JP5311861B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP5311861B2
JP5311861B2 JP2008092619A JP2008092619A JP5311861B2 JP 5311861 B2 JP5311861 B2 JP 5311861B2 JP 2008092619 A JP2008092619 A JP 2008092619A JP 2008092619 A JP2008092619 A JP 2008092619A JP 5311861 B2 JP5311861 B2 JP 5311861B2
Authority
JP
Japan
Prior art keywords
positive electrode
current collecting
negative electrode
electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008092619A
Other languages
Japanese (ja)
Other versions
JP2009245839A (en
Inventor
厚史 福井
丸男 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008092619A priority Critical patent/JP5311861B2/en
Publication of JP2009245839A publication Critical patent/JP2009245839A/en
Application granted granted Critical
Publication of JP5311861B2 publication Critical patent/JP5311861B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery having high energy density, high discharge-rate characteristics, and excellent charge discharge cycle characteristics. <P>SOLUTION: In the lithium secondary battery having an electrode body 5 formed by spirally winding a laminated body including a negative electrode in which a negative active material layer containing an element having a coefficient of cubic expansion by charge of 1.9 times or more is formed on a negative current collector, a positive electrode in which a positive active material layer containing a lithium transition metal oxide is formed on a positive current collector, and a separator, and housing the electrode body 5 in a cylindrical battery container with a nonaqueous electrolyte impregnated, two positive current collector tabs 7, 7 are arranged at intervals of at least 1/4 or more of the total length of the positive electrode in a position from an inner peripheral side end part in the winding direction of the positive electrode to 2/3 of the total length of the positive electrode, and one negative current collector tab 8 is arranged in an outer peripheral side end part in the winding direction of the negative electrode. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、高エネルギー密度および高い放電レート特性を有し、充放電サイクル特性に優れるリチウム二次電池に関するものである。   The present invention relates to a lithium secondary battery having high energy density and high discharge rate characteristics and excellent charge / discharge cycle characteristics.

最近、リチウム二次電池においては、高エネルギー密度化を目的として、実用化されている黒鉛材料に代わり、リチウムとの合金化反応によってリチウムを吸蔵することで高い体積比容量を有するアルミニウム(Al)、スズ(Sn)、シリコン(Si)などの元素の合金材料が、新たな負極活物質の候補として取り上げられ、多く検討されている。   Recently, in lithium secondary batteries, aluminum (Al) having a high volumetric capacity by occlusion of lithium by alloying reaction with lithium instead of graphite material which has been put into practical use for the purpose of increasing energy density. Alloy materials of elements such as tin (Sn) and silicon (Si) have been taken up as candidates for new negative electrode active materials and have been extensively studied.

しかしながら、リチウムと合金化する材料を活物質として用いた電極においては、リチウムの吸蔵、放出時の活物質の体積変化が大きいため、活物質の微粉化や集電体からの離脱が生じやすく、その結果電極内の集電性が低下して充放電サイクル特性が劣悪となるという問題がある。   However, in an electrode using a material alloyed with lithium as an active material, since the volume change of the active material at the time of occlusion and release of lithium is large, pulverization of the active material and detachment from the current collector are likely to occur. As a result, there is a problem that the current collecting property in the electrode is lowered and the charge / discharge cycle characteristics are deteriorated.

そこで、電極内において高い集電性を達成するため、ケイ素を含む材料からなる活物質とバインダとを含む合剤層を非酸化性雰囲気下で焼結して配置することにより得られた負極が、良好な充放電サイクル特性を示すことが見出されている(下記特許文献1参照)。   Therefore, in order to achieve high current collection in the electrode, a negative electrode obtained by sintering and arranging a mixture layer containing an active material made of a silicon-containing material and a binder in a non-oxidizing atmosphere is provided. It has been found that good charge / discharge cycle characteristics are exhibited (see Patent Document 1 below).

特開2002−260637号公報Japanese Patent Laid-Open No. 2002-260637

ところが、このように電極内の集電性を改善できたとしても、円筒型や扁平型といった実電池とした場合には、活物質が大きな体積変化を生じることが電池内の他の部材に悪影響を及ぼし、十分な充放電特性が得られないという問題が生じる。   However, even if the current collection in the electrode can be improved in this way, in the case of a real battery such as a cylindrical type or a flat type, a large volume change of the active material adversely affects other members in the battery. This causes a problem that sufficient charge / discharge characteristics cannot be obtained.

充電時、即ちリチウムの吸蔵時には、ケイ素を含む負極活物質の体積増加にともない応力が生じて、正極や樹脂製多孔質セパレータといった他の電池部材に付加される。特に、円筒型電池の場合には、扁平型電池の場合に比して、電極体が変形し難いタイトな構造となっているため、活物質の体積増加にともなって応力が生じると、まず、正極や負極よりも外力による変形が生じやすい樹脂製の多孔質セパレータが圧縮され、目詰まりを生じることとなる。この作用は、サイクルの経過にともなう負極活物質の劣化(膨化)が大きくなるほど、大きく促進される。このため、正負極間のリチウムイオンの伝導性が大きく低下し、充放電特性が大きく低下する。   During charging, that is, when lithium is occluded, stress is generated as the volume of the negative electrode active material containing silicon increases, and is applied to other battery members such as a positive electrode and a resin porous separator. In particular, in the case of a cylindrical battery, since the electrode body has a tight structure that is not easily deformed compared to the case of a flat battery, when stress occurs as the volume of the active material increases, The porous separator made of resin, which is more easily deformed by external force than the positive electrode and the negative electrode, is compressed and clogged. This effect is greatly promoted as the deterioration (expansion) of the negative electrode active material with the progress of the cycle increases. For this reason, the conductivity of lithium ions between the positive and negative electrodes is greatly reduced, and the charge / discharge characteristics are greatly reduced.

充電にともなって大きく体積膨張する元素としては、上述のケイ素(体積膨張率4.1倍)の他、ゲルマニウム(体積膨張率3.7倍)、スズ(体積膨張率3.6倍)、アルミニウム(体積膨張率1.9倍)等が挙げられ、これらの元素を負極活物質として用いた場合には、上記のような問題が生じやすい。   Elements that expand greatly upon charging include silicon (volume expansion coefficient 4.1 times), germanium (volume expansion coefficient 3.7 times), tin (volume expansion coefficient 3.6 times), and aluminum. (Volume expansion coefficient is 1.9 times) and the like, and when these elements are used as the negative electrode active material, the above-described problems are likely to occur.

そこで、正負極の集電タブを、正負極それぞれの集電体から形成するようにすることで、電極体の変形性を増大させ、円筒型電池における充電時のセパレータの圧縮を抑制することによって、良好な充放電特性が得られることが見出されている(下記特許文献2参照)。   Therefore, by forming the current collector tabs of the positive and negative electrodes from the current collectors of the positive and negative electrodes, the deformability of the electrode body is increased, and the compression of the separator during charging in the cylindrical battery is suppressed. It has been found that good charge / discharge characteristics can be obtained (see Patent Document 2 below).

特開2007−213875号公報JP 2007-213875 A

しかしながら、上記特許文献2に開示された構成によっても、依然として、充放電特性が十分なレベルに達したとはいい難いのが現状である。   However, even with the configuration disclosed in Patent Document 2, it is still difficult to say that the charge / discharge characteristics have reached a sufficient level.

従って、本発明は、上記課題に鑑み、高エネルギー密度および高い放電レート特性を有し、充放電サイクル特性に優れるリチウム二次電池を提供することを目的とする。   Therefore, in view of the above problems, an object of the present invention is to provide a lithium secondary battery having high energy density and high discharge rate characteristics and excellent charge / discharge cycle characteristics.

このような課題に対し、本発明者等は、充電にともなう体積膨張率が大きいケイ素(Si)、ゲルマニウム(Ge)、アルミニウム(Al)、スズ(Sn)等の元素を負極活物質として用いたリチウム二次電池において、正負極の集電タブの配置構成を適正化することによって、高エネルギー密度、高い放電レート特性ならびに優れた充放電サイクル特性を併せて得ることが可能であることを見出し、本発明を完成するに至った。   In response to such problems, the present inventors have used elements such as silicon (Si), germanium (Ge), aluminum (Al), tin (Sn), etc., which have a large volume expansion coefficient with charging, as the negative electrode active material. In a lithium secondary battery, it is found that it is possible to obtain high energy density, high discharge rate characteristics as well as excellent charge / discharge cycle characteristics by optimizing the arrangement configuration of the current collecting tabs of the positive and negative electrodes, The present invention has been completed.

即ち、本発明に係るリチウム二次電池(以下、「第1のリチウム二次電池」とも称す)は、充電にともなう体積膨張率が1.9倍以上の元素を含む負極活物質層が負極集電体上に形成された負極と、リチウム遷移金属酸化物を含む正極活物質層が正極集電体上に形成された正極と、上記負極と正極との間に配置されたセパレータとを含む積層体を渦巻状に捲回させてなる電極体を有し、該電極体が、非水電解質を含浸させた状態で円筒型の電池容器内に収容されたリチウム二次電池において、前記正極の渦巻方向における内周側端部から正極全長の2/3の位置までの間に、少なくとも正極全長の1/4以上の間隔をおいて2本の集電タブが配置され、前記負極の渦巻方向における外周側端部のみに1本の集電タブが配置されている
That is, in the lithium secondary battery according to the present invention (hereinafter also referred to as “first lithium secondary battery”), the negative electrode active material layer containing an element having a volume expansion coefficient of 1.9 times or more upon charging is negative electrode collection. A laminate including a negative electrode formed on a current collector, a positive electrode in which a positive electrode active material layer including a lithium transition metal oxide is formed on a positive electrode current collector, and a separator disposed between the negative electrode and the positive electrode In a lithium secondary battery having an electrode body formed by winding a body in a spiral shape, the electrode body being impregnated with a nonaqueous electrolyte and housed in a cylindrical battery container, the positive electrode spiral Two current collecting tabs are arranged at an interval of at least 1/4 or more of the total length of the positive electrode between the inner peripheral side end in the direction and the position of 2/3 of the total length of the positive electrode, and in the spiral direction of the negative electrode One current collecting tab is disposed only at the outer peripheral side end .

