JP2014507866A - Hs−scch命令を介したcltd動作の動的なイネーブルおよびディセーブル - Google Patents

Hs−scch命令を介したcltd動作の動的なイネーブルおよびディセーブル Download PDF

Info

Publication number
JP2014507866A
JP2014507866A JP2013549498A JP2013549498A JP2014507866A JP 2014507866 A JP2014507866 A JP 2014507866A JP 2013549498 A JP2013549498 A JP 2013549498A JP 2013549498 A JP2013549498 A JP 2013549498A JP 2014507866 A JP2014507866 A JP 2014507866A
Authority
JP
Japan
Prior art keywords
cltd
dpcch
antenna
node
transmit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013549498A
Other languages
English (en)
Inventor
サムブワニ、シャラド・ディーパク
ホウ、ジレイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2014507866A publication Critical patent/JP2014507866A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • H04B7/0693Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas switching off a diversity branch, e.g. to save power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

無線通信の装置および方法は、ユーザ機器(UE)とアクセスノードとの間の閉ループ送信ダイバーシチ(CLTD)動作を設定することと、UEからアクセスノードへのアップリンクの条件を検出することと、この条件に基づいてUEによるCLTD動作をディセーブルすることとを含む。オプションとして、装置および方法は更に、アップリンクの条件が終了したことを検出することと、これに応じてCLTD動作をイネーブルすることとを更に含みうる。

