JP2014228832A - 光伝送装置 - Google Patents

光伝送装置 Download PDF

Info

Publication number
JP2014228832A
JP2014228832A JP2013110892A JP2013110892A JP2014228832A JP 2014228832 A JP2014228832 A JP 2014228832A JP 2013110892 A JP2013110892 A JP 2013110892A JP 2013110892 A JP2013110892 A JP 2013110892A JP 2014228832 A JP2014228832 A JP 2014228832A
Authority
JP
Japan
Prior art keywords
maintaining fiber
component
polarization maintaining
light
phase modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013110892A
Other languages
English (en)
Inventor
沢二 真家
Sawaji Maie
沢二 真家
勝仁 牟禮
Katsuhito Mure
勝仁 牟禮
志展 矢澤
Shinobu Yazawa
志展 矢澤
純一 小杉
Junichi Kosugi
純一 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2013110892A priority Critical patent/JP2014228832A/ja
Publication of JP2014228832A publication Critical patent/JP2014228832A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】変調光のS/N比を改善すること。
【解決手段】光伝送装置1は、光源41と、連続光L1を光源41から光変調器23に伝搬する偏波保持ファイバF1と、光変調器23と、光変調器23により変調された変調光L2を偏光分離素子42に伝搬する偏波保持ファイバF2と、変調光L2を成分L21及び成分L22に分離する偏光分離素子42と、成分L21を電気信号S1に変換する光検出器43と、成分L22を電気信号S2に変換する光検出器44と、電気信号S1,S2の差分に基づく測定信号Smを出力する差動回路45とを備え、偏波保持ファイバF1の光変調器23側の端部のスロー軸と光変調器23の変調方向との成す角度θ1及び偏波保持ファイバF2の光変調器23側の端部のスロー軸と光変調器23の変調方向との成す角度θ2が31.5度以上58.5度以下である。
【選択図】図1