充電にともなう体積膨張率が1.9倍以上の元素のうち、例えば代表的なものであるケイ素は、電子伝導性の低い材料であるが、絶縁性の樹脂製バインダとの合剤により形成された活物質層の状態ではさらに電子伝導性に劣るものとなる。このため、充放電時には、電極内の低い電子伝導性に起因したIR抵抗による分極が大きくなり、電極内での反応均一性は非常に低いものとなる。ケイ素を含む活物質は、反応均一性が低い場合には、劣化(ないし膨化、変質)が生じやすくなる傾向にあり、この場合、充放電特性が大きく低下することとなる。また、渦巻状に捲回した電極体とするために正負極を長手辺(渦巻方向に沿った辺)/短手辺(幅方向に沿った辺)が大きい長方形とした場合には特に、上記の傾向が大となる。   Of the elements having a volume expansion coefficient of 1.9 times or more due to charging, silicon, which is a representative example, is a material with low electron conductivity, but is formed by a mixture with an insulating resin binder. In the state of the active material layer, the electron conductivity is further inferior. For this reason, at the time of charging / discharging, the polarization due to the IR resistance due to the low electron conductivity in the electrode increases, and the reaction uniformity in the electrode becomes very low. An active material containing silicon tends to be easily deteriorated (or swollen or altered) when the reaction uniformity is low. In this case, the charge / discharge characteristics are greatly deteriorated. In addition, in order to obtain a spirally wound electrode body, particularly when the positive and negative electrodes are rectangular with a long side (side along the spiral direction) / short side (side along the width direction), The tendency of becomes large.

これに対し、上記本発明の構成によれば、正極の渦巻方向における内周側端部から正極全長の2/3の位置までの間に、少なくとも正極全長の1/4以上の間隔をおいて2本の集電タブが配置され、負極の渦巻方向における外周側端部に1本の集電タブが配置されていることにより、渦巻状に捲回した電極体とするために正負極を長手辺(渦巻方向に沿った辺)/短手辺(幅方向に沿った辺)が大きい長方形とした場合であっても、電極体内における反応分布を均一にすることができ、充放電特性の低下を抑制することが可能となる。   On the other hand, according to the configuration of the present invention, an interval of at least 1/4 or more of the total length of the positive electrode is provided between the inner peripheral side end in the spiral direction of the positive electrode and the position of 2/3 of the total length of the positive electrode. Two current collecting tabs are arranged, and one current collecting tab is arranged at the outer peripheral side end in the spiral direction of the negative electrode, so that the positive and negative electrodes are elongated in order to form a spirally wound electrode body. Even in the case of a rectangle with a large side (side along the spiral direction) / short side (side along the width direction), the reaction distribution in the electrode body can be made uniform, and the charge / discharge characteristics are degraded. Can be suppressed.

また、上記本発明の構成によれば、電極体の作製時に、正極と負極とを積層した状態において、正極集電タブと負極集電タブとが同一位置またはその近傍で重なり合う配置構成とはなっていないため、この積層体を巻回して巻取電極体とした後には、たとえこれら集電タブが最短距離で一直線に並ぶような配置となったとしても、各集電タブの間には数周ぶんの積層体が介在するため、該巻取電極体が均一に変形しやすく、充電時に負極活物質が体積膨張した際にも、これに追従して巻取電極体が変形することができ、したがってセパレータの圧縮、目詰まりによる充放電特性の低下が生じにくくなっている。   Further, according to the configuration of the present invention described above, when the electrode body is manufactured, in a state where the positive electrode and the negative electrode are stacked, the positive electrode current collecting tab and the negative electrode current collecting tab overlap at the same position or in the vicinity thereof. Therefore, after winding this laminated body into a take-up electrode body, even if these current collecting tabs are arranged in a straight line with the shortest distance, there are several gaps between the current collecting tabs. Since the surrounding laminated body is interposed, the winding electrode body is easily deformed uniformly, and the winding electrode body can be deformed following the volume expansion of the negative electrode active material during charging. Therefore, the charge / discharge characteristics are hardly deteriorated due to the compression and clogging of the separator.

ここで、例えば、上記構成において、負極集電タブが負極の渦巻方向における内周側端部にも1本追加された場合には、反応均一性の向上が図れず、また、内周側端部において正極集電タブと負極集電タブとが近い位置で重なり合う配置構成となるため、電極体の変形性が低下し、充放電特性を向上させることはできない。   Here, for example, in the above configuration, when one negative electrode current collecting tab is also added to the inner peripheral side end in the spiral direction of the negative electrode, the reaction uniformity cannot be improved, and the inner peripheral end Since the positive electrode current collecting tab and the negative electrode current collecting tab overlap each other at a position close to each other, the deformability of the electrode body is lowered, and the charge / discharge characteristics cannot be improved.

また、上記本発明の構成によれば、正極タブを2本以上と多く配置することによって、正極内の集電性が向上し、充放電特性が向上した構成となっている。   Moreover, according to the structure of the said invention, it has become the structure by which the current collection property in a positive electrode improved and charging / discharging characteristics improved by arranging many positive electrode tabs.

前記正極において渦巻方向における最も内周側に位置する集電タブと最も外周側に位置する集電タブとの間隔が、正極の渦巻方向における全長の1/3〜1/2であることが望ましい。
なお本発明において、「渦巻方向における集電タブと集電タブとの間隔」とは、各集電タブの幅方向(渦巻方向)の中央同士の間の距離(長さ)のことであるとする。
渦巻方向における最も内周側に位置する正極集電タブと最も外周側に位置する正極集電タブとの間隔が、正極の渦巻方向における全長の1/3以上であれば、上記両正極集電タブの間隔が十分に確保されてこれら正極集電タブが偏在することがなく、その結果電極体内の反応均一性および正極内の集電性を向上させることができ、一方、上記両正極集電タブの間隔が正極の渦巻方向における全長の1/2以下であれば、上記両正極集電タブの間隔が適度な範囲内となり、電極体内の反応均一性を向上させることができて充放電特性を向上させることができる。
In the positive electrode, the distance between the current collecting tab located on the innermost circumferential side and the current collecting tab located on the outermost circumferential side in the spiral direction is preferably 1/3 to 1/2 of the total length in the spiral direction of the positive electrode. .
In the present invention, “the interval between the current collecting tabs in the spiral direction” means the distance (length) between the centers in the width direction (spiral direction) of each current collecting tab. To do.
If the distance between the positive electrode current collecting tab located on the innermost circumferential side in the spiral direction and the positive electrode current collecting tab located on the outermost circumferential side is 1/3 or more of the total length in the spiral direction of the positive electrode, The positive electrode current collecting tabs are not unevenly distributed with sufficient spacing between the tabs, and as a result, the reaction uniformity within the electrode body and the current collecting property within the positive electrode can be improved. If the distance between the tabs is ½ or less of the total length in the spiral direction of the positive electrode, the distance between the positive electrode current collecting tabs is within an appropriate range, and the reaction uniformity within the electrode body can be improved and charge / discharge characteristics can be improved. Can be improved.

負極活物質層が、ケイ素および/またはケイ素合金を含むことが望ましい。
活物質をケイ素を含むものとすると、前述の通り、充放電時に電極内の低い電子伝導性に起因したIR抵抗による分極が大きくなり、電極内での反応均一性が非常に低いものとなって該活物質が劣化(ないし膨化、変質)を生じ充放電特性が大きく低下することとなりやすく、また、渦巻状に捲回した電極体とするために正負極を長手辺(渦巻方向に沿った辺)/短手辺(幅方向に沿った辺)が大きい長方形とした場合には特にこの傾向が大となる。
また、ケイ素を負極活物質として用いた電池は、例えば黒鉛を負極活物質として用いた電池に比して、同じ電圧範囲で充放電を行ったとしても、ケイ素のリチウム吸蔵放出電位が黒鉛のそれよりも高いため、これに合わせて正極の電位も高くなる。このため、正極内での電子伝導性が低くIR抵抗が大きい場合には、充放電時の正極内での分極が大きくなるため、充電時にはさらに電位が高くなる。このとき、正極活物質層であるリチウム遷移金属酸化物からリチウムが多く引き抜かれる状態となるため、結晶構造破壊が生じて正極活物質の劣化が生じることとなる。またこれにより、正極表面上における電解液の酸化分解も生じやすくなる。したがって、正極タブの本数を2本以上とすることによる正極内でのIR抵抗の低減が、このような正極での劣化を抑制することができ、充放電特性を向上させることが可能となる。
It is desirable that the negative electrode active material layer contains silicon and / or a silicon alloy.
Assuming that the active material contains silicon, as described above, polarization due to IR resistance due to low electron conductivity in the electrode during charging / discharging increases, and reaction uniformity in the electrode becomes very low. The active material is likely to deteriorate (or swell and change), and the charge / discharge characteristics are likely to be greatly reduced. In addition, the positive and negative electrodes are long sides (sides along the spiral direction) in order to form a spirally wound electrode body. / This tendency is particularly great when the rectangle has a short side (side along the width direction).
In addition, a battery using silicon as a negative electrode active material has a lithium occlusion / release potential of silicon that is equivalent to that of graphite even when charging / discharging is performed in the same voltage range as compared to a battery using graphite as a negative electrode active material. Therefore, the potential of the positive electrode is increased accordingly. For this reason, when the electron conductivity in the positive electrode is low and the IR resistance is large, the polarization in the positive electrode at the time of charging / discharging is increased, so that the potential is further increased during charging. At this time, since a large amount of lithium is extracted from the lithium transition metal oxide that is the positive electrode active material layer, the crystal structure is broken and the positive electrode active material is deteriorated. This also tends to cause oxidative decomposition of the electrolyte solution on the positive electrode surface. Therefore, the reduction of the IR resistance in the positive electrode by setting the number of the positive electrode tabs to two or more can suppress such deterioration in the positive electrode and improve the charge / discharge characteristics.

上記のような特性は、例えばゲルマニウムにもみられるものであるが、ケイ素の場合にはより顕著である。また、前述の通り、充電にともなうケイ素の体積膨張率は4.1倍と、例えばゲルマニウムの場合の3.7倍、スズの場合の3.6倍、アルミニウムの場合の1.9倍のいずれに比してもより高い。したがって、負極活物質層が、ケイ素および/またはケイ素合金を含む構成とした場合には、本発明の構成、即ち正極の渦巻方向における内周側端部から正極全長の2/3の位置までの間に、少なくとも正極全長の1/4以上の間隔をおいて2本の集電タブが配置され、前記負極の渦巻方向における外周側端部に1本の集電タブが配置されている構成とすることによる作用効果が一層発揮される。   The above characteristics are also observed in, for example, germanium, but are more remarkable in the case of silicon. In addition, as described above, the volume expansion coefficient of silicon accompanying charging is 4.1 times, for example, 3.7 times for germanium, 3.6 times for tin, and 1.9 times for aluminum. Higher than that. Therefore, when the negative electrode active material layer is configured to contain silicon and / or silicon alloy, the configuration of the present invention, that is, from the inner peripheral side end in the spiral direction of the positive electrode to the position of 2/3 of the total length of the positive electrode. A structure in which two current collecting tabs are disposed at an interval of at least 1/4 of the total length of the positive electrode, and one current collecting tab is disposed at an outer peripheral side end in the spiral direction of the negative electrode; The effect by doing is exhibited further.