Description

35U.S.C.第119条の下の優先権主張
本特許出願は、両方が本願の譲受人に譲渡され、両方が参照によって本願に明確に組み込まれた、2011年2月14日出願の“Dynamic Enabling and Disabling of CLTD Operation via HS-SCCH Orders”と題された米国特許仮出願第61/442653号、および2011年1月10日出願の“Dynamic Enabling and Disabling of CLTD Operation via HS-SCCH Orders”と題された米国特許仮出願第61/431353号に対する優先権を主張する。
本開示の態様は、一般に無線通信システムに関し、特に、アップリンク送信ダイバーシチのための継続的な相対評価のための閉ループフィードバックに関する。
無線通信ネットワークは、電話通信、ビデオ、データ、メッセージング、ブロードキャストなどのような様々な通信サービスを提供するために幅広く展開されている。通常、多元接続ネットワークであるそのようなネットワークは、利用可能なネットワークリソースを共有することによって複数のユーザのための通信をサポートできる。そのようなネットワークの一例は、UMTS地上ラジオアクセスネットワーク(UTRAN)である。UTRANは、第3世代パートナーシッププロジェクト(3GPP(登録商標))によってサポートされる第3世代(3G)移動体電話技術である、ユニバーサル移動体通信システム(UMTS)の一部として定められたラジオアクセスネットワーク(RAN)である。移動体通信用グローバルシステム(GSM(登録商標))の後継であるUMTSは現在、広帯域符号分割多元接続(W−CDMA(登録商標))、時分割符号分割多元接続(TD−CDMA)、および時分割同期符号分割多元接続(TD−CDMA)のような様々なエアインタフェース規格をサポートする。UMTSはまた、関連付けられたUMTSネットワークに高いデータ転送速度および容量を提供する高速パケットアクセス(HSDPA)のような高度な3Gデータ通信プロトコルもサポートする。
HSPAセルラシステムにおけるモバイルユーザの場合、ユーザ経験(user experience)がしばしば、ユーザ機器(UE)の送信電力によって制限される。例えば、セル端のUEは、低いデータレートで送信しなければならない、あるいは、送信電力制限によってコールを確立できない可能性がある。閉ループ送信ダイバーシチ(closed loop transmit diversity)(CLTD)の技術は、これら状況を改善するために役立つ。UEにおいて複数の送信アンテナが用いられていると想定する。UE送信機は送信アンテナに重み付けベクトルを適用し、これらアンテナからの信号が基地局(例えば、「ノードB」)受信アンテナにおいてコヒーレントに結合されるようにできる。
CLTDからのビームフォーミング利得による必要なUE送信電力の低減によって、リンクバジェット(link budget)およびユーザ経験が改善される。更に、異なるアンテナにまたがる信号が単独のフェージングを経験する場合、コヒーレントな信号結合が深いフェージングの可能性を少なくしてより安定な複合チャネルをもたらす。こうして、ビームフォーミングはダイバーシチ利得を提供できる。閉ループビームフォーミングスキームを考えることの動機づけは、ノードB処理およびフィードバックで、UE送信機が(おそらく、複雑性およびダウンリンクフィードバック電力が増加するという代償を払い)ビームフォーミングフェーズを上記利点を達成するために適用できることにある。UEはサービス提供セルに向かってだけビームを形成するので、2つのUE送信アンテナからの信号は構造上の追加なしで他の全セルで通常受信される。従って、ネットワークレベルの観点では、このUEにより他のノードB受信機で生じる干渉が低減される。この干渉の低減はネットワークスループットの改善をもたらす。しかし、送信ダイバーシチが性能に弊害を生じる結果となりうるシナリオ(scenarios)が存在する。
下記は、1つまたは複数の態様の基本的理解を提供するために、そのような態様の簡略化された概要を提示する。この概要は、意図された態様全ての概観には及ばず、全ての態様の鍵すなわち重要要素を示す、あるいは全てのまたは任意の態様の範囲を説明することは意図されていない。唯一の目的は、1つまたは複数の態様のいくつかの概念を、以下で説明される詳細な説明の前置きとして簡略化された形式で提示することである。
一態様において、本開示は、ユーザ機器(UE)とアクセスノードとの間の閉ループ送信ダイバーシチ(CLTD)を設定する(configuring)ことと、UEからアクセスノードへのアップリンクの条件を検出することと、条件に基づいてUEによるCLTD動作をディセーブルすることとによる、無線通信のための方法を提供する。
別の態様において、本開示は、無線通信のための少なくとも1つのプロセッサを提供する。プロセッサは、UEとアクセスノードとの間のCLTD動作を設定するための第1のモジュールを含む。更にプロセッサは、UEからアクセスノードへのアップリンクの条件を検出するための第2のモジュールと、この条件に基づいてUEによるCLTD動作をディセーブルするための第3のモジュールとを含む。
更なる態様において、本開示は、無線通信のためのコンピュータプログラム製品を提供する。非一時的コンピュータ読取可能記憶媒体が複数セットのコードを格納する。第1セットのコードはUEとアクセスノードとの間のCLTD動作をコンピュータに設定させる。第2セットのコードはUEからアクセスノードへのアップリンクの条件をコンピュータに検出させる。第3セットのコードはこの条件に基づいてUEによるCLTD動作をコンピュータにディセーブルさせる。
更なる態様において、本開示は、無線通信のための装置を提供する。装置は、UEとアクセスノードとの間のCLTD動作を設定するための手段を備える。装置は更に、UEからアクセスノードへのアップリンクの条件を検出するための手段を備える。更に装置は、この条件に基づいてUEによるCLTD動作をディセーブルするための手段を備える。
また別の態様において、本開示は、無線通信のための装置を提供する。装置は、UEとアクセスノードとの間のCLTD動作を設定するためのスケジューラを含む。装置は更に、UEからアクセスノードへのアップリンクの条件を検出するための受信機を含む。更に装置は、この条件に基づいてUEによるCLTD動作をディセーブルするための送信機を含む。
上記およびこれに関連する目的を達成するために、1つまたは複数の態様は、以下で完全に説明され特許請求の範囲において特に指摘される特徴を備える。以下の説明および添付図面は、1つまたは複数の態様の例示的特徴を詳しく記載する。しかしこれらの特徴は、様々な態様の原理が用いられうる様々な方法のうちの少しか示しておらず、本説明は、これら態様およびこれらの均等物の全てを含むことが意図される。
開示された態様は、以下、添付図面に関連して説明される。添付図面は、開示された態様を制限するためでなく例示するために提供される。添付図面において、同様の記号表示は同様の要素を示す。
図1は、アップリンク送信ダイバーシチ(ULTD)を行っている基地局および移動体局のセルラ通信システムの態様の概略図である。 図2は、無線通信のためのユーザ機器(UE)および基地ノードの態様の図である。 図3Aは、ULTDを動的に制御することによる無線通信のための方法の態様のフロー図である。 図3Bは、ULTDを動的に制御することによる無線通信のための方法の態様のフロー図である。 図3Cは、ULTDを動的に制御することによる無線通信のための方法の態様のフロー図である。 図4Aは、ULTDを動的に制御するためのUE設定の態様の図である。 図4Bは、ULTDを動的に制御するためのUE設定の態様の図である。 図4Cは、ULTDを動的に制御するためのUE設定の態様の図である。 図4Dは、ULTDを動的に制御するためのUE設定の態様の図である。 図4Eは、ULTDを動的に制御するためのUE設定の態様の図である。 図5は、ULTDを制御するための処理システムを用いる装置の態様に関するハードウェア実施形態の例を示す図である。 図6は、ULTDの制御に関する上記態様を含む通信システムの態様の例を概念的に示すブロック図である。 図7は、ULTDの制御に関する上記態様を含むアクセスネットワークの例を示す概念図である。 図8は、ULTDの制御に関する上記多様を含む通信システムの態様においてUEと通信中のノードBの例を概念的に示すブロック図である。 図9は、ULTDの制御に関する上記態様を含む無線通信のための電子部品の論理グループのシステムのブロック図である。 図10は、CLTDビームフォーミングUE送信機の態様の概略ブロック図である。
詳細な説明
以下、様々な態様が図面を参照して説明される。以下の説明において、説明目的のために、1つまたは複数の態様の完全な理解を提供するために数々の具体的な詳細が説明される。しかし、こうした態様は、これらの具体的な詳細なしでも実施されうることが明らかであるだろう。
HSPA(高速パケットアクセス)セルラシステムにおけるモバイルユーザの場合、ユーザ経験がしばしば、ユーザ機器(UE)の送信電力によって制限される。例えば、セル端のUEは、送信電力制限によって、低いデータレートで送信しなければならない、あるいはコールを確立できない可能性がある。閉ループ送信ダイバーシチ(CLTD)の技術は、これらのシチュエーションを改善するために役立つ。UEにおいて複数の送信アンテナが用いられると仮定する。UE送信機は、送信アンテナに重み付けベクトルを適用することができ、これによってこれらアンテナからの信号は、基地ノード(例えば、「ノードB」)受信アンテナにおいてコヒーレントに結合される。しかし、送信ダイバーシチの結果、性能に弊害がもたらされるシナリオが存在する。そのようなシナリオにおいて、説明される装置および方法は、短期間の間CLTD動作をディセーブルすることと、シナリオが再びCLTDにとって好都合となった場合、CLTDをイネーブルすることとを提供する。
典型的な態様において、CLTD動作自体は、ノードBがプレコーディング制御インジケーション(PCI)ビットをUEへシグナルできる動的な手順である。本開示において、様々な形式の動的制御が、PCIビットよりもゆっくりな更新レートを有する。この目的のために、HS−SCCH命令(持続的パケット接続(CPC)、マルチキャリア高速パケットアクセス(MC−HSPA)等において用いられる)がより適切である。
添付図面と関連して以下に記載する詳細な説明は、様々な構成の説明として意図されており、本明細書で説明される概念が実施されうる構成のみを表すことは意図されていない。詳細な説明は、様々な概念の完全な理解を提供する目的のために具体的な詳細を含む。しかし、当業者には、これら概念がこれらの具体的な詳細なしでも実施されうることが明らかであるだろう。いくつかの例において、そのような概念を不明瞭にすることを回避するために、周知の構成および構成要素がブロック図の形式で示される。
図1を参照すると、無線通信システム100において、選択式閉ループ送信ダイバーシチ(CLTD)コントローラ101が、本明細書に開示される態様に従って、いつCLTDをイネーブルおよびディセーブルするかを決定する。
具体的には、ユーザ機器(UE)102として示されるアクセス端末は、基地ノード(「ノードB」)108として示されるアクセスノードによってダウンリンク106においてUE102に提供されたスケジュールに従って、アップリンク104において送信する。典型的な態様において、ノードB108は、ラジオネットワークコントローラ(RNC)112として示されたスケジューラによってスケジュールされた、複数のアクセスノード110のうちの1つである。RNC112は、ダウンリンクシグナリング命令114の一部としてUE102およびノードB108におけるCLTD動作を設定(configure)する。現在UE102にサービス提供しているノードB108は、ダウンリンク106の高速共有制御チャネル(HS−SCCH)においてアンテナ118を介してダウンリンクシグナリング命令114を送信するために送信機116を用いる。CLTD動作をイネーブルまたはディセーブルするダウンリンクシグナリング命令114は、受信機120によって受信され、UE102は、アップリンク104においてアンテナ124を介して送信するために送信機122を用いる。この場合UE送信は、ノードB108の受信機128におけるアンテナ118で受信される。
ノードB108の受信機128のような受信機は、CLTD動作に好適ではないシナリオまたは条件130を検出する。例えば1つの態様において、ノードB108の受信機128は、条件130としてUE102の速さ(speed)または速度(velocity)を推定し、速さまたは速度がCLTD動作をディセーブルするための制限または閾値を超えているかに関する判定を行う。
代わりにまたは加えて、条件130は、データ誤りレートに関することもある。例えば1つの態様において、ノードB108は、所与の時間ウインドウ内に誤って受信されたパケットの数が閾値を超えることを判定できる。このように、RNC112は、CLTD動作をディセーブルすることを決定できる。
いくつかの態様において、ノードB108における受信機128は、UE102の受信機120によって何が受信されたかに基づいて条件130を間接的に検出できる。例えば、ダウンリンク106におけるUE102での内側ループ電力制御(ILPC)手順によって、UE102は、CLTD動作に関するビームフォーミングフィードバック重み情報を搬送するダウンリンク制御チャネル(例えば、HS−SCCH)において閾値を上回る電力をノードBが送信することを必要としうる。閾値を超えるこの条件130に基づいて、サービス提供しているノードBは、CLTD動作をディセーブルできる。
受信機128からの情報に基づいて、例えば受信機128またはノードB108および/またはRNC112によって、条件130が除去されたことが検出されると、RNC112(または受信機128またはノードB108)は、CLTD動作をイネーブルするように決定を下すことができ、ノードB108は、ダウンリンクシグナリング命令114をUE102へ送信できる。
図2において、例に従って多元接続無線通信システムが示される。アクセスポイント(AP)または基地局200は複数のアンテナグループを含み、1つは204および206を含み、別の1つは208および210を含み、また別の1つは212および214を含む。図2において、各アンテナグループにつき2つのアンテナのみが示されるが、各アンテナグループについてより多いまたは少ない数のアンテナが用いられうる。移動体デバイスまたはアクセス端末216(AT)は、アンテナ212および214と通信中であり、この場合アンテナ212および214は、ダウンリンク(DL)すなわち順方向リンク(FL)220を介してアクセス端末216へ情報を送信し、アップリンク(UL)すなわち逆方向リンク218を介してアクセス端末216からの情報を受信する。アクセス端末222がアンテナ206および208と通信中であると、アンテナ206および208がDLすなわち順方向リンク226を介してアクセス端末222へ情報を送信し、ULすなわち逆方向リンク224を介してアクセス端末222からの情報を受信する。周波数分割双方向(FDD)システムにおいて、通信リンク218、220、224、および226は、通信のために異なる周波数を用いうる。例えば順方向リンク220は、ULすなわち逆方向リンク218によって用いられたものと異なる周波数を用いうる。
各グループの複数のアンテナおよび/またはこれらが通信するように指定されたエリアはしばしば、アクセスポイントのセクタと称される。一例において、アンテナグループの各々は、アクセスポイントまたは基地局200によってカバーされたエリアのセクタ内のアクセス端末と通信するように指定される。
順方向リンク(すなわちダウンリンク)220および226を介した通信中、基地局またはアクセスポイントまたは基地局200の送信アンテナは、異なるアクセス端末216および222に関する順方向リンクの信号対雑音比を改善するためにビームフォーミングを用いうる。更に、自身のカバレージにランダムに散在するアクセス端末へ送信するためにビームフォーミングを用いている基地局またはアクセスポイントは、自身に関するアクセス端末全てへ単一のアンテナによって送信しているアクセスポイントよりも、近隣セルのアクセス端末に生じさせる干渉が少ない。
アクセスポイントは固定であったり、端末と通信するために用いられる基地局であったりでき、アクセスポイント、ノードB、または何か他の用語で呼ばれうる。アクセス端末は、アクセス端末、ユーザ機器(UE)、無線通信デバイス、端末、アクセス端末、または何か他の用語で呼ばれうる。更に、図2におけるシステムは、データ送信のために複数(NT個)の送信アンテナおよび複数(NR個)の受信アンテナを用いるMIMOシステムでありうる。NT個の送信アンテナおよびNR個の受信アンテナによって形成されたMIMOチャネルは、NS個の独立したチャネルに分解されることができ、これは空間チャネルとも呼ばれる。NS個の独立したチャネルの各々は次元に対応する。MIMOシステムは、複数の送信アンテナおよび受信アンテナによって生成された追加の次元が用いられる場合、改善された性能(例えば、高いスループットおよび/または高い信頼性)を提供できる。
図2のシステムは、一例として、CLTDのような連続値測定およびフィードバックを用いうる。特定の例において、移動体デバイス(例えば、216または222)は、連続値制御シグナリングにおいてアクセスポイントまたは基地局200からの制御フィードバックを受信しうる。例えばフィードバックは、フェーズ、電力などの閉ループ制御のために用いることができる。上述したように、例えば、無線(over-the-air)(OTA)リソースの利用が制限されることによって必要な量子化の結果、閉ループ送信ダイバーシチ(CLTD)の性能低下がもたらされる。
選択式CLTDコントローラ101は、本明細書に開示された態様に従って、アップリンクにおけるCLTD動作をいつイネーブルおよびディセーブルするかを決定する。
図3Aにおいて、本開示は、無線通信のための方法300を提供する。一態様において、方法300は、ユーザ機器(UE)とアクセスノードとの間の閉ループ送信ダイバーシチ(CLTD)を設定することを含みうる(ブロック302)。例えばスケジューラまたはラジオネットワークコントローラが、ビームフォーミングフィードバック重み情報を決定およびUEへ送信することを含む、CLTD動作を設定しうる。
