JP2014225325A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery Download PDF

Info

Publication number
JP2014225325A
JP2014225325A JP2011200478A JP2011200478A JP2014225325A JP 2014225325 A JP2014225325 A JP 2014225325A JP 2011200478 A JP2011200478 A JP 2011200478A JP 2011200478 A JP2011200478 A JP 2011200478A JP 2014225325 A JP2014225325 A JP 2014225325A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
positive electrode
current collector
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011200478A
Other languages
Japanese (ja)
Inventor
一樹 遠藤
Kazuki Endo
一樹 遠藤
杉田 康成
Yasunari Sugita
康成 杉田
藤川 万郷
Kazusato Fujikawa
万郷 藤川
西野 肇
Hajime Nishino
肇 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011200478A priority Critical patent/JP2014225325A/en
Priority to PCT/JP2012/005845 priority patent/WO2013038676A1/en
Publication of JP2014225325A publication Critical patent/JP2014225325A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery exhibiting excellent safety, in which undue temperature rise can be suppressed even if internal short circuit occurs due to a large foreign matter, e.g., a nail, without compromising the energy density.SOLUTION: In a positive electrode or a negative electrode 6, a collector exposed part is provided at the outermost periphery of a polar plate having a polarity different from that of a battery can, and at least one lead is provided on the inner peripheral side of the longitudinal center of an active material layer of a polar plate having a polarity same as that of a battery can.

Description

本発明は、非水電解質二次電池に関し、特に極板構造と集電構造を好適にしたものに関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a suitable electrode plate structure and current collecting structure.

近年、携帯電話やノートパソコンなどの電子機器および車載用電源などに用いる二次電池に対する高エネルギー密度化が要求されており、この観点から高エネルギー密度化が可能な非水電解質二次電池が広く普及している。非水電解質二次電池は、正極、負極、これらの間に介在するセパレータおよび非水電解質を具備する。正極、負極およびセパレータは、捲回されて電極群を構成しているものが多い。   In recent years, there has been a demand for higher energy density for secondary batteries used in electronic devices such as mobile phones and laptop computers and in-vehicle power supplies. From this viewpoint, non-aqueous electrolyte secondary batteries that can increase energy density are widely used. It is popular. The non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode, a separator interposed therebetween, and a non-aqueous electrolyte. Many of the positive electrode, the negative electrode, and the separator are wound to form an electrode group.

一般的に電池の内部で比較的抵抗値が低い短絡が発生した場合、短絡点に大電流が集中して流れるため、電池の発熱が加速して過熱に至ることがある。エネルギー密度の高いリチウムイオン電池ではこのような現象を回避するために、製造上の観点のほかに、電池構成上の観点からも様々な安全対策がなされている。   In general, when a short circuit having a relatively low resistance value occurs inside the battery, a large current flows in a concentrated manner at the short circuit point, so that the heat generation of the battery may accelerate and lead to overheating. In order to avoid such a phenomenon in a lithium ion battery having a high energy density, various safety measures are taken from the viewpoint of the battery configuration in addition to the viewpoint of manufacturing.

一般的には、電池が内部短絡を起こしたときの発熱により、細孔が閉塞してイオン電流の遮断を行うシャットダウン機能が付与されたセパレータが用いられている。シャットダウン機能により短絡電流が流れなくなり発熱が停止するというものであるが、短絡部の発熱が大きい場合、シャットダウンが機能する前にセパレータを溶融させてセパレータに大きな穴を開けるメルトダウンを引き起こす。メルトダウンにより正極と負極とが短絡すると、更なる過熱を引き起こし、場合によっては電池が発火又は発煙し非常に危険である。   In general, a separator having a shutdown function for blocking pores and blocking ionic current due to heat generated when a battery causes an internal short circuit is used. The short-circuit current stops flowing due to the shutdown function, and the heat generation stops. However, when the heat generation in the short-circuited portion is large, the separator is melted before the shutdown functions, thereby causing a melt-down that opens a large hole in the separator. When the positive electrode and the negative electrode are short-circuited due to meltdown, further overheating is caused. In some cases, the battery ignites or smokes, which is very dangerous.

そこで、捲回構造を有する電極群を構成する正極および負極において、電池群最外周部に位置する部分に正極集電体露出部および負極集電体露出部を設け、この正極集電体露出部および負極集電体露出部が対向した状態で電極群の外周部を1周以上覆うようすることが提案されている。そして、釘などの導電性異物が刺さった際に集電体間で低抵抗な短絡による分流を起こさせ、正極活物質層−負極間短絡部に流れる電流を相対的に減少させることによって、電池の過熱を抑制する技術が提案されている(特許文献1参照)。   Therefore, in the positive electrode and the negative electrode constituting the electrode group having a wound structure, a positive electrode current collector exposed portion and a negative electrode current collector exposed portion are provided in a portion located at the outermost peripheral portion of the battery group, and this positive electrode current collector exposed portion In addition, it has been proposed to cover the outer peripheral portion of the electrode group one or more times in a state where the exposed portion of the negative electrode current collector is opposed. Then, when a conductive foreign object such as a nail is pierced, a current is shunted between the current collectors due to a low resistance short circuit, and the current flowing through the positive electrode active material layer-negative electrode short circuit part is relatively reduced, thereby There has been proposed a technique for suppressing overheating (see Patent Document 1).

さらに、電極群の最外周部のみならず、最内周部や中間層部にも、正極集電体露出部および負極集電体露出部を設けることにより、より多くの集電体間分流を起こさせる技術が提案されている(特許文献2参照)。   Furthermore, by providing a positive electrode current collector exposed portion and a negative electrode current collector exposed portion not only at the outermost peripheral portion of the electrode group, but also at the innermost peripheral portion and the intermediate layer portion, more shunt current between the current collectors can be obtained. A technique for causing it has been proposed (see Patent Document 2).

