JP2014509040A - リチウムバッテリの自己放電を推定するための方法 - Google Patents

リチウムバッテリの自己放電を推定するための方法 Download PDF

Info

Publication number
JP2014509040A
JP2014509040A JP2013549862A JP2013549862A JP2014509040A JP 2014509040 A JP2014509040 A JP 2014509040A JP 2013549862 A JP2013549862 A JP 2013549862A JP 2013549862 A JP2013549862 A JP 2013549862A JP 2014509040 A JP2014509040 A JP 2014509040A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
lithium
electrode
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013549862A
Other languages
English (en)
Inventor
ネリー、マルタン
フレデリク、ル、クラ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of JP2014509040A publication Critical patent/JP2014509040A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • H01M6/5088Initial activation; predischarge; Stabilisation of initial voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

正電極と、負電極と、正電極と負電極との間に配置される電解質とが設けられるリチウムイオンバッテリの自己放電電流を決定するための方法は、金属リチウム層が電解質と負電極との間に形成されるまでバッテリを充電すること、2つの瞬間にバッテリの開回路電圧(VCO)を測定すること、および、2つの瞬間同士の間で測定された電圧の変化から自己放電電流を決定することを含む。

Description

本発明は、バッテリの開回路電圧を測定することによりリチウムバッテリの自己放電を推定するための方法に関する。
図1は、従来のリチウムバッテリ構造を示している。リチウムバッテリは、正電極2と、電解質4と、負電極6とを連続的に備える。動作原理は、正電極2におけるリチウムイオンLiの挿入−脱離(または、インターカレーション−デインターカレーション)に依存する。このとき、正電極の材料は、リチウム挿入材料と呼ばれる。
正電極は、イオン伝導体と、電子伝導挿入材料、たとえばチタン酸硫化物(TiOS)とを備える。電解質は、例えばリチウムリン酸窒化物(LiPON)などの高いイオン伝導度を有する電気絶縁体である。負電極の性質は、バッテリのカテゴリーにしたがって異なる。
リチウムイオンバッテリでは、負電極6も挿入材料を備える。Liイオンは、バッテリのそれぞれの充電および放電ごとに電極2、6間を行ったり来たりする。電極6の挿入材料は、一般に、遷移金属酸化物(LiNiO、SnO、インジウム鉛酸化物...)および単純な元素(Si、Ge、C...)の中から選択される。
図2は、リチウム−イオンLiTiOS/LiPON/Siバッテリの充電中の動作を概略的に表している。電子は、LiTiOS正電極から外部電気回路を介してSi負電極へと流れ、また、Liイオンは、正電極から電解質を通じて負電極へ移動する。充電半反応が以下のように書き表される。
負電極において: Si+Li+e→LiSi (1)
正電極において: LiTiOS→TiOS+Li+e (2)
正電極のLiイオン減少は、その電位の増大を引き起こす。逆に、負電極にはLiイオンが帯電されるため、その電位が減少する。これにより、バッテリ電圧が増大する。
実際に、バッテリの電圧は、正電極/電解質界面の電位と電解質/負電極界面の電位との間の差に対応する。これらの電位は、界面に存在するLiイオンの量にしたがって変化する。
満充電バッテリが開回路内に配置されると、バッテリの端子で電圧の漸進的な降下を観察することができる。この減少は、一方ではバッテリの緩和に起因し、他方ではバッテリの自己放電に起因する。
緩和現象は、特に、充電後の電極材料内でのLi濃度の平衡を含む。以下、この現象を図2のLiTiOS/LiPON/Siバッテリに関連して説明する。
図2の右側の曲線は、バッテリの緩和の前(実線)および後(点線)における、正電極内(下側曲線)および負電極内(上側曲線)のリチウムイオン濃度勾配XLiを示している。
充電中、Liイオンは、LiPON電解質との界面でSi負電極に挿入する。したがって、実線の上側曲線により示されるように、量XLiは、最初は、シリコンの残りの部分におけるよりもこの界面のレベルの方で高い。充電後、Liイオンはシリコンを通じて拡散し続ける。その後、量XLiは、電極材料中で均質化する傾向がある(点線の上側曲線)。
逆に、LiTiOS/LiPON界面は、充電中に正電極の残りの部分よりも急速にLiイオンが使い果たされる。実線の下側曲線は、Liイオンの量が界面で少ないことを示している。その後、Liイオンが界面へ向けて拡散し、正電極において量XLiが平衡になる(点線の下側曲線)。
このとき、バッテリ緩和と関連する電圧降下を、電解質との界面でのLiイオンの量の変化によって説明することができる。
