JP2014521093A - 粒子を超解像位置特定するための方法および光学デバイス - Google Patents

粒子を超解像位置特定するための方法および光学デバイス Download PDF

Info

Publication number
JP2014521093A
JP2014521093A JP2014520604A JP2014520604A JP2014521093A JP 2014521093 A JP2014521093 A JP 2014521093A JP 2014520604 A JP2014520604 A JP 2014520604A JP 2014520604 A JP2014520604 A JP 2014520604A JP 2014521093 A JP2014521093 A JP 2014521093A
Authority
JP
Japan
Prior art keywords
wavefront
particles
emitted
detection surface
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014520604A
Other languages
English (en)
Other versions
JP5661221B2 (ja
Inventor
グザヴィエ レヴェック
ホルディ アンディラ
Original Assignee
イマジン・オプチック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46601759&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2014521093(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by イマジン・オプチック filed Critical イマジン・オプチック
Publication of JP2014521093A publication Critical patent/JP2014521093A/ja
Application granted granted Critical
Publication of JP5661221B2 publication Critical patent/JP5661221B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/06Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/58Optics for apodization or superresolution; Optical synthetic aperture systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Microscoopes, Condenser (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一態様によれば、本発明は、超解像顕微鏡法によって1つまたは複数の放射粒子(101)の3次元位置特定を行う方法であって、顕微鏡検査撮像システム(121、123、124、125)によって検出器(110)の検出面(111)に前記放射粒子の少なくとも1つの像を形成することと、前記放射粒子と前記検出面との間に存在する光学的欠点の少なくとも一部を波面変調デバイス(150)によって補正し、放射粒子によって放出される波面の変形を波面変調デバイスによって導入し、検出面における前記放射粒子の像の形状と、顕微鏡検査撮像システムによって検出面と光学的に組み合わされる対物面に対する前記放射粒子の軸方向位置との間に、粒子の前記軸方向位置の所定の範囲において全単射関係を導入するのを可能にすることとを含み、前記変形が波面変調デバイスを制御することによって制御される方法に関する。