典型的な態様において、UEは、第1の物理アンテナを介して一次プレコーディングベクトルにおいて送信される専用物理制御チャネル(DPCCH)、専用物理データチャネル(DPDCH)、高速専用物理制御チャネル(HS DPCCH)、エンハンスド専用物理制御チャネル(E DPCCH)、およびエンハンスド専用物理データチャネル(E DPDCH)と、第2の物理アンテナを介して二次プレコーディングベクトルにおいて送信される二次専用物理制御チャネル(S DPCCH)とを備える構成で、CLTD動作に関して設定される。
更に、方法300は、UEからアクセスノードへのアップリンクの条件を検出することを含みうる(ブロック304)。例えば、ノードBの(あるいはスケジューラまたはRNCに関連付けられた)受信機または他の構成要素は、UEの速度が閾値を上回っていることを検出できる。別の例によると、受信機(または他のネットワーク構成要素)は、CLTD動作のためのダウンリンクシグナリング命令を送信するために計算された送信電力が閾値を上回っていると判定できる。更なる例によると、受信機(または他のネットワーク構成要素)は、アクセスノードにおける未処理のパケット誤りレートが閾値を上回っていると判定できる。
また方法300は、この条件に基づいてUEによるCLTD動作をディセーブルすることを含みうる(ブロック306)。例えばノードBにおける送信機は、CLTD動作を中断するためにHS−SCCHを介してUEへダウンリンクシグナリング命令を送信できる。
オプションとして、典型的な態様において、方法300は、この条件が終了したことを検出することを含みうる(ブロック308)。例えば一態様において、受信機は、UEからアクセスノードへのアップリンクの条件が終了したことを検出する。またオプションとして、方法300は、検出に応答してUEによるCLTD動作をイネーブルすることを含みうる(ブロック310)。例えば一態様において、送信機は、CLTD動作を再開するための命令をUEへ送信しうる。
図3Bにおいて、方法300(図3A)に関して、UEからアクセスノードへのアップリンクの条件を検出するための典型的な方法304が示される。CLTDの技術は多くのシナリオにおいて役立つが、送信ダイバーシチの結果、性能に弊害がもたらされうるシナリオも存在する。例えば、性能に弊害がもたらされるシナリオは、UEの速度(速さ)が、ループがチャネルを十分な速度で追跡できない限界値を超えていることを、サービス提供しているノードBの受信機が推定した場合でありうる。別の例として、性能に弊害がもたらされるシナリオは、ダウンリンクにおけるUEでの内側ループ電力制御(ILPC)手順の結果、ビームフォーミングフィードバック重み情報を搬送するダウンリンク制御チャネルにおいてUEが過剰な電力を必要とする場合でありうる。更なる例として、性能に弊害がもたらされるシナリオは、サービス提供しているノードBの受信機が、所与の時間ウインドウ内に多数のパケットを誤って受信する場合でありうる。更なる例として、性能に弊害がもたらされるシナリオは、アンテナのうちの1つが、人の影響で一時的に大量に弱められたために、強いアンテナのみから信号を送信することが好ましくなりうる場合でありうる。例えば、この条件は、未処理チャネルのチャネル推定値の長期にわたる信号対雑音比(SNR)間の差を測定することによってノードBで検出されうる。そのようなシナリオにおいて、ULTD動作を動的に制御することが役立ちうる。
図3Bを続けて参照すると、明確化のために、どれもがULTDをディセーブルするための条件の存在を示しうる一連の判定が図示される。しかし、本発明と整合が取れた実施形態は、説明されたものと同様のサブセット、組み合わせ、または追加の決定を包含できる。
スケジューラおよび/または受信機のようなネットワーク構成要素は、UEの速度を検出する(ブロック320)。スケジューラおよび/または受信機のようなネットワーク構成要素は、速度が閾値を上回るかに関する判定を行う(ブロック322)。これに応じて、ケジューラおよび/または受信機のようなネットワーク構成要素は、その判定に少なくとも部分的に基づいて、UEからアクセスノードへのアップリンクの条件(例えば、性能に弊害をもたらすシナリオ)の存在を決定する。
代わりにまたは加えて、検出された速度が閾値を上回らないと判定された場合(ブロック322)、スケジューラおよび/または送信機のようなネットワーク構成要素は、CLTD動作に関するダウンリンクシグナリング命令を送信するための送信電力を決定する(ブロック326)。スケジューラおよび/または送信機のようなネットワーク構成要素はこの後、送信電力が閾値を上回るかに関する判定を行う(ブロック328)。上回る場合、スケジューラおよび/または送信機のようなネットワーク構成要素は、アップリンクの条件(例えば、性能に弊害をもたらすシナリオ)の存在があるかを判定する(ブロック324)。
代わりにまたは加えて、スケジューラおよび/または受信機のようなネットワーク構成要素は、アクセスノードにおける未処理のパケット誤りレートを検出する(ブロック330)。スケジューラおよび/または受信機のようなネットワーク構成要素は、検出された未処理のパケット誤りレートが閾値を上回るかに関する判定を行う(ブロック332)。上回る場合、スケジューラおよび/または受信機のようなネットワーク構成要素は、アップリンクの条件(例えば、性能に弊害をもたらすシナリオ)が存在するかを判定する(ブロック324)。存在しない場合、スケジューラおよび/または受信機のようなネットワーク構成要素は、条件が存在しないことを決定する(ブロック334)。
図3Cにおいて、方法300(図3A)に関する条件に基づいてUEによるCLTD動作をディセーブルするための典型的な方法306が示される。特に、方法306は、単にデフォルトとして第1の物理アンテナでDPCCH、DPDCH、HS DPCCH、E DPCCH、およびE DPDCHを送信し、第2の物理アンテナを用いないのではなく、選択的にUEを設定できる。
スケジューラおよび/または受信機のようなネットワーク構成要素は、測定間隔にわたる信号対雑音比における第1の物理アンテナと第2の物理アンテナとの間の差が第1の閾値を上回ると判定できる(ブロック330)。更に、スケジューラおよび/または送信機のようなネットワーク構成要素は、差の判定に基づいて、第1の物理アンテナおよび第2の物理アンテナのうちの1つにおいて非CLTD動作で送信することをUEのために選択し、UEに指示できる(ブロック332)。
代わりにまたは加えて、スケジューラおよび/または受信機のようなネットワーク構成要素は、第1の物理アンテナにおける送信に関するUEの第1の電力増幅性能と、第2の物理アンテナにおける送信に関するUEの第2の電力増幅性能とを判定できる(ブロック340)。スケジューラおよび/または送信機のようなネットワーク構成要素は、第1および第2の電力増幅性能の判定に基づいて、DPCCH、DPDCH、HS DPCCH、E DPCCH、およびE DPDCHを送信するために第1の物理アンテナおよび第2の物理アンテナのうちの1つを選択できる(ブロック342)。
図4A乃至4Eは、方法300(図3A)をサポートするための様々なUE設定を示す。図4Aにおいて、410に示すように、UEは通常、一次プレコーディングベクトルにおいて送信されるDPCCH、DPDCH、HS−DPCCH、E−DPCCH、およびE−DPDCHが送信され、二次プレコーディングベクトルにおいてS−DPCCHが送信されるCLTDモードで動作している。この通常のCLTDモードは以下、ULTD設定(1):一次プレコーディングベクトルにおけるDPCCH/HS−DPCCH/E−DCHおよび二次プレコーディングベクトルにおけるS−DPCCH、として参照される。
図4Bは、ユーザが高速である場合、または物理アンテナ2(A2)が物理アンテナ1(A1)に比べて高い減衰を経験している場合のような、ビームフォーミングが有害な影響を及ぼす使用事例に対応する。この事例において、物理アンテナ1においてDPCCH、DPDCH、HS−DPCCH、E−DPCCH、およびE−DPDCHを送信し、物理アンテナ2においてS−DPCCHを送信することが有益となりうる。アンテナ2(A2)でS−DPCCHを送信する理由は、チャネルサウンディングを可能にすることで、UEをULTD設定(1)に再設定するなどによるビームフォーミング手順をいつ再開するかをノードBが検出できるようにするためである。このモードは以下、ULTD設定(2):物理アンテナ1(A1)におけるDPCCH/HS−DPCCH/E−DCHおよび物理アンテナ2(A2)におけるS−DPCCH、として参照される。
図4Cにおける使用事例は、物理アンテナ1および2の役割が逆であることを除き、図4Bにおける使用事例と同一である。このモードは以下、ULTD設定(3):物理アンテナ2(A2)におけるDPCCH/HS−DPCCH/E−DCHおよび物理アンテナ1(A1)におけるS−DPCCH、として参照される。
図4Dは、UEが旧モードにおいて動作している場合に対応し、この場合ULTDは非アクティブ化またはディセーブルされるだけである。このモードは以下、ULTD設定(4):物理アンテナ1(A1)におけるDPCCH/HS−DPCCH/E−DCHおよびS−DPCCHがディセーブルされる、として参照される。
図4Eはまた、非ULTDモードへの後退に対応しており、これは、代わりにUEが物理アンテナ2(A2)で送信することを除き、ULTDが非アクティブ化またはディセーブルされた状態でありうる。この設定は、UEが物理アンテナ1と2との間の長期にわたるアンバランスを経験した場合、何らかの利点を有するはずである。このモードは以下、ULTD設定(5):物理アンテナ2(A2)におけるDPCCH/HS−DPCCH/E−DCHおよびS−DPCCHがディセーブルされるとして参照される。
表1は、上記の5つの異なるULTD設定の概要を示す。この態様において、設定(2)、(3)、および(5)は、HS−SCCH命令を介してサポートされうる。
Figure 2014507866
この箇所における5つの異なるULTD設定の説明は、UEが2つの全出力PA(電力増幅器)において動作している可能性を許容しうる。
一般に、3つの異なるUE実施形態(UEnと称され、nは実施形態番号を表す)が存在しうる。
(1)UE1:2つの半出力PA
(2)UE2:物理アンテナ1(A1)における1つの全出力PA、およびアンテナ2(A2)における1つの半出力PA
(3)UE3:2つの全出力PA
本開示の利点に関連し、UE3は、PA最大電力ベースに基づく5つの異なるULTD設定をサポートできるべきであることが理解されはずである。しかし、UE1およびUE2の場合、PAを半出力から全出力へおよびその逆に再設定(re-configure)する機能に依存して、上述されたこれらUEタイプに関するULTD設定をサポートできたり、できなかったりする。一態様において、UEは、各アンテナでの自身のPA機能をUTRANへシグナルできる。
上記の長所によって、本発明は、ULTD動作のノードBベースの動的制御を提供する。典型的な態様において、動的制御のレートは、PCIビットがノードBへフィードバックされる更新レートほど速い必要はないので、HS−SCCH命令がより良い選択になることが可能である。更に、5つの異なるULTD設定が論じられ、これらがUEにおけるPA機能に依存するが、UEがこれらの設定をサポートできたり、できなかったりする。1つの典型的な実施形態において、ULTD動作の動的制御は、HS−SCCH命令を介する。最低限、この態様は、HS−SCCH命令がUEを(ビームフォーミングがアクティブ化された)ULTD設定(1)または(ビームフォーミングが非アクティブ化され、UEが一次アンテナで送信する)ULTD設定(4)のうちのいずれかに再設定することを可能にする。別の典型的な実施形態において、UE1(2つの半出力PA)およびUE2(1つの全出力PAおよび1つの半出力PA)は、ULTD設定(2)、(3)、および(5)をサポートできる。特定の態様において、UTRANに対するUEのPA機能のシグナリングは適切な設定を選択することを支援できる。
図5は、処理システム514を用いる装置500に関するハードウェア実施形態の例を示す概念図である。この例において、処理システム514は、バス502によって一般に表されたバスアーキテクチャを用いて実現されうる。バス502は、処理システム514の特定のアプリケーションおよび全体の設計制約に依存する、任意の数の相互接続バスおよびブリッジを含みうる。バス502は、プロセッサ504によって一般に表された1つまたは複数のプロセッサ、およびコンピュータ読取可能媒体506によって一般に表されたコンピュータ読取可能媒体を含む様々な回路を互いにリンクする。バス502はまた、当該技術において周知であるためにこれ以上詳しく説明されない、タイミングソース、周辺機器、電圧調整器、および電力管理回路のような様々な他の回路もリンクしうる。バスインタフェース508は、バス502とトランシーバ510との間のインタフェースを提供する。トランシーバ510は、送信媒体を介して他の様々な装置と通信するための手段を提供する。装置の特性に依存して、ユーザインタフェース512(例えば、キーパッド、ディスプレイ、スピーカ、マイクロホン、ジョイスティック)が提供されることもある。
プロセッサ504は、バス502の管理、およびコンピュータ読取可能媒体506に格納されたソフトウェアの実行を含む一般的な処理を請け負う。プロセッサ504によって実行されると、ソフトウェアは、処理システム514に、任意の特定の装置について以下で説明される様々な機能を行わせる。コンピュータ読取可能媒体506はまた、ソフトウェアを実行する際にプロセッサ504によって操作されるデータを格納するためにも用いられうる。
選択式CLTDコントローラ101は、本明細書に開示された態様に従って、クライアントエージェントとして動作したり、アップリンクにおけるCLTD動作をいつイネーブルおよびディセーブルするかを決定するために装置500を代表する決定を行ったりできる。
本開示を通して提示される様々な概念は、幅広く様々な電話通信システム、ネットワークアーキテクチャ、および通信規格にわたって実現されうる。限定ではなく一例として、図6に示す本開示の態様は、W−CDMA(登録商標)エアインタフェースを用いるUMTSシステム600に関して提示される。UMTSネットワークは、コアネットワーク(CN)604、UMTS地上ラジオアクセスネットワーク(UTRAN)602、およびユーザ機器(UE)610である3つの対話(interacting)しているドメインを含む。この例において、UTRAN602は、テレフォニ、ビデオ、データ、メッセージング、ブロードキャスト、および/または他のサービスを含む様々な無線サービスを提供する。UTRAN602は、ラジオネットワークサブシステム(RNS)607のような複数のラジオネットワークサブシステムを含むことができ、これらの各々は、ラジオネットワークコントローラ(RNC)606のような該当のラジオネットワークコントローラによって制御される。この場合UTRAN602は、本明細書に示されたRNC606およびRNS607に加えて任意の数のRNC606およびRNS607を含みうる。RNC606は、とりわけ、RNS607内のラジオリソースを割当て、再構成、および解放することを請け負う。RNC606は、任意の適切なトランスポートネットワークを用いて、直接物理的接続、仮想ネットワークなどのような様々なタイプのインタフェースを介してUTRAN602内の他のRNC(図示せず)と相互接続されうる。
UE610とノードB608との間の通信は、物理(PHY)層および媒体アクセス制御(MAC)層を含むと考えられうる。更に、該当のノードB608を介したUE610とRNC606との間の通信は、ラジオリソース制御(RRC)層を含むと考えられうる。本明細書において、PHY層は層1と考えられ、MAC層は層2と考えられ、RRC層は層3と考えられうる。本明細書における情報は、参照によって本願に組み込まれたラジオリソース制御(RRC)プロトコル仕様書、3GPP TS25.331v9.1.0において説明される用語を用いる。
SRNS607によってカバーされる地理的領域は、複数のセルに分割されることができ、ラジオトランシーバ装置が各セルにサービス提供している。ラジオトランシーバ装置は一般に、UMTSアプリケーションにおいてノードBと称されるが、当業者によって、基地局(BS)、基地トランシーバ局(BTS)、ラジオ基地局、ラジオトランシーバ、トランシーバ機能、基本サービスセット(BSS)、拡大型サービスセット(ESS)、アクセスポイント(AP)、または他の何らかの適切な用語として称されることもある。明確化のために、各SRNS607には3つのノードB608が示されるが、SRNS607は任意の数の無線ノードBを含みうる。ノードB608は、任意の数の移動体装置に関してコアネットワーク(CN)604への無線アクセスポイントを提供する。移動体装置の例は、セルラホン、スマートホン、セッション開始プロトコル(SIP)電話、ラップトップ、ノートブック、ネットブック、スマートブック、パーソナルデジタルアシスタント(PDA)、衛星ラジオ、グローバルポジショニングシステム(GPS)デバイス、マルチメディアデバイス、ビデオデバイス、デジタルオーディオプレーヤ(例えば、MP3プレーヤ)、カメラ、ゲーム機、または他の任意の同様の機能を持つデバイスを含む。移動体装置は一般に、UMTSアプリケーションにおいてユーザ機器(UE)と称されるが、当業者によって、移動体局(MS)、加入者局、移動体ユニット、加入者ユニット、無線ユニット、遠隔ユニット、移動体デバイス、無線デバイス、無線通信デバイス、遠隔デバイス、移動体加入者局、アクセス端末(AT)、移動体端末、無線端末、遠隔端末、ハンドセット、端末、ユーザエージェント、移動体クライアント、クライアント、または他の何らかの適切な用語として称されることもある。UMTSシステムにおいて、UE610は更に、ユーザのネットワークへの加入情報を含むユニバーサル加入者識別モジュール(USIM)611を含みうる。例示目的のために、複数のノードB608と通信中の1つのUE610が示される。順方向リンクとも称されるダウンリンク(DL)は、ノードB608からUE610への通信リンクを称し、逆方向リンクとも称されるアップリンク(UL)は、UE610からノードB608への通信リンクを称する。
コアネットワーク604は、UTRAN602のような1つまたは複数のアクセスネットワークとのインタフェースとなる。図示したように、コアネットワーク604はGSMコアネットワークである。しかし当業者は、本開示を通して提示された様々な概念が、RANまたは他の適切なアクセスネットワークにおいて実現され、GSMネットワーク以外の様々なタイプのコアネットワークへのアクセスをUEに提供しうることを理解するはずである。