また、本発明に係るリチウム二次電池(以下、「第2のリチウム二次電池」とも称す)は、充電にともなう体積膨張率が1.9倍以上の元素を含む負極活物質層が負極集電体上に形成された負極と、リチウム遷移金属酸化物を含む正極活物質層が正極集電体上に形成された正極と、上記負極と正極との間に配置されたセパレータとを含む積層体を渦巻状に捲回させてなる電極体を有し、該電極体が、非水電解質を含浸させた状態で円筒型の電池容器内に収容されたリチウム二次電池において、前記正極の渦巻方向における外周側端部から正極全長の2/3の位置までの間に、少なくとも正極全長の1/4以上の間隔をおいて2本の集電タブが配置され、前記負極の渦巻方向における内周側端部のみに1本の集電タブが配置されている
In addition, the lithium secondary battery according to the present invention (hereinafter also referred to as “second lithium secondary battery”) has a negative electrode active material layer containing an element having a volume expansion coefficient of 1.9 times or more due to charging. A laminate including a negative electrode formed on a current collector, a positive electrode in which a positive electrode active material layer including a lithium transition metal oxide is formed on a positive electrode current collector, and a separator disposed between the negative electrode and the positive electrode In a lithium secondary battery having an electrode body formed by winding a body in a spiral shape, the electrode body being impregnated with a nonaqueous electrolyte and housed in a cylindrical battery container, the positive electrode spiral Two current collecting tabs are arranged at an interval of at least 1/4 of the total length of the positive electrode between the outer peripheral side end in the direction and the position of 2/3 of the total length of the positive electrode . One current collecting tab is disposed only at the peripheral end .

上記第2のリチウム二次電池の構成によれば、正極集電タブおよび負極集電タブの配置が、前記第1のリチウム二次電池における正極集電タブおよび負極集電タブの配置を内外に反転させた(左右対称の)ものとなっており、したがって、前記第1のリチウム二次電池の場合と同等の良好な充放電特性を得ることが可能な構成となっている。   According to the configuration of the second lithium secondary battery, the arrangement of the positive electrode current collecting tab and the negative electrode current collecting tab is different from the arrangement of the positive electrode current collecting tab and the negative electrode current collecting tab in the first lithium secondary battery. Therefore, the charge / discharge characteristics equivalent to those of the first lithium secondary battery can be obtained.

ただしこの第2のリチウム二次電池の場合、正極集電タブが巻取電極体の外周側(特に最外周またはその近傍)に位置することになり、該正極集電タブを電池の封口蓋に接続する際に負極の電池缶に接触しやすいため、例えば該正極集電タブを樹脂製テープで被覆して絶縁したりタブの折り曲げを適切にしたりするといったように、該正極集電タブと電池缶との接触を避けるための対策が必要となり、したがって、電池作製の容易性の観点からは前記第1のリチウム二次電池の方が有利である。   However, in the case of the second lithium secondary battery, the positive electrode current collecting tab is positioned on the outer peripheral side of the winding electrode body (especially the outermost periphery or the vicinity thereof), and the positive electrode current collecting tab is used as a sealing lid of the battery. Since it is easy to contact the battery can of the negative electrode when connecting, the positive electrode current collecting tab and the battery can be insulated, for example, by covering the positive electrode current collecting tab with a resin tape and appropriately bending the tab. Measures for avoiding contact with the can are required, and therefore the first lithium secondary battery is more advantageous from the viewpoint of ease of battery production.

上記第2のリチウム二次電池の場合、例えば電池缶をアルミニウムよりなるものとして正極缶とし、封口蓋を負極として正負極の配置を逆転した構成とすると、正極集電タブを電池缶に接続することができるため、電池作製の容易性の点でも前記第1のリチウム二次電池と同等とすることができる。
ただし、電池缶としては、例えばSUS(ステンレス)等よりなるもののほうがより強度が高く、巻取電極体の変形によっても膨張・収縮し難い電池缶とすることができるため、電池缶を負極とするほうが好ましく、したがってこの観点からも前記第1のリチウム二次電池の方が有利である。
In the case of the second lithium secondary battery, for example, when the battery can is made of aluminum and used as a positive electrode can, the sealing lid is used as a negative electrode and the arrangement of the positive and negative electrodes is reversed, the positive electrode current collecting tab is connected to the battery can. Therefore, it can be made equivalent to the first lithium secondary battery in terms of ease of battery production.
However, as the battery can, for example, a battery can made of SUS (stainless steel) has a higher strength and can be a battery can that does not easily expand and contract even when the winding electrode body is deformed. Therefore, the first lithium secondary battery is more advantageous from this viewpoint.

上記第2のリチウム二次電池において、前記正極において渦巻方向における最も内周側に位置する集電タブと最も外周側に位置する集電タブとの間隔が、正極の渦巻方向における全長の1/3〜1/2であることが望ましい。
これは、前述の第1のリチウム二次電池の場合と同様の理由による。
In the second lithium secondary battery, in the positive electrode, the distance between the current collecting tab located on the innermost side in the spiral direction and the current collecting tab located on the outermost side is 1 / of the total length in the spiral direction of the positive electrode. 3 to 1/2 is desirable.
This is for the same reason as in the case of the first lithium secondary battery described above.

上記第2のリチウム二次電池において、負極活物質層が、ケイ素および/またはケイ素合金を含むことが望ましい。
これは、前述の第1のリチウム二次電池の場合と同様の理由による。
In the second lithium secondary battery, it is desirable that the negative electrode active material layer contains silicon and / or a silicon alloy.
This is for the same reason as in the case of the first lithium secondary battery described above.

本発明によれば、充電にともなう体積膨張率が1.9倍以上の元素を含む負極活物質層が負極集電体上に形成された負極と、リチウム遷移金属酸化物を含む正極活物質層が正極集電体上に形成された正極と、上記負極と正極との間に配置されたセパレータとを含む積層体を渦巻状に捲回させてなる電極体を有し、該電極体が、非水電解質を含浸させた状態で円筒型の電池容器内に収容されたリチウム二次電池において、前記正極の渦巻方向における内周側端部から正極全長の2/3の位置までの間に、少なくとも正極全長の1/4以上の間隔をおいて2本の集電タブを配置し、前記負極の渦巻方向における外周側端部に1本の集電タブを配置するようにしたので、電極体内における反応分布を均一にすることができ、充放電特性の低下を抑制することができる。   According to the present invention, a negative electrode active material layer containing an element having a volume expansion coefficient of 1.9 times or more upon charging formed on a negative electrode current collector, and a positive electrode active material layer containing a lithium transition metal oxide Has an electrode body formed by spirally winding a laminate including a positive electrode formed on a positive electrode current collector and a separator disposed between the negative electrode and the positive electrode. In a lithium secondary battery housed in a cylindrical battery container impregnated with a non-aqueous electrolyte, between the end on the inner peripheral side in the spiral direction of the positive electrode and the position of 2/3 of the total length of the positive electrode, Since two current collecting tabs are arranged at an interval of at least 1/4 of the total length of the positive electrode, and one current collecting tab is arranged at the outer peripheral side end in the spiral direction of the negative electrode, Reaction distribution can be made uniform, and deterioration of charge / discharge characteristics can be suppressed. Rukoto can.

また、電極体の作製時に、正極と負極とを積層した状態において、正極集電タブと負極集電タブとが同一位置またはその近傍で重なり合う配置構成とはなっていないため、この積層体を巻回して巻取電極体とした後には、たとえこれら集電タブが最短距離で一直線に並ぶような配置となったとしても、各集電タブの間には数周ぶんの積層体が介在するため、該巻取電極体が均一に変形しやすく、充電時に負極活物質が体積膨張した際にも、これに追従して巻取電極体が変形することができ、したがってセパレータの圧縮、目詰まりによる充放電特性の低下が生じにくくなっている。   In addition, when the electrode body is manufactured, in a state where the positive electrode and the negative electrode are laminated, the positive electrode current collecting tab and the negative electrode current collecting tab are not arranged to overlap at the same position or in the vicinity thereof. After turning to a winding electrode body, even if these current collecting tabs are arranged in a straight line at the shortest distance, a stack of several turns is interposed between the current collecting tabs. The winding electrode body is easily deformed uniformly, and even when the negative electrode active material expands during charging, the winding electrode body can be deformed following the volume expansion. Therefore, the separator is compressed and clogged. The charge / discharge characteristics are less likely to deteriorate.

また、正極タブを2本以上と多く配置したので、正極内の集電性が向上し、充放電特性を良好とすることができる。   Moreover, since two or more positive electrode tabs are arrange | positioned, the current collection property in a positive electrode improves, and it can make charge / discharge characteristic favorable.

以下、本発明を更に詳細に説明するが、本発明は以下の最良の形態になんら限定されるものではなく、その趣旨を変更しない範囲において適宜変更して実施することが可能なものである。   Hereinafter, the present invention will be described in more detail, but the present invention is not limited to the following best modes, and can be appropriately modified and implemented without departing from the spirit of the present invention.

〔負極活物質の作製〕
先ず、熱還元法により、多結晶ケイ素塊を作製した。具体的には、金属反応炉(還元炉)内に設置されたケイ素芯を通電加熱して800℃まで上昇させておき、これに精製された高純度モノシラン(SiH4)ガスの蒸気と精製された水素とを混合したガスを流すことで、ケイ素芯の表面に多結晶ケイ素を析出させ、これにより、太い棒状に生成された多結晶ケイ素塊を作製した。
[Production of negative electrode active material]
First, a polycrystalline silicon lump was produced by a thermal reduction method. Specifically, a silicon core installed in a metal reactor (reduction furnace) is heated by heating to 800 ° C., and purified with high purity monosilane (SiH 4 ) gas vapor. By flowing a gas mixed with hydrogen, polycrystalline silicon was deposited on the surface of the silicon core, thereby producing a polycrystalline silicon lump produced in a thick rod shape.

次に、この多結晶ケイ素塊を粉砕分級することで、純度99%の多結晶ケイ素粒子(負極活物質)を作製した。この多結晶ケイ素粒子においては、結晶子サイズは32nmであり、平均粒径は10μmであった。
なお、上記結晶子サイズは、粉末X線回折のケイ素の(111)ピークの半値幅を用いて、scherrerの式により算出し、平均粒径はレーザー回折法により求めた。
Next, the polycrystalline silicon lump was pulverized and classified to produce polycrystalline silicon particles (negative electrode active material) having a purity of 99%. The polycrystalline silicon particles had a crystallite size of 32 nm and an average particle size of 10 μm.
The crystallite size was calculated by the Scherrer equation using the half width of the (111) peak of silicon in powder X-ray diffraction, and the average particle size was determined by a laser diffraction method.