バッテリの自己放電は、電極での寄生性の電気化学反応の実現、ならびに/または、構造欠陥および/または電解質の電子伝導率に起因する一方の電極から他方の電極への電子の移動に対応する。そのような自己放電は、従来の水性電解質バッテリにおいては著しい。しかしながら、リチウムバッテリでは、固体電解質の使用が寄生反応を制限する。電解質を通じた電子流は、LiPONの高い抵抗率を考えると、極めて低い。自己放電レベルが低く、そのため、自己放電レベルの決定が難しい。
リチウムバッテリの自己放電は、従来、バッテリの開回路電圧VCOの時間にわたる減少を測定することによって推定される。しかしながら、前述したように、そのような減少はバッテリ緩和にも起因する。したがって、バッテリが緩和されるように十分に長い時間待つことが必要である。この緩和時間後、電圧VCOの減少が自己放電に対応する。
実際に、緩和時間は、電極材料中でのリチウム拡散係数に依存する。大気温度において、この係数は、正電極材料においては高く、約10−11〜10−9cm・s−1の範囲であるが、例えばシリコンなどの負電極材料においては低く、10−15〜10−14cm・s−1の範囲である。したがって、負電極における量XLiのプロファイルはゆっくりと変化し、緩和時間が数時間、あるいは更には数百時間にもわたる。
図3は、図2のバッテリの2.6Vでの公称充電後の開回路電圧VCOを一例として表している。曲線の傾きが充電終了後も依然として3時間にわたり変化するのが分かる。このことは、緩和が依然として終わっていないことを意味する。
この待ち時間は、自己放電を推定するための時間をかなり長くする。したがって、そのような技術は、大規模に適用すること、特にリチウムイオンバッテリ品質制御との関連で適用することが困難である。
単位時間当たりの電圧減少により表される自己放電は、バッテリ漏れ電流と呼ばれる場合もある。
自己放電は、必然的に、バッテリ有効容量の減少を誘発する。他の推定技術は、バッテリを充電し、バッテリを所定時間にわたって充電状態で保管し、および、バッテリを閾値電圧に至るまで一定の電流で放電することにある。そして、放電中に解放される容量の変化は、単位時間当たりの公称容量損失、すなわち、自己放電の計算を可能とする。この技術はまた、かなりの蓄電時間を必要とし、その間にバッテリ緩和が行われる。
したがって、正電極と、リチウムイオン挿入材料を備える負電極と、正電極と負電極との間に配置される電解質とが設けられるリチウムイオンバッテリの自己放電電流を決定するための簡単かつ高速の方法を提供することが必要である。
この必要性は、金属リチウム層が電解質と負電極との間に形成されるまでバッテリを充電することにより、2つの瞬間にバッテリの開回路電圧を測定することにより、および、2つの瞬間同士の間で測定される電圧の変化から自己放電電流を決定することにより満たされる傾向がある。
一実施形態によれば、正電極は、負電極が挿入することができるリチウムの量よりも多くの量のリチウムを備える。
別の実施形態によれば、充電パラメータは、負電極内で拡散することができる最大イオン流量よりも多くのリチウムイオン流量をもたらすように選択される。
他の利点および特徴は、非限定的な単なる例として与えられる本発明の特定の実施形態の以下の説明からより明確に分かるようになり、かつ添付図面に表される。
前述した従来のリチウムバッテリ構造を表す図である。 前述したLiTiOS/LiPON/Siバッテリの充電モードにおける動作、および、バッテリの緩和前後の電極におけるリチウムイオン濃度勾配XLiを概略的に表す図である。 前述した2.6Vでの公称充電後のLiTiOS/LiPON/Siバッテリの開回路電圧VCOの時間にわたる変化を表わすグラフである。 バッテリ漏れ電流を素早く決定することができる、金属電極が形成するまでのリチウムイオンバッテリの充電を表す図である。 試験充電および公称動作サイクルにおける、バッテリ充電状態SOCに係る正電極の電位Vおよび負電極の電位Vを表すグラフである。 図4のバッテリの開回路電圧VCOの時間にわたる変化を表すグラフである。
ここで、本発明が、バッテリ緩和のために必要とされる時間を減らすことによって自己放電推定時間を短くするために提供される。これを達成するため、バッテリは、負電極上に金属リチウム層が形成するまで充電される。負電極/電解質界面におけるこの金属層は、負電極の電位を設定することができる。したがって、緩和時間は、正電極におけるリチウム拡散のみに依存する。拡散は、負電極におけるよりも正電極における方が速く、より素早く緩和に達する。その後、開回路電圧を測定することによってバッテリの自己放電電流または漏れ電流が決定される。
図1に示されるように、正電極2と、負電極6と、電極2、6間に配置された電解質4とを備えるリチウムイオンバッテリが最初に設けられる。電極2、6は、リチウムイオン挿入材料、たとえば、正電極2用のTiOSおよび負電極6用のSiを備える。また、この2つの材料のうちの少なくとも一方が、リチウム化され、すなわち、リチウムを含む。リチウムは、たとえば、バッテリの製造中に正電極(LiTiOS)中へ取り込まれる。電解質は、好ましくは、固体タイプ、たとえばLiPONである。
図4において、リチウムイオンバッテリは、金属リチウム層8が電解質4と負電極6との間に形成するまで充電される。
好ましい実施形態では、金属層8がバッテリの満充電によって形成され、バッテリはリチウムイオン挿入容量に関して不平衡である。このことは、負電極6が蓄えることができるよりも、正電極2が最初に多くのLiイオンを含むことを意味する。
充電中、電極2から生じるLiイオンがその飽和まで電極6へ挿入する。その後、電極2のLiイオンが、電極6の容量に対して過度に、電極6の表面上に電着され、それにより、層8を形成する。