特開平08−153542号公報Japanese Patent Laid-Open No. 08-153542 特開2007−109612号公報JP 2007-109612 A

しかしながら、特許文献1の技術では外周部の集電体短絡分流による安全性向上はあるが、近年の高容量電池においては、高温環境下などで釘などの大きな異物が刺さった場合には電池が異常過熱に至ることがあり効果が不充分である。また、特許文献2の技術では集電体間短絡箇所を増やすことでさらに安全性を向上させているが、このような構成を用いたとしても、内周の集電体露出部に釘が到達する前に正極活物質−負極間に電流が流れてしまい過熱にいたる場合があり、これを防ぐためには集電体露出部を無数に増やす必要
があり、電池のエネルギー密度が低下する。
However, in the technique of Patent Document 1, there is an improvement in safety due to the short circuit shunt current collector at the outer periphery. However, in a high capacity battery in recent years, when a large foreign object such as a nail is stuck in a high temperature environment, the battery is removed. It may lead to abnormal overheating and the effect is insufficient. Further, in the technique of Patent Document 2, the safety is further improved by increasing the number of short-circuit portions between the current collectors. However, even when such a configuration is used, the nail reaches the current collector exposed portion on the inner periphery. In some cases, an electric current flows between the positive electrode active material and the negative electrode before overheating, leading to overheating. To prevent this, it is necessary to increase the number of exposed portions of the current collector, and the energy density of the battery decreases.

前記従来の課題を解決するために、本発明の非水電解質二次電池は、正極と、負極とが、セパレータを介して捲回してなる電極群が、非水電解質とともに金属製の電池缶に収容された非水電解質二次電池において、前記正極は、正極集電体と、正極集電体の表面に形成された正極活物質層を含み、前記負極は、負極集電体と、負極集電体の表面に形成された負極活物質層を含み、前記正極または前記負極のうち電池缶と異極性の極板は、電極群の最外周部において集電体露出部が少なくとも1周以上にわたり存在し、かつ、前記正極または前記負極のうち電池缶と同極性の極板は、活物質層の長手方向中央より内周側に少なくとも1本のリードが設けられ、電池缶と接続されているというものである。   In order to solve the above-mentioned conventional problems, the nonaqueous electrolyte secondary battery of the present invention has a group of electrodes, in which a positive electrode and a negative electrode are wound through a separator, together with a nonaqueous electrolyte in a metal battery can. In the accommodated non-aqueous electrolyte secondary battery, the positive electrode includes a positive electrode current collector and a positive electrode active material layer formed on a surface of the positive electrode current collector, and the negative electrode includes a negative electrode current collector, a negative electrode current collector, and the like. A negative electrode active material layer formed on the surface of the electric body, and the electrode plate having a polarity different from that of the battery can of the positive electrode or the negative electrode has at least one or more current collector exposed portions in the outermost peripheral portion of the electrode group The electrode plate that is present and has the same polarity as the battery can of the positive electrode or the negative electrode is provided with at least one lead on the inner peripheral side from the longitudinal center of the active material layer, and is connected to the battery can. That's it.

本発明者らが鋭意研究を行った結果、外周部での集電体間短絡の短絡抵抗自体は活物質層間短絡の短絡抵抗に比べ充分に低いものの、短絡による大電流が発生した際に極板中央部に比べ外周部は集電体中の電子抵抗の寄与が大きいため、より中央に近い活物質層間短絡箇所へも短絡電流が分配されてしまうことが明らかとなった。この課題を解決するにあたり、電池缶と同極性の極板の中央部より内周側にリードを接続することで、釘などの異物が刺さった際に、「電池缶と同極性極板内周部−リード−電池缶−電池缶と異極性極板の外周集電体露出部」を通るバイパス電流経路が発生し外周部に大電流を集中させるという本発明の着想を得た。通常、電池缶と同極性の極板のリードは電極群外周部に接続されており、このような構成だと前記バイパス経路はできない。その結果、前述したように外周部に集電体短絡部を設けても、集電体中電子抵抗の寄与により外周部への電流集中が不充分となり、相対的に活物質層間短絡部へも電流が分配しやすい。一方、本発明の構成を用いると、集電体中より電子抵抗の低い経路を用いて極板中央部および内周部から外周部に電流を集中させることが可能となるため、活物質層間短絡部への電流を実質的に流れなくすることが可能となる。この結果、釘のような大きな異物による内部短絡に対して充分な安全性を確保しつつ、かつエネルギー密度の高い電池を得ることが可能となる。   As a result of intensive studies by the present inventors, the short-circuit resistance of the short circuit between the current collectors at the outer peripheral portion itself is sufficiently lower than the short-circuit resistance of the active material interlayer short circuit. Since the contribution of the electronic resistance in the current collector is larger in the outer peripheral portion than in the central portion of the plate, it has been clarified that the short-circuit current is distributed to the active material interlayer short-circuit portion closer to the center. To solve this problem, by connecting a lead from the center of the electrode plate with the same polarity as the battery can to the inner periphery, when a foreign object such as a nail is stabbed, The idea of the present invention was obtained that a bypass current path passing through the “outer current collector exposed part of the part-lead-battery can-battery can and different polarity electrode plate” was generated, and a large current was concentrated on the outer peripheral part. Usually, the lead of the electrode plate having the same polarity as that of the battery can is connected to the outer periphery of the electrode group. With such a configuration, the bypass path cannot be formed. As a result, even if the current collector short-circuit portion is provided in the outer peripheral portion as described above, the current concentration in the outer peripheral portion becomes insufficient due to the contribution of the electronic resistance in the current collector, and the active material interlayer short-circuit portion is relatively Easy to distribute current. On the other hand, when the configuration of the present invention is used, it is possible to concentrate current from the central part of the electrode plate and the inner peripheral part to the outer peripheral part using a path having a lower electronic resistance than in the current collector. It becomes possible to substantially prevent the current from flowing to the part. As a result, it is possible to obtain a battery having a high energy density while ensuring sufficient safety against an internal short circuit caused by a large foreign object such as a nail.