Description

本発明は、超解像顕微鏡法および光学デバイス、すなわち、1つまたは複数の粒子を3次元位置特定するための回折限界よりも低い解像度による超解像顕微鏡法および光学デバイスに関する。
細胞の動的構成に関する人類の理解は、生体において個々の分子を光学的に検出するのを可能にする技術的な開発によって完全に変わりつつある。超高感度の測定方法によって、現在、生物学的分子の分子環境における動きを計数し、位置特定し、追跡することが可能になっている(たとえば、B.ファンら「Super−resolution fluorescence microscopy」Annu Rev Biochem 78、993(2009)参照)。このように、数ナノメートルの空間解像度およびミリ秒に達する時間解像度によって分子複合体の組成、構造、および空間的動態を分析することが可能である。これによって、従来生物学および生化学で使用されている顕微鏡検査技術では過去には調査できなかった複雑な分子組織を解明する機会が与えられている。特に、単一の分子を撮像するための技術はすでに、基礎研究を超えた分野、特に、DNA塩基配列決定という重要な分野に応用されている(T.D.ハリスら「Single−molecule DNA sequencing of a viral genome」、Science 320、106(2008))。長い目で見ると、このような技術の使用は、診察または分子標的治療の分野、すなわち、超高感度検出能力が重要な利点となる分野に普及すると思われる。したがって、科学および工業面において、個々の分子のスケールでの有効な撮像手法を開発することが強く求められている。
一般に、人間の細胞は、かなりの数の反応物質(たいていの場合、タンパク質である)間で多数の生化学反応が起こる反応器とみなされることがある。細胞内で、タンパク質は、高分子複合体と呼ばれる反応単位として集合する。細胞機能を有するタンパク質集合の平均サイズは通常、小さい複合体の場合の数ナノメートルから核孔のような最大の構造の場合の約100ナノメートルまでの範囲である。最も大きい分子複合体(ヌクレオソーム、RNAポリメラーゼ、リボソーム)のサイズは10nmから30nmの間である。これらの複合体間の様々な相互作用と、その結果生じる分子修飾によって、すべての細胞制御の物理的および化学的媒介である相互作用および反応のネットワークが形成される。このようなネットワークの分析は、細胞のプロセスを理解するうえで最も重要である。実際、病変を生じさせる大部分の細胞機能障害は、細胞高分子複合体のパートナーの一方の相互作用の欠陥または存在によって生じる。このような病変を有効に治療することを目的としてこのような病変を理解するには、タンパク質複合体の互いの相対的な化学量(分子計数)および位置に関する量的情報を提供することのできる測定器具を開発することが不可欠である。
現在、直接蛍光を発するかまたは可溶性蛍光化合物に反応することのできる遺伝子暗号化タグを付加することによって、有機体におけるほぼあらゆるタンパク質を機能化することが可能である(たとえば、B.N.Giepmansら「The fluorescent toolbox for assessing protein location and function」、Science 312、217(2006)を参照)。このようなプローブは、光退色の前に数十万個から数百万個の間の多数の光子を放出することができる。言い換えれば、プローブによってタグ付けすることは、特定のタンパク質に「光子量」を割り振ることと同等であり、次いで、この量を使用して分子情報を(たとえば増幅CCDカメラによって)人間の肉眼環境に移すことができる。したがって、蛍光タンパク質によって放出される光子は特に、蛍光タンパク質の細胞環境における位置を数十ナノメートルの解像度で特定するか、または経時的に追跡するのを可能にし、それによって、蛍光タンパク質の移動度および細胞系との相互作用を測定するのを可能にする。
分子を位置特定する能力は、点描画超解像顕微鏡法(pointillist super−resolution microscopy)(「光活性化位置特定顕微鏡法」を表す頭字語PALMまたは「確率論的光学再構成顕微鏡法(stochastic optical reconstruction microscopy)」を表す頭字語STORMによって知られている)において最も重要である。これらの顕微鏡法は、光活性化による、同時に活性化する放射体の数についてのナノスケールの位置特定と制御を組み合わせ、細胞サンプルの2次元画像を従来の回折限界(現代の落射蛍光顕微鏡では約250nm)よりもずっと低い10nm〜50nmの解像度で得るのを可能にする(B.ファンら「Super−resolution fluorescence microscopy」Annu Rev Biochem 78、993(2009)参照)。得られる解像度は、関与する高分子集合のサイズと同程度であるので、高分子の空間組織と機能および構造との関係を調査することが可能になる。
2008年にハーバードにあるX.チョアンの研究所において、信号の光学経路上に円筒形レンズを配置し、かつ個々の分子について顕微鏡の点広がり関数(PSF)において生じる楕円率を較正することによって、垂直平面における解像度の約2.5倍である約100nmの軸方向解像度を有する3D STORM顕微鏡法が実証された(たとえば、B.ファンら「Three dimensional super−resolution imaging by stochastic optical reconstruction microscopy」、Science 319、810(2008)または同じ発明者の名義の米国特許出願第2011/0002530号を参照)。この技術では、軸方向解像度が、焦点面からフルオロフォアまでの距離の関数としての、x軸およびy軸に沿った光学信号の対称性の破れに関係付けられる。
第2の方法は、軸方向に分離された2つの平面における個々の分子からの信号を同時に撮像することから成る。この同時「2平面」検出では、2つの平面間の分子のz位置を非点収差手法によって実現される精度と同様な精度で求めることができる(たとえば、M.F.ジュエットら「Three−dimensional sub−100 nm resolution fluorescence microscopy of thick samples」Nat Methods 5、527(2008)を参照)。この技術の利点は、横方向解像度と軸方向解像度が結合されないことである。
しかし、円筒形レンズと2平面技術の両方に共通する制限は、PSFを変形し、放射粒子を横方向および軸方向において位置特定するためのアルゴリズムを劣化させる残留光学収差と関係がある。さらに、分子の軸方向位置を求めることが可能な深度(範囲)が、(約1〜2μmに)制限され、装置の光学機械要素によって全体的に固定され、すなわち、迅速に調整することは不可能である。このことは明らかに、使用されるフルオロフォアの様々な種類および対象となる生物学的用途に応じた「光子量」の最適な使用に対する障害である。
最後に、「2重螺旋PSF」法(S.R.パバーニら「Three dimensional,single−molecule fluorescence imaging beyond the diffraction limit by using a double−helix point spread function」Proc.Natl Acad Sci USA 106、2995(2009))または「iPALM」法(G.シュテンゲルら「Interferometric fluorescent super−resolution microscopy resolves 3D cellular ultrastructure」Proc.Natl Acad Sci USA 106、3125(2009))のような、それほど一般的ではない他の方法が実証されていることに留意されたい。さらに、現在、iPALM技法ではz方向における最適な位置特定が可能であるが、実験がかなり複雑になり(4pi測定システムおよび放出される光子の3重干渉検出)、生物学研究所での最低限の使用に制限されている。さらに、iPALM技法は固定されたサンプルに制限されている。
B.ファンら「Super−resolution fluorescence microscopy」Annu Rev Biochem 78、993(2009) T.D.ハリスら「Single−molecule DNA sequencing of a viral genome」、Science 320、106(2008) B.N.Giepmansら「The fluorescent toolbox for assessing protein location and function」、Science 312、217(2006) B.ファンら「Three dimensional super−resolution imaging by stochastic optical reconstruction microscopy」、Science 319、810(2008) M.F.ジュエットら「Three−dimensional sub−100 nm resolution fluorescence microscopy of thick samples」Nat Methods 5、527(2008) S.R.パバーニら「Three dimensional,single−molecule fluorescence imaging beyond the diffraction limit by using a double−helix point spread function」Proc.Natl Acad Sci USA 106、2995(2009) G.シュテンゲルら「Interferometric fluorescent super−resolution microscopy resolves 3D cellular ultrastructure」Proc.Natl Acad Sci USA 106、3125(2009)