図5は、試験充電および公称動作サイクルにおける、バッテリ充電状態SOCに係るLiTiOS電極の電位VおよびSi電極の電位Vの変化を表している。
点A、A’は、たとえばバッテリの製造直後の電極の初期状態を示している。バッテリ充電状態SOCはゼロであり、したがって、バッテリが放電される。TiOS電極は、Li/Li基準電位に対して1.7Vの電位Vに対応するリチウム量を含む。逆に、Si電極はリチウムを備えず、その電位は最大である(Li/Li基準電位に対してV=1V)。
充電中、LiTiOS電極がLiイオンを解放することを考えると、電位Vは増大する。逆に、Si電極はLiイオンが帯電するため、電位Vが減少する。
B、B’では、バッテリが満充電される(SOC=100%)。電圧Vは2.6V(Li/Liに対して)であり、電位Vは0V(Li/Liに対して)に達し、このことは、負電極がリチウムで飽和されることを意味する。部分ABおよび部分A’B’は、実際は、バッテリの公称充電、すなわち、通常の動作における充電に対応する。
充電は、点B、B’を越えて、たとえば図5に破線で示されるようにC、C’まで続く。したがって、他のLiイオンが電極2から引き出される。しかしながら、これらのLiイオンは電極6内へ挿入できない。これは、前記電極が飽和されるからである。したがって、Liイオンは、シリコン表面で電着され、金属層8を形成する。電位Vは0V(Li/Liに対して)で維持され、一方、電位Vは、上昇の一途をたどって2.9V(Li/Liに対して)に達する。その結果、層8が基準電位を構成する。この例では、この電位は0V(Li/Liに対して)である。
その後、バッテリが開回路内に配置され、バッテリの端子の電位VCOが測定される。電位VCOは、ここでは、負電極の電位Vがゼロであるため、正電極の電位Vに対応する。曲線VCO(t)の傾きが一定になると、正電極がその平衡に達したと見なされる。このとき、単位時間当たりの電圧減少に対応する傾きは、バッテリ漏れ電流に相当する。電圧VCOは2つの瞬間に測定され、その後、これらの2つの瞬間同士の間の電圧変化から自己放電電流が計算される。自己放電は、充電状態SOCに対する電圧VCOのチャートを使用することにより、容量に関して表すこともできる。
自己放電を決定した後、公称の充電サイクルおよび放電サイクルにしたがってバッテリを正常に使用することができる。低いカットオフ電圧DD’(放電モード)と高いカットオフ電圧BB’(充電モード)とにより規定される動作範囲が一般に設定される。図5の曲線で観察されるヒステリシス(AおよびBでの電圧ジャンプ)は、内部抵抗および反応の過電圧に起因する。
高いカットオフ電圧は、図5の点B、B’での負電極の飽和閾値(または、負電極におけるリチウムの挿入限界)に対応するのが好ましい。高いカットオフ電圧は、たとえば、VBAT=V(B)−V(B’)=2.6Vである。
バッテリの低いカットオフ電圧は、電極材料にしたがって、また、バッテリが給電する装置にしたがって異なる。一般に、低いカットオフ電圧はバッテリの部分放電に対応する。このことは、Liイオンの一部がシリコン電極で固定されることを意味する。低いカットオフ電圧は、たとえば、図5の点D、D’に位置され、VBAT=V(D)−V(D’)=1.7Vである。これは、約23%の固定化Liイオンのパーセンテージに対応する。
図6は、2.9Vでの充電後の経過時間にしたがった図4のバッテリの開回路電圧VCOを実線で表している。比較のため、図中に図3の曲線が破線でコピーされている。
バッテリが金属層を備える場合には電圧安定化が非常に高速で起こるのが分かる。確かに、曲線の傾きはたった1時間後に一定になり、一方、2.6Vでの公称充電の場合には少なくとも3時間が必要である。したがって、自己放電を推定するための時間が従来の技術に対してかなり減少される。
自己放電電流を決定するための前述した方法は、バッテリ製造直後に行われる品質制御との関連で好ましくは行われる。確かに、自己放電電流は、バッテリの信頼性を評価するための重要なデータである。したがって、最初のバッテリ充電は、金属リチウム層を形成してその漏れ電流を素早く決定するために使用され、その後、バッテリが正常に使用される。
別の実施形態において、充電パラメータは、かなりの量のLiイオンが短期間の間に電極6へ移動されるように選択される。このとき、正電極から負電極へのLiイオンの流量は、負電極内で拡散することができるLiイオンの最大流量よりも多い。電極6はそのような短時間内でそのような量を挿入できないため、金属リチウム層がその表面に形成する。電位Vは、バッテリが全く充電されなければ(SOC<100%)、0V(Li/Liに対して)に達する。この場合、バッテリは、挿入容量に関して平衡化され得る。
言い換えると、バッテリは、負電極の表面だけを飽和させるために、正電極の緩和時間中にわたって持続するのに十分な量だけ持続的速度で充電される。バッテリは、30分間にわたって高い一定の電圧で、たとえば2.9Vで、好ましくは充電される。
自己放電電流を決定するための方法は、10−9cm/s未満の化学リチウム拡散係数を伴う負電極を有するバッテリにおいて特に有益である。
自己放電電流を決定するための方法の多くの変形および改良を当業者が想起し得る。LiTiOS/LiPON/Siバッテリに関して方法を説明してきた。しかしながら、他の挿入材料、特に、正電極に関してはLiCo、LiMn、LiNi0.5Mn1.5、負電極に関してはSi、Al、Ge、SnO、LiNiO、インジウム鉛酸化物が使用されてもよい。電極材料の性質および想定される用途にしたがって電圧値が更に変わることがある。