〔負極合剤の作製〕
分散媒としてのNMP(N−メチル−2−ピロリドン)に、上記の作製した負極活物質と、負極導電剤としての平均粒径3.5μmの黒鉛粉末と、負極バインダーとしての下記化1で示される分子構造を有するガラス転移温度300℃、重量平均分子量50000である熱可塑性ポリイミド樹脂の前駆体のワニス(溶媒;NMP、濃度;熱処理によるポリマー化+イミド化後のポリイミド樹脂の量で47質量%)とを、負極活物質粉末と負極導電剤粉末とイミド化後のポリイミド樹脂との質量比が100:3:8.6となるように混合し、負極合剤スラリーとした。ここでのポリイミド樹脂の前駆体のワニスは、下記化2に示す3、3’、4、4’−ベンゾフェノンテトラカルボン酸ジエチルエステルと、下記化3に示すm−フェニレンジアミンとから作製できる。3、3’、4、4’−ベンゾフェノンテトラカルボン酸ジエチルエステルは、下記化4に示す3、3’、4、4’−ベンゾフェノンテトラカルボン酸二無水物にNMPの存在下、2当量のエタノールを反応させることにより作製できる。
(Preparation of negative electrode mixture)
NMP (N-methyl-2-pyrrolidone) as a dispersion medium, the above prepared negative electrode active material, graphite powder having an average particle size of 3.5 μm as a negative electrode conductive agent, and the following chemical formula 1 as a negative electrode binder Varnish of a precursor of a thermoplastic polyimide resin having a glass transition temperature of 300 ° C. and a weight average molecular weight of 50000 (solvent: NMP, concentration: polymerized by heat treatment + 47% by weight of the polyimide resin after imidization) ) Was mixed so that the mass ratio of the negative electrode active material powder, the negative electrode conductive agent powder, and the polyimide resin after imidization was 100: 3: 8.6 to obtain a negative electrode mixture slurry. The precursor varnish of the polyimide resin here can be prepared from 3,3 ′, 4,4′-benzophenonetetracarboxylic acid diethyl ester shown in the following chemical formula 2 and m-phenylenediamine shown in the chemical formula 3 below. 3,3 ′, 4,4′-benzophenonetetracarboxylic acid diethyl ester is obtained by adding 2 equivalents of ethanol in the presence of NMP to 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride shown in the following chemical formula 4. Can be produced by reacting.

Figure 0005311861
Figure 0005311861

Figure 0005311861
Figure 0005311861

Figure 0005311861
Figure 0005311861

Figure 0005311861
Figure 0005311861

〔負極の作製〕
上記の作製した負極合剤スラリーを、厚さ18μmの銅合金箔(C7025合金箔、組成;Cu96.2wt%、Ni3wt%、Si0.65wt%、Mg0.15wt%)の両面を、表面粗さRa(JIS B 0601−1994)が0.25μm、平均山間隔S(JIS B 0601−1994)が0.85μmとなるように電解銅粗化した負極集電体の両面に、25℃空気中で塗布、120℃空気中で乾燥後、25℃空気中で圧延した。得られたものを、長さ510mm、幅35.7mmの長方形に切り抜いた後、アルゴン雰囲気下で400℃、10時間熱処理し、負極集電体の表面に負極活物質層が形成された負極を作製した。負極集電体上の負極合剤層量は5.6mg/cm2、厚みは56μmであった。
(Production of negative electrode)
The negative electrode mixture slurry prepared above was coated on both sides of a 18 μm thick copper alloy foil (C7025 alloy foil, composition: Cu 96.2 wt%, Ni 3 wt%, Si 0.65 wt%, Mg 0.15 wt%) with a surface roughness Ra. (JIS B 0601-1994) is 0.25 μm, and average crest spacing S (JIS B 0601-1994) is applied to both surfaces of a negative electrode current collector roughened by electrolytic copper in air at 25 ° C. After drying in air at 120 ° C., rolling in air at 25 ° C. The obtained product was cut out into a rectangle having a length of 510 mm and a width of 35.7 mm, and then heat-treated at 400 ° C. for 10 hours in an argon atmosphere to obtain a negative electrode having a negative electrode active material layer formed on the surface of the negative electrode current collector. Produced. The amount of the negative electrode mixture layer on the negative electrode current collector was 5.6 mg / cm 2 and the thickness was 56 μm.

図2(a)に示すように、負極3の長手方向の一端部には、負極集電タブ8として、長さ46mm、幅3mm、厚さ70μmのニッケル板を接続した。   As shown in FIG. 2A, a nickel plate having a length of 46 mm, a width of 3 mm, and a thickness of 70 μm was connected to one end of the negative electrode 3 in the longitudinal direction as the negative electrode current collecting tab 8.

〔正極活物質の作製〕
正極活物質として、Li2CO3とCoCO3とを、LiとCoのモル比が1:1になるようにして乳鉢にて混合した後、空気雰囲気中にて800℃で24時間熱処理後に粉砕して得られた、平均粒子径11μmのLiCoO2で表されるリチウムコバルト複合酸化物の粉末を得た。得られた正極活物質粉末のBET比表面積は0.37m2/gであった。
[Preparation of positive electrode active material]
Li 2 CO 3 and CoCO 3 were mixed as a positive electrode active material in a mortar so that the molar ratio of Li and Co was 1: 1, and then pulverized after heat treatment at 800 ° C. for 24 hours in an air atmosphere. A powder of lithium cobalt composite oxide represented by LiCoO 2 having an average particle diameter of 11 μm was obtained. The positive electrode active material powder obtained had a BET specific surface area of 0.37 m 2 / g.

〔正極の作製〕
分散媒としてのN−メチル−2−ピロリドンに、上記の作製した正極活物質粉末と、正極導電剤としての平均粒径2μmの炭素粉末と、正極バインダーとしてのポリフッ化ビニリデンとを、活物質と導電剤とバインダーとの重量比が95:2.5:2.5となるように加えた後、混練し、正極合剤スラリーとした。
[Production of positive electrode]
To the N-methyl-2-pyrrolidone as a dispersion medium, the produced positive electrode active material powder, the carbon powder having an average particle diameter of 2 μm as the positive electrode conductive agent, and the polyvinylidene fluoride as the positive electrode binder, The conductive agent and the binder were added so that the weight ratio was 95: 2.5: 2.5, and then kneaded to obtain a positive electrode mixture slurry.

この正極合剤スラリーを、正極集電体としての厚み15μm、長さ495mm、幅33.7mmのアルミニウム箔の両面に、図1(a)に示すように、表面の一端部に長さL1=30mm、幅W1=33.7mmの未塗布部N1を、更にこの端部の未塗布部N1からD1=215mmの間隔をおいて、長さL2=10mm、幅W1=33.7mmの未塗布部N2を、さらに、裏面にも上記両未塗布部N1、N2に対応する位置に同寸法の未塗布部(図示せず)を、それぞれ形成するようにして、上記両未塗布部N1、N2の間の間隔D1=215mmの領域および中央部の未塗布部N2と正極集電体の他端との間の間隔D2=240mmの領域にそれぞれ塗布し、乾燥した後、圧延した。集電体上の活物質層量、及び正極の厚みは、両面に活物質層が形成されている部分で45mg/cm2、143μmあった。 As shown in FIG. 1 (a), the positive electrode mixture slurry is formed on both surfaces of an aluminum foil having a thickness of 15 μm, a length of 495 mm, and a width of 33.7 mm as a positive electrode current collector. An uncoated portion N1 having a width of 30 mm and a width W1 of 33.7 mm is further separated from the uncoated portion N1 at the end by a distance of D1 = 215 mm. N2 is further formed on the back surface of the uncoated portions N1 and N2 by forming uncoated portions (not shown) of the same size at positions corresponding to the uncoated portions N1 and N2, respectively. It applied to the area | region of space | interval D1 = 215mm, and the area | region of space | interval D2 = 240mm between the uncoated part N2 of a center part, and the other end of a positive electrode electrical power collector, respectively, dried, and rolled. The amount of the active material layer on the current collector and the thickness of the positive electrode were 45 mg / cm 2 and 143 μm at the portion where the active material layer was formed on both sides.

図1(a)に示すように、正極2の未塗布部N1、N2には、正極集電タブ7、7として、長さ46mm、幅3mm、厚さ70μmのアルミニウム板をそれぞれ接続した。詳しくは、正極端部の未塗布部N1では端部から5mm空けて配置しており、正極中央部の未塗布部N2では、該未塗布部N2の渦巻き方向中央に配置している。なお、2つの正極集電タブ7、7の間隔は、243.5mmである。   As shown in FIG. 1A, uncoated portions N1 and N2 of the positive electrode 2 were connected with aluminum plates having a length of 46 mm, a width of 3 mm, and a thickness of 70 μm as the positive electrode current collecting tabs 7 and 7, respectively. Specifically, the uncoated portion N1 at the positive electrode end portion is disposed 5 mm away from the end portion, and the uncoated portion N2 at the positive electrode central portion is disposed at the center in the spiral direction of the uncoated portion N2. In addition, the space | interval of the two positive electrode current collection tabs 7 and 7 is 243.5 mm.

〔非水電解液の作製〕
フルオロエチレンカーボネート(FEC)とプロピオン酸メチル(MP)を体積比2:8で混合した溶媒に対し、六フッ化リン酸リチウム(LiPF6)を1モル/リットル溶解させた後、この溶液に対して、0.4wt%の二酸化炭素ガスを添加し、非水電解液とした。
[Preparation of non-aqueous electrolyte]
After dissolving 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) in a solvent in which fluoroethylene carbonate (FEC) and methyl propionate (MP) are mixed at a volume ratio of 2: 8, Then, 0.4 wt% carbon dioxide gas was added to obtain a non-aqueous electrolyte.

〔電極体の作製〕
上記正極1枚及び上記負極1枚と、厚さ20μm、長さ560mm、幅37.7mmである、突き刺し強度340g、空孔率39%のポリエチレン製微多孔膜のセパレータを2枚用いて、正極と負極とをセパレータを介して対向させ、正極の端部側の正極集電タブ7が最内周、負極集電タブ8が最外周となるようにして、直径4mmの巻き芯を用いて、渦巻き状に巻回した後、巻き芯を引き抜いて、図3に模式的に示すような、直径12.8mm、高さ37.7mmの円筒型の電極体5を作製した。
なお、上記構成からも明らかであるが、図1および図2においては、正極および負極における左側が渦巻方向(巻回方向)における内周側(巻始め側)であり、右側が渦巻方向における外周側(巻終わり側)である。
(Production of electrode body)
Using one positive electrode and one negative electrode, and two polyethylene microporous membrane separators having a piercing strength of 340 g and a porosity of 39%, each having a thickness of 20 μm, a length of 560 mm, and a width of 37.7 mm, And the negative electrode are opposed to each other with a separator interposed therebetween, and the positive electrode current collecting tab 7 on the positive electrode end side is the innermost periphery and the negative electrode current collecting tab 8 is the outermost outer periphery. After winding in a spiral shape, the winding core was pulled out to produce a cylindrical electrode body 5 having a diameter of 12.8 mm and a height of 37.7 mm as schematically shown in FIG.
As apparent from the above configuration, in FIGS. 1 and 2, the left side of the positive electrode and the negative electrode is the inner peripheral side (winding side) in the spiral direction (winding direction), and the right side is the outer periphery in the spiral direction. This is the side (winding end side).