本発明によると、高いエネルギー密度を損なうことなく、釘などの大きな異物による内部短絡が起きた際にも、電池温度の過度な上昇を抑制しうる、安全性に優れた非水電解質二次電池を得ることができる。   According to the present invention, a nonaqueous electrolyte secondary battery excellent in safety that can suppress an excessive increase in battery temperature even when an internal short circuit occurs due to a large foreign matter such as a nail without impairing a high energy density. Can be obtained.

本発明の一実施の形態の負極板を示した模式平面図The schematic top view which showed the negative electrode plate of one embodiment of this invention 本発明の別の実施の形態の負極板を示した模式平面図Schematic plan view showing a negative electrode plate of another embodiment of the present invention 本発明の別の実施の形態の負極板を示した模式平面図Schematic plan view showing a negative electrode plate of another embodiment of the present invention 本発明の別の実施の形態の負極板を示した模式平面図Schematic plan view showing a negative electrode plate of another embodiment of the present invention 本発明の別の実施の形態の負極板を示した模式平面図Schematic plan view showing a negative electrode plate of another embodiment of the present invention 本発明の一実施の形態の正極板を示した模式平面図The schematic plan view which showed the positive electrode plate of one embodiment of this invention 本発明の一実施形態に係る非水電解質二次電池の構成を概略的に示す縦断面図1 is a longitudinal sectional view schematically showing a configuration of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.

以下、負極と電池缶が同極性の場合の本発明の一実施形態を例に説明するが、正極と電池缶が同極性の場合にも同様に本発明は有効である。   Hereinafter, one embodiment of the present invention in which the negative electrode and the battery can have the same polarity will be described as an example. However, the present invention is also effective when the positive electrode and the battery can have the same polarity.

図1から図5に、本発明の一実施形態に係る非水電解質二次電池用負極6の長手方向展開図を示す。負極6は、負極集電体12と、負極集電体12に担持された負極活物質層14とを備えている。負極リード6aは負極活物質層14の長手方向中央より内周側の両面
とも集電体が露出している箇所に少なくとも1本設けられている。負極リード6aの接続位置は図1のように負極活物質層14の中央部と最内周部の中間であってもいいし、図2のように負極活物質層14の中央やや内周寄りであってもいいし、図3のように最内周部であってもよく、複数本あってもよい。リードの本数を増やすことで外周部への電流集中効果をより高めることが可能だが、リードを増やしすぎるとエネルギー密度の低下を招くので好ましくない。また、図4のように、中央より内周側の負極リード6aとは別に、外周部にもリードが接続されていてもよい。外周部にもリードが接続されると釘のような導電性異物が刺さる前から中央部や内周部とのバイパス回路が成立することになり、より確実な外周部への電流集中効果が得られるため好ましい。また、図5のように、外周部に正極集電体露出部15に対向する負極集電体露出部16がなくても、釘のような導電性異物が刺さると「負極内周部−負極リード−電池缶−正極外周集電体露出部」のバイパス回路は形成される。このため、電流集中効果は得られるが、図1から図4のように、外周部に正極集電体露出部15に対向するように負極集電体露出部16が電極群9の1周以上に相当する長さで存在していると、外周部での金属間短絡をより確実に起こしやすく、好ましい。
1 to 5 are longitudinal development views of a negative electrode 6 for a nonaqueous electrolyte secondary battery according to an embodiment of the present invention. The negative electrode 6 includes a negative electrode current collector 12 and a negative electrode active material layer 14 supported on the negative electrode current collector 12. At least one negative electrode lead 6a is provided at a location where the current collector is exposed on both surfaces of the negative electrode active material layer 14 on the inner peripheral side from the longitudinal center. The connection position of the negative electrode lead 6a may be intermediate between the central portion of the negative electrode active material layer 14 and the innermost peripheral portion as shown in FIG. 1, or slightly closer to the center of the negative electrode active material layer 14 as shown in FIG. Or the innermost peripheral portion as shown in FIG. 3 or a plurality of inner peripheral portions. Increasing the number of leads can increase the current concentration effect on the outer periphery, but it is not preferable to increase the number of leads because it leads to a decrease in energy density. Further, as shown in FIG. 4, a lead may be connected to the outer peripheral portion separately from the negative electrode lead 6 a on the inner peripheral side from the center. If the lead is also connected to the outer periphery, a bypass circuit is established between the center and inner periphery before the conductive foreign object such as a nail is pierced, and a more reliable current concentration effect on the outer periphery is obtained. Therefore, it is preferable. Further, as shown in FIG. 5, even if there is no negative electrode current collector exposed portion 16 facing the positive electrode current collector exposed portion 15 on the outer peripheral portion, if a conductive foreign object such as a nail is pierced, “negative electrode inner peripheral portion-negative electrode A bypass circuit of “lead-battery can-positive electrode outer periphery current collector exposed portion” is formed. Therefore, although a current concentration effect is obtained, as shown in FIGS. 1 to 4, the negative electrode current collector exposed portion 16 has one or more rounds of the electrode group 9 so as to face the positive electrode current collector exposed portion 15 on the outer peripheral portion. If it exists in the length corresponding to, it is easy to raise | generate a short circuit between metals in an outer peripheral part more reliably, and it is preferable.