Claims (4)

  1. 正電極(2)と、リチウムイオン挿入材料を備える負電極(6)と、前記正電極と前記負電極との間に配置される電解質(4)とが設けられるリチウムイオンバッテリの自己放電電流を決定するための方法であって、
    金属リチウム層(8)が前記電解質(4)と前記負電極(6)との間に形成されるまで前記バッテリを充電するステップと、
    2つの瞬間に前記バッテリの開回路電圧(VCO)を測定するステップと、
    前記2つの瞬間同士の間で測定される電圧の変化から自己放電電流を決定するステップと、
    を備えることを特徴とする方法。
  2. 前記正電極(2)は、前記負電極(6)が挿入することができるリチウムの量よりも多くの量のリチウムを備える、請求項1に記載の方法。
  3. 充電パラメータは、前記負電極(6)内で拡散することができるリチウムイオンの最大流量よりも多くのリチウムイオンの流量をもたらすように選択される、請求項1または2に記載の方法。
  4. 前記負電極(6)は、10−9cm/s未満のリチウム化学拡散係数を有する材料を備える、請求項1から3のいずれか一項に記載の方法。
JP2013549862A 2011-01-20 2012-01-20 リチウムバッテリの自己放電を推定するための方法 Pending JP2014509040A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1100174 2011-01-20
FR1100174A FR2970785B1 (fr) 2011-01-20 2011-01-20 Procede d'evaluation de l'autodecharge d'un accumulateur au lithium
PCT/FR2012/000028 WO2012098316A1 (fr) 2011-01-20 2012-01-20 Procede d'evaluation de l'autodecharge d'un accumulateur au lithium