Description

本発明は、光伝送装置に関する。
被測定装置から放射される微弱な電磁波を測定するための電界計測装置等の光伝送装置がある。例えば、特許文献1には、マッハツェンダ型変調器を有するヘッド部と、レーザダイオード及びフォトダイオードを有するコントローラ部と、を備える電界計測装置が記載されている。この電界計測装置では、コントローラ部のレーザダイオードからヘッド部に連続光が供給され、ヘッド部のマッハツェンダ型変調器によって、受信アンテナからの出力信号に基づいて連続光が変調されて変調光がコントローラに送出される。そして、コントローラ部のフォトダイオードによって変調光が電気信号に変換されて測定器へ送出される。
特開2012−207942号公報
電界計測装置のダイナミックレンジを拡大するには光伝送装置のS/N比を向上させる必要があり、そのためには信号成分を大きくする必要がある。マッハツェンダ型変調器では、入射した連続光は2つの分岐導波路に分波され、2つの分岐導波路においてそれぞれ変調される。そして、分岐導波路において変調された光が合波され、変調光及び放射光が生成される。変調光の光強度及び放射光の光強度は、入射した連続光の光強度の半分程度である。変調光及び放射光のうち、放射光は外部に放出され、変調光のみがコントローラ部において検出される。
そこで本発明は、このような問題点を解決するためになされたものであって、変調光のS/N比を改善可能な構造を有する光伝送装置を提供することを目的とする。
本発明の一側面に係る光伝送装置は、連続光を出力する光源と、連続光を変調して変調光を出力する位相変調器と、変調光を第1成分及び第2成分に分離する偏光分離素子と、第1成分を第1電気信号に変換する第1光検出器と、第2成分を第2電気信号に変換する第2光検出器と、第1電気信号及び第2電気信号の差分に基づく出力信号を出力する差動回路と、光源から位相変調器に連続光を伝搬する第1偏波保持ファイバと、位相変調器から偏光分離素子に変調光を伝搬する第2偏波保持ファイバと、を備える。第1偏波保持ファイバの位相変調器側の端部において、第1偏波保持ファイバのスロー軸と位相変調器における変調方向との成す角度が31.5度以上58.5度以下であり、第2偏波保持ファイバの位相変調器側の端部において、第2偏波保持ファイバのスロー軸と位相変調器における変調方向との成す角度が31.5度以上58.5度以下である。
このような光伝送装置では、第1偏波保持ファイバの位相変調器側の端部において、第1偏波保持ファイバのスロー軸と位相変調器における変調方向とが31.5度以上58.5度以下の角度を成している。このため、第1偏波保持ファイバによって伝搬された連続光は、位相変調器において変調方向に沿った成分と変調方向に直交する成分とに分けて考えることができる。ここで、変調方向に沿った成分の光強度と変調方向に直交する成分の光強度との差が小さいほど、偏光分離素子を通過した後の光強度信号のダイナミックレンジ(消光比)が大きくなる。このため、第1偏波保持ファイバのスロー軸と位相変調器における変調方向とが45度の角度を成すことにより、変調方向に沿った成分の光強度と変調方向に直交する成分の光強度とは略等しくなるので、位相変調器における変調による偏光分離素子を通過した後の光強度信号の感度を最大とすることができる。第1偏波保持ファイバのスロー軸と位相変調器における変調方向とが31.5度以上58.5度以下の角度を成していても、位相変調器における変調の感度は最大感度の80%以上とすることができる。
また、第2偏波保持ファイバの位相変調器側の端部において、第2偏波保持ファイバのスロー軸と位相変調器における変調方向とが31.5度以上58.5度以下の角度を成している。このため、変調方向に沿った成分及び変調方向に直交する成分は第2偏波保持ファイバのファスト軸とスロー軸とに対して各々の強度が合成された状態になり、ファスト軸方向及びスロー軸方向の偏光成分にそれぞれ対応する第1成分及び第2成分からなる変調光として第2偏波保持ファイバに入射する。さらに、第2偏波保持ファイバによって伝搬された変調光を、偏光分離素子によって第1成分及び第2成分に分離する。ここで、第1成分及び第2成分は、偏光分離素子によって分離され、各々独立に検出できる状態となることにより、それぞれ互いに相補的な強度変調信号となる。そして、差動回路によって、第1偏光成分を光電変換した第1電気信号及び第2成分を変換した第2電気信号の差分に基づく出力信号を出力する。第1成分及び第2成分は互いに逆相に変化するので、第1成分を光電変換した第1電気信号と第2成分を光電変換した第2電気信号との差分を取ることにより、出力信号の検出感度及びS/N比を向上することが可能となる。ここで、差動回路の出力信号は、第1電気信号の平均信号強度及び第2電気信号の平均信号強度の差が小さいほど高感度である。つまり、差動回路の出力信号は、第1成分の平均光強度及び第2成分の平均光強度の差が小さいほど高感度である。このため、第2偏波保持ファイバのスロー軸と位相変調器における変調方向とが45度の角度を成し、第1偏波保持ファイバから偏波分離素子までの経路において、変調方向に沿った成分と変調方向に直交する成分とに略90度のバイアス位相を与えることにより、第1成分の平均光強度と第2成分の平均光強度は略等しくなるので、出力信号の検出感度を最大とすることができる。また、第2偏波保持ファイバのスロー軸と位相変調器における変調方向とが31.5度以上58.5度以下の角度を成していても、最大検出感度の80%以上とすることができる。その結果、マッハツェンダ型の変調器を備えた光伝送装置よりもS/N比を向上することができ、出力信号の検出感度を向上することが可能となる。
本発明の他の側面に係る光伝送装置は、光を反射する反射部と、光路分岐部と、をさらに備えてもよい。第1偏波保持ファイバと第2偏波保持ファイバとは同一の偏波保持ファイバであって、位相変調器の一端に設けられてもよく、反射部は、位相変調器の他端に設けられてもよく、光路分岐部は、光源によって出力された連続光を偏波保持ファイバに出力するとともに、偏波保持ファイバによって伝搬された変調光を偏光分離素子に出力してもよい。この場合、位相変調器の他端に設けられた反射部により、位相変調器の一端から他端に伝搬した連続光を反射して、位相変調器の他端から一端に折り返すことができる。また、光路分岐部により、光源によって出力された連続光を偏波保持ファイバに出力するとともに、偏波保持ファイバによって伝搬された変調光を偏光分離素子に出力する。このため、1本の偏波保持ファイバによって、連続光を搬送するとともに、変調光を搬送することができる。その結果、偏波保持ファイバの数を低減することができる。