〔電池の作製〕
図4に断面構造で示すように、上記円筒型電極体5および非水電解液を、25℃、1気圧のCO2雰囲気下でSUS製の円筒型外装缶1内に挿入し、直径14mm、高さ43mmの電池を作製した。
ここで、図4の断面模式図に基づき上記電池の概略を示しておく。この電池は、上部に開口部を有する円筒型の金属外装缶1と、正極2と負極3とをセパレータ4を介して対向させ渦巻き状に巻回させてなる電極体5と、電極体5内に含浸された非水電解液と、上記の金属外装缶1の開口部を封口する封口蓋6等から構成されている。封口蓋6が正極端子、金属外装缶1が負極端子となっており、電極体5の上面側に取り付けられている正極集電タブ7、7が封口蓋6と、下面側に取り付けられている負極集電タブ8が金属外装缶1と接続されている。電極体5の上面及び下面は、電極体5と金属外装缶1とを絶縁するための上部絶縁板9及び下部絶縁板10で覆われている。封口蓋6は、金属外装缶1の開口部に絶縁パッキング11を介してかしめられて固定されている。
このように、上記電池は、二次電池として充電および放電が可能な構造となっている。
[Production of battery]
As shown in a cross-sectional structure in FIG. 4, the cylindrical electrode body 5 and the non-aqueous electrolyte are inserted into a SUS cylindrical outer can 1 in a CO 2 atmosphere at 25 ° C. and 1 atm. A battery having a height of 43 mm was produced.
Here, the outline of the battery will be shown based on the schematic cross-sectional view of FIG. This battery includes a cylindrical metal outer can 1 having an opening at the top, an electrode body 5 in which a positive electrode 2 and a negative electrode 3 are opposed to each other with a separator 4 interposed between them, and an inside of the electrode body 5. The nonaqueous electrolytic solution impregnated in and the sealing lid 6 that seals the opening of the metal outer can 1 described above. The sealing lid 6 is a positive electrode terminal, the metal outer can 1 is a negative electrode terminal, and the positive electrode current collecting tabs 7 and 7 attached to the upper surface side of the electrode body 5 are attached to the sealing lid 6 and the lower surface side. A negative electrode current collecting tab 8 is connected to the metal outer can 1. The upper and lower surfaces of the electrode body 5 are covered with an upper insulating plate 9 and a lower insulating plate 10 for insulating the electrode body 5 from the metal outer can 1. The sealing lid 6 is caulked and fixed to the opening of the metal outer can 1 via an insulating packing 11.
Thus, the battery has a structure capable of being charged and discharged as a secondary battery.

[第1実施例]
以下の第1実施例(実施例1および比較例1〜4)においては、正極集電タブおよび負極集電タブの設置位置(巻回方向における内周側部、中央部および外周側部)の違いが充放電特性に与える影響について検討を行った。
[First embodiment]
In the following first example (Example 1 and Comparative Examples 1 to 4), the installation positions of the positive electrode current collecting tab and the negative electrode current collecting tab (the inner peripheral side portion, the central portion and the outer peripheral side portion in the winding direction) The effect of the difference on the charge / discharge characteristics was investigated.

(実施例1)
実施例1の電池としては、上記発明を実施する為の最良の形態で説明した電池と同様に作製したものを用いた。
このようにして作製した電池を、以下、本発明電池A1と称す。
Example 1
As the battery of Example 1, a battery manufactured in the same manner as the battery described in the best mode for carrying out the invention was used.
The battery thus produced is hereinafter referred to as the present invention battery A1.

(比較例1)
図2(b)に示すように、負極3の両端部に、負極集電タブ8b、8bとして、長さ46mm、幅3mm、厚さ70mmのニッケル板をそれぞれ接続した他は、上記実施例1と同様にして電池を作製した。上記両負極集電タブ8b、8bは、前記実施例1の負極集電タブ8と同様にして、円筒型の金属外装缶の底と接続した。
このようにして作製した電池を、以下、比較電池Z1と称す。
(Comparative Example 1)
As shown in FIG. 2B, the negative electrode current collector tabs 8b and 8b were connected to both ends of the negative electrode 3 with nickel plates having a length of 46 mm, a width of 3 mm, and a thickness of 70 mm, respectively. A battery was produced in the same manner as described above. Both the negative electrode current collecting tabs 8b and 8b were connected to the bottom of the cylindrical metal outer can in the same manner as the negative electrode current collecting tab 8 of Example 1.
The battery thus produced is hereinafter referred to as comparative battery Z1.

(比較例2)
図1(b)に示すように、正極2bの長手方向中央付近の未塗布部を塗布部とし、正極集電体の一端部の未塗布部N1と他端との間の間隔D3=465mmの領域に正極活物質層を形成して、この部分に正極集電タブを設置しなかった他は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、比較電池Z2と称す。
(Comparative Example 2)
As shown in FIG. 1B, an uncoated portion in the vicinity of the center in the longitudinal direction of the positive electrode 2b is used as a coated portion, and a distance D3 = 465 mm between an uncoated portion N1 at one end of the positive electrode current collector and the other end. A battery was fabricated in the same manner as in Example 1 except that the positive electrode active material layer was formed in the region and the positive electrode current collecting tab was not provided in this region.
The battery thus produced is hereinafter referred to as comparative battery Z2.

(比較例3)
図1(c)に示すように、長さL1=30mm、W1=幅33.7mmの未塗布部N1とは逆の端部においても、長さL3=10mm、幅W1=33.7mmの未塗布部N3を形成してその渦巻き方向中央部に正極集電タブ7cを設置し、長さL1=30mm、W1=幅33.7mmの未塗布部N1には正極集電タブを設置しなかった他は、上記比較例1と同様にして電池を作製した。2つの正極集電タブ7、7cの間隔は240mmであり、これら正極集電タブ7、7cが設置された未塗布部N2、N3の間隔はD4=230mmである。また、2本の正極集電タブ7、7cは、前記実施例1の正極集電タブ7、7と同様にして、封口蓋に接続している。
このようにして作製した電池を、以下、比較電池Z3と称す。
(Comparative Example 3)
As shown in FIG. 1 (c), the length L3 = 10 mm and the width W1 = 33.7 mm at the end opposite to the uncoated portion N1 having the length L1 = 30 mm and W1 = width 33.7 mm. The coated portion N3 was formed, and the positive current collecting tab 7c was installed at the center of the spiral direction. The positive current collecting tab was not installed in the uncoated portion N1 having a length L1 = 30 mm and W1 = width 33.7 mm. A battery was fabricated in the same manner as in Comparative Example 1 above. The distance between the two positive electrode current collecting tabs 7 and 7c is 240 mm, and the distance between the uncoated portions N2 and N3 where the positive electrode current collecting tabs 7 and 7c are installed is D4 = 230 mm. Further, the two positive electrode current collecting tabs 7 and 7c are connected to the sealing lid in the same manner as the positive electrode current collecting tabs 7 and 7 of the first embodiment.
The battery thus produced is hereinafter referred to as comparative battery Z3.

(比較例4)
図1(d)に示すように、長さL1=30mm、W1=幅33.7mmの未塗布部N1には正極集電タブを設置しなかった他は、上記比較例1と同様にして電池を作製した。
このようにして作製した電池を、以下、比較電池Z4と称す。
(Comparative Example 4)
As shown in FIG. 1 (d), a battery was obtained in the same manner as in Comparative Example 1 except that no positive electrode current collecting tab was installed in the uncoated portion N1 having a length L1 = 30 mm and W1 = width 33.7 mm. Was made.
The battery thus produced is hereinafter referred to as comparative battery Z4.

〔充放電サイクル特性の評価〕
上記本発明電池A1及び比較電池Z1〜Z4について、下記の充放電サイクル条件にて充放電サイクル特性を評価した。
[Evaluation of charge / discharge cycle characteristics]
About the said this invention battery A1 and comparative battery Z1-Z4, the charge / discharge cycle characteristic was evaluated on the following charge / discharge cycle conditions.

(充放電サイクル条件)
・1サイクル目の充電条件
45mAの電流で4時間定電流充電を行った後、180mAの電流で電池電圧が4.2Vとなるまで定電流充電を行い、更に、4.2Vの電圧で電流値が45mAとなるまで定電圧充電を行った。
・1サイクル目の放電条件
180mAの電流で電池電圧が2.75Vとなるまで定電流放電を行った。
・2サイクル目以降の充電条件
900mAの電流で電池電圧が4.2Vとなるまで定電流充電を行い、更に、4.2Vの電圧で電流値が45mAとなるまで定電圧充電を行った。
・2サイクル目以降の放電条件
900mAの電流で電池電圧が2.75Vとなるまで定電流放電を行った。
(Charge / discharge cycle conditions)
-Charging condition in the first cycle After performing constant current charging for 4 hours at a current of 45 mA, constant current charging is performed until the battery voltage reaches 4.2 V at a current of 180 mA, and further a current value at a voltage of 4.2 V The battery was charged at a constant voltage until the current became 45 mA.
-First cycle discharge conditions Constant current discharge was performed at a current of 180 mA until the battery voltage reached 2.75V.
-Charging conditions after the second cycle Constant current charging was performed at a current of 900 mA until the battery voltage reached 4.2 V, and further constant voltage charging was performed at a voltage of 4.2 V until the current value reached 45 mA.
-Discharge conditions after the second cycle Constant current discharge was performed at a current of 900 mA until the battery voltage reached 2.75V.

(放電レート特性、サイクル寿命の算出)
以下の計算方法により、放電レート特性、サイクル寿命を求めた。
・放電レート特性
2サイクル目の放電容量/1サイクル目の放電容量×100
・サイクル寿命
容量維持率(nサイクル目の放電容量を、2サイクル目の放電容量で除した値)が50%になった時のサイクル数
(Calculation of discharge rate characteristics and cycle life)
The discharge rate characteristics and cycle life were determined by the following calculation method.
Discharge rate characteristics Discharge capacity at the second cycle / discharge capacity at the first cycle × 100
Cycle life The number of cycles when the capacity retention ratio (the value obtained by dividing the discharge capacity at the nth cycle by the discharge capacity at the second cycle) reaches 50%.