Publications (1)

Publication Number Publication Date
JP2014509040A true JP2014509040A (ja) 2014-04-10

Family

ID=44504389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013549862A Pending JP2014509040A (ja) 2011-01-20 2012-01-20 リチウムバッテリの自己放電を推定するための方法

Country Status (7)

Country Link
US (1) US9608456B2 (ja)
EP (1) EP2666204B1 (ja)
JP (1) JP2014509040A (ja)
KR (1) KR20140010944A (ja)
CN (1) CN103430372A (ja)
FR (1) FR2970785B1 (ja)
WO (1) WO2012098316A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11885829B2 (en) 2017-08-14 2024-01-30 Dukosi Limited Maturation processes for electric batteries cells

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104991197A (zh) * 2015-06-30 2015-10-21 桐乡市众胜能源科技有限公司 磷酸亚铁锂锂离子电池自放电测试方法
WO2018038423A1 (ko) * 2016-08-23 2018-03-01 삼성전자 주식회사 전력 제공 장치 및 전력을 수신하는 전자 장치와 그 제어 방법
US10330715B2 (en) * 2016-12-11 2019-06-25 Keysight Technologies, Inc. Systems and methods for determining a self-discharge current characteristic of a storage cell
US10731635B2 (en) * 2017-05-17 2020-08-04 The University Of Akron Polymer electrolyte membrane assembly
JP6907790B2 (ja) * 2017-08-07 2021-07-21 トヨタ自動車株式会社 蓄電デバイスの検査方法および製造方法
KR102258821B1 (ko) * 2018-04-30 2021-05-31 주식회사 엘지에너지솔루션 이차 전지 테스트 장치 및 방법
CN108562859A (zh) * 2018-06-14 2018-09-21 东莞市振华新能源科技有限公司 一种评估锂离子电池中锂离子扩散的测试方法
CN109143103A (zh) * 2018-09-10 2019-01-04 惠州亿纬锂能股份有限公司 一种电池压降的计算方法
CN110707387A (zh) * 2019-09-12 2020-01-17 东莞力朗电池科技有限公司 一种磷酸铁锂电芯自放电筛选方法
KR20210059505A (ko) * 2019-11-15 2021-05-25 주식회사 엘지에너지솔루션 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩
CN111215355A (zh) * 2019-11-22 2020-06-02 昆山聚创新能源科技有限公司 筛选自放电锂电池的方法
CN110988715A (zh) * 2019-11-25 2020-04-10 珠海冠宇电池有限公司 一种检测电池电芯自放电电流的方法
CN111123120B (zh) * 2019-11-29 2021-09-03 合肥国轩高科动力能源有限公司 一种锂离子电池自放电电流的测定方法
CN111123128A (zh) * 2019-12-17 2020-05-08 惠州亿纬创能电池有限公司 电池漏电流检测方法
CN115552675A (zh) * 2020-04-03 2022-12-30 佛吉亚排气系统有限公司 通过温度和/或压力感进行的用于电池单体的固体电解质界面层的形成的操作测试的方法
CN112433162B (zh) * 2020-10-26 2023-09-01 惠州市豪鹏科技有限公司 一种锂离子电池老化方法
CN113611935A (zh) * 2021-06-24 2021-11-05 合肥国轩高科动力能源有限公司 一种锂电池自放电测试装置
CN114264969B (zh) * 2021-12-21 2023-08-11 蜂巢能源科技(无锡)有限公司 一种电芯自放电性能评估方法及装置
JP7501546B2 (ja) * 2022-01-11 2024-06-18 トヨタ自動車株式会社 バッテリ検査方法およびバッテリ検査システム
CN117590264A (zh) * 2023-11-29 2024-02-23 湖南银杏电池智能管理技术有限公司 一种电池系统静置电流自适应计算方法、设备及介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162170A (en) * 1989-07-21 1992-11-10 Mistubishi Petrochemical Co., Ltd. Electrode for secondary battery
US6040685A (en) * 1996-08-16 2000-03-21 Total Battery Management, Inc. Energy transfer and equalization in rechargeable lithium batteries
US6436576B1 (en) * 2000-05-24 2002-08-20 Litech, L.L.C. Carbon-carbon composite as an anode for lithium secondary non-aqueous electrochemical cells
US6852451B2 (en) * 2000-09-06 2005-02-08 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery having a carbonaceous material containing negative electrode and a nonaqueous electrolyte containing a nonaqueous solvent
JP2002343446A (ja) * 2001-05-17 2002-11-29 Toyota Motor Corp リチウムイオン二次電池の自己放電量測定方法
JP2003100351A (ja) * 2001-09-21 2003-04-04 Toyota Motor Corp リチウムイオン二次電池の自己放電量測定方法及びリチウムイオン二次電池の製造方法
JP2003151627A (ja) * 2001-11-09 2003-05-23 Sony Corp 電 池
JP2003317810A (ja) * 2002-04-18 2003-11-07 Toyota Motor Corp 電池の特性評価方法
JP2004063394A (ja) * 2002-07-31 2004-02-26 Sanyo Electric Co Ltd 非水電解質電池
US6789026B2 (en) * 2002-12-29 2004-09-07 Texas Instruments Incorporated Circuit and method for monitoring battery state of charge
US7358012B2 (en) * 2004-01-06 2008-04-15 Sion Power Corporation Electrolytes for lithium sulfur cells
JP2006024392A (ja) * 2004-07-06 2006-01-26 Tdk Corp リチウムイオン二次電池の充電方法
JP2006147389A (ja) * 2004-11-22 2006-06-08 Nec Tokin Corp 2次電池の自己放電量の測定方法
JP5551542B2 (ja) * 2009-09-17 2014-07-16 株式会社オハラ 全固体電池および全固体電池の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11885829B2 (en) 2017-08-14 2024-01-30 Dukosi Limited Maturation processes for electric batteries cells