コアネットワーク604は、回路交換(CS)ドメインおよびパケット交換(PS)ドメインを含む。回路交換要素のうちのいくつかは、移動体サービス交換センター(MSC)、ビジターロケーションレジスタ(VLR)、およびゲートウェイMSCである。パケット交換要素は、サービス提供GPRSサポートノード(SGSN)およびゲートウェイGPRSサポートノード(GGSN)を含む。EIR、HLR、VLR、およびAuCなどのいくつかのネットワーク要素は、回路交換ドメインおよびパケット交換ドメインの両方によって共有されうる。図示された例において、コアネットワーク604は、MSC612およびGMSC614を用いた回路交換サービスをサポートする。いくつかのアプリケーションにおいて、GMSC614は、媒体ゲートウェイ(MGW)と称されうる。RNC606のような1つまたは複数のRNCがMSC612に接続されうる。MSC612は、コールセットアップ、コールルーチング、およびUE移動性機能を制御する装置である。MSC612はまた、UEがMSC612のカバレージエリア内に存在する持続期間に関する加入者関連情報を含むビジターロケーションレジスタ(VLR)も含む。GMSC614は、UEが回路交換ネットワーク616にアクセスするために、MSC612を介してゲートウェイを提供する。GMSC614は、特定のユーザが加入したサービスの詳細を反映するデータのような加入者データを含むホームロケーションレジスタ(HLR)615を含む。HLRはまた、加入者固有認証データを含む認証センター(AuC)に関連付けられる。特定のUEに関してコールが受信されると、GMSC614は、UEのロケーションを判定し、そのロケーションにサービス提供している特定のMSCにコールを転送するために、HLR615に問い合わせる。
コアネットワーク604はまた、サービス提供GPRSサポートノード(SGSN)618およびゲートウェイGPRSサポートノード(GGSN)620を用いてパケットデータサービスもサポートする。ジェネラルパケットラジオサービスを表すGPRSは、回路交換データサービスによって利用可能な速度よりも速い速度でパケットデータサービスを提供するように設計される。GGSN620は、UTRAN620のパケットベースネットワーク622への接続を提供する。パケットベースネットワーク622は、インターネット、プライベートデータネットワーク、または何か他の適切なパケットベースネットワークでありうる。GGSN620の主な機能は、UE610とパケットベースネットワークとの接続を提供することである。データパケットは、SSGN618を介してGGSN620とUE610との間で転送されうる。SSGN618は、MSC612が回路交換ドメインにおいて行う機能と同じ機能をパケットベースドメインにおいて主に行う。
UMTSエアインタフェースは、スペクトル拡散ダイレクトシーケンス符号分割多元接続(DS−CDMA)システムである。スペクトル拡散DS−CDMAは、チップと呼ばれる擬似ランダムビットのシーケンスとの乗算によってユーザデータを拡散する。UMTSのためのW−CDMAエアインタフェースは、そのようなダイレクトシーケンススペクトル拡散技術に基づいており、周波数分割二重通信(FDD)を更に必要とする。FDDは、ノードB608とUE610との間のアップリンク(UL)とダウンリンク(DL)とについて異なる搬送波周波数を用いる。DS−CDMAを用いるUMTSのための別のエアインタフェースは、TD−SCDMAエアインタフェースである。当業者は、本明細書で説明された様々な例がWCDMAエアインタフェースに言及するが、根本的な原理はTD−SCDMAエアインタフェースにも等しく適用可能であることを理解するはずである。
RNC606とUE610とに散在するように図示された選択式CLTDコントローラ101は、本明細書に開示された態様に従って、アップリンクにおけるCLTD動作をいつイネーブルおよびディセーブルするかを決定する。
図7を参照すると、UTRANアーキテクチャにおけるアクセスネットワーク700が示される。複数のアクセス無線通信システムは、各々が1つまたは複数のセクタを含みうるセル702、704、および706を含む複数のセルラ領域(セル)を含む。複数のセクタはアンテナのグループによって形成されることができ、各アンテナは、セルの一部においてUEとの通信を請け負う。例えばセル702では、アンテナグループ712、714、および716が各々異なるセクタに対応しうる。セル704では、アンテナグループ718、720、および722が各々異なるセクタに対応する。セル706では、アンテナグループ724、726、および728が各々異なるセクタに対応する。セル702、704、および706は、例えばユーザ機器、すなわちUEのようないくつかの無線通信デバイスを含み、これらは各セル702、704、または706のうちの1つまたは複数のセクタと通信中でありうる。例えば、UE730および732はノードB742と通信中であり、UE734および736はノードB744と通信中であり、UE738および740はノードB746と通信中であることができる。従って、各ノードB742、744、746は、該当のセル702、704、および706内のUE730、732、734、738、740の全てについてコアネットワーク604(図6を参照)へのアクセスポイントを提供するように構成される。
UE734がセル704内に示されたロケーションからセル706へ移動すると、サービス提供セル変更(SCC)またはハンドオーバが発生し、UE734との通信は、ソースセルと称されうるセル704から、ターゲットセルと称されうるセル706へ移行する。ハンドオーバ手順の管理は、UE734、これら該当のセルに対応する複数のノードB、ラジオネットワークコントローラ606(図6を参照)、または無線ネットワーク内の他の適切なノードで行われうる。例えば、ソースセル704とのコール中または他の任意の時間に、UE734は、ソースセルの様々なパラメータおよびセル706および702のような近隣セルの様々なパラメータをモニタしうる。更に、これらパラメータに依存して、UE734は、近隣セルのうちの1つまたは複数との通信を維持しうる。この期間、UE734は、アクティブセット、すなわちUE734が同時に接続されるセルのリストを保持しうる(すなわち、ダウンリンク専用物理チャネルDPCHまたは部分ダウンリンク専用物理チャネルF−DPCHをUE734へ現在割り当てているUTRAセルがアクティブセットの構成要素となりうる)。
アクセスネットワーク700によって用いられる変調および多元接続スキームは、展開されている特定のテレコミュニケーション規格に依存して変化しうる。一例によると、規格は、エボリューションデータオプティマイズド(EV−DO)またはウルトラ移動体ブロードバンド(UMB)を含みうる。EV−DOおよびUMBは、CDMA2000規格群の一部として第3世代パートナーシッププロジェクト2(3GPP2)によって公布されたエアインタフェースであり、インターネットアクセスを移動体局へ提供するためにCDMAを用いる。あるいは規格は、広帯域CDMA(W−CDMA)およびTD−SCDMAのような他の様々なCDMAを用いるユニバーサル地上ラジオアクセス(UTRA)、TDMAを用いる移動体通信用グローバルシステム(GSM)、および、OFDMAを用いる次世代UTRA(E−UTRA)、ウルトラ移動体ブロードバンド(UMB)、IEEE802.11(WiーFi)、IEEE802.16(WiMAX)、IEEE802.20、およびFlash−OFDMでありうる。UTRA、E−UTRA、UMTS、LTE、LTEアドバンスド、およびGSMは、3GPP組織からの文書において説明される。CDMA2000およびUMBは3GPP2組織からの文書において説明される。実際に用いられる無線通信規格および多元接続技術は、特定のアプリケーションおよびシステムに課された全体の設計制約に依存するはずである。
選択式CLTDコントローラ101は、本明細書に開示された態様に従って、アップリンクにおけるCLTD動作をいつイネーブルおよびディセーブルするかを決定する。
図8は、UE850と通信中のノードB810のブロック図であり、ノードB810は図1の基地ノード108であることができ、UE850は図1のUE102であることができる。ダウンリンク通信において、送信プロセッサ820は、データソース812からのデータおよびコントローラ/プロセッサ840からの制御信号を受信しうる。送信プロセッサ820は、データおよび制御信号と参照信号(例えば、パイロット信号)とに様々な信号処理機能を提供する。例えば送信プロセッサ820は、誤り検出のための巡回冗長検査(CRC)コード、順方向誤り訂正(FEC)を容易にするためのコーディングおよびインタリービング、様々な変調スキーム(例えば、二相位相変調(BPSK)、四相位相変調(QPSK)、M位相変調(M−PSK)、M直交振幅変調(M−QAM)など)に基づいた信号配列へのマッピング、直交可変拡散因子(OVSF)による拡散、一連のシンボルを生成するためのスクランブルコードとの乗算を提供しうる。チャネルプロセッサ844からのチャネル推定値は、送信プロセッサ820に関するコーディングスキーム、変調スキーム、拡散スキーム、および/またはスクランブルスキームを決定するためにコントローラ/プロセッサ840によって用いられうる。これらのチャネル推定値は、UE850によって送信された参照信号から、またはUE850からのフィードバックから導出されうる。送信プロセッサ820によって生成されたシンボルは、フレーム構成を生成するために送信フレームプロセッサ830へ提供される。送信フレームプロセッサ830は、このフレーム構成をコントローラ/プロセッサ840からの情報を用いてシンボルを多重化することによって生成し、この結果として一連のフレームをもたらす。これらフレームはこの後、送信機832へ提供される。送信機832は、アンテナ834を介した無線媒体上でのダウンリンク送信のために搬送波上へのフレームを増幅、フィルタリング、および変調することを含む様々な信号調整機能を提供する。アンテナ834は、例えば、ビームステアリング双方向適応アンテナアレイまたは他の同様のビーム技術を含む、1つまたは複数のアンテナを含みうる。
UE850において、受信機854は、アンテナ852を介してダウンリンク送信を受信し、搬送波上への変調された情報を復元するために送信を処理する。受信機854によって復元された情報は、受信フレームプロセッサ860へ提供される。受信フレームプロセッサ860は各フレームを解析(parse)し、これらフレームからの情報をチャネルプロセッサ894へ提供し、データ信号、制御信号、および参照信号を受信プロセッサ870へ提供する。受信プロセッサ870はこの後、ノードB810の送信プロセッサ820によって行われた処理と逆の処理を行う。具体的には、受信プロセッサ870は、シンボルをデスクランブルおよび逆拡散し、変調スキームに基づいてノードB810によって送信された最も可能性のある信号配列点を決定する。これらの軟判定は、チャネルプロセッサ894によって計算されたチャネル推定値に基づきうる。軟判定はこの後、データ信号、制御信号、および参照信号を復元するために復号およびデインタリーブされる。この後、これらフレームが正しく復号されたかを判定するためにCRCコードが検査される。正しく復号されたこれらフレームによって搬送されたデータはこの後、データシンク872へ提供されることになる。データシンク872は、UE850において稼働中のアプリケーションおよび/または様々なユーザインタフェース(例えば、ディスプレイ)を表す。正しく復号されたフレームによって搬送された制御信号は、コントローラ/プロセッサ890へ提供されることになる。複数のフレームが受信機プロセッサ870によって誤って復号された場合、コントローラ/プロセッサ890は、これらフレームに関する再送信要求をサポートするためにアクノレッジメント(ACK)および/またはネガティブアクノレッジメント(NACK)を用いることもある。
アップリンクにおいて、データソース878からのデータおよびコントローラ/プロセッサ890からの制御信号は、送信プロセッサ880へ提供される。データソース878は、UE850において稼働中のアプリケーションおよび様々なユーザインタフェース(例えば、キーボード)を表しうる。ノードB810によるダウンリンク送信に関して説明された機能と同様、送信プロセッサ880は、CRCコード、FECを容易にするためのコーディングおよびインタリービング、信号配列へのマッピング、OVSFによる拡散、および一連のシンボルを生成するためのスクランブリングを含む様々な信号処理機能を提供する。ノードB810によって送信された参照信号またはノードB810によって送信されたミッドアンブルに含まれたフィードバックから、チャネルプロセッサ894によって導出されたチャネル推定値は、適切なコーディングスキーム、変調スキーム、拡散スキーム、および/またはスクランブルスキームを選択するために用いられうる。送信プロセッサ880によって生成されたシンボルは、フレーム構成を生成するために送信フレームプロセッサ882へ提供されることになる。送信フレームプロセッサ882は、このフレーム構成をシンボルとコントローラ/プロセッサ890からの情報とを多重化することによって生成し、その結果として一連のフレームをもたらす。これらフレームはこの後送信機856へ提供される。送信機856は、アンテナ852を介した無線媒体上でのアップリンク送信のために搬送波上へのフレームを増幅、フィルタリング、および変調することを含む様々な信号調整機能を提供する。
アップリンク送信は、UE850における受信機機能に関して説明されたのと同様の方式でノードB810において処理される。受信機835は、アンテナ834を通してアップリンク送信を受信し、搬送波上への変調された情報を復元するために送信を処理する。受信機835によって復元された情報は、受信フレームプロセッサ836へ提供される。受信フレームプロセッサ836は、各フレームを解析し、これらフレームからの情報をチャネルプロセッサ844へ提供し、データ信号、制御信号、および参照信号を受信プロセッサ838へ提供する。受信プロセッサ838は、UE850の送信プロセッサ880によって行われた処理と逆の処理を行う。正しく復号されたこれらフレームによって搬送されたデータ信号および制御信号は、この後、データシンク839およびコントローラ/プロセッサへそれぞれ提供されうる。これらフレームのうちのいくつかが受信プロセッサによって誤って復号された場合、コントローラ/プロセッサ840は、これらフレームに関する再送信要求をサポートするためにアクノレッジメント(ACK)および/またはネガティブアクノレッジメント(NACK)を用いることもある。
コントローラ/プロセッサ840および890は、それぞれノードB810およびUE850において動作を指示するために用いられうる。例えばコントローラ/プロセッサ840および890は、タイミング、周辺インタフェース、電圧調整、電力管理、および他の制御機能を含む様々な機能を提供しうる。メモリ842および892のコンピュータ読取可能媒体は、それぞれノードB810およびUE850に関するデータおよびソフトウェアを格納できる。ノードB810におけるスケジューラ/プロセッサ846は、UEにリソースを割り当て、UEに関するダウンリンク送信および/またはアップリンク送信をスケジュールするために用いられうる。
メモリ842および/またはメモリ892内に存在するように図示された選択式CLTDコントローラ101は、本明細書に開示された態様に従って、アップリンクにおけるCLTD動作をいつイネーブルおよびディセーブルするかを決定する。
図9を参照すると、無線通信のためのシステム900が示される。例えばシステム900は、1つまたは複数のネットワークエンティティ内に少なくとも部分的に存在できる。システム900は、無線(Over-The-Air)(OTA)通信が可能である基地ノードを備えることができる。本明細書に開示された態様は更に、RNCのようなスケジューリングに関するネットワークエンティティに分散されることができる。システム900は、コンピュータプラットフォーム、プロセッサ、ソフトウェア、またはこれらの組み合わせ(例えば、ファームウェア)によって実現される機能を表す機能ブロックであることができる機能ブロックを含むように表されていることが理解されるべきである。システム900は、連動して動作できる電子部品の論理グループ902を含む。例えば論理グループ902は、ユーザ機器(UE)とアクセスノードとの間の閉ループ送信ダイバーシチ(CLTD)動作を設定するための電子部品904を含むことができる。更に、論理グループ902は、UEからアクセスノードへのアップリンクの条件を検出するための電子部品906を含むことができる。更に、論理グループ902は、条件に基づいてUEによるCLTD動作をディセーブルするための電子部品908を含むことができる。加えて、システム900は、電子部品904乃至908に関連付けられた機能を実行するための命令を保持するメモリ920を含むことができる。メモリ920に外付けであるように図示されているが、電子部品904乃至908のうちの1つまたは複数がメモリ920内に存在しうることが理解されるべきである。
閉ループ送信ダイバーシチスキームは、HSPAにおけるアップリンク送信性能を改善する見込みのある技術である。本開示は更に、HSPAシステムに関する閉ループ送信ダイバーシチ(CLTD)ビームフォーミングスキームの動機づけおよび理論的分析に対する説明を提供する。アルゴリズム説明、ユーザ機器およびノードB送信機/受信機の実施形態、および対応するシステム性能においても具体例が提供される。
アップリンク送信ダイバーシチ(ULTD)スキームは、例えばユーザ機器(UE)送信電力の低減、UEカバレージ範囲の拡大、UEデータレートの増加、またはこれらの組み合わせといったアップリンク送信性能を改善するために、UEにおいて複数(通常、2つ)のアンテナを用いる。これは、全体のシステム容量を増加させるためにも役立つ。フィードバック要件に基づいて、ULTDスキームは、閉ループ(CL)スキームと開ループ(OL)スキームとに分類できる。送信の観点から、ULTDスキームは、ビームフォーミング(BF)およびアンテナ切替え(AS)スキームとして分類されることができる。
一般に、閉ループ(CL)送信ダイバーシチ(TD)スキームは、複数の送信アンテナを介した送信フォーマットの選択において送信機を支援するために空間チャネルに関する明確なフィードバック情報を提供することを受信機に要求する。一方、開ループ(OL)TDスキームはそうではない。WCDMAアップリンクに関する文脈において、OL TDスキームという用語は、コア規格変更がない、すなわち新たなフィードバックチャネルの導入がないスキームを含む。
