 Soc Natl Etud Constr Mot Aviat <Snecma> Method for improving oxidative corrosion resistance of superalloy parts and superalloy parts obtainable by the method
JP2003056302A (en) * 2001-05-29 2003-02-26 General Electric Co <Ge> Turbine profile part, and manufacturing method and repairing method thereof
JP2004518811A (en) * 2000-02-29 2004-06-24 ゼネラル・エレクトリック・カンパニイ Nickel-based superalloy and turbine component manufactured from the superalloy
JP2007177789A (en) * 2005-12-20 2007-07-12 General Electric Co <Ge> Nozzle segment for gas turbine and its manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1261403A (en) * 1968-04-29 1972-01-26 Martin Marietta Corp Cast alloys
US5399313A (en) * 1981-10-02 1995-03-21 General Electric Company Nickel-based superalloys for producing single crystal articles having improved tolerance to low angle grain boundaries
FR2593830B1 (en) * 1986-02-06 1988-04-08 Snecma NICKEL-BASED MATRIX SUPERALLOY, ESPECIALLY DEVELOPED IN POWDER METALLURGY, AND TURBOMACHINE DISC CONSISTING OF THIS ALLOY
US8267662B2 (en) * 2007-12-13 2012-09-18 General Electric Company Monolithic and bi-metallic turbine blade dampers and method of manufacture
US20110076182A1 (en) * 2009-09-30 2011-03-31 General Electric Company Nickel-Based Superalloys and Articles
CH702642A1 (en) * 2010-02-05 2011-08-15 Alstom Technology Ltd Nickel-base superalloy with improved degradation.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858242A (en) * 1981-10-02 1983-04-06 ゼネラル・エレクトリツク・コンパニ− Single crystal nickel base superalloy, product and manufacture
JPH0559473A (en) * 1986-03-27 1993-03-09 General Electric Co <Ge> Improved nickel-base super alloy with low angle intergranular resistance for producing single crystal product
JPH05179378A (en) * 1991-12-27 1993-07-20 Sumitomo Metal Ind Ltd Ni-base alloy excellent in room temperature and high temperature strength
JPH07278709A (en) * 1992-09-14 1995-10-24 Cannon Muskegon Corp Low-yttrium alloy for high-temperature service
JPH07145703A (en) * 1993-08-06 1995-06-06 Hitachi Ltd Moving blade for gas turbine, manufacture thereof, and gas turbine using same
JPH11158602A (en) * 1997-09-25 1999-06-15 Soc Natl Etud Constr Mot Aviat <Snecma> Method for improving oxidative corrosion resistance of superalloy parts and superalloy parts obtainable by the method
JP2004518811A (en) * 2000-02-29 2004-06-24 ゼネラル・エレクトリック・カンパニイ Nickel-based superalloy and turbine component manufactured from the superalloy
JP2003056302A (en) * 2001-05-29 2003-02-26 General Electric Co <Ge> Turbine profile part, and manufacturing method and repairing method thereof
JP2007177789A (en) * 2005-12-20 2007-07-12 General Electric Co <Ge> Nozzle segment for gas turbine and its manufacturing method

Also Published As

Publication number Publication date
EP2761044A2 (en) 2014-08-06
WO2013045847A3 (en) 2013-10-24
CN103827331A (en) 2014-05-28
CA2850238A1 (en) 2013-04-04
FR2980485A1 (en) 2013-03-29
BR112014007419A2 (en) 2017-04-04
FR2980485B1 (en) 2014-07-04
RU2014116986A (en) 2015-11-10
CN103827331B (en) 2016-05-11
EP2761044B1 (en) 2015-08-19
US20140241936A1 (en) 2014-08-28
WO2013045847A2 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
JP4885530B2 (en) High strength and high ductility Ni-base superalloy, member using the same, and manufacturing method
JP6393993B2 (en) Ni-base superalloy with high temperature strength and capable of hot forging
JP5296046B2 (en) Ni-based alloy and turbine moving / stator blade of gas turbine using the same
JP5663530B2 (en) Rhenium-free single crystal superalloy for turbine blade and vane applications
WO2014142089A1 (en) HEAT-RESISTANT Ni-BASED ALLOY AND METHOD FOR MANUFACTURING SAME
JPWO2007037277A1 (en) Ni-base superalloy with excellent oxidation resistance
JPWO2011062231A1 (en) Heat resistant superalloy
JP5186215B2 (en) Nickel-based superalloy
JP6016016B2 (en) Ni-based single crystal superalloy
US20130142637A1 (en) Low rhenium single crystal superalloy for turbine blades and vane applications
CA2864507C (en) High strength single crystal superalloy
JP2016069703A (en) Nickel-based casting alloy and hot forging mold
JPWO2019107502A1 (en) Hot forging molds and methods for manufacturing forged products
JP5626920B2 (en) Nickel-base alloy castings, gas turbine blades and gas turbines
JP2017514998A (en) Precipitation hardening nickel alloy, parts made of said alloy, and method for producing the same
JP2016006217A (en) Method for manufacturing consumable electrode
CN104911407B (en) A kind of ability creep resistance monocrystal nickel-base superalloy high of bearing high temperature containing Re/Ru
JP6970438B2 (en) Ni-based superalloy
JP2014530299A (en) Nickel alloy
JP4230970B2 (en) Ni-base superalloys for unidirectional solidification with excellent solidification direction strength and grain boundary strength, castings and high-temperature parts for gas turbines
JPWO2005064027A1 (en) Ni-base superalloy and gas turbine component using the same
JP2000239771A (en) Ni BASE SUPERALLOY, ITS PRODUCTION AND GAS TURBINE PARTS
CN112176224A (en) High-strength nickel-based single crystal superalloy with excellent comprehensive performance
JP6769341B2 (en) Ni-based superalloy
JP6803573B2 (en) Ni-based unidirectional solidified alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170110