負極活物質層14は、負極活物質の他に、結着剤、増粘剤および導電材などを含んでいてもよい。負極活物質としては、炭素材料、酸化物、窒化物、錫化合物、珪素化合物、各種合金材料等を用いることができる。炭素材料としては、例えば各種天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、各種人造黒鉛、非晶質炭素等の炭素材料が用いられる。また、珪素(Si)や錫(Sn)等の単体、又は合金、化合物、固溶体等の珪素化合物や錫化合物が容量密度の大きい点から好ましい。例えば珪素化合物としては、SiOx(0.05<x<1.95)、又はこれらのいずれかにB、Mg、Ni、Ti、Mo、Co、Ca、Cr、Cu、Fe、Mn、Nb、Ta、V、W、Zn、C、N、Snからなる群から選択される少なくとも1つ以上の元素でSiの一部を置換した合金や化合物、又は固溶体等を用いることができる。錫化合物としてはNiSn、MgSn、SnOx(0<x<2)、SnO、SnSiO等が適用できる。負極活物質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The negative electrode active material layer 14 may contain a binder, a thickener, a conductive material, and the like in addition to the negative electrode active material. As the negative electrode active material, carbon materials, oxides, nitrides, tin compounds, silicon compounds, various alloy materials, and the like can be used. Examples of the carbon material include carbon materials such as various natural graphites, cokes, graphitized carbon, carbon fibers, spherical carbon, various artificial graphites, and amorphous carbon. In addition, a simple substance such as silicon (Si) or tin (Sn), or a silicon compound or tin compound such as an alloy, a compound, or a solid solution is preferable from the viewpoint of a large capacity density. For example, as a silicon compound, SiOx (0.05 <x <1.95), or any one of them, B, Mg, Ni, Ti, Mo, Co, Ca, Cr, Cu, Fe, Mn, Nb, Ta An alloy, a compound, a solid solution, or the like in which a part of Si is substituted with at least one element selected from the group consisting of V, W, Zn, C, N, and Sn can be used. As the tin compound, Ni 2 Sn 4 , Mg 2 Sn, SnOx (0 <x <2), SnO 2 , SnSiO 3 or the like can be applied. A negative electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.

負極集電体12は銅箔、銅合金箔またはニッケル箔が好ましい。集電体の厚さは、生産性とエネルギー密度の点から5〜30μmであることが好ましく、5〜15μmであることがより好ましい。   The negative electrode current collector 12 is preferably a copper foil, a copper alloy foil or a nickel foil. The thickness of the current collector is preferably 5 to 30 μm and more preferably 5 to 15 μm from the viewpoint of productivity and energy density.

図6に、本発明の一実施形態に係る非水電解質二次電池用正極5の長手方向展開図を示す。正極5は、正極集電体11と、正極集電体11に担持された正極活物質層13とを備えている。また、正極5には捲回時に電極群9の外周部になる側に正極活物質層13が形成していない集電体露出部が電極群9の1周以上に相当する長さで存在している。   FIG. 6 is a longitudinal development view of the positive electrode 5 for a nonaqueous electrolyte secondary battery according to an embodiment of the present invention. The positive electrode 5 includes a positive electrode current collector 11 and a positive electrode active material layer 13 supported on the positive electrode current collector 11. Further, the positive electrode 5 has a current collector exposed portion in which the positive electrode active material layer 13 is not formed on the side that becomes the outer peripheral portion of the electrode group 9 when wound in a length corresponding to one or more rounds of the electrode group 9. ing.

正極リード5aの位置は両面とも集電体が露出している箇所であればよく、図6の正極5では中央部に1本接続されている。ここで、中央部とは、正極5の内周側端部と外周側端部の距離をLとしたとき、内周側端部および外周側端部からの距離がそれぞれ2/3L以下である範囲である。また、正極5の外周部および中央部にそれぞれ正極リード5aを設けると、「正極中央部−正極リード−正極外周部」のバイパス回路も形成されるため、釘のような導電性異物が刺さった際に、さらに効果的に外周部への電流集中効果が得られるため、より好ましい。   The position of the positive electrode lead 5a may be a location where the current collector is exposed on both sides, and one positive electrode 5 in FIG. 6 is connected to the central portion. Here, when the distance between the inner peripheral side end portion and the outer peripheral side end portion of the positive electrode 5 is L, the distance from the inner peripheral side end portion and the outer peripheral side end portion is 2/3 L or less, respectively. It is a range. Further, when the positive electrode lead 5a is provided at each of the outer peripheral portion and the central portion of the positive electrode 5, a bypass circuit of "positive electrode central portion-positive electrode lead-positive electrode outer peripheral portion" is also formed, so that a conductive foreign object such as a nail is stuck. In this case, it is more preferable because a current concentration effect on the outer peripheral portion can be obtained more effectively.

正極活物質層13は、正極活物質の他に、結着剤および導電材などを含んでいればよい。正極活物質としては、リチウム複合金属酸化物を用いることができる。リチウム複合金属酸化物は、例えば、LixCoO、LixNiO、LixMnO、LixCoyNi1−yO、LixCoyM1−yOz、LixNi1−yMyOz、LixMn
、LixMn2−yMyO、LiMPO、LiMPOF(M=Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、SbおよびBのうち少なくとも1種)である。ここで、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3である。なお、リチウムのモル比を示すx値は、活物質作製直後の値であり、充放電により増減する。また、正極活物質は、上記リチウム複合金属酸化物中の金属元素の一部が異種元素で置換されたものであってもよい。さらに、正極活物質は、上記リチウム複合金属酸化物が金属酸化物、リチウム酸化物または導電剤などで表面処理されたものであってもよいし、上記リチウム複合金属酸化物の表面が疎水化処理されたものであってもよい。
The positive electrode active material layer 13 only needs to contain a binder and a conductive material in addition to the positive electrode active material. A lithium composite metal oxide can be used as the positive electrode active material. Lithium mixed metal oxides, for example, LixCoO 2, LixNiO 2, LixMnO 2, LixCoyNi1-yO 2, LixCoyM1-yOz, LixNi1-yMyOz, LixMn 2
O 4 , LixMn 2 -y MyO 4 , LiMPO 4 , Li 2 MPO 4 F (M = Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb and B At least one of them). Here, 0 <x ≦ 1.2, 0 <y ≦ 0.9, and 2.0 ≦ z ≦ 2.3. In addition, x value which shows the molar ratio of lithium is a value immediately after active material preparation, and increases / decreases by charging / discharging. In addition, the positive electrode active material may be one in which a part of the metal element in the lithium composite metal oxide is replaced with a different element. Furthermore, the positive electrode active material may be one in which the lithium composite metal oxide is surface-treated with a metal oxide, lithium oxide, or a conductive agent, or the surface of the lithium composite metal oxide is hydrophobized. It may be what was done.