本発明は、放射粒子または「放射体」を回折限界よりも低い解像度で3次元位置特定するための方法およびデバイスであって、顕微鏡の点広がり関数を適切に調節することができ、特に測定の信頼性を向上させることを可能にし、かつ所定の放射体に対する利用可能な「光子量」の使用を最適化するのを可能にする方法およびデバイスを提供する。
第1の態様では、本発明は、1つまたは複数の放射粒子を3次元位置特定するための超解像顕微鏡法であって、
顕微鏡検査撮像システムによって検出器の検出面に前記放射粒子の少なくとも1つの画像を形成すること、
前記放射粒子と前記検出面との間に存在する光学的欠点の少なくとも一部を波面変調デバイスによって補正すること、
前記放射粒子によって放出された波面の変形を前記波面変調デバイスによって導入し、検出面における前記放射粒子の像の形状と、顕微鏡検査撮像システムによって検出面と光学的に共役させられる対物面に対する前記放射粒子の軸方向位置との間に、粒子の前記軸方向位置の値の所定の範囲において全単射関係を形成するのを可能にすることを含み、波面の前記変形が、波面変調デバイスを制御するための手段によって制御される方法に関する。
本発明による3次元位置特定方法において、波面変調デバイスを使用して放射粒子と検出面との間に存在する光学的欠点を補正するとともに、粒子によって放出される波面に導入される変形を制御して粒子の軸方向位置を求めると、特にPSFが完全に制御されることによって感度および精度が向上し、それによって利用可能な「光子量」を所定の放射粒子に適合することが可能になる。具体的には、「光子量」、すなわち、放射粒子によって放出される光子の数が多い場合、十分な検出感度を維持しつつ、粒子によって放出される波面のより大きい振幅での変形を導入し、放射粒子を観察することのできる深度範囲を広げることが可能になる。これに対して、「光子量」がより少ない場合、PSFの質が向上して深度範囲が狭くなり、粒子によって放出される波面に導入される変形の振幅が制限されることによって十分な検出信号が得られる。
一実施形態では、この方法は、前記放射粒子と前記検出面との間に存在する波面光学的欠点を波面分析デバイス、たとえばシャック−ハルトマンデバイスによって分析する事前のステップを含んでよい。このステップは、たとえば、放射信号が、光学的欠点を分析器によって良好な精度で分析するのを可能にするのに十分な強度を有する蛍光ビードを、サンプルに導入することが可能なときに実施されてもよい。
代替として、たとえば、蛍光ビードをサンプルに導入するのが困難であるとき、放射粒子の画質の程度に基づいてすべてまたは一部の光学的欠点の補正が繰り返し実施される場合がある。
一実施形態では、この方法は、少なくとも1つの放射粒子を励起させるための1条または複数条の光線を放出することをさらに含み、前記粒子が所定の範囲内の波長で光信号を放出するのを可能にする。放射粒子の励起は、たとえば蛍光プローブによってマーク付けされた粒子の場合に必要である。
制御された変形が、偶数次方位角のゼルニケ多項式の組合せ、たとえば非点収差、より詳細には3次非点収差を使用して得られると有利である。非点収差を導入すると、波面の分解がゼルニケ多項式に基づくときにゼルニケ多項式の係数のうちの1つのみを調整することによって、粒子の像の形状と粒子の軸方向位置との間に全単射関係を形成するのが可能になる。その場合、導入される非点収差の振幅を調整して粒子の対象となる軸方向位置範囲を変化させることが可能になる。
一実施形態では、この方法は場合によっては、放射粒子に動的に合焦させるステップも含み、この動的な合焦は、前記波面変調デバイスにより、前記粒子によって放出される波面の焦点を制御可能にぼかすことによって得られる。したがって、本発明による3次元位置特定方法において波面変調デバイス変調器を使用すると、他の機能を利用することが可能になり、たとえば、サンプルを顕微鏡検査デバイスに対して機械的に移動させずに粒子を追跡するのに使用されることになる。
第2の態様では、本発明は、光学撮像システムおよび検出器を搭載した顕微鏡を備える、放射粒子を位置特定するための超解像顕微鏡検査システムに接続されるようになっている波面制御デバイスに関する。そのような波面制御デバイスは、従来技術の超解像顕微鏡検査システムに接続され、第1の態様による方法を実施するようになっている。第2の態様による波面制御デバイスは、
それぞれ、顕微鏡の前記光学撮像システムの像面および検出器の検出面と一致するようになっている入射面および出射面を光学的に共役させるためのリレー光学系と、
補正面を備え、前記制御デバイスが超解像顕微鏡検査システムに接続されたときに前記放射粒子によって放出される波面を変調するのを可能にする、波面を空間的に変調するためのデバイスと、
顕微鏡の光学撮像システムの出射瞳と一致するようになっている制御デバイスの入射瞳面を前記補正面と光学的に共役させる光学系と、
波面を空間的に変調するための前記デバイスを制御し、波面制御デバイスが超解像顕微鏡検査システムに接続されたときに、前記粒子と前記検出面との間に存在する光学的欠点の少なくとも一部を補正するのを可能にし、かつ波面の制御された変形を導入するのを可能にし、検出面における前記放射粒子の像の形状と、検出面と光学的に共役させられる対物面に対する前記放射粒子の軸方向位置との間の全単射関係を、粒子の前記軸方向位置の値の所定の範囲において形成するのを可能にするための手段とを備える。
したがって、任意の超解像顕微鏡検査システムに接続されて感度を向上させるとともに機能を増大させることのできる「モジュール」を形成することが可能である。そのような波面制御デバイスは場合によっては、超解像顕微鏡検査システムに接続するための機械的インターフェースを前記顕微鏡検査システムの顕微鏡と検出器との間に備えると有利であろう。
たとえば、光を空間的に変調するためのデバイスは変形可能なミラーである。
一実施形態では、波面変調デバイスは、前記制御手段に接続された、光学的欠点を分析するためのデバイス、たとえばシャック−ハルトマン分析器をさらに備えてもよい。波面分析器は場合によっては、光学的欠点を分析する事前のステップを実施するのを可能にする。
第3の態様では、1つまたは複数の放射粒子の3次元位置特定を行うための超解像顕微鏡検査デバイスであって、
検出器の検出面において前記放射粒子を撮像するためのシステムと、
波面を空間的に変調し、前記放射粒子によって放出される波面を変調するのを可能にするためのデバイスと、
波面を空間的に変調するための前記デバイスを制御し、前記粒子と前記検出面との間に存在する光学的欠点の少なくとも一部を補正するのを可能にし、かつ波面の制御された変形を導入するのを可能にし、検出面における前記放射粒子の像の形状と、顕微鏡検査撮像システムによって検出面と光学的に共役させられる対物面に対する前記放射粒子の軸方向位置との間の全単射関係を、粒子の前記軸方向位置の値の所定の範囲において形成するのを可能にするための手段とを備える超解像顕微鏡検査デバイスに関する。
一実施形態では、第3の態様による3次元位置特定のためのデバイスは場合によっては、一方では、光学撮像システムを搭載した顕微鏡および検出器を備える種類の、放射粒子を位置特定するための超解像顕微鏡検査システムと、他方では、前記顕微鏡検査システムに接続された第2の態様による波面制御デバイスとを含むモジュール式デバイスである。この場合、第3の態様によるデバイスの前記撮像システムは場合によっては、顕微鏡の光学撮像システムと、第2の態様による波面制御デバイスのリレー光学系とを備えることになる。代替として、第3の態様による3次元位置特定デバイスは場合によっては、リレー光学系を有さない非モジュール式設計を有する。
どちらの場合も、第3の態様による3次元位置特定デバイスの、波面を空間的に変調するためのデバイスは、前記撮像システムの瞳と光学的に共役させられる補正面を含むと有利である。たとえば、光を空間的に変調するためのデバイスは変形可能なミラーである。モジュール式デバイスの場合、補正面を顕微鏡の光学撮像システムの射出瞳と共役させると有利である。
一実施形態では、第3の態様による3次元位置特定のためのデバイスは、前記制御手段に接続された、光学的欠点を分析するためのデバイス、たとえばシャック−ハルトマン分析器をさらに備える。代替として、前記制御手段は、形成された放射粒子の像の質の程度に基づいてすべてまたは一部の光学的欠点を確実に繰り返し補正する。
一実施形態では、第3の態様による3次元位置特定のためのデバイスは、少なくとも1つの放射粒子を励起するための1条または複数条の光線を放出し、前記粒子が所定の範囲内の波長を有する光信号を放出するのを可能にするためのデバイスをさらに備える。
検出器は、マトリックス検出器、たとえばEMCCD増幅カメラであると有利である。
本発明の他の利点および特徴は、以下の図によって例示される説明を読んだときに明らかになろう。