本発明の他の側面に係る光伝送装置では、位相変調器は直線導波路を有する。この場合、位相変調器における変調損失を低減することができる。
本発明の他の側面に係る光伝送装置では、位相変調器は、進行波型の位相変調器である。この場合、例えば1GHz以上の高速な検出信号に応じた変調が可能となる。
本発明によれば、変調光のS/N比を改善できる。
第1実施形態に係る光伝送装置の構成を概略的に示す図である。 図1の光伝送装置の動作を説明するための図である。 比較例の光伝送装置の動作を説明するための図である。 第2実施形態に係る光伝送装置の構成を概略的に示す図である。
以下、添付図面を参照して本発明の実施形態を詳細に説明する。なお、図面の説明において同一又は相当要素には同一の符号を付し、重複する説明を省略する。
(第1実施形態)
図1は、第1実施形態に係る光伝送装置の構成を概略的に示す図である。図1に示されるように、光伝送装置1は、例えば、被測定装置(不図示)から放射される電磁波(Electro-Magnetic Interference:EMI)を測定するための電界計測装置に適用され得る。この光伝送装置1は、ヘッド部20と、コントローラ部40と、を備えている。ヘッド部20は、電磁波を受信するためのアンテナ10とともに電波暗室に設置され、コントローラ部40は、測定結果を出力するための測定器(不図示)とともに測定室に設置される。また、被測定装置は電波暗室に設置される。
ここで、電波暗室は、被測定装置から放射される電磁波を検出するためのエリアであって、例えば外部からの電磁波が遮断された空間である。電波暗室は、オープンサイトなどであってもよい。また、本実施形態ではアンテナの設置場所が電波暗室の例で説明するが、これに限定されない。測定室は、電波暗室において検出された電磁波を計測するためのエリアであって、被測定装置から放射される電磁波によって計測に障害が生じないエリアである。測定室は、例えば電波暗室の外部、被測定装置から十分離れた場所、または、被測定装置から放射される電磁波の漏出を遮断した空間などである。
ヘッド部20には、アンテナ10が接続されている。アンテナ10は、被測定装置から放射される電磁波を受信する。アンテナ10は、受信した電磁波の電界強度に応じた電気信号である検出信号Saをヘッド部20に出力する。
ヘッド部20は、検出信号Saに基づいて連続光L1を変調して変調光L2をコントローラ部40に出力する。ヘッド部20は、アンプ21と、バッテリー22と、光変調器23(位相変調器)と、を備えている。
アンプ21は、アンテナ10によって出力される検出信号Saを増幅する回路であって、DC電源であるバッテリー22から電力供給を受けて駆動する。アンプ21は、増幅した検出信号Saを光変調器23に出力する。
光変調器23は、検出信号Saを光信号に変換する位相変調器であって、例えば進行波型の位相変調器である。光変調器23は、検出信号Saに基づいて連続光L1を変調し、変調した連続光L1を変調光L2として出力する。具体的に説明すると、光変調器23は、コントローラ部40から出力される連続光L1を、偏波保持ファイバF1(第1偏波保持ファイバ)を介して入力する。また、光変調器23は、アンプ21から出力される検出信号Saで連続光L1を変調し、変調した光である変調光L2を偏波保持ファイバF2(第2偏波保持ファイバ)を介してコントローラ部40に出力する。光変調器23は、基板31と、信号電極32と、接地電極33と、を備えている。
基板31は、例えばニオブ酸リチウム(LiNbO)などの電気光学効果を奏する誘電体材料(強誘電体)から構成されている。基板31は、例えば一方向に沿って延びる板状部材であり、一方向における両端部である端部31a及び端部31bを有している。基板31は、主面31m及び主面31mと反対側の裏面31nを有している。誘電体材料の結晶軸方向Zは、例えば基板31の主面31mの法線軸NV方向に向いている。基板31は光導波路WGを有している。光導波路WGは、主面31mにおいて端部31aから端部31bまで一方向に沿って延びている。光導波路WGは、例えば直線導波路である。なお、本実施形態では、基板31はいわゆるZカットの基板であるが、これに限定されない。基板31は、例えばいわゆるXカットの基板であってもよい。
信号電極32は、アンプ21から出力される検出信号Saを伝送し、検出信号Saに応じた電界を光導波路WGに印加する。信号電極32は、例えば金、銀、銅またはアルミニウム等の金属から構成されている。信号電極32は、基板31の主面31mに設けられ、例えば光導波路WG上に配置される。信号電極32は、一方向に沿って延びており、信号電極32の端部31a側の端部にアンプ21から検出信号Saが供給される。
接地電極33は、接地電位に接続された一対の電極であって、例えば金、銀、銅またはアルミニウム等の金属から構成されている。接地電極33は、基板31の主面31mに設けられ、信号電極32を挟んで対向配置されている。
コントローラ部40は、連続光L1をヘッド部20に出力するとともに、変調光L2に基づいて電磁波の電界強度を示す測定信号Sm(出力信号)を出力する。コントローラ部40は、光源41と、偏光分離素子42と、光検出器43(第1光検出器)と、光検出器44(第2光検出器)と、差動回路45と、を備えている。
光源41は、連続光L1を出力する光源であって、例えばレーザダイオードである。光源41は、偏波保持ファイバF1を介して、ヘッド部20に連続光L1を出力する。連続光L1は、一定の光強度を有する直線偏光であり、第1波長を有する。第1波長は例えば1.55μmである。
偏光分離素子42は、ヘッド部20によって出力される変調光L2を互いに直交する成分L21(第1成分)及び成分L22(第2成分)に分離する素子であって、例えば偏光ビームスプリッタ(PBS)である。偏光分離素子42は、斜面421を有している。斜面421は、p偏光を透過し、s偏光を反射する。光伝送装置1では、偏光分離素子42は、斜面421によって成分L21を反射して光検出器43に出力し、成分L22を透過して光検出器44に出力する。成分L21及び成分L22は、互いに逆相に変化する。