(抵抗の測定)
また、1サイクル目の放電終了時に、電池の1kHz時の交流抵抗も測定した。
(Measurement of resistance)
At the end of the first cycle discharge, the AC resistance of the battery at 1 kHz was also measured.

(特性値算出・測定結果)
本発明電池A1及び比較電池Z1〜Z4の1kHz交流抵抗、放電レート特性およびサイクル寿命を表1に示す。
なお、表1中、いずれの特性値に関しても、本発明電池A1の1kHz交流抵抗、放電レート特性、サイクル寿命それぞれの値を100とした指数で表し、また、「内」は巻回方向(渦巻方向)における最内周部を、「中」は巻回方向における中央部を、「外」は巻回方向における最外周部をそれぞれ表す。
(Characteristic value calculation / measurement results)
Table 1 shows the 1 kHz AC resistance, discharge rate characteristics, and cycle life of the present invention battery A1 and comparative batteries Z1 to Z4.
In Table 1, each characteristic value is expressed as an index with each value of 1 kHz AC resistance, discharge rate characteristic, and cycle life of the battery A1 of the present invention as 100, and “inside” indicates the winding direction (vortex Direction), “middle” represents the central part in the winding direction, and “outer” represents the outermost part in the winding direction.

Figure 0005311861
Figure 0005311861

(考察)
表1から明らかなように、正極2では渦巻方向における内周側端部から正極全長の2/3の位置までの間に、正極全長のおよそ1/2の間隔をおいて2本の集電タブ7、7を有し、かつ負極3では渦巻方向における外周側端部に1本の集電タブ8を有している本発明電池A1は、正負極の集電タブの配置構成がこれとは異なる比較電池Z1〜Z4に比して、放電レート特性、サイクル寿命を共に高い値で両立することが可能となっていることが分かる。
(Discussion)
As apparent from Table 1, in the positive electrode 2, two current collectors are spaced from the inner peripheral side end in the spiral direction to a position that is 2/3 of the total length of the positive electrode with an interval of approximately ½ of the total length of the positive electrode. The battery A1 of the present invention having the tabs 7 and 7 and the negative electrode 3 having one current collecting tab 8 at the outer peripheral end in the spiral direction has the arrangement configuration of the current collecting tabs of the positive and negative electrodes. It can be seen that both the discharge rate characteristics and the cycle life can be achieved at high values as compared with different comparative batteries Z1 to Z4.

これは、本発明電池A1では、正負極の集電タブの配置構成を上記のように適正化したことにより、電極体5を渦巻状に形成するために正負極の長さを大としたにもかかわらず電極体5内の反応分布を均一にすることができ、また、電極体5の作製時に、正極2と負極3とを積層した状態において、正極集電タブ7、7と負極集電タブ8とが同一位置またはその近傍で重なり合う配置構成とはなっていないため、この積層体を巻回して巻取電極体5とした後には、たとえこれら集電タブ7、7、8が最短距離で一直線に並ぶような配置となったとしても、各集電タブ7、7、8の間には数周ぶんの積層体が介在することによって、電極体5の変形が容易となっていて充電時のセパレータの目詰まり発生が抑制されており、さらに、上記正極集電タブ7、7の配置により正極2での集電性の向上が可能となっており、正極2での分極の増加による劣化の加速を抑制することができたためと考えられる。   In the battery A1 of the present invention, the arrangement of the current collecting tabs of the positive and negative electrodes is optimized as described above, so that the length of the positive and negative electrodes is increased in order to form the electrode body 5 in a spiral shape. However, the reaction distribution in the electrode body 5 can be made uniform, and the positive electrode current collecting tabs 7 and 7 and the negative electrode current collector are stacked in a state in which the positive electrode 2 and the negative electrode 3 are laminated when the electrode body 5 is manufactured. Since the tabs 8 are not arranged to overlap at the same position or in the vicinity thereof, the current collecting tabs 7, 7, 8 are the shortest distances after the laminated body is wound to form the winding electrode body 5. Even if it is arranged in a straight line, the electrode body 5 can be easily deformed by charging a plurality of laminated bodies between the current collecting tabs 7, 7, 8. The occurrence of clogging of the separator at the time is suppressed, and the positive electrode The arrangement of tabs 7,7 are made it possible to improve the current collection performance in the positive electrode 2, presumably because it was possible to suppress the acceleration of the deterioration due to increase in polarization at the positive electrode 2.

一方、比較電池Z1では、本発明電池A1に比べて、負極集電タブ8bが1本追加して設置され、電池内部抵抗が低下していることからも集電性が向上しているものの、充放電特性の向上は見られない。これは、比較電池Z1では、最内周付近において正極集電タブ7と負極集電タブ8bとが近い位置で重なり合っているために、電極体の変形性が低下したこと、負極集電タブ8bを追加したことにより逆に電極体内の反応均一性が低下したためと考えられる。   On the other hand, in the comparative battery Z1, compared with the battery A1 of the present invention, the negative electrode current collecting tab 8b is additionally installed, and the current collecting property is improved because the battery internal resistance is reduced. The charge / discharge characteristics are not improved. This is because, in the comparative battery Z1, the positive electrode current collecting tab 7 and the negative electrode current collecting tab 8b overlap each other in the vicinity of the innermost periphery, so that the deformability of the electrode body is reduced, and the negative electrode current collecting tab 8b. This is probably because the reaction uniformity in the electrode body decreased due to the addition of.

また、比較電池Z2〜Z4においても、充放電特性の向上は見られない。これは、比較電池Z2、Z4では正極集電タブ7が1本しか設置されていないため正極での反応均一性および集電性が向上していないこと、比較電池Z3では最外周付近において正極集電タブ7cと負極集電タブ8bとが近い位置で重なり合っているために、電極体の変形性が低下したこと等が原因として考えられる。   In addition, no improvement in charge / discharge characteristics is observed in the comparative batteries Z2 to Z4. This is because the comparison batteries Z2 and Z4 have only one positive electrode current collecting tab 7 so that the reaction uniformity and current collection performance at the positive electrode are not improved. This is probably because the electric tab 7c and the negative electrode current collecting tab 8b overlap each other at a close position, so that the deformability of the electrode body is lowered.

[第2実施例]
以下の第2実施例(実施例1、2および比較例5)においては、巻回方向における内周側の正極集電タブと外周側の正極集電タブとの間隔の違いが充放電特性に与える影響について検討を行った。
[Second Embodiment]
In the following second examples (Examples 1 and 2 and Comparative Example 5), the difference in the distance between the positive electrode current collecting tab on the inner peripheral side and the positive electrode current collector tab on the outer peripheral side in the winding direction is the charge / discharge characteristic. We examined the effect of this.

(実施例2)
前記実施例1においては、図1(a)に示すように、正極2の一端部の長さL1=30mm、幅W1=33.7mmの未塗布部N1と、中央部の長さL2=10mm、幅W1=33.7mmの未塗布部N2との間隔D1を215mmとしていたが、中央部の未塗布部の位置を変えることにより、端部の未塗布部と中央部の未塗布部との間隔を130mm、180mm、235mm、280mmと変化させた他は、上記実施例1と同様にして4種類の電池を作製した。なお、各電池における2本の正極集電タブの間隔はそれぞれ、158.5mm、208.5mm、 263.5mm、308.5mmであり、これらの間隔の正極全長に対する割合はそれぞれ、32.0%、42.1%、53.2%、62.3%である。
このようにして作製した4種類の電池を、以下、本発明電池A2〜A5と称す。
(Example 2)
In the first embodiment, as shown in FIG. 1A, the length L1 of one end of the positive electrode 2 is 30 mm, the uncoated portion N1 having a width W1 of 33.7 mm, and the length L2 of the central portion is 10 mm. The interval D1 with the uncoated portion N2 having the width W1 = 33.7 mm was set to 215 mm. However, by changing the position of the uncoated portion at the center, the uncoated portion at the end and the uncoated portion at the center Four types of batteries were produced in the same manner as in Example 1 except that the interval was changed to 130 mm, 180 mm, 235 mm, and 280 mm. The intervals between the two positive electrode current collecting tabs in each battery are 158.5 mm, 208.5 mm, 263.5 mm, and 308.5 mm, respectively, and the ratio of these intervals to the total positive electrode length is 32.0%. 42.1%, 53.2% and 62.3%.
The four types of batteries thus produced are hereinafter referred to as present invention batteries A2 to A5.

(比較例5)
正極における中央部の未塗布部の位置を変えることにより、端部の未塗布部と中央部の未塗布部との間隔を320mmに変化させた他は、上記実施例1と同様にして電池を作製した。なお、2本の正極隼電タブの間隔は348.5mmであり、これらの間隔の正極全長に対する割合は70.4%である。
このようにして作製した電池を、以下、比較電池Z5と称す。
(Comparative Example 5)
The battery was fabricated in the same manner as in Example 1 except that the distance between the uncoated part at the end and the uncoated part at the central part was changed to 320 mm by changing the position of the uncoated part at the center in the positive electrode. Produced. The interval between the two positive electrode tabs is 348.5 mm, and the ratio of these intervals to the total positive electrode length is 70.4%.
The battery thus produced is hereinafter referred to as comparative battery Z5.

〔充放電サイクル特性の評価〕
本発明電池A2〜A5および比較電池Z5に関し、前記第1実施例で示した本発明電池A1および比較電池Z1〜Z4の場合と同様にして、1kHz交流抵抗、放電レート特性およびサイクル寿命を求めた。得られた特性値を表2に示す。
なお、表2中、いずれの特性値に関しても、本発明電池A1の1kHz交流抵抗、放電レート特性、サイクル寿命それぞれの値を100とした指数で表し、また、「内」は巻回方向(渦巻方向)における最内周部を、「中」は巻回方向における中央部を、「外」は巻回方向における最外周部をそれぞれ表す。
[Evaluation of charge / discharge cycle characteristics]
Regarding the inventive batteries A2 to A5 and the comparative battery Z5, the 1 kHz AC resistance, the discharge rate characteristics, and the cycle life were obtained in the same manner as in the case of the inventive battery A1 and the comparative batteries Z1 to Z4 shown in the first embodiment. . The characteristic values obtained are shown in Table 2.
In Table 2, each characteristic value is expressed as an index with each value of 1 kHz AC resistance, discharge rate characteristic, and cycle life of the battery A1 of the present invention as 100, and “inside” indicates the winding direction (vortex Direction), “middle” represents the central part in the winding direction, and “outer” represents the outermost part in the winding direction.