位置特定方法の2つのステップにおける本発明の好ましい実施形態による粒子の3D位置特定のためのデバイスを示す概略図である。 位置特定方法の2つのステップにおける本発明の好ましい実施形態による粒子の3D位置特定のためのデバイスを示す概略図である。 サンプルに起因する収差によって生じる点広がり関数の質の低下および本発明によるデバイスによる収差の補正を示す図である。 サンプルに起因する収差によって生じる点広がり関数の質の低下および本発明によるデバイスによる収差の補正を示す図である。 サンプルに起因する収差によって生じる点広がり関数の質の低下および本発明によるデバイスによる収差の補正を示す図である。 補正を行わない構成、補正を行う構成、および補正を行うとともに非点収差を制御しながら導入する構成の3つの構成における蛍光ビードの超解像顕微鏡検査点広がり関数を示す実験画像である。 補正を行わない構成、補正を行う構成、および補正を行うとともに非点収差を制御しながら導入する構成の3つの構成における蛍光ビードの超解像顕微鏡検査点広がり関数を示す実験画像である。 補正を行わない構成、補正を行う構成、および補正を行うとともに非点収差を制御しながら導入する構成の3つの構成における蛍光ビードの超解像顕微鏡検査点広がり関数を示す実験画像である。 図3A〜図3Cの実験構成における横方向測定精度を示す概略図である。 図3A〜図3Cの実験構成における横方向測定精度を示す概略図である。 図3A〜図3Cの実験構成における横方向測定精度を示す概略図である。 制御された非点収差の存在下(図3Cの実験条件)でのビードの軸方向位置の関数としての点広がり関数の横方向次元を与える関数の実験曲線およびモデル化曲線を示す図である。 制御された非点収差の存在下(図3Cの実験条件)でのビードの軸方向位置の関数としての点広がり関数の横方向次元を与える関数の実験曲線およびモデル化曲線を示す図である。 光子の数およびビードの軸方向位置の関数としての様々な非点収差値についてのビードの軸方向位置の精度(図3Cの実験条件)を示す実験曲線ならびにサンプル中のビードの動きの関数としての測定された軸方向位置を示す曲線を示す図である。 光子の数およびビードの軸方向位置の関数としての様々な非点収差値についてのビードの軸方向位置の精度(図3Cの実験条件)を示す実験曲線ならびにサンプル中のビードの動きの関数としての測定された軸方向位置を示す曲線を示す図である。 光子の数およびビードの軸方向位置の関数としての様々な非点収差値についてのビードの軸方向位置の精度(図3Cの実験条件)を示す実験曲線ならびにサンプル中のビードの動きの関数としての測定された軸方向位置を示す曲線を示す図である。 本発明の一実施形態による位置特定方法によって得られる膜貫通タンパク質の動きを示す実験曲線である。 テトラフォイル波面の一例の位相の図である。 ベストフォーカス面の前の面における図8Aに示す波面の得られたPSFの形状の図である。 ベストフォーカス面における図8Aに示す波面の得られたPSFの形状の図である。 ベストフォーカス面の後の面における図8Aに示す波面の得られたPSFの形状の図である。
読みやすいように、様々な図において同一の要素は同じ参照符号によって示されている。
図1Aおよび図1Bは、本発明の一例による1つまたは複数の放射粒子の3次元位置特定のためのデバイス100を示す。
「放射粒子」という表現は、本説明では、光信号を自発的にまたは活性化によって、たとえば光源(光活性化)によって放出することのできる任意の粒子を意味すると理解される。粒子は、たとえば、周知の技術を使用して、光信号を放出することのできるプローブ、たとえば蛍光プローブによってタグ付けされた、タンパク質またはタンパク質の集合によって形成される反応ユニットまたは高分子複合体である。平均サイズは通常、小さい複合体の場合の数ナノメートルから最大の構造の場合の約100ナノメートルまでの範囲である。大部分の分子複合体はサイズが10nmから30nmの間である。いずれの場合も、像を形成するのに使用される光学系の回折限界よりも小さいサイズの放射粒子を位置特定することが望ましい。位置特定することが望ましい粒子は、支持体、たとえば液体または固体であってもよくあるいはたとえばゲルの形をとってもよい生体媒質内に含まれる。支持体は、サンプルホルダ上に直接配置されてもよく、またはプレート上に堆積してもよく、または2枚のプレート、たとえばガラス板の間に保持されてもよい。「サンプル」(10、図1A、図1B)という用語は、支持体および支持体に含まれる放射粒子、ならびに必要に応じて1つまたは複数の保持板を指定するのに使用される。
図1Aおよび図1Bの例における3次元位置特定デバイス100は、モジュール式であり、顕微鏡130と、検出器110と、参照符号200で示されている波面制御デバイスとを備える。図1Aおよび図1Bの例では、デバイス100は、検出器110、有利にはマトリックス検出器、たとえば電子倍増型CCD(EMCCD)型の増幅カメラの検出面111上に放射粒子の像を形成することのできる撮像システムを備える。この例では、撮像システムは、たとえば、像を中間検出面112上に形成するのを可能にする、チューブレンズと呼ばれる対物レンズ123に関連する無限焦点光学作動構成について補正される顕微鏡対物レンズ121を備える。顕微鏡対物レンズ/チューブレンズアセンブリは従来の顕微鏡光学系を形成する。さらに、撮像システムは、中間検出面112の像を検出器110の検出面111上に形成するのを可能にするリレー対物レンズ124、125を備える。放射粒子のサイズが非常に小さい(撮像システムの回折限界よりも小さい)ので、撮像システムの点広がり関数またはPSFによる対象の畳み込みである像は、ここでは点広がり関数に実質的に等しい。顕微鏡対物レンズの選択が所望の拡大に整合するようにするために、顕微鏡対物レンズ121は、複数の前記対物レンズを受け入れることのできるカルーセル122に取り付けられると有利である。電動プラットフォーム131は、サンプル10を受け入れるようになっているサンプルホルダ(図示せず)が顕微鏡対物レンズの光学軸に垂直なx−y平面において移動するのを可能にする。機械的軸方向合焦デバイス(図示せず)は、サンプルの軸方向位置を顕微鏡対物レンズ121の対物焦点面、したがって、撮像すべき関心対象領域に対して調整するのを可能にする。サンプルホルダ、電動プラットフォーム、軸方向合焦デバイス、顕微鏡対物レンズ121、およびチューブレンズ123は、周知の種類の顕微鏡本体130内に配置される。顕微鏡本体は、いわゆる蛍光顕微鏡法に適合され、特に放射粒子を励起するための1条または複数条の光線を放出するための光源141を備える、サンプルを照明するためのデバイスを備えると有利である。図1Aおよび図1Bの例では、照明デバイスは、励起光線1を対物レンズ121の方へ反射させるのを可能にするダイクロイックミラー143をさらに備える(いわゆる落射顕微鏡法)。照明される場をサンプルの関心対象領域に限定するために視野絞り142を設けると有利である。この例では、放射粒子の放射信号2はダイクロイックミラー143によって透過させられ、次いで配向ミラー132によってチューブレンズ123および検出器の方へ送られる。さらに、顕微鏡本体は、従来のように、接眼レンズ133と、集光レンズ135と組み合わされた、サンプルを照明するための光源134とを備えてもよい。接眼レンズは、照明光源134によって上から照明されるサンプルを最初に肉眼で位置付けるのを可能にする。配向ミラー132は、可動デバイスに取り付けられてよく、サンプルを肉眼で観察するのが望ましいときにサンプルの観察軸を接眼レンズの方へ切り替えるか、または放射粒子の位置特定を続行するために検出器110の方へ切り替えるのを可能にする。さらに、デバイス100は、波面を空間的に変調するためのデバイス150と、前記空間変調デバイスを制御するための手段180とを備える。デバイス100の動作については以下に詳しく説明する。
図1Aおよび図1Bに示すような本発明による3次元位置特定デバイスでは、波面を空間的に変調するためのデバイス150、たとえば変形可能なミラーは、前記放射粒子によって放出され、たとえばミラー152によってデバイス150の変調面151に送られた波面2を変調するのを可能にする。次に、変調された波3は検出器110の検出面111の方へ送られる。変調面151は、顕微鏡対物レンズ121およびチューブレンズ123を備える顕微鏡の光学撮像システムの出射瞳と光学的に共役すると有利である。波面制御デバイス200が超解像顕微鏡検査システム130に接続されるようになっているモジュール式システムの例では、変調面151は、顕微鏡130の光学撮像システムの出射瞳面と一致するようになっている制御デバイスの入射瞳面と光学的に共役することになる。図1Aおよび図1Bの例では、光学系124は、瞳面同士が共役するのを可能にする。これらの図では、顕微鏡の光学撮像システムの出射瞳面は仮想平面であり、無限に投影される。波面を空間的に変調するためのデバイスの制御手段180は、放射粒子と検出面111との間に存在する光学的欠点のうちの少なくとも一部を補正するのを可能にする。制御手段はまた、波面の制御された変形を導入するように変調デバイス150を制御する。この制御された変形の目的は、検出面111における放射粒子の像の形状と、以下により詳しく説明するように、顕微鏡検査撮像システムによって検出面111と光学的に共役させられる平面として定義される対物面に対する放射粒子の軸方向位置との間に全単射関係を確立することである。