Also Published As

Publication number Publication date
WO2012098316A9 (fr) 2012-09-13
FR2970785A1 (fr) 2012-07-27
US9608456B2 (en) 2017-03-28
FR2970785B1 (fr) 2013-11-15
EP2666204B1 (fr) 2015-03-04
WO2012098316A1 (fr) 2012-07-26
KR20140010944A (ko) 2014-01-27
CN103430372A (zh) 2013-12-04
EP2666204A1 (fr) 2013-11-27
US20140049227A1 (en) 2014-02-20

Similar Documents

Publication Publication Date Title
US9608456B2 (en) Method for estimating the self-discharge of a lithium battery
CN109586373B (zh) 一种电池充电方法和装置
TWI633694B (zh) 鋰鍍覆的偵測方法,用於充電二次電池組的方法與設備,以及利用彼等的二次電池組系統
US10605870B2 (en) Method for predicting battery charge limit, and method and apparatus for rapidly charging battery using same
US10236702B2 (en) Method and apparatus for rapidly charging battery
JP3669673B2 (ja) 電気化学素子の劣化検出方法、残容量検出方法、並びにこれらを用いた充電器および放電制御装置
JP5488343B2 (ja) 充電制御装置及び蓄電装置
KR20210062263A (ko) 전고체전지의 상태 추정 방법
JP3687636B2 (ja) 二次電池の劣化検出方法及び劣化検出機能を具備した充電器
JP6529972B2 (ja) 電気化学システムに組み込まれた比較電極をその場で再較正する方法
JP2014082121A (ja) 非水電解液二次電池の製造方法
US11251472B2 (en) System and method for operating batteries based on electrode crystal structure change
CN114646892B (zh) 获取二次电池soc-ocv曲线和嵌锂量-ocv曲线的方法和装置
CN108572323A (zh) 电池状态推测装置
JP2014059251A (ja) 内部抵抗推定装置及び内部抵抗推定方法
CN117293979B (zh) 电池均衡控制方法、存储介质和电子设备
KR102626563B1 (ko) 배터리 충전 방법 및 배터리 충전 장치
JP7443646B2 (ja) 二次電池性能推定装置、システムおよびその方法
KR20230074876A (ko) 리튬-황 전지의 건강상태 추정 방법
Pop et al. Battery aging process