光検出器43は、光信号を電気信号に変換するためのデバイスであって、例えばフォトダイオードである。光検出器43は、偏光分離素子42によって分離された成分L21の光強度を電気信号S1(第1電気信号)に変換し、変換した電気信号S1を差動回路45に出力する。
光検出器44は、光信号を電気信号に変換するためのデバイスであって、例えばフォトダイオードである。光検出器44は、偏光分離素子42によって分離された成分L22の光強度を電気信号S2(第2電気信号)に変換し、変換した電気信号S2を差動回路45に出力する。
差動回路45は、光検出器43によって出力された電気信号S1と、光検出器44によって出力された電気信号S2と、の差に比例した測定信号Smを測定器(不図示)に出力する。このように、光検出器43、光検出器44及び差動回路45によって差動検出器が構成される。
偏波保持ファイバF1は、コントローラ部40とヘッド部20とを接続する光ファイバであって、偏波保持ファイバ(Polarization Maintaining Fiber:PMF)である。偏波保持ファイバF1は、コントローラ部40からヘッド部20に連続光L1を伝送する。偏波保持ファイバF1の一端は、例えば偏波保持ファイバF1のスロー軸SXに沿って連続光L1が振動するように光源41に接続される。偏波保持ファイバF1の他端は、基板31の端部31aにおいて光変調器23の光導波路WGの一端と接続される。具体的には、偏波保持ファイバF1の他端は、他端におけるスロー軸SXが光変調器23の変調方向に対して所定の角度θ1で傾斜するように、光導波路WGの一端と接続される。この偏波保持ファイバF1のスロー軸SXと光変調器23の変調方向との成す角度θ1は、例えば31.5度以上58.5度以下であり、好ましくは45度である。ここで、光変調器23の変調方向とは、光変調器23において光導波路WGを伝搬する光が変調される方向を意味し、基板31を構成する誘電体材料の結晶軸方向Zと同じである。
偏波保持ファイバF2は、コントローラ部40とヘッド部20とを接続する光ファイバであって、偏波保持ファイバである。偏波保持ファイバF2は、ヘッド部20からコントローラ部40に変調光L2を伝送する。偏波保持ファイバF2の一端は、基板31の端部31bにおいて光変調器23の光導波路WGの他端と接続される。具体的には、偏波保持ファイバF2の一端は、一端におけるスロー軸SXが光変調器23の変調方向に対して所定の角度θ2で傾斜するように、光導波路WGの他端と接続される。この偏波保持ファイバF2のスロー軸SXと光変調器23の変調方向との成す角度θ2は、例えば31.5度以上58.5度以下であり、好ましくは45度である。偏波保持ファイバF2の他端は、他端におけるスロー軸SXが偏光分離素子42の入射面42a(斜面421に対して垂直で、入射光と反射光とを含む面)に対して平行(すなわちp成分)で、他端におけるファスト軸FXが偏光分離素子42の入射面42aに対して垂直(すなわちs成分)になるように、偏光分離素子42の入射面42aに接続される。
次に、光伝送装置1の動作を説明する。図2の(a)は光伝送装置1の動作を説明するための図、図2の(b)は偏波保持ファイバF1の一端における断面図、図2の(c)は偏波保持ファイバF1の他端における断面図、図2の(d)は偏波保持ファイバF2の一端における断面図、図2の(e)は偏波保持ファイバF2の他端における断面図である。図3の(a)は比較例の光伝送装置100の動作を説明するための図、図3の(b)は偏波保持ファイバF101の一端における断面図、図3の(c)は偏波保持ファイバF101の他端における断面図である。
図3に示されるように、光伝送装置100では、光源141から偏波保持ファイバF101に、偏波保持ファイバF101のスロー軸SXに沿って振動するように直線偏光の連続光L101を入力する。偏波保持ファイバF101を伝搬した連続光L101は、マッハツェンダ型の光変調器123に入力する。光変調器123では、連続光L101は光導波路の分岐部において成分L111及び成分L112に分岐され、2つの分岐導波路にそれぞれ導入される。成分L111及び成分L112は、各分岐導波路において変調され、光導波路の合波部において合波されて、変調光L102及び放射光L103が生成される。
そして、放射光L103はシングルモードファイバF102の外へ放射され、変調光L102はシングルモードファイバF102を介して光検出器145に出力される。そして、光検出器145は、変調光L102の光強度に応じた測定信号Smを測定器(不図示)に出力する。ここで、変調光L102の光強度及び放射光L103の光強度は、連続光L101の光強度の半分程度である。このため、光伝送装置100では、光変調器123から出力される光の光強度の50%程度しか光検出に利用できない。また、光伝送装置100では、各部のノイズが累積されるので、S/N比は各部を構成する部材に依存する。
一方、図2に示されるように、光伝送装置1では、光源41から偏波保持ファイバF1の一端に連続光L1を入力する。連続光L1は、例えば偏波保持ファイバF1のスロー軸SXに沿って振動するように偏波保持ファイバF1に入力される。偏波保持ファイバF1を伝搬した連続光L1は、光変調器23の光導波路WGの一端に入力する。ここで、図2の(c)に示されるように、偏波保持ファイバF1の他端におけるスロー軸SXは、光変調器23の変調方向に対して角度θ1傾いている。この例では角度θ1は45度である。このため、光変調器23の光導波路WGにおいて、連続光L1の光変調器23の変調方向に沿った成分L11(0度成分)の光強度と連続光L1の光変調器23の変調方向に直交する成分L12(90度成分)の光強度とは互いに等しく、連続光L1の光強度の50%程度となる。