CLTDスキームの2つのカテゴリが存在する。CLTDビームフォーミングスキームにおいて、ノードBは、複数の送信アンテナにわたって用いられるプレコーディング(すなわち、ビームフォーミング)ベクトルをUEにフィードバックし、ノードBで受信された信号が構造的に追加されるようにする。これは、受信機の信号対雑音比(SNR)を最大化し、ビームフォーミング効果を達成する。CLTDアンテナ切替えスキームにおいて、ノードBは、どの送信アンテナをUEが用いるべきかにおける自身の選択をUEにフィードバックする。この選択の結果、UE送信アンテナとノードB受信アンテナとの間の最大チャネル利得が生じる。2つのスキームの間で、CLTD BFは、いかに速くチャネルを追跡するかと、どれほど頻繁にスキームがチャネルフェーズを中断させるかとの間でより良いトレードオフを達成できる。本発明は、CLTD BFスキームに焦点を当てる。
CLTDビームフォーミングアルゴリズムに関していくつかの疑問点が自然発生する。第1の疑問点は、例えばUEのような加入者に対するビームフォーミングのCLTD利点に関する。ビームフォーミングから得られる送信電力利得によって、CLTDは、加入者がアップリンクデータレートにおける増加あるいは改善されたアップリンク範囲を享受することを可能にする。第2の疑問点は、無線ネットワークオペレータに対するビームフォーミングのCLTD利点に関する。CLTDビームフォーミングにより、オペレータは、展開エリア全体のULデータレートの増加および費用効果が増加するインフラストラクチャのアップグレードに伴うより良いユーザ経験を加入者に提供できる。すなわちCLTDビームフォーミングスキームは、例えば高層主要都市エリアのようなカバレージが制限されたエリアにおいて、カバレージを拡大し、ユーザ経験を向上させるために導入されうる。更に、他のセルへの干渉の低減により、セルスループットにおける利得もあるはずである。
(CLTDビームフォーミングの動機づけ)
HSPAセルラシステムにおけるモバイルユーザの場合、ユーザ経験はしばしば、UEの送信電力によって制限される。セル端ユーザの場合、送信電力制限により、低いデータレートで送信しなければならならなかったり、コールを確立できない可能性があったりする。送信ダイバーシチの技術は、これらの状況を改善するために役立つ。UEにおいて複数の送信アンテナが用いられると想定する。UE送信機は、これらアンテナからの信号がノードB受信アンテナにおいてコヒーレントに結合されるように、送信アンテナに重み付けベクトルを適用できる。
簡単な例について考える。非送信ダイバーシチの基本的な場合、UEおよびノードBの両方が1つのアンテナを有する。UEとノードBとの間のチャネルが静的であると仮定する。
Figure 2014507866
受信信号対雑音比(SNR)は、
Figure 2014507866
ここで、PはUE送信電力であり、Nは雑音電力である。次に、UEにおいてビームフォーミング送信ダイバーシチが展開される場合を考える。UEとノードBとの間のチャネルは静的であると仮定する。
Figure 2014507866
ここで、Θは2つのチャネルリンク間のフェーズオフセットである。UEが以下のビームフォーミング重みベクトルを適用した場合、
Figure 2014507866
同じ受信SNRを達成するために、UE送信機は、送信電力P/2を用いるだけでよい。UE送信電力におけるこの3dBの低減(ビームフォーミング利得)が、リンクバジェットおよびユーザ経験を改善するはずである。更に、異なるアンテナにわたる信号が個々のフェージングを経験する場合、コヒーレントな信号の結合の結果、深いフェージングの可能性が小さくなることに伴い、より安定した複合チャネルが得られる。このように、ビームフォーミングはダイバーシチ利得を提供できる。
閉ループビームフォーミングスキームを勘案した動機づけは、ノードBの処理およびフィードバックを介して、UE送信機が、(おそらく複雑さの増加およびダウンリンクフィードバック電力の増加という代償を払い)上記利得を達成するためにビームフォーミングフェーズを適用できることである。
UEはサービス提供セルに対してのみビームを形成するので、2つのUE送信アンテナからの信号は一般に、構造的な追加なしに他のセル全てにおいて受信される。従ってネットワークレベルの観点から、このUEによる他のノードB受信機における干渉の量は低減される。この干渉の低減によって、ネットワークスループットが改善されるであろう。一方、CLTDビームフォーミングにおいて、UEはサービス提供セルに対してビームフォーミングするので、ソフトハンドオーバ状態における性能利得は、非ソフトハンドオーバ状態ほど大きくはならないことがある。
CLTDビームフォーミングの利得分析は、様々なチャネル下でビームフォーミングから達成可能な送信電力利得の理論的分析を提供する。非送信ダイバーシチの基本的な場合、UEは、1つの送信アンテナを有する。ビームフォーミング送信ダイバーシチの場合、UEは、2つの送信アンテナを有する。ノードB側から、次の2つの場合を考える。第1に、1つの受信アンテナを有する場合:第2に、2つの受信アンテナを有する場合:簡略化のために、ノードB受信機においてチャネル状態情報が完璧に知られていること、UEへのビームフォーミング重みベクトルの理想的なフィードバック、および完璧なアップリンク電力制御を各々想定する。
1つのノードB受信アンテナの場合:昨今のネットワーク展開は、ノードBにおいて2つの受信アンテナを有するが、分析のために、1つの受信アンテナの場合も考慮する。これは、2つの受信アンテナの場合よりもフェージングチャネルにおける著しい利得を示すだろう。この場合、非送信ダイバーシチUEに関するアップリンクチャネルは1×1チャネルである。
Figure 2014507866
また、ビームフォーミングしているUEに関するアップリンクチャネルは、2×1チャネルである。
Figure 2014507866
ビームフォーミングの送信電力利得は、チャネルモデルに依存する。付加白色ガウス雑音(AWGN)チャネルおよびシングルパスレイリーフェージングに関する利得がそれぞれ以下で求められる。
AWGNチャネル:CLTDビームフォーミングの動機づけに関して上述したように、ビームフォーミングしているUEは、非送信ダイバーシチUEの送信電力の半分しか必要とせずにノードBにおいて同じ受信SNRを達成する。従って、この場合の送信電力利得は3dBである。
シングルパスレイリーフェージングチャネル:非送信ダイバーシチUEの場合、そのアップリンクチャネルは、次元ごと(実数部分または虚数部分)にゼロ平均および分散0.5を有する複雑なガウス分散を有する。アップリンク送信のために必要なSNRが
Figure 2014507866
であると仮定する。
これを達成するために、完璧な電力制御によって、瞬間送信電力は、
Figure 2014507866
となる。
平均して、この基本となるUEのために必要な送信電力は、
Figure 2014507866
である。
一方、ビームフォーミングしているUEの場合、
Figure 2014507866
ビームフォーミングしているUEによって見えるチャネル電力利得は、
Figure 2014507866
である。
アップリンク送信のために必要な
Figure 2014507866
を達成するために、完璧な制御によって、瞬間送信電力は、
Figure 2014507866
である。
平均して、ビームフォーミングしているUEのために必要な送信電力は、
Figure 2014507866
である。
従って、ビームフォーミングによる理論上の送信電力利得は無限である。しかし実際は、電力制御は完璧ではなく、かつUE送信電力における最大電力の制限があるので、ビームフォーミングの利得は有限である。
(2つの受信アンテナ)
この場合、非送信ダイバーシチUEに関するアップリンクチャネルは、1×2チャネルである。
Figure 2014507866
ビームフォーミングUEに関するアップリンクチャネルは、2×2チャネルである。
Figure 2014507866
ビームフォーミングの送信電力利得は、チャネルモデルに依存する。AWGNチャネルに関する利得は、シングルパスレイリーフェージングチャネルはそれぞれ、以下で求められる。
(AWGNチャネル)
この場合、基本のUEは、アップリンクチャネルを経験する。
Figure 2014507866
アップリンク送信のために必要なSNRが
Figure 2014507866
であると仮定する。
これを達成するために、送信電力は、
Figure 2014507866
となる。
一方、ビームフォーミングUEに関して、アップリンクチャネル
Figure 2014507866
であると見られる。
ビームフォーミングUEが、以下の重みベクトルを適用した場合、
Figure 2014507866
重み付けされたパイロットがノードB受信機において結合した後、チャネル電力利得は4である。従って、必要な送信電力は、
Figure 2014507866
となる。
従って、ビームフォーミングによる送信電力利得は3dBである。
(シングルパスレイリーフェージングチャネル)
非送信ダイバーシチUEの場合、そのアップリンクチャネルは、
Figure 2014507866
である。
2つのエントリh11およびh21が、0平均および次元毎に分散0.5を有する独立同分布複素ガウス確率変数であると仮定する。アップリンク送信のために必要な
Figure 2014507866
を達成するためには、完璧な電力制御によって、瞬間送信電力は、
Figure 2014507866
となる。
平均すると、非送信ダイバーシチUEのために必要な送信電力は、
Figure 2014507866
である。
ビームフォーミング事例の場合、アップリンクチャネルは、
Figure 2014507866
である。
この場合、チャネル行列において単一値分解(SVD)が行われる。
特異値が命令された、すなわち、s≧sであると仮定する。するとUE送信機で適用されるビームフォーミングベクトルは、単位長さを有するvとなるものとする。(重み付けされたパイロットの結合後)ノードB受信機によって見られるチャネル電力利得は、
Figure 2014507866
であり、これは、以下の確率密度関数を有する。
Figure 2014507866
アップリンク送信のために必要な
Figure 2014507866
を達成するために、完璧な電力制御によって、瞬間送信電力は
Figure 2014507866
となる。
平均すると、ビームフォーミングUEのために必要な送信電力は、
Figure 2014507866
である。
従って、基準値と比較すると、ビームフォーミングを用いることによって理想的には4.1dBの利得がある。
Figure 2014507866
マルチパスチャネル:複数の経路を有するアップリンクチャネルの場合、ビームフォーミングによる送信電力利得は、シングルパスチャネルよりも小さくなる傾向がある。その理由は、全ての経路について最適となることができる単一のビームフォーミング重みベクトルが存在しないためである。マルチパスチャネルにおける理論的なビームフォーミング利得に関する閉形式の数式を得ることが困難であるので、シミュレーションがこの利得を推定するために頼られることができる。
理論的な送信電力利得の分析において、これまでのところ相関および不均衡のない全方向性アンテナが想定されてきた。実際の出願明細書では、UEによって用いられる複数の送信アンテナは複数のアンテナパターンを有することになる。再び、これらアンテナパターンを考慮した上での送信電力利得がシミュレーションを介して取得される。
図10において、CLTDビームフォーミングUE送信機1000は、以下のCLTDビームフォーミングスキームに関するアップリンクシステムモデルを実現する。
Figure 2014507866
このスキームにおいて、EULデータチャネル、EUL制御チャネル、E−DPDCH(エンハンスド専用物理制御チャネル)、HS−DPCCH(高速専用物理制御チャネル)、Release−99(R99)データチャネルDPDCH、および一次パイロットチャネルDPCCH,1は常に、(仮想アンテナとも称される)強い方のビームフォーミングベクトルv1で送信され、二次パイロットチャネルDPCCH,2は、弱い方のビームフォーミングベクトルv2で送信される。数学的に、優勢な仮想アンテナは以下のビームフォーミングベクトルによって表される。
Figure 2014507866
ここで、
Figure 2014507866
およびビームフォーミングフェーズがΘによって示される。通常、ビームフォーミングフェーズΘは{0,90°,180°,270°}度のような有限集合に量子化される。同様に、振幅変数[a]は一般に有限集合に属する。
スケールされた二次パイロットチャネルが弱い方の仮想アンテナにおいて送信される。
Figure 2014507866
明らかに、このビームフォーミング重みベクトルは、強い方の仮想アンテナに対し直交である。
(ノードB受信機)
全てのデータチャネルおよび制御チャネルが一次パイロットチャネルとして同一のビームフォーミングベクトルで稼働しているので、受信機において、DCHサーチャ、フィンガー割当て、時間追跡ループ、周波数追跡ループなどのようなフィンガー処理に関連する全ての機能が一次パイロットチャネルP1で稼働している。復調部分は、ビームフォーミング重みを決定するために二次パイロットチャネルで追加のチャネル推定器が稼働している場合を除き、UEが非送信ダイバーシチUEであるものとして動作している。ノードB受信機は、ビームフォーミング重み行列
Figure 2014507866
を反転することによって、一次パイロットおよび二次パイロットの両方からの複合チャネルを推定する。
この後、ノードB受信機は、物理チャネル
Figure 2014507866
を推定する。ここでrは受信アンテナ指数(receive antenna index)であり、tは送信アンテナ指数(transmit antenna index)であり、kはフィンガー指数(finger index)である。この後、ノードB受信機は、新たなビームフォーミング重みベクトルを計算できる。アップリンクチャネルにおいて1よりも多い数の経路が存在しうるので、SVDアルゴリズム(シングルパスシナリオにおける均等物)よりも一般的な、受信電力最大化ベースのビームフォーミングアルゴリズムが用いられる。例えば{0,90°,180°,270°}度および/または振幅量子化値a°のような量子化フェーズΘの所与のセットに関して、受信電力は、各フェーズおよび/または振幅の組み合わせについて計算されることができ、現在のチャネル推定値
Figure 2014507866
が求められる。この後、最大受信電力に対応するフェーズおよび/または振幅が、最適なビームフォーミングフェーズおよび/または振幅として選択される。
Figure 2014507866
システムシミュレーションにおけるアンテナパターンのモデル化がCLTDビームフォーミング性能の評価に関して以下で説明される。ここで行われたCLTDビームフォーミング性能調査において、実際のアンテナパターンは、ハンドセットアンテナおよびラップトップアンテナの両方が因数を形成することによる送信アンテナ相関行列を介してモデル化された。
3−Dアンテナ放射パターンは、遠視野での測定を介して観察された。この目的は、発射方位角φにおける遠視野アンテナ利得を求めることであった。これは、ノードBに対するUEのロケーションに基づいても得られる。
特定の発射角(AoD)が与えられ、AoDφにおけるアンテナ相関行列
Figure 2014507866
の成分は、
Figure 2014507866
によって求められる。
ここで、
Figure 2014507866
は、垂直(V−pol)偏光成分であり、
Figure 2014507866
は、水平(H−pol)偏光成分であり、
iはアンテナ指数であり、
Φは方位角であり、
Θは仰角(傾角)であり、
Figure 2014507866
は、基数を形成する単位ベクトルであり、
Figure 2014507866
は、3−D広がり角をモデル化する確率密度関数(PDF)である。
まず、システムシミュレーションにより、単一UE性能は理想的なアップリンク送信条件下でのCLTDビームフォーミングUEと(単一アンテナ送信を用いる)標準UEとの間の送信電力差として定められる送信電力利得によって表される。ハンドセットおよびラップトップ端末の両方の測定されたアンテナパターンがシミュレーションで用いられる。
全てのシミュレーションは、フェーズオンリーモード
Figure 2014507866
で、アイテムテスト単位(ITU)歩行者A 3km/h(PA3)チャネル、ITU歩行者B 3km/h(PB3)チャネル、およびITU車両A 30km/hチャネルに対して実施している。
シミュレーションでは、送信電力減衰量(transmit power reduction)を測定するために、10msのエンハンスドアップリンク(EUL)および対象となる2つの送信とともに一定のペイロードサイズが用いられる。これについて、2msのTTI(送信時間間隔)送信の事例における性能と同様のまたはより良好な性能を示すことが期待されうる。表3は、詳細なペイロードサイズおよび電力設定の概要を示す。CLTDビームフォーミングは、二次パイロット送信を必要とする。シミュレーションは、送信電力低減の計算で考慮された、0.35dBの二次パイロット電力設定を用いる。
Figure 2014507866
Figure 2014507866
Figure 2014507866
表4および表5において、非ソフトハンドオーバ状態では、低速フェージングチャネルが著しい送信電力利得を示す。高速フェージングチャネルにおいて、利得はより小さい。
次に、ソフトハンドオーバ状態でのビームフォーミングUEの事例が検討される。2つのリンクの均衡がとれている場合、表6および表7がCLTDビームフォーミング利得の概要を示す。
Figure 2014507866
Figure 2014507866
これら2つの事例において、UEはサービス提供セルに対してビームフォーミングするので、非サービス提供セル性能が悪化しうる。従って、全体として、非ソフトハンドオーバの事例よりも少ない送信電力利得が観察されうる。
次に、3dBの不均衡を有する(サービス提供セルが3dB強い)ソフトハンドオーバ状態でのビームフォーミングUEの事例が検討される。表8および表9は、CLTDビームフォーミング利得の概要を示す。これら2つの事例において、非サービス提供セルが3dB弱いので、送信電力利得は、表6および表7における事例よりも大きい。
Figure 2014507866
Figure 2014507866