一実施形態では、放射粒子と検出面との間に存在するすべてまたは一部の光学的欠点が、制御手段180に接続された、光学的欠点を分析するためのデバイス160によって補正される。光学的欠点を分析するためのデバイス160は、たとえば、分析面161を形成するマイクロレンズのマトリックスと実質的に前記マイクロレンズの焦点面に位置するマトリックス検出器162とを備えるシャック−ハルトマンデバイスである。分析面161は、撮像システムの瞳と光学的に共役すると有利である。光学的欠点を分析するためのデバイスは、たとえばImagine Optic(登録商標)HASO(登録商標)3−32である。放射粒子の3次元位置特定のための方法の第1のステップでは、粒子の媒質と検出面との間に存在する光学的欠点が分析器160によって分析される。このことを実施するために、引き込み可能なミラー170が、1つまたは複数の放射粒子によって放出された光線2を分析器160(図1B)に送るのを可能にする。実際には、光学的欠点の分析は、サンプルに挿入され、蛍光の強度が、光学的欠点を良好な精度で分析するのを可能にするのに十分である「人工星」を形成する蛍光ビードによって実施されてもよい。制御手段180は次いで、分析器によって実施される測定から撮像システムに存在する光学的欠点を算出する。図1Bに示す位置特定方法の第2のステップでは、制御手段は、補正制御信号を変調デバイス150、たとえばImagine Eyes(登録商標)Mirao 52−e変形可能ミラーに送り、測定された光学的欠点をできるだけ補正し、波面の制御された変形を組み込む。このステップでは、引き込み可能なミラーの位置によって、変調された光線3を検出面111に送ることができる。
代替として、特に蛍光ビードを放射粒子の媒質に挿入することが困難であるかまたは不可能であるとき、たとえば、媒質が生物組織または生体であるときは、放射粒子の像および像の画質の程度に基づいて繰り返し補正方法を使用して光学的欠点を補正してもよい。この場合、制御手段は、検出器110によって生成される情報に基づいて変調デバイス150に送る補正制御信号を決定する。
したがって、図1Aおよび図1Bの例では、3次元位置特定デバイスは、顕微鏡130と、検出器110と、図1Aおよび図1Bにおいて参照符号200で示され、特に波面変調デバイス150、制御手段180、リレー対物レンズ124、125、および光学的欠点を分析するための任意選択のデバイス160を備える波面制御デバイスとを備える、3つの主要モジュールから形成される。制御デバイス200は、前記波面制御デバイスを一方では「顕微鏡」モジュール130に接続し、他方では「検出器」モジュール110に接続するのを可能にする機械的インターフェース(図示せず)を備えてもよい。そのようなモジュール式構成は、既存の超解像顕微鏡検査システムに適合可能であるという利点を有する。
一実施形態では、3次元位置特定デバイスは単一のモジュールから形成されてもよい。この場合、リレー対物レンズ124、125は、機能が特に、中間焦点面112上に形成された像を検出焦点面111に搬送することであるので、もはや不要である。デバイスが既存の顕微鏡検査システムに取り付けられるように設計されず、その代わりに完全な3次元位置特定デバイスの一部を形成する場合、中間焦点面の存在に関する設計制約はもはや存在せず、設計は図1Aおよび図1Bに示す設計とは異なる。特に、放射粒子を検出器110の検出面111に撮像するのを可能にする光学系は、当業者に周知の任意の数の光学的構成に配置されてもよい。
図2A〜図2Cは、サンプルに起因する収差によって生じる点広がり関数の質の低下、および本発明によるデバイスによるそれらの補正を概略的に示す。図1Aおよび図1Bと同様に、2枚のガラスストリップ103(図2にはそのうち一方だけが示されている)の間に配置された媒質102に含まれる放射粒子101によって放出された光線が参照符号2で示されており、アセンブリ101、102、103がサンプル10を形成している。検出面(図2には示されていない)上に放射粒子の像を形成する撮像デバイスは参照符号120で示されている。図2Aの例では、撮像デバイスの対物焦点面がサンプルの表面に配置されているので、波面2がサンプルによって劣化されることはない。図2Bの例では、放出された光線2がサンプル10の媒質102の一部を通過し、材料の屈折率が不均一であるため光線の位相がずれ、得られる点広がり関数(PSF)の質が低下する。図2Cの例では、波面の位相を変調するためのデバイス150(たとえば、変形可能なミラーDM)が、サンプルに起因する欠点を補正するのを可能にする。変調された光線3は、サンプルによって導入された収差が補正され、PSFの質が復元される。実際には、多くの因子がPSFの劣化および解像度の損失に寄与する可能性がある。これらの因子は、サンプル自体によって導入される収差だけでなく、撮像システムのすべての光学構成要素によって導入される光学的欠点も含む。
超解像顕微鏡検査の位置特定性能は、放射粒子によって放出され検出器によって受け取られる光線の光学的品質に対する依存度が高い。しかしながら、この光学的品質は、図2A〜図2Cによって示したように調査されたサンプルに起因する光学収差によって劣化されるが、撮像システムのすべての構成要素、特に顕微鏡対物レンズ、液浸対物レンズの場合の浸液(すなわち、オイル)、チューブレンズ、対物レンズ124、125、さらに撮像システムのあらゆるフィルタ、ビームスプリッタ、またはその他の構成要素に起因する収差によっても劣化される。実際、非常に小さい振幅非点収差(通常、ピークツーバレー振幅が200nmから400nmの間、すなわち、約ラムダ/4からラムダ/2であり、この場合、ラムダは放射粒子の発光波長である)を付加することによって、従来技術のPALM/STORMシステムにおいて放射体の軸方向位置特定を可能にする焦点(PSF)の修正が実現される。しかし、撮像システムは同じ程度の光学収差を導入し、サンプルは著しく大きい振幅の収差を導入する。この場合、PSFの形状が、任意の形状を有する寄生修正および所望の形状と同等であるかまたはそれよりも大きい振幅によって「汚染」されているのでこの形状の修正を適切に制御することができないことが理解されよう。したがって、放射粒子を含む媒質と検出面との間にある撮像システムのすべてまたは一部の光学的欠点を補正するのを可能にする波面変調デバイスの導入は、粒子を位置特定できる精度をかなり高めるのを可能にする。
システムが光学的欠点に関してできるだけ補正された後、制御手段に関連する波面変調デバイスはさらに、制御された変形、たとえば非点収差を導入するのを可能にし、焦点面から点放射体までの距離に応じて点放射体のPSFの形状を修正するのを可能にする
図3A〜図3Cは、ビードの様々な軸方向位置に関して、補正を行わない構成(図3A)、補正を行う構成(図3B)、および補正を行うとともに非点収差を制御しながら導入する構成(図3C)の3つの構成において蛍光ビードによって形成される放射粒子の超解像顕微鏡検査点広がり関数(PSF)を示す実験画像を示す。図3A〜図3Cの測定値は、リン酸緩衝生理食塩水(PBS)緩衝液中に配置されガラスストリップ上に堆積された直径40nmの蛍光ビードによって得られている。ビードを位置特定するためのデバイスは、図1Aおよび図1Bに示す種類のデバイスである。照明源141は、励起光線(1)を590nmで放出し、蛍光ビードによって放出される光線(2)は605nmで放出される。これらの測定に使用される顕微鏡は、開口数が1.49である100倍油浸対物レンズを有するNikkon Eclipse TI(登録商標)全内部反射蛍光顕微鏡である。使用される波面分析器160はShack−Hartmann Imagine Optic(登録商標)HASO(登録商標)3−32であり、波面変調器はImagine Eyes(登録商標)Mirao 52−e変形可能ミラーである。マトリックス検出器は増幅EMCCDカメラであり、より正確に言えば、この例ではAndor(登録商標)iXon(登録商標)DU897カメラである。これらの図では、画像31、32、33はそれぞれ、撮像システムの対物面に対するビードの3つの軸方向位置(それぞれ+300nm、0nm、および−300nm)について検出面(光学z軸を横切るx−y平面)上で測定されたPSFを示す。対物面は、撮像システムによって検出面と光学的に共役させられる平面として定義される。画像34および35は、光学軸を含むx−z平面において測定されたPSFを示し、これらの画像は、様々な軸方向位置について検出面において測定された一連の画像を再構成することによって得られる。非点収差を導入しないと(図3A、3B)、ビードの軸方向位置の関数として実質的に一定のPSFが観測される。しかし、補正を行うことによって(図3B)PSFの質の向上が観測され、それにより、蛍光ビードによって放出される光線が集光される検出器画素が少なくなり、したがって、感度を向上させることができる。図3Cの画像36および37はそれぞれ、x−z平面およびy−z平面において測定されたPSFを示す。観測される非対称性はビードの軸方向位置の特徴である。
図4A〜図4Cは、光子の数の関数としての、ビードの所定の軸方向位置について、図3A〜図3Cの実験構成(補正を行わない構成、補正を行う構成、および補正を行うとともに非点収差を制御しながら導入する構成)において実施された測定のxおよびyの精度(それぞれ、x−LAおよびy−LAと示されている)を示す。精度は、検出面におけるPSFの横次元の測定値の偏差を所定の測定回数、通常約5000回測定することによって得られる。横方向位置特定の精度については、補正を行う光学構成と補正を行わない光学構成(図4Aおよび図4B)との間でほとんど変化がないことは注目に値する。具体的には、変形可能なミラーおよび追加のレンズ124、125が存在することによって光束が失われるにもかかわらず、収差を補正することによって、横方向位置特定の精度は実質的に変化しない。曲線4Cは、ビードの軸方向位置に関する追加の情報を収集するのを可能にする非点収差を導入したにもかかわらず横方向精度の損失が非常に小さかったことを示す。