Figure 0005311861
Figure 0005311861

(考察)
表2から明らかなように、渦巻方向における最内周部に位置する正極集電タブと最外周部に位置する正極集電タブとの間隔が、正極における渦巻方向の全長の1/3以上1/2以下である本発明電池A1およびA3は、正極集電タブ間隔が上記範囲外である本発明電池A2、A4、A5および比較電池Z5に比べて放電レート特性、サイクル寿命を共に高い値で両立することが可能となっていることが分かる。
(Discussion)
As is clear from Table 2, the distance between the positive electrode current collecting tab located at the innermost peripheral portion and the positive electrode current collecting tab located at the outermost peripheral portion in the spiral direction is 1/3 or more of the total length of the positive electrode in the spiral direction. Inventive batteries A1 and A3 that are less than / 2 have higher discharge rate characteristics and cycle life than Inventive batteries A2, A4, A5 and comparative battery Z5, in which the positive electrode current collecting tab interval is outside the above range. It turns out that it is possible to achieve both.

これは、本発明電池A1およびA3では、本発明電池A2、A4、A5および比較電池Z5に比べ、電極体内の反応均一性が高いためと考えられる。   This is presumably because the inventive batteries A1 and A3 have higher reaction uniformity within the electrode body than the inventive batteries A2, A4, A5 and the comparative battery Z5.

また、比較電池Z5は、本発明電池A1〜A5に比して、いずれの特性値も大きく劣化している。これは、渦巻方向における最内周部に位置する正極集電タブと最外周部に位置する正極集電タブとの間隔が正極全長の2/3を超えていて過大となっていることにより反応均一性が大きく低下しているためと考えられる。   Further, the comparative battery Z5 is greatly deteriorated in all characteristic values as compared with the batteries A1 to A5 of the present invention. This is because the distance between the positive electrode current collecting tab located at the innermost peripheral portion and the positive electrode current collecting tab located at the outermost peripheral portion in the spiral direction exceeds 2/3 of the total positive electrode length and is excessive. This is probably because the uniformity is greatly reduced.

〔その他の事項〕
(1)第1実施例の比較例3における負極3の両端部の負極集電タブ8b、8b(図2(b)参照)のうち、外周側端部に位置する負極集電タブ8bを設置しないようにしてもよく、これによれば、正極集電タブ7、7c(図1(c)参照)および負極集電タブ8bの配置が、実施例1の本発明電池A1における正極集電タブ7、7(図1(a)参照)および負極集電タブ8(図2(a)参照)の配置をほぼ内外に反転させた(ほぼ左右対称の)ものとなり、したがって、本発明電池A1の場合と同等の良好な充放電特性を得ることが可能な構成となる。
[Other matters]
(1) Of the negative electrode current collecting tabs 8b and 8b (see FIG. 2B) at both ends of the negative electrode 3 in Comparative Example 3 of the first embodiment, the negative electrode current collecting tabs 8b located at the outer peripheral side end portions are installed. According to this, the arrangement of the positive electrode current collecting tabs 7 and 7c (see FIG. 1 (c)) and the negative electrode current collecting tab 8b is the positive electrode current collecting tab in the battery A1 of the present invention of Example 1. 7, 7 (see FIG. 1 (a)) and the negative electrode current collecting tab 8 (see FIG. 2 (a)) are substantially reversed inward and outward (substantially left-right symmetrical). It becomes the structure which can acquire the favorable charge / discharge characteristic equivalent to the case.

ただしこの場合、正極集電タブ7cが巻取電極体の外周側端部に位置することになり、該正極集電タブ7cを電池の封口蓋に接続する際に負極の外装缶に接触しやすい配置となるため、該正極集電タブ7cと外装缶との接触を避けるべく、例えば該正極集電タブ7cを樹脂製テープで被覆して絶縁したり、該正極集電タブ7cの折り曲げを適切にしたりするといった対策をとるようにすればよい。   However, in this case, the positive electrode current collecting tab 7c is positioned at the outer peripheral side end portion of the winding electrode body, and when the positive electrode current collecting tab 7c is connected to the sealing lid of the battery, it is easy to come into contact with the negative electrode outer can. Therefore, in order to avoid contact between the positive electrode current collecting tab 7c and the outer can, for example, the positive electrode current collecting tab 7c is covered with a resin tape to be insulated, or the positive electrode current collecting tab 7c is appropriately bent. You can take measures such as

なおこの場合、例えば外装缶をアルミニウムよりなるものとして正極缶とし、封口蓋を負極として正負極の配置を逆転した構成としてもよく、これによれば、正極集電タブ7cを外装缶に接続することができるため、上記のような接触回避のための対策を不要とすることができる。   In this case, for example, the outer can may be made of aluminum to form a positive electrode can, the sealing lid may be a negative electrode, and the arrangement of the positive and negative electrodes may be reversed. According to this, the positive electrode current collecting tab 7c is connected to the outer can. Therefore, the above measures for avoiding contact can be made unnecessary.

(2)第1実施例の実施例1における正極2の2本の正極集電タブ7、7(図1(a)参照)に加えて、例えば上記両正極集電タブ7、7の間の中央位置等の適宜位置に、第3の正極集電タブをさらに設置するといったように、正極集電タブを計3本以上とすることも可能である。 (2) In addition to the two positive electrode current collecting tabs 7 and 7 of the positive electrode 2 in Example 1 of the first example (see FIG. 1A), for example, between the both positive electrode current collecting tabs 7 and 7 It is also possible to provide a total of three or more positive electrode current collecting tabs, such as further installing a third positive electrode current collecting tab at an appropriate position such as a central position.

ただし、例えば正極の全長が長く、集電タブの設置数を増加させても集電タブ間に十分な間隔が確保できる場合は、集電タブの設置数が多いほうが正極の反応均一性や集電性も向上させることができて望ましいと考えられるが、正極の全長が前記実施例と同程度である場合には、集電タブの設置数が多くなると該集電タブが密に配置されることとなって電極体の変形性が低下するおそれがあるため、正極集電タブは2本とすることが望ましい。   However, if, for example, the total length of the positive electrode is long and a sufficient interval is secured between the current collecting tabs even if the number of current collecting tabs is increased, the more the number of current collecting tabs installed, the better the reaction uniformity and current collection of the positive electrode. It is considered desirable because it can improve the electrical properties, but when the total length of the positive electrode is about the same as the above embodiment, the current collecting tabs are densely arranged when the number of current collecting tabs is increased. Therefore, there is a possibility that the deformability of the electrode body is lowered, and therefore it is desirable to use two positive electrode current collecting tabs.

(3)また、第1実施例の実施例1における正極2の2本の正極集電タブ7、7のうち、渦巻方向における最も内周側に位置する集電タブ7は、図1(a)に示すように、厳密には、正極2の渦巻方向における内周側端よりもやや中央側寄りの位置に配置されているが、この中央側寄りの位置は、正極活物質層が形成されていない未塗布部N1上の位置であって正極2の渦巻方向における内周側端と機能的に同等の位置となっているため、この中央側寄りの位置も「正極の渦巻方向における内周側端部」に含まれるものとする。 (3) Of the two positive electrode current collecting tabs 7 and 7 of the positive electrode 2 in Example 1 of the first example, the current collecting tab 7 located on the innermost peripheral side in the spiral direction is shown in FIG. Strictly speaking, the positive electrode 2 is disposed at a position slightly closer to the center side than the inner peripheral side end in the spiral direction of the positive electrode 2, but the positive electrode active material layer is formed at a position closer to the center side. Since the position on the uncoated portion N1 is functionally equivalent to the inner peripheral side end of the positive electrode 2 in the spiral direction, the position closer to the center is also “the inner periphery in the positive electrode spiral direction”. It shall be included in the “side end”.

(4)また、例えば第1実施例の実施例1における本発明電池A1の正極集電タブ7、7および負極集電タブ8の配置は、渦巻き状に巻回した後の巻取電極体の状態において、できるだけ分散して配置されているほうが、これら集電タブ7、7、8の間の間隔が大となるため、電極体の変形性をより良好とする上では望ましい。図5は、2本の正極集電タブおよび1本の負極集電タブの巻取電極体内における配置状況の例を示す模式図である。図5(a)に示す例では、渦巻き状に巻回した後の巻取電極体5aの状態において、2本のうちの一方の正極集電タブ70aが中心に位置し、他方の正極集電タブ70aおよび1本の負極集電タブ80aが、互いに90°以内の角度αをなす範囲内に集中して配置され、図5(b)に示す例では、巻回後の巻取電極体5bの状態において、2本のうちの一方の正極集電タブ70bが中心に位置し、他方の正極集電タブ70bおよび1本の負極集電タブ80bが、互いに90°を越える角度βをなす範囲に分散して配置されており、後者の集電タブ70b、70b、80bが分散した配置のほうが電極体5bの変形性はより良好であると考えられる。
なお、前者の集電タブ70a、70a、80aが集中した配置の場合、例えば中間部の正極集電タブ70aと負極集電タブ80aとの間の上記角度αが0°程度となった場合には、上記3本の集電タブ70a、70a、80aがほぼ最短距離で一直線に並ぶような配置となるが、この場合であっても、電極体5aの作製時(即ち渦巻き状に巻回する前)には、正極と負極とを積層した状態において、正極集電タブ70a、70aと負極集電タブ80aとが同一位置またはその近傍で重なり合う配置構成とはなっていないため、この積層体を巻回して巻取電極体5aとした後には、各集電タブ70a、70a、80aの間には数周ぶんの積層体が介在し、これにより該巻取電極体5aの均一な変形性が確保される。
(4) Further, for example, the arrangement of the positive electrode current collecting tabs 7 and 7 and the negative electrode current collecting tab 8 of the battery A1 of the present invention in Example 1 of the first example is such that the winding electrode body after being wound in a spiral shape In the state, it is desirable to disperse the electrodes as much as possible because the distance between the current collecting tabs 7, 7, and 8 is large, so that the deformability of the electrode body is improved. FIG. 5 is a schematic diagram showing an example of an arrangement state of two positive electrode current collecting tabs and one negative electrode current collecting tab in the winding electrode body. In the example shown in FIG. 5A, in the state of the wound electrode body 5a after being wound in a spiral shape, one of the two positive electrode current collecting tabs 70a is positioned at the center, and the other positive electrode current collector is formed. The tab 70a and one negative electrode current collecting tab 80a are concentrated and arranged in a range that forms an angle α of 90 ° or less. In the example shown in FIG. 5B, the wound electrode body 5b after winding. In this state, one of the two positive electrode current collecting tabs 70b is located at the center, and the other positive electrode current collecting tab 70b and one negative electrode current collecting tab 80b form an angle β that exceeds 90 ° with respect to each other. It is considered that the deformability of the electrode body 5b is better when the latter current collecting tabs 70b, 70b, and 80b are dispersed.
In the case where the former current collecting tabs 70a, 70a, and 80a are concentrated, for example, when the angle α between the positive electrode current collecting tab 70a and the negative electrode current collecting tab 80a in the middle portion is about 0 °. Is arranged such that the three current collecting tabs 70a, 70a, 80a are aligned in a straight line at the shortest distance. Even in this case, the electrode body 5a is wound (ie, spirally wound). In the previous), in the state where the positive electrode and the negative electrode are laminated, the positive electrode current collecting tabs 70a, 70a and the negative electrode current collecting tab 80a are not arranged to overlap at the same position or in the vicinity thereof. After the winding electrode body 5a is wound, a laminated body of several turns is interposed between the current collecting tabs 70a, 70a, 80a, so that the winding electrode body 5a has a uniform deformability. Secured.