正極集電体11はアルミニウム箔、ニッケル箔またはステンレス箔などの金属箔が好ましい。集電体の厚さは、生産性とエネルギー密度の点から5〜30μmであることが好ましく、10〜20μmであることがより好ましい。   The positive electrode current collector 11 is preferably a metal foil such as an aluminum foil, a nickel foil, or a stainless steel foil. The thickness of the current collector is preferably 5 to 30 μm and more preferably 10 to 20 μm from the viewpoint of productivity and energy density.

リチウムイオン伝導性を有する電解質層は、非水溶媒および非水溶媒に溶解するリチウム塩を含む。電解質層は、ポリオレフィン製の微多孔質フィルムをセパレータとして含んでもよく、この場合、微多孔質フィルムの細孔内に、リチウム塩が溶解した非水溶媒が含浸される。非水溶媒としては、例えば、エチレンカーボネ−ト(EC)、プロピレンカーボネ−ト(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)およびエチルメチルカーボネート(EMC)が挙げられるが、これらに限定されない。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。リチウム塩としては、例えば、LiBF4、LiPF6、LiAlCl4、LiClおよびリチウムイミド塩が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。   The electrolyte layer having lithium ion conductivity includes a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent. The electrolyte layer may include a polyolefin microporous film as a separator. In this case, a nonaqueous solvent in which a lithium salt is dissolved is impregnated in the pores of the microporous film. Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC). It is not limited to. These may be used alone or in combination of two or more. Examples of the lithium salt include LiBF4, LiPF6, LiAlCl4, LiCl, and lithium imide salt. These may be used alone or in combination of two or more.

以下、本発明を実施例に基づいて詳細に説明するが、実施例は本発明の範囲を限定するものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, an Example does not limit the scope of the present invention.

<実施例1>
(i)負極6の作製
人造黒鉛(平均粒径10μm、BET比表面積3m2/g)3kgと、日本ゼオン(株)製のBM−400B(固形分40重量%の変性スチレン−ブタジエンゴムの分散液)75gと、カルボキシメチルセルロース(CMC)30gとを、適量の水とともに、双腕式練合機にて攪拌し、負極合剤スラリーを調製した。負極合剤スラリーを、厚さ8μmの銅箔からなる負極集電体12の両面に塗布し、乾燥し、総厚が172μmとなるように圧延して、負極活物質層14を形成した。負極活物質層14の密度は1.7g/cm3とした。
<Example 1>
(I) Preparation of negative electrode 6 3 kg of artificial graphite (average particle size 10 μm, BET specific surface area 3 m 2 / g) and BM-400B manufactured by Nippon Zeon Co., Ltd. (modified styrene-butadiene rubber dispersion having a solid content of 40% by weight) ) 75 g and carboxymethyl cellulose (CMC) 30 g were stirred together with an appropriate amount of water in a double-arm kneader to prepare a negative electrode mixture slurry. The negative electrode mixture slurry was applied to both surfaces of a negative electrode current collector 12 made of a copper foil having a thickness of 8 μm, dried, and rolled to a total thickness of 172 μm to form the negative electrode active material layer 14. The density of the negative electrode active material layer 14 was 1.7 g / cm 3.

得られた極板を幅58.5mm、長さ705mmに裁断し、図1のように、外周部に長さ70mmの両面集電体露出部を設け、中央部と最内周部の中間にも長さ6mmのリード溶接用の両面集電体露出部を設けたのち、ニッケル/銅/ニッケルクラッド材からなるリードを溶接し負極6を得た。   The obtained electrode plate was cut to a width of 58.5 mm and a length of 705 mm, and as shown in FIG. 1, a double-sided current collector exposed portion having a length of 70 mm was provided on the outer peripheral portion, and between the central portion and the innermost peripheral portion. After providing a double-sided current collector exposed portion for lead welding having a length of 6 mm, a lead made of nickel / copper / nickel clad material was welded to obtain negative electrode 6.

(ii)正極5の作製
コバルト酸リチウム(LiCoO、平均粒径10μm)3kg、PVDFを12重量%含むN−メチル−ピロリドン(以下、NMP(N−methylpyrrolidone))溶液(商品名:PVDF#1320、(株)クレハ製)500g、アセチレンブラック60gおよび適量のNMPを双腕式練合機で攪拌し、正極合剤スラリーを調製した。正極合剤スラリーを、厚さ15μmのアルミニウム箔からなる正極集電体11の両面に塗布し、乾燥し、総厚が170μmとなるように圧延して、正極活物質層を形成した。
(Ii) Production of Positive Electrode 5 3 kg of lithium cobaltate (LiCoO 2 , average particle size 10 μm), N-methyl-pyrrolidone (hereinafter referred to as NMP (N-methylpyrrolidone)) solution (trade name: PVDF # 1320) containing 12% by weight of PVDF , Manufactured by Kureha Corporation), 60 g of acetylene black, and an appropriate amount of NMP were stirred with a double-arm kneader to prepare a positive electrode mixture slurry. The positive electrode mixture slurry was applied to both surfaces of the positive electrode current collector 11 made of an aluminum foil having a thickness of 15 μm, dried, and rolled to a total thickness of 170 μm to form a positive electrode active material layer.

得られた極板を幅57.5mm、長さ640mmに裁断し、外周部に長さ57mmの両面集電体露出部を設け、中央部にも長さ6mmのリード溶接用の両面集電体露出部を設けたのち、アルミニウムからなるリードを溶接し正極5を得た。   The obtained electrode plate is cut to a width of 57.5 mm and a length of 640 mm, a double-sided current collector exposed portion having a length of 57 mm is provided on the outer peripheral portion, and a double-side current collector for lead welding having a length of 6 mm is also provided in the center portion. After providing the exposed portion, a lead made of aluminum was welded to obtain the positive electrode 5.

(非水電解質)
エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、エチルメチルカーボネート(EMC)との体積比1:1:1の混合溶媒に、1モル/リットルの濃度でLiPF6を溶解させ、さらに全体の3重量%相当のビニレンカーボネートを添加して、非水電解質を得た。
(Nonaqueous electrolyte)
LiPF6 was dissolved at a concentration of 1 mol / liter in a mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in a volume ratio of 1: 1: 1. A vinylene carbonate equivalent to wt% was added to obtain a non-aqueous electrolyte.