光変調器23の光導波路WGでは、アンプ21から出力された検出信号Saによって成分L11が位相変調される。そして、変調された成分L11と、成分L12とは、光導波路WGの他端から出力され、偏波保持ファイバF2の一端に入力する。ここで、図2の(d)に示されるように、偏波保持ファイバF2の一端におけるスロー軸SXは、光変調器23の変調方向に対して角度θ2傾いている。このため、成分L11及び成分L12は、偏波保持ファイバF2のファスト軸FXに沿って振動する成分L21と、偏波保持ファイバF2のスロー軸SXに沿って振動する成分L22とに分解合成され、変調光L2として偏波保持ファイバF2を伝搬する。そして、この例では角度θ2は45度であるので、偏波保持ファイバF1から偏波分離素子42までの光路において、成分L11と成分L12とに90度のバイアス位相差が生じるようにすることにより、成分L21の光強度と成分L22の光強度とは互いに等しく、連続光L1の光強度の50%程度となる。なお、成分L11と成分L12とのバイアス位相差は、例えば変調器23(光導波路WG)の長さを調整したり、光変調器23にバイアス調整用の電界を印加したり、その他の位相補償器を設けたりすることによって生じさせることができる。
偏波保持ファイバF2を伝搬した変調光L2は、偏光分離素子42に入力する。偏光分離素子42において、成分L21は斜面421によって反射されて光検出器43に出力され、成分L22は斜面421を透過して光検出器44に出力される。そして、光検出器43によって成分L21の光強度は電気信号S1に変換され、変換された電気信号S1は差動回路45に出力される。また、光検出器44によって成分L22の光強度は電気信号S2に変換され、変換された電気信号S2は差動回路45に出力される。そして、差動回路45において電気信号S1及び電気信号S2の差分が演算され、その差分に比例した測定信号Smが測定器(不図示)に出力される。
以上のように、光伝送装置1では、偏波保持ファイバF1の光変調器23側の端部において、偏波保持ファイバF1のスロー軸SXと光変調器23における変調方向とが角度θ1を成している。このため、偏波保持ファイバF1によって伝搬された連続光L1は、光変調器23の光導波路WGにおいて成分L11及び成分L12に分離される。また、偏波保持ファイバF2の光変調器23側の端部において、偏波保持ファイバF2のスロー軸SXと光変調器23における変調方向とが角度θ2を成している。このため、成分L11及び成分L12は分解合成されていると考えることができ、成分L21及び成分L22からなる変調光L2として偏波保持ファイバF2に入射する。さらに、光伝送装置1では、偏光分離素子42は、偏波保持ファイバF2によって伝搬された変調光L2を、成分L21及び成分L22に分離する。そして、光伝送装置1では、差動回路45は、成分L21を光電変換した電気信号S1及び成分L22を変換した電気信号S2の差分に基づく測定信号Smを出力する。成分L21及び成分L22は互いに逆相に変化するので、成分L21を光電変換した電気信号S1と成分L22を光電変換した電気信号S2との差分を取ることにより、測定信号Smの検出感度を向上することが可能となる。
ここで、差動回路45は、電気信号S1の平均信号強度及び電気信号S2の平均信号強度の差が小さいほど高感度である。つまり、差動回路45は、成分L21の平均光強度及び成分L22の平均光強度の差が小さいほど高感度である。言い換えると、差動回路45は、成分L21の平均光強度及び成分L22の平均光強度のうち小さい方の光強度の2倍の光強度を光検出に利用する。このため、角度θ2を45度とすることにより、成分L21の平均光強度と成分L22の平均光強度とは略等しくなるので、光検出の感度を最大とすることができる。また、成分L21の平均光強度及び成分L22の平均光強度は、成分L11の平均光強度及び成分L12の平均光強度のうち小さい方の光強度程度以下となる。このため、角度θ1を45度として、成分L11と成分L12とのバイアス位相差を適切に調整することにより、成分L11の平均光強度及び成分L12の平均光強度は略等しく、連続光L1の平均光強度の50%程度となるので、成分L21の平均光強度及び成分L22の平均光強度を連続光L1の平均光強度の50%程度とすることができる。このように、角度θ1が45度で角度θ2が45度の場合、連続光L1の光強度の略100%を変調光L2の光検出に利用することができる。その結果、光伝送装置100よりも変調光のS/N比を3dB程度向上することができ、光検出の感度を向上することが可能となる。
角度θ1が31.5度以上58.5度以下であっても、変調光L2の平均光強度は角度θ1が45度の場合の80%以上とすることができる。また、角度θ2が31.5度以上58.5度以下であっても、変調光L2の平均光強度は角度θ2が45度の場合の80%以上とすることができる。このため、角度θ1が31.5度以上58.5度以下で、かつ、角度θ2が31.5度以上58.5度以下であっても、変調光L2の平均光強度を連続光L1の平均光強度の50%以上とすることができ、光伝送装置100よりも変調光のS/N比を向上できる。
また、光変調器23の光導波路WGは直線導波路である。このため、光変調器23における変調損失を低減することができる。また、光変調器23は進行波型の位相変調器である。このため、光変調器23は例えば1GHz以上の高速な検出信号Saに応じた変調が可能となる。
(第2実施形態)
図4は、第2実施形態に係る光伝送装置の構成を概略的に示す図である。図4に示されるように、光伝送装置1Aは、ヘッド部20に代えてヘッド部20Aを備える点、コントローラ部40に代えてコントローラ部40Aを備える点、及び、偏波保持ファイバF2を備えていない点において光伝送装置1と相違している。ヘッド部20Aは、反射部24をさらに備える点においてヘッド部20と相違している。コントローラ部40Aは、サーキュレータ46(光路分岐部)をさらに備える点においてコントローラ部40と相違している。
反射部24は、入射した光を反射する部材であって、例えばミラーである。反射部24は、例えば金(Au)によるコーティングを施した光学ガラスから構成されている。反射部24は、基板31の端部31bにおいて光変調器23の光導波路WGの他端に設けられる。
サーキュレータ46は、第1端子46a、第2端子46b及び第3端子46cを有し、第1端子46aに入力する光を第2端子46bから出力し、第2端子46bに入力する光を第3端子46cから出力する光学素子である。サーキュレータ46の第1端子46aは光源41に接続され、サーキュレータ46の第2端子46bは偏波保持ファイバF1に接続され、サーキュレータ46の第3端子46cは偏光分離素子42に接続されている。サーキュレータ46は、光源41から出力される連続光L1を第1端子46aに入力して第2端子46bから偏波保持ファイバF1に出力する。サーキュレータ46は、偏波保持ファイバF1から出力される変調光L2を第2端子46bに入力して第3端子46cから偏光分離素子42に出力する。