最後に、均衡のとれたリンクを有するよりソフトなハンドオーバ状態でのビームフォーミングUEの事例が検討される。表10および表11は、CLTDビームフォーミング利得の概要を示す。これら2つの事例において、単一のノードBが2つのセルを扱うので、ビームフォーミング性能は、ソフトハンドオーバの事例よりも良好である。
Figure 2014507866
Figure 2014507866
(システム性能)
この部分では、CLTDビームフォーミング性能が、ITU PA3およびPB3チャネルにおけるマルチユーザネットワークシミュレーションから提示される。全体を通して、測定されたラップトップアンテナパターンが用いられた。セルサイト間距離(ISD)は、1kmまたは2.8kmのいずれかである。目的となる2つの送信に関して10msのEULが用いられ、これについて、2msのTTI送信の場合において同じ性能またはより良い性能が示されることが予想されうる。10msのTTIにおける最大ペイロードは20000であるので、各UEが達成する最大データレートはおよそ1Mbpsである。
(ベストエフォートトラヒックモデル)
ベストエフォートスループット性能を評価するために、各セルは、10個のUEを有する。第1に、1kmのセルISDおよびPA3チャネルの場合、19%のセルスループット利得と同時に1.93dBの平均送信電力利得が観察される。送信電力利得の一部は、UEおよびセルのスループット利得に変換される。セル端UE(低いパーセンタイル値のUE)は、ノードBに近接しているUEよりも高いパーセンテージのスループット利得を有する。
2.8kmのセルISDおよびPA3チャネルの場合、17%のセルスループット利得と同時に1.33dBの平均送信電力利得が観察される。送信電力利得の一部は、UEおよびセルのスループット利得に変換される。セル端UE(低いパーセンタイル値のUE)は、ノードBに近接しているUEよりも大幅に高いパーセンテージのスループット利得を有する。更に、より小さなセルサイズ(1km)の場合と比較して、セル端UEはこれらの送信電力において更に制限される。従って、CLTDビームフォーミングは、これらUEに更なるスループット利得を提供する。
最後に、2.8kmのセルISDおよびPB3チャネルの場合、18%のセルスループット利得と同時に0.89dBの平均送信電力利得が観察される。PA3チャネルの場合と同様、セル端UE(低いパーセンタイル値のUE)は、ノードBに近接しているUEよりも大幅に高いパーセンテージのスループット利得を有する。
ベストエフォートトラヒックシミュレーションから分かるように、より大きなISDに関して、CLTDビームフォーミングは、セル端におけるUEスループットを著しく改善できる。この利点を更に論証するために、CLTDビームフォーミングの功績が、集中的トラヒックモデルの下で評価される。UEキュー状態に関わらず、5秒毎にUEキューに1Mビットのバーストが到達する、開ループバーストトラヒックモデルが用いられる。事実上、各UEに示される負荷は200kbpsである。新たな性能メトリック概観は、バーストサイズ(1Mビット)を、バーストの第1のビットがUEキューに到達した時刻から、バーストの最後のビットがUEにおいて正しく受信された時刻までで割ることによって定められるUEバーストレートである。
シミュレーションデータをより良く理解するために、UEに示された負荷が200kbpsであるのでUEは安定したキューを維持するために200kbpsよりも高い物理層スループットを維持することが重要であることを強調したい。
以下に、UE平均バーストレートCDF、パーセンタイル値的UE平均バーストレート利得、および平均UE Tx電力低減の観点で結果が提示される。
1kmのセルISD、PA3チャネル、およびセル毎に2つのUEを有する場合についての結果が論証される。送信ダイバーシチがディセーブルされた場合でも、短いサイト間距離およびセル毎に2つのUEという小さい負荷によって、全てのUEが200kbpsよりも高いスループットを維持できる。CLTDビームフォーミングは、バーストレートに関して多くの改善を提供しない。その理由は、この場合、システム内に電力制限されたUEが存在しないからである。バーストレートは、両方のUEが、同時に到達するバーストを有し、スケジューリングの機会に関してノードBで競合する場合、主に待ち行列遅延によって、1Mbpsの最大UEスループットに達することができない。しかし、同じバーストレートを達成するために、CLTDビームフォーミングは、平均UE送信電力において3.35dBの低減が可能である。この送信電力の低減は、前の箇所で示したような単一のUE固定ペイロードテスト(2.4dB)よりも大きく、他のセルへの干渉を低減するという観点で、CLTDビームフォーミングの更なる利点を示す。複数のUEのシナリオにおいて、各UEは、ノードB受信機における少ない干渉に対して対抗する必要があるので、自身の送信電力を更に少なくしうる。これは単一UEのシミュレーションにおいては示されない。
次のステップにおいて、負荷は、2UE/セルから8UE/セルへ増加する。負荷が増加すると、UEは、200kbpsの送信を維持できない。この場合、CLTDビームフォーミングは、特にセル端のUEに関してUEバーストレートを著しく改善する。バーストレートの改善に加えて、CLTDビームフォーミングは、UE平均送信電力を2.69dB低減させるためにも役立つ。
セルカバレージの改善を更に論証するために、2.8kmのISDがシミュレートされる。
セル毎に2つのUEの負荷の場合でも、長いサイト間距離によって、セル端にあるいくつかのUEは200kbpsの送信をサポートできない。CLTDビームフォーミングは、セル端UEのバーストレートを最大200%高める。更に、高いUEバーストレートを達成しながら、CLTDビームフォーミングは、UE平均送信電力を2.12dB低減するためにも役立つ。
集中的トラヒックモデルはまた、PB3チャネルに関する異なるレベルの負荷に関して評価され、UEバーストレートの改善および平均UE送信電力の低減に関してCLTDビームフォーミングによる同様の利点が観察される。
上記の利点により、HSPAにおいてアップリンクでCLTDビームフォーミングスキームによって達成することが可能な送信電力利得が確認された。送信電力利得は、セルカバレージを拡大するだけではなく、ユーザスループット利得に変換されることもできる。更に、複数セルのシナリオにおいて、CLTDビームフォーミングスキームは、セルスループットを更に高めることができる。現実的なアンテナパターンの場合、CLTDビームフォーミングスキームは、非ソフトハンドオーバ状態において、またいくつかの利得は(アップリンク不均衡に依存して)ソフトハンドオーバ状態において、ITU「PedA」3km/hチャネルに関して2dBより多いUE送信電力低減、ITU「PedB」3km/hチャネルに関して1dBより多い利得、ITU「VehA」30km/hチャネルに関して0.6dBより多い利得を示す。
システム性能の観点から、CLTDビームフォーミングの利点は主に次の3つの分野を有する。(i)UEが送信電力を制限されるようになった場合、セル端におけるUE性能またはセルカバレージの改善、(ii)他のセルへの干渉の低減、およびこれに伴う、平均UEおよびセルスループットの改善、および(iii)UE送信電力の低減。
セルが主に低速チャネルにサービス提供している場合、トラヒックのフルバッファタイプについて、およそ18%のセルスループット利得が観察され、同時に平均UE送信電力が1乃至2dB低減される。送信電力を制限されたUEまたはセル端にあるUEについて、UEは、スループットにおける著しい(150%以上の)改善を経験する。
集中的にアクセス量の多いソースの場合、CLTDビームフォーミングによって、より多くのUEが高いデータレートの送信を享受できるだろう。CLTDビームフォーミングは、セル端におけるUEバーストレートを著しく増加させるとともに、UE送信電力を最大3dB低減させることができる。
通信システムのいくつかの態様がW−CDMAシステムに関連して説明された。当業者は、本開示を通して説明された様々な態様が、他の通信システム、ネットワークアーキテクチャ、および通信規格に拡大されうることを容易に理解するはずである。
例えば、本明細書で説明された技術は、CDMA、TDMA、FDMA、OFDMA、SC−FDMA、および他のシステムのような様々な無線通信システムのために用いられうる。「システム」および「ネットワーク」という用語はしばしば相互置換性を持って用いられる。CDMAシステムは、ユニバーサル地上ラジオアクセス(UTRA)、cdma2000などのようなラジオ技術を実現しうる。UTRAは、広帯域CDMA(W−CDMA)および他の様々なCDMAを含む。更に、cdma2000は、IS−2000規格、IS−95規格、およびIS−856規格をカバーする。TDMAシステムは、移動体通信用グローバルシステム(GSM)のようなラジオ技術を実現しうる。OFDMAシステムは、次世代UTRA(E−UTRA)、ウルトラ移動体ブロードバンド(UMB)、IEEE802.11(Wi−Fi)、IEEE802.16(WiMAX)、IEEE802.20、Flash−OFDMなどのようなラジオ技術を実現しうる。UTRAおよびE−UTRAは、ユニバーサル移動体通信システム(UMTS)の一部である。3GPPロングタームエボリューション(LTE)は、E−UTRAを用い、ダウンリンクでOFDMAを、アップリンクでSC−FDMAを用いる、UMTSのリリースである。UTRA、E−UTRA、UMTS、LTE、およびGSMは、「第3世代パートナーシッププロジェクト」(3GPP)と名付けられた組織からの文書において説明される。更に、cdma2000およびUMBは、「第3世代パートナーシッププロジェクト2」(3GPP2)と名付けられた組織からの文書において説明される。更に、そのような無線通信システムは、しばしば非対非認可スペクトルを用いるピアツーピア(移動体対移動体)アドホックネットワークシステム、802.xx無線LAN、BLUETOOTH(登録商標)、および他の短、長距離無線通信技術を付加的に含みうる。
更に、いくつかの態様または特徴は、複数のデバイス、構成要素、モジュールなどを含みうるシステムの代わりに提示されてきた。様々なシステムが追加のデバイス、構成要素、モジュールなどを含むことができること、および/または、図面に関連して説明されたデバイス、構成要素、モジュールなどの全てを含まなくてもよいことが理解されるべきである。これらのアプローチの組み合わせもまた用いられうる。
更に、本願において用いられる場合、「構成要素」、「モジュール」、「システム」などの用語は、限定はされないがハードウェア、ファームウェア、ハードウェアとソフトウェアとの組み合わせ、ソフトウェア、または実行中のソフトウェアのようなコンピュータ関連エンティティを含むことが意図されている。例えば構成要素は、限定はされないが、プロセッサで稼働中の処理、プロセッサ、オブジェクト、実行可能なもの、実行スレッド、プログラム、および/またはコンピュータでありうる。一例によると、コンピュータデバイスで稼働中のアプリケーションとコンピュータデバイスとの両方が構成要素であることができる。1つまたは複数の構成要素は、実行スレッドおよび/または処理内に存在することができ、構成要素は、1つのコンピュータに局在するおよび/または2つ以上のコンピュータに存在できる。更に、これらの構成要素は、格納された様々なデータ構成を有する様々なコンピュータ読取可能媒体から実行できる。構成要素は、ローカルシステム内の別の構成要素、分散システム内の別の構成要素、および/または信号によって他のシステムを有するインターネットのようなネットワークを介して別の構成要素と対話する1つの構成要素からのデータのような、1つまたは複数のデータパケットを有する信号に従って、遠隔処理および/またはローカル処理によって通信しうる。
また、様々な態様が、有線端末または無線端末であることができる端末に関して本明細書で説明される。端末は、システム、デバイス、加入者ユニット、加入者局、移動体局、移動体、移動体デバイス、遠隔局、遠隔端末、アクセス端末、ユーザ端末、端末、通信デバイス、ユーザエージェント、ユーザデバイス、またはユーザ機器(UE)とも称されることができる。無線端末は、セルラ電話、衛星電話、コードレス電話、セッション開始プロトコル(SIP)電話、無線ローカルループ(WLL)局、パーソナルデジタルアシスタント(PDA)、無線接続機能を有するハンドヘルドデバイス、コンピュータデバイス、または、無線モデムに接続された他の処理デバイスでありうる。更に、様々な態様が基地局に関して本明細書で説明された。基地局は、無線端末と通信するために用いられることができ、アクセスポイント、ノードB、または他の何らかの用語としても称されうる。
更に、「または」という用語は、排他的な「または」ではなく包含的な「または」を意味することが意図されている。すなわち、特に例外が記載されない限りまたは文脈から明らかでない限り、「XはAまたはBを用いる」という語句は、当然発生する包含的な順列のうちのいずれも意味することが意図される。すなわち「XはAまたはBを用いる」という語句は、XはAを用いる、XはBを用いる、またはXはAおよびBを用いる、という例のいずれによっても満たされる。加えて、“a”および“an”という冠詞は本願および以下の特許請求の範囲において用いられる場合、特に例外が記載されない限り、または単数形を示すことが文脈から明らかでない限り、一般に「1つまたは複数」を意味するように解釈されるべきである。
本明細書に開示された実施形態に関連して説明された様々な例示的な論理、論理ブロック、モジュール、および回路は、汎用プロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)あるいは他のプログラマブル論理デバイス、ディスクリートゲートあるいはトランジスタロジック、ディスクリートハードウェア部品、または、本明細書で説明された機能を行うように設計されたこれらの任意の組み合わせを用いて実現または行われうる。汎用プロセッサとしてマイクロプロセッサを用いることができるが、代わりに、任意の従来型プロセッサ、コントローラ、マイクロコントローラ、または状態マシンを用いることもできる。プロセッサはまた、例えばDSPとマイクロプロセッサとの組み合わせ、複数のマイクロプロセッサ、DSPコアに接続された1つまたは複数のマイクロプロセッサ、または他の任意のそのような構成といった、コンピュータデバイスの組み合わせとしても実現されうる。更に、少なくとも1つのプロセッサは、上述されたステップおよび/またはアクションのうちの1つまたは複数を行うように動作可能な1つまたは複数のモジュールを備えうる。
更に、本明細書に開示された態様に関連して説明された方法またはアルゴリズムのステップおよび/またはアクションは、ハードウェアによって直接、プロセッサによって実行されるソフトウェアモジュールによって、またはこれら2つの組み合わせによって具現化されうる。ソフトウェアモジュールは、RAMメモリ、フラッシュメモリ、ROMメモリ、EPROMメモリ、EEPROMメモリ、レジスタ、ハードディスク、リムーバブルディスク、CD−ROM、または当該技術において周知である他の任意の形式の記憶媒体に収納されうる。典型的な記憶媒体は、プロセッサがそこから情報を読み取り、またそこへ情報を書き込むことができるように、プロセッサに結合されうる。あるいは記憶媒体は、プロセッサに統合されうる。更にいくつかの態様において、プロセッサおよび記憶媒体はASIC内に存在しうる。更に、ASICは、ユーザ端末内に存在しうる。あるいはプロセッサおよび記憶媒体は、ユーザ端末内の別々の構成要素として存在しうる。更に、いくつかの態様において、方法またはアルゴリズムのステップおよび/またはアクションは、コンピュータプログラム製品に組み込まれうる機械読取可能媒体および/またはコンピュータ読取可能媒体におけるコードおよび/または命令の1つまたは任意の組み合わせまたはセットとして存在しうる。
1つまたは複数の態様において、説明された機能は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの任意の組み合わせによって実現されうる。ソフトウェアによる実現の場合、機能は、コンピュータ読取可能媒体上の1つまたは複数の命令またはコードとして格納または送信されうる。コンピュータ読取可能媒体は、コンピュータ記憶媒体と、1つの場所から別の場所へのコンピュータプログラムの転送を容易にする任意の媒体を含む通信媒体との両方を含む。記憶媒体は、コンピュータによってアクセスできる任意の利用可能な媒体でありうる。限定ではなく一例によると、そのようなコンピュータ読取可能媒体は、RAM、ROM、EEPROM、CD−ROMあるいは他の光学ディスク記憶媒体、磁気ディスク記憶媒体あるいは他の磁気記憶デバイス、または、命令あるいはデータ構成の形式で所望のプログラムコードを搬送あるいは格納するために用いることができ、コンピュータによってアクセスできる他の任意の媒体を備えることができる。また、任意の接続もコンピュータ読取可能媒体と称されうる。例えば、ソフトウェアが同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL)や赤外線、ラジオ、およびマイクロ波のような無線技術を用いてウェブサイト、サーバ、または他の遠隔ソースから送信される場合、同軸ケーブル、光ファイバケーブル、ツイストペア、DSL、または赤外線、ラジオ、およびマイクロ波のような無線技術は媒体の定義に含まれる。ディスク(disk)およびディスク(disc)は、本明細書で用いられる場合、コンパクトディスク(disc)(CD)、レーザディスク(disc)、光学ディスク(disc)、デジタルバーサタイルディスク(disc)(DVD)、フロッピー(登録商標)ディスク(disk)、およびブルーレイ(登録商標)ディスク(disc)を含み、ディスク(disk)が通常データを磁気的に再生するのに対し、ディスク(disc)はレーザを用いてデータを光学的に再生する。上記の組み合わせもまた、コンピュータ読取可能媒体の範囲に含まれるべきである。
上記開示は、例示的な態様および/または実施形態を記載したが、以下の特許請求の範囲によって定められたような上記態様および/または実施形態の範囲から逸脱することなく、本明細書における様々な変更および修正が可能であることが留意されるべきである。更に、上記態様および/または実施形態の要素は、単数形で説明または特許請求されうるが、単数形への限定が明確に記載されない限り、複数形も意図される。また、任意の態様および/または実施形態の一部または全部が、特に記載されない限り、他の任意の態様および/または実施形態の全部または一部とともに用いられうる。