(電池の組立)
図7に示すような円筒型電池を作製した。
(Battery assembly)
A cylindrical battery as shown in FIG. 7 was produced.

上記の方法に従って作製された正極5と負極6との間にセパレータ7(厚み16μmのポリエチレン樹脂の単層)を挟んで、正極5と負極6とセパレータ7とを捲回した。これにより、電極群9が作製された。この電極群9の長手方向の両端に上部絶縁板8aおよび下部絶縁板8bを配置した後、有底円筒型の電池缶1(直径18mm、高さ65mm、内径17.85mm)に収容した。アルミニウムからなる正極リード5aの他端を正極端子の下面に接続し、ニッケル/銅/ニッケルクラッドからなる負極リード6aの他端を電池缶1の内底面に接続した。その後、上述した非水電解質5.0gを電池缶1内に注液した。ガスケット3を介して、正極端子を支持する封口板2を電池缶1の開口にかしめた。これにより、電池缶1は封口された。このようにして、設計容量が2880mAhである円筒型非水電解質二次電池を作製した。この電池を実施例1の電池とする。   The positive electrode 5, the negative electrode 6, and the separator 7 were wound with the separator 7 (single layer of polyethylene resin having a thickness of 16 μm) interposed between the positive electrode 5 and the negative electrode 6 manufactured according to the above method. Thereby, the electrode group 9 was produced. After the upper insulating plate 8a and the lower insulating plate 8b were arranged at both ends of the electrode group 9 in the longitudinal direction, the electrode group 9 was housed in a bottomed cylindrical battery can 1 (diameter 18 mm, height 65 mm, inner diameter 17.85 mm). The other end of the positive electrode lead 5 a made of aluminum was connected to the lower surface of the positive electrode terminal, and the other end of the negative electrode lead 6 a made of nickel / copper / nickel cladding was connected to the inner bottom surface of the battery can 1. Thereafter, 5.0 g of the non-aqueous electrolyte described above was injected into the battery can 1. A sealing plate 2 that supports the positive electrode terminal was caulked to the opening of the battery can 1 through the gasket 3. Thereby, the battery can 1 was sealed. In this way, a cylindrical nonaqueous electrolyte secondary battery having a design capacity of 2880 mAh was produced. This battery is referred to as the battery of Example 1.

<実施例2>
図2のように、負極中央やや内周寄りに負極リード6aを溶接したこと以外、実施例1と同様に負極6を作成し、更に円筒型非水電解質二次電池を作製した。
<Example 2>
As shown in FIG. 2, a negative electrode 6 was prepared in the same manner as in Example 1 except that the negative electrode lead 6a was welded near the inner periphery of the negative electrode, and a cylindrical nonaqueous electrolyte secondary battery was prepared.

<実施例3>
図3のように、負極最内周部に負極リード6aを溶接したこと以外、実施例1と同様に負極6を作成し、更に円筒型非水電解質二次電池を作製した。
<Example 3>
As shown in FIG. 3, a negative electrode 6 was prepared in the same manner as in Example 1 except that the negative electrode lead 6a was welded to the innermost peripheral portion of the negative electrode, and a cylindrical nonaqueous electrolyte secondary battery was also manufactured.

<実施例4>
図4のように、負極最内周部と最外周部に負極リード6aを溶接したこと以外、実施例1と同様に負極6を作成し、更に円筒型非水電解質二次電池を作製した。
<Example 4>
As shown in FIG. 4, a negative electrode 6 was prepared in the same manner as in Example 1 except that the negative electrode lead 6a was welded to the innermost peripheral portion and the outermost peripheral portion of the negative electrode, and a cylindrical nonaqueous electrolyte secondary battery was prepared.

<実施例5>
図5のように、負極長さ635mmとし、負極外周部に両面集電体露出部を設けなかったこと以外、実施例1と同様にして円筒型非水電解質二次電池を作製した。
<Example 5>
As shown in FIG. 5, a cylindrical nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the negative electrode length was 635 mm and the double-sided current collector exposed portion was not provided on the outer peripheral portion of the negative electrode.

<実施例6>
正極中央部だけでなく外周部にも正極リード5aを溶接したこと以外、実施例5と同様にして、更に円筒型非水電解質二次電池を作製した。
<Example 6>
A cylindrical non-aqueous electrolyte secondary battery was further produced in the same manner as in Example 5 except that the positive electrode lead 5a was welded not only to the positive electrode central portion but also to the outer peripheral portion.

<比較例1>
負極最外周部に負極リード6aを接続したこと以外、実施例1と同様にして円筒型非水電解質二次電池を作製した。
<Comparative Example 1>
A cylindrical nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the negative electrode lead 6a was connected to the outermost periphery of the negative electrode.

<比較例2>
負極6と正極5の最内周部および中央部にも電極群9の1周にわたり対向するように集電体露出部を設けたこと以外、比較例1と同様にして円筒型非水電解質二次電池を作製した。
<Comparative example 2>
A cylindrical non-aqueous electrolyte 2 is provided in the same manner as in Comparative Example 1, except that the innermost peripheral portion and the central portion of the negative electrode 6 and the positive electrode 5 are provided with a current collector exposed portion so as to face the entire circumference of the electrode group 9. A secondary battery was produced.

(電池の評価方法)
実施例1〜6および比較例1〜2の各電池に対して次に示す釘刺し試験および充放電試験を行って、各電池の安全性および各電池の放電電池容量を評価した。
(Battery evaluation method)
The following nail penetration test and charge / discharge test were performed on the batteries of Examples 1 to 6 and Comparative Examples 1 and 2, and the safety of each battery and the discharge battery capacity of each battery were evaluated.