図5Aは、ビードの軸方向位置の関数としての、収差を補正した後に0.4μmP−V(ピークツーバレー)非点収差を導入した後のPSFの横次元を示す実験測定値(x軸およびy軸に沿った横次元をそれぞれWおよびWで表す)を示す。これらの曲線は図3Cと同様の実験構成によって得られる。これらの測定値は、それぞれ測定値WおよびWに対応し、予期される理論曲線に完全に対応する曲線51および52によって近似される。図3Cを参照する場合、PSFの横x次元は−400nmとp+400nmの間で減少するのが観測され(画像36)、この減少は、横x次元をビードの軸方向z位置の関数として示す曲線51(図5A)に現れている。これに対して、PSFの横y次元の増大が観測され(画像37)、この増大は、横y次元をビードの軸方向z位置の関数として示す曲線52(図5A)に見られる。曲線51と曲線52が対物焦点面の位置に対応する点z=0に対して非常に良好な対称性を示すことは注目に値する。この対称性は、放射粒子と検出面との間に存在する撮像システムのすべての構成要素に起因する収差が事前に補正されている結果であり、粒子の軸方向位置を高い精度で求めるのを可能にする。曲線51および曲線52は、それぞれMin WおよびMin Wとして示される各横次元の最小値を示し、PSFの横x次元および横y次元はこれらの最小値よりも大きくなる。ビード軸方向位置がこれらの最小値を超えている場合、xとyの両方でPSFの横次元が大きくなるので位置特定精度が大幅に低下することが示され得る。したがって、この2つの最小値間の軸方向距離Δzをzにおける放射粒子の位置特定範囲として定義することが可能である。
したがって、図5Bは、それぞれ3つの非点収差値0.2μmP−V、0.3μmP−V、および0.4μmP−Vについての横x次元と横y次元との差(W−W)の値を示す曲線53、54、および55を示す。ビードの軸方向位置を求めることを目的として横次元の差W−Wを検討すると、測定値とビードの軸方向位置との間に全単射関係が形成されるだけでなく、粒子が完全な点光源ではないとき、すなわち、粒子のサイズがPSFに対してもはや無視できなくなったときに生じる作用を回避することが可能になる。差W−Wと対物焦点面(図5Bにおけるz=0に対応する)に対するビードの軸方向位置との間に存在する全単射関係によって、以後の放射粒子位置特定測定のために位置特定システムを較正することが可能になる。非点収差が増大するにつれて関数W−Wがより急速にかつより顕著に変動し、このことはPSFの形状がより顕著に変動することによって説明される。しかし、非点収差値があるしきい値を超えた場合、PSFは過度に多くの画素に拡散し、放射粒子の良好な3D位置特定を可能にするほど高い信号対雑音比が得られる。したがって、放射粒子の性質に依存する利用可能な「光子量」に応じて波面変調デバイスによって導入される変形の振幅を調節すると有利である。
図6A〜図6Cは、光子の数の関数としての、様々な非点収差値に関するビードの軸方向位置の測定精度(図3Cの実験条件)を示す実験曲線(図6A)およびビードの軸方向位置の関数としての、様々な非点収差値に関するビードの軸方向位置の測定精度を示す実験曲線(図6B)と、取得数の関数として測定されたビードの軸方向位置、すなわち、100回取得するたびに50nm変化するビードの位置を示す曲線(図6C)を示す。図6Aは、精度が光子の数が増加するとともに向上することを立証している。さらに、ビードの軸方向位置特定の精度は、非点収差値が大きいほど向上し、理論上のPSFの横次元の測定値の差はより大きくなる。この傾向は、図6Bによって立証され、図6Bにおいて、各点は、非点収差が0.4μmP−Vである場合に得られる実験測定値を表し、一方、各曲線は、ビードの軸方向z位置の関数としての、3つの非点収差値について算出された近似値を表している。図6Cでは、非点収差が0.4μmP−Vである場合に測定されたビードの軸方向位置の値(測定値は点によって表されている)と理論曲線(実線)との間に完全な相関が観測される。
図7は、ヒーラ細胞、すなわち、細胞生物学および医学研究において頻繁に使用される細胞株の膜を横切って拡散する膜貫通タンパク質に付着させた量子ドットを追跡することによって得られた実験結果を3次元で示す。量子ドットは、経時的に追跡することのできる蛍光プローブとして働く。各実験点は、図3A〜図3Cを参照して説明したデバイスと同一のデバイス、すなわち、量子ドットの軸方向位置を測定する場合、収差補正後に0.4μmP−Vの制御された非点収差を導入するのを可能にする波面変調デバイスによって得られている。量子ドットの経路は、記録され、次いで点Aと点Bの間に3Dにプロットされ、2つの点の間の取得周波数は10Hzである。生体媒質中に含まれるタンパク質に固定された量子ドットに関するこれらの実験結果は、本発明による3次元位置特定方法によって高い精度が実現可能であることを示している。
図7は、本方法を経路測定に適用した例を示す。PALM技術またはSTORM技術を使用して高分子複合体に付着させた放射粒子のx位置およびy位置を求め、かつ上述のような制御された波面変調を使用して放射粒子の(z方向の)軸方向位置特定を行う場合、構造、たとえばニューロン膜の3次元再構成のような他の用途も可能である。
放射粒子によって放出される波面に空間変調を施すことは特に、精度が向上することに関する上述の利点と、波面の制御された変形を選択することによって利用可能な「光子量」が最適化されることに関する上述の利点とを有する。
特に、上述の例では、制御された非点収差が導入されたが、PSFの軸方向対称性を破ることによってPSFの形状と粒子の軸方向位置との間に全単射関係が形成されるのであれば、他の制御された変形も可能である。
たとえば、偶数次方位角のゼルニケ多項式の組合せに基づいて波面に任意の変形を施すと、周知のように、PSFに軸方向非対称性を導入することが可能になる。これらのゼルニケ多項式は、2次方位角のゼルニケ多項式であってよく、すなわち、すべてのゼルニケ多項式がcos(2θ)またはsin(2θ)における多項式であってよい。rcos(2θ)およびrsin(2θ)における3次収差が最も一般的であるが、たとえば(4r−3)rcos(2θ)および(4r−3)rsin(2θ)における5次の収差ならびに7次、9次、11次などの収差のような、任意のより高次の収差を使用することも構想され得る。4次方位角のゼルニケ多項式の任意の組合せを使用することを構想することも可能である。これらの多項式は、たとえばrcos(4θ)およびrsin(4θ)の多項式を含むテトラフォイル族の一部を形成する。
一例として、図8Aは、次式によって極座標で表されたテトラフォイル波面の位相φ(r,θ)を示す。
φ(r,θ)=0.2*r*cos(4*θ)−0.2*(6*r−5)*r*cos(4*θ)
図8B〜図8Dはそれぞれ、ベストフォーカス面の前の面(+0.4ミクロンのピークツーバレーデフォーカス曲率を波面の位相に加えた)、ベストフォーカス面、およびベストフォーカス面の後の面(−0.4ミクロンのピークツーバレーデフォーカス曲率を波面の位相に加えた)における、波長が500nmの場合のPSFの形状を示す。したがって、これらの図は、PSFの軸方向対称性を破るのを可能にする、放射粒子によって放出される波面の変形をどのように導入すればよいかを示す。
より一般的には、たとえばGerchberg−Saxtonアルゴリズムのようなある周知のアルゴリズムは、所望のPSF形状を得るのに必要な波面変形を求めるのを可能にする。G.ホワイトらによる論文(「Experimental demonstration of holographic three dimensional light shaping using a Gerchberg−Saxton algorithm」、New J.Phys.7、117(2005))では、このアルゴリズムの適用例について説明している。しかし、これらのアルゴリズムは、かなり複雑であり、位相ジャンプを含む波面の位相の変形、すなわち、液晶位相変調器でしか生成できない不連続な位相に基づく解を一般に返す。多項式または偶数次方位角のゼルニケ多項式の組合せを使用することの1つの利点は、偶数次方位角のゼルニケ多項式の組合せが、連続的な膜を有する変形可能なミラーによって容易に生成することのできる連続的な位相および連続的に導出可能な位相によって波面変形を得るのを可能にすることである。
上述のような空間変調器によって波面に空間変調を施すと、本発明による3次元位置特定デバイスによって他の機能を実現することができる。たとえば、制御されたデフォーカスを波面に導入することによって動的合焦を実現することが可能である。動的合焦のいくつかの考えられる用途がある。たとえば、動的合焦は放射粒子を動的に追跡するのを可能にする。このことを実現するには、放射粒子にリアルタイムに合焦させるのを可能にする補正制御信号を、たとえば変形可能なミラーである波面変調器に送る。これによって、サンプルを移動させる必要なしに、適用される焦点の修正を測定することによって粒子を追跡することができ、特に広い動作範囲にわたって粒子を追跡することができる。より一般的には、動的合焦は、サンプル自体を移動させずにサンプルの関心対象領域を移動させるのを可能にする。動的合焦は、放射粒子の軸方向位置を求めるために導入される制御された変形の選択と組み合わされてもよい。たとえば、第1のステップでは、大きい非点収差を導入してもよく、それによって、広い△z範囲における放射粒子の位置を特定することができる。次いで、制御されたデフォーカスを導入してサンプルのより小さい関心対象領域に合焦することが可能であり、それにより、PSFのサイズがより小さくなることによって、測定に必要な非点収差値を小さくし画素当たり光子量を増やすことができる。
本発明による3次元位置特定方法およびこの方法を実施するためのデバイスについていくつかの実施形態によって説明したが、この方法およびデバイスは、当業者には自明であろう様々な変形例、修正例、および改良例を含む。これらの様々な変形例、修正例、および改良例が、以下の特許請求の範囲によって定義されるような本発明の範囲に含まれることが理解されよう。