Claims (15)

  1. 無線通信のための装置であって、
    ユーザ機器(UE)とアクセスノードとの間の閉ループ送信ダイバーシチ(CLTD)動作を設定するための手段と、
    前記UEから前記アクセスノードへのアップリンクの条件を検出するための手段と、
    前記条件に基づいて前記UEによる前記CLTD動作をディセーブルするための手段と
    を備える装置。
  2. 前記ユーザ機器(UE)と前記アクセスノードとの間の閉ループ送信ダイバーシチ(CLTD)動作を設定するためのスケジューラと、
    前記UEから前記アクセスノードへのアップリンクの条件を検出するための受信機と、
    前記条件に基づいて前記UEによるCLTD動作をディセーブルするための送信機と
    を更に備える、請求項1に記載の装置。
  3. 前記送信機は更に、高速共有制御チャネル(HS−SCCH)を介してダウンリンクシグナリング命令を送信することによって、前記UEによる前記CLTD動作をディセーブルするものである、請求項2に記載の装置。
  4. 前記受信機は更に、前記UEの速度が閾値を上回っていることを検出することによって、前記アップリンクの条件を検出するものである、請求項2に記載の装置。
  5. 前記受信機は更に、前記CLTD動作に関するダウンリンクシグナリング命令を送信するために必要な送信電力が閾値を上回っていると判定することによって、前記アップリンクの条件を検出するものである、請求項2に記載の装置。
  6. 前記送信機は更に、ビームフォーミングフィードバック重み情報を送信することによって前記ダウンリンクシグナリング命令を送信するものである、請求項5に記載の装置。
  7. 前記受信機は更に、前記アクセスノードにおける未処理のパケット誤りレートが閾値を上回っていると判定することによって前記アップリンクの条件を検出するものである、請求項2に記載の装置。
  8. 前記受信機は更に、前記アップリンクの前記条件が終了したことを検出するものであり、
    前記送信機は更に、前記条件の終了を検出したことに応答して、前記UEによるCLTD動作をイネーブルするものである、請求項2に記載の装置。
  9. 前記受信機は、前記UEにおける条件を検出するために前記UEに配置される、請求項2に記載の装置。
  10. 前記受信機は、前記アクセスノードにおける条件を検出するために前記アクセスノードに配置される、請求項2に記載の装置。
  11. 前記スケジューラは、前記UEとアクセスノードとの間のCLTD動作の設定およびディセーブルをスケジューリングするためのラジオネットワークコントローラを備える、請求項2に記載の装置。
  12. 前記スケジューラは、前記UEが、専用物理制御チャネル(DPCCH)、専用物理データチャネル(DPDCH)、高速専用物理制御チャネル(HS−DPCCH)、エンハンスド専用物理制御チャネル(E−DPCCH)、またはエンハンスド専用物理データチャネル(E−DPDCH)のうちの1つまたは複数を第1の物理アンテナを介して一次プレコーディングベクトルで送信し、二次専用物理制御チャネル(S−DPDCH)を第2の物理アンテナを介して二次プレコーディングベクトルで送信するように設定する、請求項2に記載の装置。
  13. 前記スケジューラは更に、
    測定間隔にわたる信号対雑音比における第1の物理アンテナと第2の物理アンテナとの間の、第1の閾値よりも大きい差を判定し、
    前記差の判定に基づいて、前記第1の物理アンテナまたは前記第2の物理アンテナのうちの1つにおいて非CLTD動作で送信することを選択することによって、前記CLTD動作をディセーブルするものである、請求項2に記載の装置。
  14. 前記スケジューラは更に、UEが、第1の物理アンテナまたは第2の物理アンテナのうちの選択された一方において、専用物理制御チャネル(DPCCH)、専用物理データチャネル(DPDCH)、高速専用物理制御チャネル(HS−DPCCH)、エンハンスド専用物理制御チャネル(E−DPCCH)、またはエンハンスド専用物理データチャネル(E−DPDCH)のうちの1つまたは複数を送信し、前記第1の物理アンテナまたは前記第2の物理アンテナのうちの他方において、二次専用物理制御チャネル(S−DPCCH)を送信するように設定することによって、前記CLTD動作をディセーブルするもので、前記スケジューラは更に、前記UEから前記アクセスノードへのアップリンクの条件が終了したことを検出し、前記条件が終了したことの検出に応答して前記UEによるCLTD動作をイネーブルするものである、請求項2に記載の装置。
  15. 前記スケジューラは更に、
    第1の物理アンテナにおいて送信することに関する第1の電力増幅性能と、第2の物理アンテナにおいて送信することに関する第2の電力増幅性能とを判定し、
    前記第1および第2の電力増幅性能に基づいて、専用物理制御チャネル(DPCCH)、専用物理データチャネル(DPDCH)、高速専用物理制御チャネル(HS−DPCCH)、エンハンスド専用物理制御チャネル(E−DPCCH)、またはエンハンスド専用物理データチャネル(E−DPDCH)のうちの1つまたは複数を送信するための前記第1の物理アンテナまたは前記第2の物理アンテナのうちの1つを選択すること
    によって前記CLTD動作をディセーブルするものである、請求項2に記載の装置。
JP2013549498A 2011-01-10 2012-01-10 Hs−scch命令を介したcltd動作の動的なイネーブルおよびディセーブル Pending JP2014507866A (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201161431353P 2011-01-10 2011-01-10
US61/431,353 2011-01-10
US201161442653P 2011-02-14 2011-02-14
US61/442,653 2011-02-14
US13/285,185 2011-10-31
US13/285,185 US8681809B2 (en) 2011-01-10 2011-10-31 Dynamic enabling and disabling of CLTD operation via HS SCCH orders
PCT/US2012/020832 WO2012097001A1 (en) 2011-01-10 2012-01-10 Dynamic enabling and disabling of cltd operation via hs-scch orders