[釘刺し試験]
実施例1〜6および比較例1〜2の各電池に対して、以下の条件で充電した。そして、70℃環境下で、充電状態の電池の側面から直径2.7mmの鉄釘を10mm/秒の速度で貫通させた。同じ試験を各5セルずつ行い、異常過熱に至るかどうか確認した。結果を表1における「異常過熱した電池数」に示す。
[Nail penetration test]
The batteries of Examples 1 to 6 and Comparative Examples 1 and 2 were charged under the following conditions. Then, in a 70 ° C. environment, an iron nail having a diameter of 2.7 mm was penetrated from the side surface of the charged battery at a speed of 10 mm / second. The same test was performed 5 cells each, and it was confirmed whether or not abnormal overheating occurred. The results are shown in “Number of abnormally overheated batteries” in Table 1.

(充電条件)
定電流充電:電流値0.5C,充電終止電圧4.3V
定電圧充電:電圧値4.3V,充電終止電流100mA
[充放電試験]
実施例1〜6および比較例1〜2の各電池に対して、25℃環境下で以下の条件で充放電を行い放電電池容量を求めた。結果を表1に示す。
(Charging conditions)
Constant current charging: Current value 0.5C, end-of-charge voltage 4.3V
Constant voltage charge: Voltage value 4.3V, charge end current 100mA
[Charge / discharge test]
The batteries of Examples 1 to 6 and Comparative Examples 1 and 2 were charged and discharged under the following conditions in a 25 ° C. environment to determine the discharge battery capacity. The results are shown in Table 1.

−充放電条件−
定電流充電:電流値0.5C,充電終止電圧4.2V
定電圧充電:電圧値4.2V,充電終止電流100mA
定電流放電:電流値0.5C,放電終止電圧1.0V
−Charging / discharging conditions−
Constant current charging: Current value 0.5C, end-of-charge voltage 4.2V
Constant voltage charging: Voltage value 4.2V, charging end current 100mA
Constant current discharge: current value 0.5C, final discharge voltage 1.0V

以下、得られた結果について詳述する。   Hereinafter, the obtained results will be described in detail.

実施例1〜4は、釘刺し時の異常過熱もなく、電池容量も高い電池が得られた。実施例5は釘刺し時の異常過熱が5セル中1セル発生した。実施例5は負極外周部に集電体露出部を設けなかったため、釘−正極集電体露出部間の接触がうまくいかない場合があり、安全性がやや低下したものと考えられる。一方、実施例5に正極外周部リードを加えた実施例6では、釘刺し時に異常過熱が1セルも発生しなかった。これは、「正極中央部−正極リード−正極外周部」のバイパス回路も形成された結果、より効果的に外周部への電流集中効果が得られたためであると考えられる。   In Examples 1 to 4, a battery having high battery capacity without abnormal overheating during nail penetration was obtained. In Example 5, abnormal overheating at the time of nail penetration occurred in 1 cell out of 5 cells. In Example 5, since the current collector exposed portion was not provided on the outer periphery of the negative electrode, the contact between the nail and the positive electrode current collector exposed portion might not be successful, and it is considered that the safety was slightly lowered. On the other hand, in Example 6 in which the positive electrode outer peripheral lead was added to Example 5, no abnormal overheating occurred during the nail penetration. This is considered to be because the current concentration effect on the outer peripheral portion was more effectively obtained as a result of the formation of the bypass circuit of “positive electrode central portion−positive electrode lead−positive electrode outer peripheral portion”.

比較例1および2は、異常過熱が多く発生した。比較例1は外周部での集電体間短絡は発生するものの、外周部へのバイパス回路がないため電流集中効果が不充分であり安全性が低かった。比較例2は外周部だけでなく中央部および内周部にも集電体露出部が存在するため、比較例1に比べるとやや安全性が向上したが、釘が内周部に到達する以前に過熱にいたる場合が多かった。また、比較例2は集電体露出部を増やした結果、電池容量が低く、エネルギー密度の低い電池になった。   In Comparative Examples 1 and 2, a lot of abnormal overheating occurred. In Comparative Example 1, although a short circuit between the current collectors occurred at the outer peripheral portion, the current concentration effect was insufficient and safety was low because there was no bypass circuit to the outer peripheral portion. Since Comparative Example 2 has a current collector exposed portion not only in the outer peripheral portion but also in the central portion and the inner peripheral portion, the safety is slightly improved as compared with Comparative Example 1, but before the nail reaches the inner peripheral portion. In many cases, it overheated. Moreover, as a result of increasing the current collector exposed portion in Comparative Example 2, a battery having a low battery capacity and a low energy density was obtained.

以上の結果より、本発明を用いることで、安全性とエネルギー密度が高い電池が得られることがわかった。   From the above results, it was found that a battery having high safety and high energy density can be obtained by using the present invention.

本発明では、エネルギー密度の低下を防ぎつつ優れた安全性を有する非水電解質二次電池を提供できる。よって、本発明は、携帯電子機器等の小型電源だけでなくEV(Electric Vehicle)などの大型電源へも展開できる技術として有用である。   In the present invention, it is possible to provide a nonaqueous electrolyte secondary battery having excellent safety while preventing a decrease in energy density. Therefore, the present invention is useful as a technology that can be applied not only to a small power source such as a portable electronic device but also to a large power source such as an EV (Electric Vehicle).

1 電池缶
2 封口板
3 ガスケット
5 正極
5a 正極リード
6 負極
6a 負極リード
7 セパレータ
8a 上部絶縁板
8b 下部絶縁板
9 電極群
11 正極集電体
12 負極集電体
13 正極活物質層
14 負極活物質層
15 正極集電体露出部
16 負極集電体露出部
DESCRIPTION OF SYMBOLS 1 Battery can 2 Sealing plate 3 Gasket 5 Positive electrode 5a Positive electrode lead 6 Negative electrode 6a Negative electrode lead 7 Separator 8a Upper insulating plate 8b Lower insulating plate 9 Electrode group 11 Positive electrode collector 12 Negative electrode collector 13 Positive electrode active material layer 14 Negative electrode active material Layer 15 Positive electrode collector exposed portion 16 Negative electrode collector exposed portion

Claims (4)