Claims (18)

  1. 1つまたは複数の放射粒子(101)を3次元位置特定するための超解像顕微鏡法であって、
    顕微鏡検査撮像システム(121、123、124、125)によって検出器(110)の検出面(111)に前記放射粒子の少なくとも1つの画像を形成すること、
    前記放射粒子と前記検出面との間に存在する光学的欠点の少なくとも一部を波面変調デバイス(150)によって補正すること、
    前記放射粒子によって放出された波面の変形を前記波面変調デバイスによって導入し、前記検出面における前記放射粒子の像の形状と、前記顕微鏡検査撮像システムによって前記検出面と光学的に共役させられる対物面に対する前記放射粒子の軸方向位置との間に、前記粒子の前記軸方向位置の値の所定の範囲において全単射関係を形成するのを可能にすることを含み、前記波面の前記変形が、前記波面変調デバイスを制御するための手段によって制御されることを特徴とする方法。
  2. 請求項1に記載の方法であって、前記放射粒子と前記検出面との間に存在する波面光学的欠点を波面分析デバイス(160)によって分析する事前のステップを含むことを特徴とする方法。
  3. 請求項1または2に記載の方法であって、前記放射粒子の画質の程度に基づいてすべてまたは一部の前記光学的欠点の補正が繰り返し実施されることを特徴とする方法。
  4. 請求項1から3のいずれか一項に記載の方法であって、少なくとも1つの放射粒子を励起させるための1条または複数条の光線を放出し、前記粒子が所定の範囲内の波長で光信号を放出するのを可能にすることをさらに含むことを特徴とする方法。
  5. 請求項1から4のいずれか一項に記載の方法であって、前記制御された変形は非点収差であることを特徴とする方法。
  6. 請求項1から5のいずれか一項に記載の方法であって、放射粒子に動的に合焦させるステップをさらに含み、前記動的な合焦は、前記波面変調デバイスにより、前記粒子によって放出される前記波面の焦点を制御可能にぼかすことによって得られることを特徴とする方法。
  7. 光学撮像システムおよび検出器を搭載した顕微鏡を備える、放射粒子を位置特定するための超解像顕微鏡検査システムに接続されるようになっている波面制御デバイス(200)であって、
    それぞれ、前記顕微鏡の前記光学撮像システムの像面(112)および前記検出器の検出面(111)と一致するようになっている入射面および出射面を光学的に共役させるためのリレー光学系(124、125)と、
    補正面(151)を備え、前記制御デバイスが前記超解像顕微鏡検査システムに接続されたときに前記放射粒子によって放出される波面を変調するのを可能にする、波面を空間的に変調するためのデバイス(150)と、
    前記顕微鏡の前記光学撮像システムの出射瞳と一致するようになっている前記制御デバイスの入射瞳面を前記補正面と光学的に共役させる光学系(124)と、
    波面を空間的に変調するための前記デバイスを制御し、前記波面制御デバイスが前記超解像顕微鏡検査システムに接続されたときに、前記粒子と前記検出面との間に存在する光学的欠点の少なくとも一部を補正するのを可能にし、かつ前記波面の制御された変形を導入するのを可能にし、前記検出面における前記放射粒子の像の形状と、前記検出面と光学的に共役させられる対物面に対する前記放射粒子の軸方向位置との間の全単射関係を、前記粒子の前記軸方向位置の値の所定の範囲において形成するのを可能にするための手段(180)とを備えることを特徴とする波面制御デバイス(200)。
  8. 請求項7に記載の波面制御デバイスであって、光を空間的に変調するための前記デバイスは変形可能なミラーであることを特徴とする波面制御デバイス。
  9. 請求項7または8に記載の波面制御デバイスであって、前記制御手段に接続された、光学的欠点を分析するためのデバイス(160)をさらに備えることを特徴とする波面制御デバイス。
  10. 請求項9に記載の波面制御デバイスであって、光学的欠点を分析するための前記デバイスはシャック−ハルトマン分析器であることを特徴とする波面制御デバイス。
  11. 請求項7から10のいずれか一項に記載の波面制御デバイスであって、前記波面制御デバイスを前記超解像顕微鏡検査システムに接続するための機械的インターフェースをさらに備えることを特徴とする波面制御デバイス。
  12. 1つまたは複数の放射粒子(101)の3次元位置特定を行うための超解像顕微鏡検査デバイス(100)であって、
    検出器(110)の検出面(111)において前記放射粒子を撮像するためのシステム(121、123、124、125)と、
    波面を空間的に変調し、前記放射粒子によって放出される前記波面を変調するのを可能にするためのデバイス(150)と、
    前記波面を空間的に変調するための前記デバイスを制御し、前記粒子と前記検出面との間に存在する光学的欠点の少なくとも一部を補正するのを可能にし、かつ前記波面の制御された変形を導入するのを可能にし、前記検出面における前記放射粒子の像の形状と、前記撮像システムによって前記検出面と光学的に共役させられる対物面に対する前記放射粒子の軸方向位置との間の全単射関係を、前記粒子の前記軸方向位置の値の所定の範囲において形成するのを可能にするための手段(180)とを備えることを特徴とするデバイス(100)。
  13. 請求項12に記載の3次元位置特定を行うためのデバイスであって、波面を空間的に変調するための前記デバイスは、前記撮像システムの瞳と光学的に共役させられる補正面(151)を含むことを特徴とする3次元位置特定を行うためのデバイス。
  14. 請求項12または13に記載の3次元位置特定を行うためのデバイスであって、光を空間的に変調するための前記デバイスは変形可能なミラーであることを特徴とする3次元位置特定を行うためのデバイス。
  15. 請求項12から14のいずれか一項に記載の3次元位置特定を行うためのデバイスであって、前記制御手段に接続された、光学的欠点を分析するためのデバイス(160)をさらに備えることを特徴とする3次元位置特定を行うためのデバイス。
  16. 請求項15に記載の3次元位置特定を行うためのデバイスであって、光学的欠点を分析するための前記デバイスはシャック−ハルトマン分析器であることを特徴とする3次元位置特定を行うためのデバイス。
  17. 請求項12から16のいずれか一項に記載の3次元位置特定を行うためのデバイスであって、前記制御手段は、前記放射粒子で形成された像の画質の程度に基づいてすべてまたは一部の前記光学的欠点を確実に繰り返し補正することを特徴とする3次元位置特定を行うためのデバイス。
  18. 請求項12から17のいずれか一項に記載の3次元位置特定を行うためのデバイスであって、少なくとも1つの放射粒子を励起させるための1条または複数条の光線を放出し、前記粒子が所定の範囲内の波長で光信号を放出するのを可能にするためのデバイス(141)をさらに備えることを特徴とする3次元位置特定を行うためのデバイス。
JP2014520604A 2011-07-21 2012-07-10 粒子を超解像位置特定するための方法および光学デバイス Active JP5661221B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1156647 2011-07-21
FR1156647A FR2978254B1 (fr) 2011-07-21 2011-07-21 Methode et dispositif optique pour la localisation d'une particule en super resolution
PCT/EP2012/063511 WO2013010859A1 (fr) 2011-07-21 2012-07-10 Méthode et dispositif optique pour la localisation d'une particule en super résolution