偏波保持ファイバF1は、コントローラ部40Aとヘッド部20Aとを接続する光ファイバであって、偏波保持ファイバである。偏波保持ファイバF1は、コントローラ部40Aからヘッド部20Aに連続光L1を伝送するとともに、ヘッド部20Aからコントローラ部40Aに変調光L2を伝送する。偏波保持ファイバF1の一端は、例えば偏波保持ファイバF1のスロー軸SXに沿って連続光L1が振動するようにサーキュレータ46の第2端子46bに接続される。偏波保持ファイバF1の他端は、基板31の端部31aにおいて光変調器23の光導波路WGの一端と接続される。具体的には、偏波保持ファイバF1の他端は、他端におけるスロー軸SXが光変調器23の変調方向に対して所定の角度θ1で傾斜するように、光導波路WGの一端と接続される。この偏波保持ファイバF1のスロー軸SXと光変調器23の変調方向との成す角度θ1は、例えば31.5度以上58.5度以下であり、好ましくは45度である。
次に、光伝送装置1Aの動作を説明する。光伝送装置1Aでは、光源41から出力された連続光L1は、サーキュレータ46の第1端子46aに入力し、第2端子46bから出力される。そして、第2端子46bから出力された連続光L1は偏波保持ファイバF1の一端に入力する。偏波保持ファイバF1を伝搬した連続光L1は、光変調器23の光導波路WGの一端に入力する。ここで、偏波保持ファイバF1の他端におけるスロー軸SXは、光変調器23の変調方向に対して角度θ1傾いている。この例では角度θ1は45度である。このため、光変調器23の光導波路WGにおいて、連続光L1の光変調器23の変調方向に沿った成分L11(0度成分)の光強度と連続光L1の光変調器23の変調方向に直交する成分L12(90度成分)の光強度は互いに等しく、連続光L1の光強度の50%程度となる。
光変調器23の光導波路WGでは、アンプ21から出力された検出信号Saによって成分L11が位相変調される。そして、変調された成分L11と、成分L12とは、光導波路WGの他端において反射部24によって反射され、光導波路WGを折り返す。光変調器23は進行波型位相変調器であるので、変調された成分L11と成分L12とが光導波路WGの他端から一端に向けて伝搬する際には変調されない。そして、変調された成分L11と、成分L12とは、光導波路WGの一端から出力され、偏波保持ファイバF1の他端に入力する。偏波保持ファイバF1の他端におけるスロー軸SXは、光変調器23の変調方向に対して45度(角度θ1)傾いているので、成分L11及び成分L12は、偏波保持ファイバF1のファスト軸FXに沿って振動する成分L21と、偏波保持ファイバF1のスロー軸SXに沿って振動する成分L22とに分解合成され、変調光L2として偏波保持ファイバF1を伝搬する。
偏波保持ファイバF1を伝搬した変調光L2は、サーキュレータ46の第2端子46bに入力し、第3端子46cから出力される。そして、第3端子46cから出力された変調光L2は偏光分離素子42に入力する。偏光分離素子42において、成分L21は斜面421によって反射されて光検出器43に出力され、成分L22は斜面421を透過して光検出器44に出力される。そして、光検出器43によって成分L21の光強度は電気信号S1に変換され、変換された電気信号S1は差動回路45に出力される。また、光検出器44によって成分L22の光強度は電気信号S2に変換され、変換された電気信号S2は差動回路45に出力される。そして、差動回路45において電気信号S1及び電気信号S2の差分が演算され、その差分に比例した測定信号Smが測定器に出力される。
以上の第2実施形態の光伝送装置1Aによっても、上述した第1実施形態の光伝送装置1と同様の効果が奏される。また、光伝送装置1Aは、光変調器23の光導波路WGの他端に設けられた反射部24を備えている。これにより、光導波路WGの一端から他端に伝搬した成分L11及び成分L12を反射して、光導波路WGの他端から一端に折り返すことができる。さらに、光伝送装置1Aは、サーキュレータ46を備えている。これにより、光源41によって出力された連続光L1を偏波保持ファイバF1に出力するとともに、偏波保持ファイバF1によって伝搬された変調光L2を偏光分離素子42に出力する。このように、光伝送装置1Aは反射部24及びサーキュレータ46を備えることによって、偏波保持ファイバF1は、コントローラ部40Aからヘッド部20Aに連続光L1を搬送するとともに、ヘッド部20Aからコントローラ部40Aに変調光L2を搬送する。このため、光伝送装置1Aでは、ヘッド部20Aとコントローラ部40Aとの間には1本の偏波保持ファイバF1が設けられればよく、ヘッド部20A及びコントローラ部40Aの間に設けられた光ファイバの数を低減することができる。
なお、本発明に係る光伝送装置は上記実施形態に限定されない。例えば、光伝送装置1,1Aは、アンテナで受信した電磁波を検出するものであればよく、例えば衛星用のパラボラアンテナを用いて屋外で受信するシステム及びROF(Radio over fiber)システムなど電界計測装置全般に適用され得る。また、光伝送装置1,1Aは、衛星からの電波を受信するための受信機、及び、電波望遠鏡等に適用され得る。これらの目的で使用する場合、ヘッド部20,20Aは電波暗室等のような室内ではなく、屋外に設置されることもある。
また、上記実施形態では、バッテリー22はヘッド部20,20Aの内部に設けられているが、ヘッド部20,20Aの外部に設けられてもよい。また、アンプ21及びバッテリー22は必須ではなく、適宜省略され得る。
本実施形態によれば、変調光のS/N比を改善可能な光伝送装置を提供できる。
1,1A…光伝送装置、23…光変調器(位相変調器)、24…反射部、41…光源、42…偏光分離素子、43…光検出器(第1光検出器)、44…光検出器(第2光検出器)、45…差動回路、46…サーキュレータ(光路分岐部)、F1…偏波保持ファイバ(第1偏波保持ファイバ)、F2…偏波保持ファイバ(第2偏波保持ファイバ)、L1…連続光、L2…変調光、L21…成分(第1成分)、L22…成分(第2成分)、Sm…測定信号(出力信号)、S1…電気信号(第1電気信号)、S2…電気信号(第2電気信号)、SX…スロー軸、Z…結晶軸方向(変調方向)、θ1…角度、θ2…角度。