正極と、負極とが、セパレータを介して捲回してなる電極群が、非水電解質とともに金属製の電池缶に収容された非水電解質二次電池において、
前記正極は、正極集電体と、正極集電体の表面に形成された正極活物質層を含み、
前記負極は、負極集電体と、負極集電体の表面に形成された負極活物質層を含み、
前記正極または前記負極のうち電池缶と異極性の極板は、電極群の最外周部において集電体露出部が少なくとも1周以上にわたり存在し、かつ、
前記正極または前記負極のうち電池缶と同極性の極板は、活物質層の長手方向中央より内周側に少なくとも1本のリードが設けられ、電池缶と接続されていることを特徴とする、非水電解質二次電池。
In the nonaqueous electrolyte secondary battery in which the electrode group formed by winding the positive electrode and the negative electrode through a separator is housed in a metal battery can together with the nonaqueous electrolyte,
The positive electrode includes a positive electrode current collector and a positive electrode active material layer formed on the surface of the positive electrode current collector,
The negative electrode includes a negative electrode current collector and a negative electrode active material layer formed on the surface of the negative electrode current collector,
In the positive electrode or the negative electrode, the electrode plate having a polarity different from that of the battery can, the current collector exposed portion is present over at least one turn in the outermost peripheral portion of the electrode group, and
The electrode plate having the same polarity as the battery can of the positive electrode or the negative electrode is provided with at least one lead on the inner peripheral side from the longitudinal center of the active material layer, and is connected to the battery can. , Non-aqueous electrolyte secondary battery.
前記電池缶と同極性の極板の電極群の最外周部において集電体露出部が存在し、前記電池缶と異極性の極板の集電体露出部と少なくとも1周以上にわたり対向している、請求項1記載の非水電解質二次電池。   A current collector exposed portion exists in the outermost peripheral portion of the electrode group of the electrode plate of the same polarity as the battery can, and faces the current collector exposed portion of the electrode plate of the opposite polarity to the battery can over at least one turn. The nonaqueous electrolyte secondary battery according to claim 1. 前記電池缶と同極性の極板の最外周部にリードが設けられている、請求項1または2に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein a lead is provided on an outermost peripheral portion of an electrode plate having the same polarity as that of the battery can. 前記電池缶と異極性の極板の最外周部および中央部にそれぞれリードが設けられている、請求項1から3のいずれか1項に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein leads are respectively provided at an outermost peripheral portion and a central portion of an electrode plate having a different polarity from the battery can.
JP2011200478A 2011-09-14 2011-09-14 Nonaqueous secondary battery Withdrawn JP2014225325A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011200478A JP2014225325A (en) 2011-09-14 2011-09-14 Nonaqueous secondary battery
PCT/JP2012/005845 WO2013038676A1 (en) 2011-09-14 2012-09-13 Non-aqueous electrolyte secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011200478A JP2014225325A (en) 2011-09-14 2011-09-14 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2014225325A true JP2014225325A (en) 2014-12-04

Family

ID=47882925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011200478A Withdrawn JP2014225325A (en) 2011-09-14 2011-09-14 Nonaqueous secondary battery

Country Status (2)

Country Link
JP (1) JP2014225325A (en)
WO (1) WO2013038676A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147564A1 (en) * 2015-03-13 2016-09-22 三洋電機株式会社 Non-aqueous electrolyte secondary battery
WO2024048147A1 (en) * 2022-08-31 2024-03-07 パナソニックエナジー株式会社 Cylindrical battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6879214B2 (en) * 2015-11-19 2021-06-02 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP7122581B2 (en) * 2017-12-25 2022-08-22 パナソニックIpマネジメント株式会社 secondary battery
JP7394051B2 (en) * 2018-03-28 2023-12-07 パナソニックエナジー株式会社 Battery and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4055190B2 (en) * 1998-07-10 2008-03-05 日立マクセル株式会社 Non-aqueous secondary battery
JP4678235B2 (en) * 2005-05-17 2011-04-27 ソニー株式会社 Nonaqueous electrolyte secondary battery
JP5311861B2 (en) * 2008-03-31 2013-10-09 三洋電機株式会社 Lithium secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147564A1 (en) * 2015-03-13 2016-09-22 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JPWO2016147564A1 (en) * 2015-03-13 2017-12-28 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2024048147A1 (en) * 2022-08-31 2024-03-07 パナソニックエナジー株式会社 Cylindrical battery

Also Published As

Publication number Publication date
WO2013038676A1 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
US10559843B2 (en) Non-aqueous electrolyte battery, non-aqueous electrolyte battery pack, and vehicle
JP4920423B2 (en) Lithium ion secondary battery
KR100911999B1 (en) Battery having enhanced electrical insulation
JP3866740B2 (en) Non-aqueous electrolyte secondary battery, assembled battery and battery pack
US8003243B2 (en) Spirally wound secondary battery with uneven termination end portions
JP5336698B2 (en) Non-aqueous electrolyte battery
JP2014199714A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP5849234B2 (en) Nonaqueous electrolyte secondary battery
KR20090110055A (en) Battery having enhanced electrical insulation
US8431267B2 (en) Nonaqueous secondary battery
WO2013038677A1 (en) Nonaqueous electrolyte secondary cell
KR20170032456A (en) Nonaqueous electrolyte battery and battery pack
JP7262061B2 (en) lithium secondary battery
US10090510B2 (en) Non-aqueous electrolyte secondary battery
JP2014225325A (en) Nonaqueous secondary battery
WO2018168271A1 (en) Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery
JP5150095B2 (en) Non-aqueous electrolyte battery
JP2024023310A (en) Positive electrode for lithium secondary battery, and lithium secondary battery
WO2013038702A1 (en) Nonaqueous electrolyte secondary cell
JP2009259749A (en) Nonaqueous electrolyte secondary battery
WO2012101693A1 (en) Negative electrode collector for lithium ion batteries, and lithium ion battery
WO2018168272A1 (en) Positive electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
JP4300172B2 (en) Nonaqueous electrolyte secondary battery
WO2014119248A1 (en) Winding type battery
WO2018155035A1 (en) Lithium ion battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202