Publications (2)

Publication Number Publication Date
JP2014521093A true JP2014521093A (ja) 2014-08-25
JP5661221B2 JP5661221B2 (ja) 2015-01-28

Family

ID=46601759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014520604A Active JP5661221B2 (ja) 2011-07-21 2012-07-10 粒子を超解像位置特定するための方法および光学デバイス

Country Status (5)

Country Link
US (1) US9507134B2 (ja)
EP (1) EP2742379B1 (ja)
JP (1) JP5661221B2 (ja)
FR (1) FR2978254B1 (ja)
WO (1) WO2013010859A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224813A (ja) * 2013-05-14 2014-12-04 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh 3d高解像度局在顕微鏡法のための方法
JP2014224814A (ja) * 2013-05-14 2014-12-04 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh 3d高解像度局在顕微鏡法のための方法
JP2016532883A (ja) * 2013-09-19 2016-10-20 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh レーザスキャニング顕微鏡、および特に高解像度のスキャニング顕微鏡法で結像収差を修正する方法
JP2016219052A (ja) * 2016-08-24 2016-12-22 株式会社Mrsホールディングズ 入金システム
JP2017078855A (ja) * 2015-10-21 2017-04-27 エフ イー アイ カンパニFei Company 定在波干渉顕微鏡
JP2022519567A (ja) * 2019-02-01 2022-03-24 イマジン・オプチック 波面解析装置、蛍光顕微鏡画像化システムおよび対象を顕微鏡画像化する方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013102988A1 (de) * 2013-03-22 2014-09-25 Leica Microsystems Cms Gmbh Lichtmikroskopisches Verfahren zur Lokalisierung von Punktobjekten
JP6206871B2 (ja) * 2013-07-17 2017-10-04 国立研究開発法人理化学研究所 光学顕微鏡システム
FR3013128B1 (fr) * 2013-11-13 2016-01-01 Univ Aix Marseille Dispositif et methode de mise au point tridimensionnelle pour microscope
NL2012187C2 (en) * 2014-02-03 2015-08-06 Univ Delft Tech Diffractive optical element for localization microscopy.
DE102018105442A1 (de) * 2018-03-09 2019-09-12 Carl Zeiss Microscopy Gmbh Kameramodul für ein Mikroskop und Verfahren zu dessen Betrieb
EP3871030B1 (de) 2018-11-26 2024-02-28 Carl Zeiss Microscopy GmbH Lichtmikroskop und mikroskopieverfahren
CN110264410B (zh) * 2019-05-07 2021-06-15 西安理工大学 一种基于细节特征的图像超分辨率重建方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239660A (ja) * 2003-02-04 2004-08-26 Japan Science & Technology Agency 顕微鏡
JP2004317741A (ja) * 2003-04-15 2004-11-11 Olympus Corp 顕微鏡およびその光学調整方法
JP2008522230A (ja) * 2004-12-01 2008-06-26 トムソン ライセンシング 光学系及び対応する光学素子
JP2013544377A (ja) * 2010-11-22 2013-12-12 エコール ポリテクニク 光学顕微鏡において空間光学モジュレータを較正するための方法とシステム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6582079B2 (en) * 2001-06-05 2003-06-24 Metrologic Instruments, Inc. Modular adaptive optical subsystem for integration with a fundus camera body and CCD camera unit and improved fundus camera employing same
JP4576137B2 (ja) * 2004-03-19 2010-11-04 オリンパス株式会社 顕微鏡
US7475989B2 (en) * 2006-03-14 2009-01-13 Amo Manufacturing Usa, Llc Shack-Hartmann based integrated autorefraction and wavefront measurements of the eye
WO2009085218A1 (en) * 2007-12-21 2009-07-09 President And Fellows Of Harvard College Sub-diffraction limit image resolution in three dimensions
US8693742B2 (en) 2008-12-17 2014-04-08 The Regents Of The University Of Colorado Three-dimensional single-molecule fluorescence imaging beyond the diffraction limit using a double-helix point spread function
US8620065B2 (en) * 2010-04-09 2013-12-31 The Regents Of The University Of Colorado Methods and systems for three dimensional optical imaging, sensing, particle localization and manipulation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239660A (ja) * 2003-02-04 2004-08-26 Japan Science & Technology Agency 顕微鏡
JP2004317741A (ja) * 2003-04-15 2004-11-11 Olympus Corp 顕微鏡およびその光学調整方法
JP2008522230A (ja) * 2004-12-01 2008-06-26 トムソン ライセンシング 光学系及び対応する光学素子
JP2013544377A (ja) * 2010-11-22 2013-12-12 エコール ポリテクニク 光学顕微鏡において空間光学モジュレータを較正するための方法とシステム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224813A (ja) * 2013-05-14 2014-12-04 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh 3d高解像度局在顕微鏡法のための方法
JP2014224814A (ja) * 2013-05-14 2014-12-04 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh 3d高解像度局在顕微鏡法のための方法
US10024793B2 (en) 2013-05-14 2018-07-17 Carl Zeiss Microscopy Gmbh Method for three-dimensional high resolution localization microscopy
JP2016532883A (ja) * 2013-09-19 2016-10-20 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh レーザスキャニング顕微鏡、および特に高解像度のスキャニング顕微鏡法で結像収差を修正する方法
JP2017078855A (ja) * 2015-10-21 2017-04-27 エフ イー アイ カンパニFei Company 定在波干渉顕微鏡
JP2016219052A (ja) * 2016-08-24 2016-12-22 株式会社Mrsホールディングズ 入金システム
JP2022519567A (ja) * 2019-02-01 2022-03-24 イマジン・オプチック 波面解析装置、蛍光顕微鏡画像化システムおよび対象を顕微鏡画像化する方法
JP7481351B2 (ja) 2019-02-01 2024-05-10 イマジン・オプチック 波面解析装置、蛍光顕微鏡画像化システムおよび対象を顕微鏡画像化する方法

Also Published As

Publication number Publication date
US20150042778A1 (en) 2015-02-12
EP2742379A1 (fr) 2014-06-18
FR2978254B1 (fr) 2014-01-24
US9507134B2 (en) 2016-11-29
FR2978254A1 (fr) 2013-01-25
JP5661221B2 (ja) 2015-01-28
EP2742379B1 (fr) 2016-01-20
WO2013010859A1 (fr) 2013-01-24

Similar Documents

Publication Publication Date Title
JP5661221B2 (ja) 粒子を超解像位置特定するための方法および光学デバイス
JP7308033B2 (ja) 顕微鏡検査および収差補正のための装置
JP6996048B2 (ja) 広視野高分解能顕微鏡
York et al. Confined activation and subdiffractive localization enables whole-cell PALM with genetically expressed probes
US10429628B2 (en) Multifocal method and apparatus for stabilization of optical systems
US7646481B2 (en) Method and microscope for high spatial resolution examination of samples
US11327288B2 (en) Method for generating an overview image using a large aperture objective
JP2016507078A (ja) 被写界深度3dイメージングslm顕微鏡
US20140333750A1 (en) High resolution dual-objective microscopy
JP6512667B2 (ja) 側方照明顕微鏡システム及び顕微方法
JP2008170969A (ja) 顕微鏡対物レンズ及びそれを用いた蛍光観察装置
JP2004239660A (ja) 顕微鏡
JP2018517178A (ja) ライトシート顕微鏡法のための構成及び方法
Cao et al. Volumetric interferometric lattice light-sheet imaging
Tsai et al. Rapid high resolution 3D imaging of expanded biological specimens with lattice light sheet microscopy
JP7481351B2 (ja) 波面解析装置、蛍光顕微鏡画像化システムおよび対象を顕微鏡画像化する方法
WO2013176549A1 (en) Optical apparatus for multiple points of view three-dimensional microscopy and method
JP2004317741A (ja) 顕微鏡およびその光学調整方法
Wang et al. Adaptive optics in super-resolution microscopy
Temprine et al. Three-dimensional photoactivated localization microscopy with genetically expressed probes
US20230333018A1 (en) 3d interferometric lattice light-sheet imaging
US20230069794A1 (en) Dual-mode restoration microscopy
Cao et al. 3D interferometric lattice light-sheet imaging
Clouvel et al. 3D dual-color PALM/dSTORM imaging of centrosomal proteins with nanometric resolution using MicAO 3DSR
Lin et al. Single‐Molecule Localization Microscopy (SMLM)

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141202

R150 Certificate of patent or registration of utility model

Ref document number: 5661221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250