Claims (4)

  1. 連続光を出力する光源と、
    前記連続光を変調して変調光を出力する位相変調器と、
    前記変調光を第1成分及び第2成分に分離する偏光分離素子と、
    前記第1成分を第1電気信号に変換する第1光検出器と、
    前記第2成分を第2電気信号に変換する第2光検出器と、
    前記第1電気信号及び前記第2電気信号の差分に基づく出力信号を出力する差動回路と、
    前記光源から前記位相変調器に前記連続光を伝搬する第1偏波保持ファイバと、
    前記位相変調器から前記偏光分離素子に前記変調光を伝搬する第2偏波保持ファイバと、
    を備え、
    前記第1偏波保持ファイバの前記位相変調器側の端部において、前記第1偏波保持ファイバのスロー軸と前記位相変調器における変調方向との成す角度が31.5度以上58.5度以下であり、
    前記第2偏波保持ファイバの前記位相変調器側の端部において、前記第2偏波保持ファイバのスロー軸と前記位相変調器における前記変調方向との成す角度が31.5度以上58.5度以下であることを特徴とする光伝送装置。
  2. 光を反射する反射部と、
    光路分岐部と、
    をさらに備え、
    前記第1偏波保持ファイバと前記第2偏波保持ファイバとは同一の偏波保持ファイバであって、前記位相変調器の一端に設けられており、
    前記反射部は、前記位相変調器の他端に設けられており、
    前記光路分岐部は、前記光源によって出力された前記連続光を前記偏波保持ファイバに出力するとともに、前記偏波保持ファイバによって伝搬された前記変調光を前記偏光分離素子に出力することを特徴とする請求項1に記載の光伝送装置。
  3. 前記位相変調器は直線導波路を有することを特徴とする請求項1または請求項2に記載の光伝送装置。
  4. 前記位相変調器は進行波型の位相変調器であることを特徴とする請求項1〜請求項3のいずれか一項に記載の光伝送装置。
JP2013110892A 2013-05-27 2013-05-27 光伝送装置 Pending JP2014228832A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013110892A JP2014228832A (ja) 2013-05-27 2013-05-27 光伝送装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013110892A JP2014228832A (ja) 2013-05-27 2013-05-27 光伝送装置