Publications (1)

Publication Number Publication Date
JP2014507866A true JP2014507866A (ja) 2014-03-27

Family

ID=45554822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013549498A Pending JP2014507866A (ja) 2011-01-10 2012-01-10 Hs−scch命令を介したcltd動作の動的なイネーブルおよびディセーブル

Country Status (6)

Country Link
US (1) US8681809B2 (ja)
EP (1) EP2664082A1 (ja)
JP (1) JP2014507866A (ja)
KR (1) KR20130115353A (ja)
CN (1) CN103314538A (ja)
WO (1) WO2012097001A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014511164A (ja) * 2011-02-11 2014-05-12 インターデイジタル パテント ホールディングス インコーポレイテッド マルチキャリアhsdpa制御方法および装置
JP2016129393A (ja) * 2012-07-27 2016-07-14 京セラ株式会社 移動通信システム
JP2019097001A (ja) * 2017-11-21 2019-06-20 株式会社Nttドコモ 無線通信システムの評価装置

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9813867B2 (en) 2005-12-15 2017-11-07 Polte Corporation Angle of arrival (AOA) positioning method and system for positional finding and tracking objects using reduced attenuation RF technology
US10834531B2 (en) 2005-12-15 2020-11-10 Polte Corporation Multi-path mitigation in rangefinding and tracking objects using reduced attenuation RF technology
US9913244B2 (en) 2005-12-15 2018-03-06 Polte Corporation Partially synchronized multilateration or trilateration method and system for positional finding using RF
US9288623B2 (en) 2005-12-15 2016-03-15 Invisitrack, Inc. Multi-path mitigation in rangefinding and tracking objects using reduced attenuation RF technology
US9699607B2 (en) * 2005-12-15 2017-07-04 Polte Corporation Multi-path mitigation in rangefinding and tracking objects using reduced attenuation RF technology
US10091616B2 (en) 2005-12-15 2018-10-02 Polte Corporation Angle of arrival (AOA) positioning method and system for positional finding and tracking objects using reduced attenuation RF technology
US10281557B2 (en) 2005-12-15 2019-05-07 Polte Corporation Partially synchronized multilateration/trilateration method and system for positional finding using RF
CN102655425B (zh) * 2011-03-02 2014-12-10 爱立信(中国)通信有限公司 调控波束方向改变而导致的上行负载变化的方法和基站
EP2704341B1 (en) * 2011-04-25 2017-10-18 LG Electronics Inc. Efficient transmission of reference signals in wireless communication systems using carrier aggregation
US9189109B2 (en) 2012-07-18 2015-11-17 Sentons Inc. Detection of type of object used to provide a touch contact input
US11327599B2 (en) 2011-04-26 2022-05-10 Sentons Inc. Identifying a contact type
US9477350B2 (en) 2011-04-26 2016-10-25 Sentons Inc. Method and apparatus for active ultrasonic touch devices
US9639213B2 (en) 2011-04-26 2017-05-02 Sentons Inc. Using multiple signals to detect touch input
US10198097B2 (en) 2011-04-26 2019-02-05 Sentons Inc. Detecting touch input force
KR102040614B1 (ko) * 2011-05-10 2019-11-05 엘지전자 주식회사 복수의 안테나 포트를 이용하여 신호를 전송하는 방법 및 이를 위한 송신단 장치
JP6166260B2 (ja) 2011-08-03 2017-07-19 ポルテ・コーポレイションPoLTE Corporation 減衰が小さくなったrf技術を用いる物体の測距および追跡におけるマルチパス緩和
US11125850B2 (en) 2011-08-03 2021-09-21 Polte Corporation Systems and methods for determining a timing offset of emitter antennas in a wireless network
US11835639B2 (en) 2011-08-03 2023-12-05 Qualcomm Technologies, Inc. Partially synchronized multilateration or trilateration method and system for positional finding using RF
US10235004B1 (en) 2011-11-18 2019-03-19 Sentons Inc. Touch input detector with an integrated antenna
KR101803261B1 (ko) 2011-11-18 2017-11-30 센톤스 아이엔씨. 터치 입력 힘 검출
KR101852549B1 (ko) 2011-11-18 2018-04-27 센톤스 아이엔씨. 국소형 햅틱 피드백
FR2983016A1 (fr) * 2011-11-18 2013-05-24 Thomson Licensing Procede de reduction de la consommation de puissance dans un terminal de communication sans fil et terminal de communication mettant en oeuvre ledit procede
US9348468B2 (en) 2013-06-07 2016-05-24 Sentons Inc. Detecting multi-touch inputs
US10440512B2 (en) 2012-08-03 2019-10-08 Polte Corporation Angle of arrival (AOA) positioning method and system for positional finding and tracking objects using reduced attenuation RF technology
US10845453B2 (en) 2012-08-03 2020-11-24 Polte Corporation Network architecture and methods for location services
US10863313B2 (en) 2014-08-01 2020-12-08 Polte Corporation Network architecture and methods for location services
WO2014074894A1 (en) * 2012-11-09 2014-05-15 Interdigital Patent Holdings, Inc. Beamforming methods and methods for using beams
WO2014077758A1 (en) * 2012-11-14 2014-05-22 Telefonaktiebolaget L M Ericsson (Publ) Systems and methods for improving uplink transmission properties in a communication network
CN105264920B (zh) * 2012-12-12 2020-01-14 波尔特公司 使用减少的衰减rf技术对对象进行测距和跟踪时的多径抑制
US9459715B1 (en) 2013-09-20 2016-10-04 Sentons Inc. Using spectral control in detecting touch input
CN103746804B (zh) * 2014-01-17 2017-01-18 哈尔滨工业大学 基于多参数分数傅里叶变换和星座图加扰的保密通信方法
US9503913B2 (en) * 2014-02-05 2016-11-22 Alcatel Lucent Distributed generation of slow-fading post-coding vectors for LSAS communication networks and the like
US9425929B2 (en) 2014-06-26 2016-08-23 Alcatel Lucent Wireless communication with suppression of inter-cell interference in large-scale antenna systems
US10048811B2 (en) 2015-09-18 2018-08-14 Sentons Inc. Detecting touch input provided by signal transmitting stylus
US10306562B2 (en) * 2015-10-29 2019-05-28 Qualcomm Incorporated Transport format combination selection during self-jamming interference
US9967081B2 (en) * 2015-12-04 2018-05-08 Hon Hai Precision Industry Co., Ltd. System and method for beamforming wth automatic amplitude and phase error calibration
US10908741B2 (en) 2016-11-10 2021-02-02 Sentons Inc. Touch input detection along device sidewall
US10296144B2 (en) 2016-12-12 2019-05-21 Sentons Inc. Touch input detection with shared receivers
US10126877B1 (en) 2017-02-01 2018-11-13 Sentons Inc. Update of reference data for touch input detection
US10585522B2 (en) 2017-02-27 2020-03-10 Sentons Inc. Detection of non-touch inputs using a signature
US11009411B2 (en) 2017-08-14 2021-05-18 Sentons Inc. Increasing sensitivity of a sensor using an encoded signal
US11580829B2 (en) 2017-08-14 2023-02-14 Sentons Inc. Dynamic feedback for haptics
WO2019033383A1 (en) * 2017-08-18 2019-02-21 Nokia Shanghai Bell Co., Ltd. RESTRICTION OF CODES BOOK SUBASSEMBLY BASED ON BROADBAND AMPLITUDE
US11246143B2 (en) 2017-12-15 2022-02-08 Google Llc Beamforming enhancement via strategic resource utilization
US11255945B2 (en) 2018-03-27 2022-02-22 Polte Corporation Multi-path mitigation in tracking objects using compressed RF data
US11251847B2 (en) 2018-03-28 2022-02-15 Google Llc User device beamforming
CN112640327B (zh) * 2018-09-10 2024-04-09 谷歌有限责任公司 实现快速波束跟踪的方法、基站及用户设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153585A (ja) * 2002-10-31 2004-05-27 Sony Ericsson Mobilecommunications Japan Inc 周波数偏移検出回路及び周波数偏移検出方法、携帯通信端末
JP2007049367A (ja) * 2005-08-09 2007-02-22 Ntt Docomo Inc 移動通信システムの制御方法、制御装置、移動通信システム
WO2009025029A1 (ja) * 2007-08-21 2009-02-26 Fujitsu Limited 移動局および送信ダイバーシチ制御方法
JP2009528000A (ja) * 2006-02-22 2009-07-30 クゥアルコム・インコーポレイテッド チャネルidを介してシグナリング情報を送信するための方法および装置
JP2009272829A (ja) * 2008-05-02 2009-11-19 Ntt Docomo Inc 基地局装置及びユーザ装置並びに通信制御方法
JP2010502079A (ja) * 2006-08-21 2010-01-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ マルチビームmimoシステムにおける効率的なcqi伝達

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6987952B2 (en) 2002-09-30 2006-01-17 Nokia Corporation Apparatus, and associated method, for effectuating transmit diversity in a communication system
TW580838B (en) * 2002-12-02 2004-03-21 Benq Corp Method and apparatus for determining data transmit diversity mode of a base station
KR100575930B1 (ko) 2003-05-16 2006-05-02 삼성전자주식회사 송신다이버시티를 사용하는 이동통신 시스템에 있어송신다이버시티의 방식 전환 장치 및 방법
GB2414365B (en) 2004-05-19 2008-12-17 Motorola Inc Method of selecting a downlink transmit diversity technique
US9590715B2 (en) 2006-12-22 2017-03-07 Sony Corporation WCDMA power saving with transmit diversity
JP4485547B2 (ja) 2007-06-21 2010-06-23 株式会社エヌ・ティ・ティ・ドコモ 移動局、および、移動局における送信電力制御方法
JP5144709B2 (ja) * 2010-04-21 2013-02-13 株式会社日立国際電気 移動局装置
GB2490985B (en) * 2012-01-30 2013-06-19 Renesas Mobile Corp Method and apparatus for activation and deactivation of a transmission mode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153585A (ja) * 2002-10-31 2004-05-27 Sony Ericsson Mobilecommunications Japan Inc 周波数偏移検出回路及び周波数偏移検出方法、携帯通信端末
JP2007049367A (ja) * 2005-08-09 2007-02-22 Ntt Docomo Inc 移動通信システムの制御方法、制御装置、移動通信システム
JP2009528000A (ja) * 2006-02-22 2009-07-30 クゥアルコム・インコーポレイテッド チャネルidを介してシグナリング情報を送信するための方法および装置
JP2010502079A (ja) * 2006-08-21 2010-01-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ マルチビームmimoシステムにおける効率的なcqi伝達
WO2009025029A1 (ja) * 2007-08-21 2009-02-26 Fujitsu Limited 移動局および送信ダイバーシチ制御方法
JP2009272829A (ja) * 2008-05-02 2009-11-19 Ntt Docomo Inc 基地局装置及びユーザ装置並びに通信制御方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014511164A (ja) * 2011-02-11 2014-05-12 インターデイジタル パテント ホールディングス インコーポレイテッド マルチキャリアhsdpa制御方法および装置
US9407404B2 (en) 2011-02-11 2016-08-02 Interdigital Patent Holdings, Inc. Managing control signaling overhead for multi-carrier HSDPA
US9887752B2 (en) 2011-02-11 2018-02-06 Interdigital Patent Holdings, Inc. Managing control signaling overhead for multi-carrier HSDPA
JP2016129393A (ja) * 2012-07-27 2016-07-14 京セラ株式会社 移動通信システム
JP2019097001A (ja) * 2017-11-21 2019-06-20 株式会社Nttドコモ 無線通信システムの評価装置
JP7068807B2 (ja) 2017-11-21 2022-05-17 株式会社Nttドコモ 無線通信システムの評価装置

Also Published As

Publication number Publication date
WO2012097001A1 (en) 2012-07-19
EP2664082A1 (en) 2013-11-20
CN103314538A (zh) 2013-09-18
KR20130115353A (ko) 2013-10-21
US8681809B2 (en) 2014-03-25
US20120188889A1 (en) 2012-07-26

Similar Documents

Publication Publication Date Title
US8681809B2 (en) Dynamic enabling and disabling of CLTD operation via HS SCCH orders
JP6486342B2 (ja) 複数のアンテナを使用する時分割複信(tdd)デバイスによる送信のための方法および装置
JP6165180B2 (ja) アップリンクmimo通信のためのリソース割振りを向上させるための方法および装置
US9007888B2 (en) System and method for uplink multiple input multiple output transmission
KR20130085436A (ko) 업링크 다중입력 다중출력 송신에서 트래픽 대 파일럿 전력 결정을 위한 시스템 및 방법
KR20130086632A (ko) 업링크 다중입력 다중출력 송신에서 제어 정보를 송신하기 위한 시스템 및 방법
US9185650B2 (en) Apparatus and method for controlling downlink power in early decode termination mode
KR20130112044A (ko) 업링크 다중입력 다중출력 송신에서 외측 및 내측 전력 제어 루프를 위한 시스템 및 방법
KR20130112045A (ko) 업링크 다중입력 다중출력 송신 동안 2차 제어 채널 부스팅을 위한 시스템 및 방법
US20140080537A1 (en) Apparatus and method for biasing power control towards early decode success
KR101902389B1 (ko) 향상된 업링크에서의 송신 전력 제어를 위한 이득 팩터의 결정
KR20160145027A (ko) 더 신속한 셀 선택
US9179418B2 (en) Apparatus and method of improving the overall decision quality of the F-DPCH channel
US20140362779A1 (en) Apparatus and methods for improving uplink access in wireless communication
US9526099B2 (en) Apparatus and methods for early transport format determination
KR20160135203A (ko) 다중 rab 시나리오들에서의 hs-dpcch 오버헤드 감소
US9167537B2 (en) Methods and apparatus for DLTPC rejection in downlink windup mode
US8942331B2 (en) Apparatus and method for improving the performance of a linear equalizer with multiple receive antennas
JP5956057B2 (ja) 高速データ・チャネルのアベイラビリティ
US20140307566A1 (en) Method and apparatus for sir estimation using time multiplexed pilots and tpc commands
JP2015532055A (ja) 隣接セル測定のために周波数ダイバーシチを活用するための装置および方法
JP2016529790A (ja) 再送信要求を動的に送信するための方法および装置
WO2014146254A1 (en) Method and apparatus for optimizing snpl reporting

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106