Publications (1)

Publication Number Publication Date
JP2014228832A true JP2014228832A (ja) 2014-12-08

Family

ID=52128678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013110892A Pending JP2014228832A (ja) 2013-05-27 2013-05-27 光伝送装置

Country Status (1)

Country Link
JP (1) JP2014228832A (ja)

Similar Documents

Publication Publication Date Title
US6262834B1 (en) Wideband single sideband modulation of optical carriers
JP3422913B2 (ja) 光サンプリング波形測定装置
JP6936560B2 (ja) 電磁波測定装置および電磁波測定方法
US5210407A (en) Electric field intensity detecting device having a condenser-type antenna and a light modulator
US6671056B2 (en) Method and system for optical spectrum analysis with a depolarized local oscillator signal
JP5159255B2 (ja) 光周波数領域反射測定方法および装置
JP2010191262A (ja) 光路長制御装置
JP6163109B2 (ja) ホモダイン検波方式電磁波分光測定システム
JP2007078633A (ja) 高感度3軸光電界センサ
JP2012513617A (ja) 周波数サーボが設けられたレーザーシステム
JP2014228832A (ja) 光伝送装置
JP2004212137A (ja) 3軸光電界センサ
JP2000097980A (ja) 進行波型光電界センサ
JP2011033501A (ja) フィードバック回路を有する電界・磁界・電圧検出装置
JPH11167090A (ja) 光変調装置および受信装置
EP1160615A2 (en) Electro-optic device for adding/subtracting optical signals
JP2014215180A (ja) 光伝送装置及び光源装置
JP2014228831A (ja) 光変調装置及び光伝送装置
JP3318706B2 (ja) センシング装置
JP2000214199A (ja) センシング装置
JP3404604B2 (ja) 光電界センサ
JP7174423B2 (ja) 光電界センサ
JP4885622B2 (ja) 光マイクロ波ミキサ
US20240168223A1 (en) Photonic integrated circuit for multiple frequency shifting of light
JP2729032B2 (ja) 光受信装置及び光スペクトルアナライザ装置