本発明は、携帯用途の小型機器等に搭載される円筒型リチウム二次電池に好適に適用することが可能である。   The present invention can be suitably applied to a cylindrical lithium secondary battery mounted on a small portable device or the like.

本発明の最良の形態で用いた、集電タブの配置構成が異なる4種類の正極の展開図である。It is an expanded view of four types of positive electrodes used in the best mode of the present invention and having different arrangement configurations of current collecting tabs. 本発明の最良の形態で用いた、集電タブの配置構成が異なる2種類の負極の展開図である。It is an expanded view of two types of negative electrodes from which the arrangement structure of the current collection tab used by the best form of this invention differs. 本発明の最良の形態で用いた巻取電極体の斜視図である。It is a perspective view of the winding electrode body used by the best form of this invention. 本発明の最良の形態で作製したリチウム二次電池の概略断面図である。It is a schematic sectional drawing of the lithium secondary battery produced with the best form of this invention. 本発明の最良の形態で用いた集電タブの巻取電極体における配置構成の例を模式的に示す平面図である。It is a top view which shows typically the example of the arrangement configuration in the winding electrode body of the current collection tab used by the best form of this invention.

符号の説明Explanation of symbols

5:電極体
7:正極集電タブ
8:負極集電タブ
5: Electrode body 7: Positive electrode current collection tab 8: Negative electrode current collection tab

Claims (6)

充電にともなう体積膨張率が1.9倍以上の元素を含む負極活物質層が負極集電体上に形成された負極と、リチウム遷移金属酸化物を含む正極活物質層が正極集電体上に形成された正極と、上記負極と正極との間に配置されたセパレータとを含む積層体を渦巻状に捲回させてなる電極体を有し、該電極体が、非水電解質を含浸させた状態で円筒型の電池容器内に収容されたリチウム二次電池において、
前記正極の渦巻方向における内周側端部から正極全長の2/3の位置までの間に、少なくとも正極全長の1/4以上の間隔をおいて2本の集電タブが配置され、前記負極の渦巻方向における外周側端部のみに1本の集電タブが配置されている、リチウム二次電池。
A negative electrode in which a negative electrode active material layer containing an element having a volume expansion coefficient of 1.9 times or more upon charging is formed on the negative electrode current collector, and a positive electrode active material layer containing a lithium transition metal oxide on the positive electrode current collector An electrode body formed by spirally winding a laminate including a positive electrode formed on the electrode and a separator disposed between the negative electrode and the positive electrode, and the electrode body is impregnated with a non-aqueous electrolyte. In a lithium secondary battery housed in a cylindrical battery container
Two current collecting tabs are disposed at an interval of at least 1/4 or more of the total length of the positive electrode between the inner peripheral side end in the spiral direction of the positive electrode and a position of 2/3 of the total length of the positive electrode, The lithium secondary battery in which one current collection tab is arrange | positioned only at the outer peripheral side edge part in the spiral direction.
前記正極において渦巻方向における最も内周側に位置する集電タブと最も外周側に位置する集電タブとの間隔が、正極の渦巻方向における全長の1/3〜1/2である、請求項1に記載のリチウム二次電池。   The distance between the current collecting tab located on the innermost circumferential side and the current collecting tab located on the outermost circumferential side in the spiral direction in the positive electrode is 1/3 to 1/2 of the total length in the spiral direction of the positive electrode. 2. The lithium secondary battery according to 1. 負極活物質層が、ケイ素および/またはケイ素合金を含む、請求項1または2に記載のリチウム二次電池。   The lithium secondary battery according to claim 1 or 2, wherein the negative electrode active material layer contains silicon and / or a silicon alloy. 充電にともなう体積膨張率が1.9倍以上の元素を含む負極活物質層が負極集電体上に形成された負極と、リチウム遷移金属酸化物を含む正極活物質層が正極集電体上に形成された正極と、上記負極と正極との間に配置されたセパレータとを含む積層体を渦巻状に捲回させてなる電極体を有し、該電極体が、非水電解質を含浸させた状態で円筒型の電池容器内に収容されたリチウム二次電池において、
前記正極の渦巻方向における外周側端部から正極全長の2/3の位置までの間に、少なくとも正極全長の1/4以上の間隔をおいて2本の集電タブが配置され、前記負極の渦巻方向における内周側端部のみに1本の集電タブが配置されている、リチウム二次電池。
A negative electrode in which a negative electrode active material layer containing an element having a volume expansion coefficient of 1.9 times or more upon charging is formed on the negative electrode current collector, and a positive electrode active material layer containing a lithium transition metal oxide on the positive electrode current collector An electrode body formed by spirally winding a laminate including a positive electrode formed on the electrode and a separator disposed between the negative electrode and the positive electrode, and the electrode body is impregnated with a non-aqueous electrolyte. In a lithium secondary battery housed in a cylindrical battery container
Two current collecting tabs are disposed at an interval of at least 1/4 or more of the total length of the positive electrode from the outer peripheral side end in the spiral direction of the positive electrode to a position of 2/3 of the total length of the positive electrode. A lithium secondary battery in which one current collecting tab is arranged only at an inner peripheral side end in a spiral direction.
前記正極において渦巻方向における最も内周側に位置する集電タブと最も外周側に位置する集電タブとの間隔が、正極の渦巻方向における全長の1/3〜1/2である、請求項4に記載のリチウム二次電池。   The distance between the current collecting tab located on the innermost circumferential side and the current collecting tab located on the outermost circumferential side in the spiral direction in the positive electrode is 1/3 to 1/2 of the total length in the spiral direction of the positive electrode. 4. The lithium secondary battery according to 4. 負極活物質層が、ケイ素および/またはケイ素合金を含む、請求項4または5に記載のリチウム二次電池。   The lithium secondary battery according to claim 4 or 5, wherein the negative electrode active material layer contains silicon and / or a silicon alloy.
JP2008092619A 2008-03-31 2008-03-31 Lithium secondary battery Expired - Fee Related JP5311861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008092619A JP5311861B2 (en) 2008-03-31 2008-03-31 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008092619A JP5311861B2 (en) 2008-03-31 2008-03-31 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2009245839A JP2009245839A (en) 2009-10-22
JP5311861B2 true JP5311861B2 (en) 2013-10-09

Family

ID=41307490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008092619A Expired - Fee Related JP5311861B2 (en) 2008-03-31 2008-03-31 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5311861B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075710A1 (en) * 2019-10-18 2021-04-22 주식회사 엘지에너지솔루션 Secondary battery and device comprising same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5912271B2 (en) * 2011-03-16 2016-04-27 トヨタ自動車株式会社 Secondary battery
KR101320392B1 (en) 2011-09-02 2013-10-23 삼성에스디아이 주식회사 A lithium polymer battery
JP2014225325A (en) * 2011-09-14 2014-12-04 パナソニック株式会社 Nonaqueous secondary battery
KR101615220B1 (en) 2013-04-09 2016-04-25 에스케이이노베이션 주식회사 the secondary battery of electrode assembly
CN103296245A (en) * 2013-05-02 2013-09-11 浙江努奥罗新能源科技有限公司 Cylinder lithium battery
WO2016079943A1 (en) * 2014-11-21 2016-05-26 三洋電機株式会社 Non-aqueous electrolyte secondary battery
KR102097107B1 (en) * 2018-07-20 2020-04-03 주식회사 엘지화학 Electrode assembly and rechargeable battery comprising the same
DE102021111821A1 (en) * 2021-05-06 2022-11-10 Bayerische Motoren Werke Aktiengesellschaft Electrode and electrochemical storage cell
WO2022252093A1 (en) * 2021-05-31 2022-12-08 宁德时代新能源科技股份有限公司 Lithium ion battery, battery module, battery pack and electric apparatus
EP4300701A1 (en) * 2021-07-30 2024-01-03 Contemporary Amperex Technology Co., Limited Wound-type electrode assembly, battery cell, battery and electric device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3677946B2 (en) * 1997-07-01 2005-08-03 松下電器産業株式会社 Cylindrical battery
JP2000106167A (en) * 1998-09-30 2000-04-11 Mitsubishi Electric Corp Battery
TWI270994B (en) * 2005-12-29 2007-01-11 Ind Tech Res Inst High rate capability design of lithium ion secondary battery
JP2007213875A (en) * 2006-02-08 2007-08-23 Sanyo Electric Co Ltd Lithium secondary battery and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075710A1 (en) * 2019-10-18 2021-04-22 주식회사 엘지에너지솔루션 Secondary battery and device comprising same

Also Published As

Publication number Publication date
JP2009245839A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
JP5311861B2 (en) Lithium secondary battery
JP5175826B2 (en) Active material particles and use thereof
JP5299719B2 (en) Lithium secondary battery
JP5361233B2 (en) Lithium secondary battery and manufacturing method thereof
JP5664937B2 (en) Secondary battery and assembled battery
US20080241647A1 (en) Cylindrical lithium secondary battery
JP5931749B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, method for producing the same, non-aqueous electrolyte secondary battery positive electrode using the positive electrode active material, and non-aqueous electrolyte secondary battery using the positive electrode
JP5570843B2 (en) Lithium ion secondary battery
JP5931750B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, method for producing the same, non-aqueous electrolyte secondary battery positive electrode using the positive electrode active material, and non-aqueous electrolyte secondary battery using the positive electrode
KR101560892B1 (en) Anode active material comprising Porous silicon oxidecarbon material composite and Preparation method thereof
JP2009099523A (en) Lithium secondary battery
JP2009238659A (en) Lithium secondary battery, and method of manufacturing the same
JP7386432B2 (en) Non-aqueous electrolyte secondary battery
JP2012074337A (en) Lithium secondary battery
JP5884039B2 (en) Nonaqueous electrolyte secondary battery
WO2013002369A1 (en) Non-aqueous electrolyte secondary cell, and method for producing same
JP2013073670A (en) Lithium secondary battery and manufacturing method thereof
WO2012124525A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
CN114050325A (en) Battery cell and electrochemical device
JP6119746B2 (en) Electrolytic solution, method for producing ester compound contained therein, and lithium secondary battery
KR20090103807A (en) Lithum secondary battery and manufacturing method thereof
JP2010198904A (en) Manufacturing method of lithium secondary battery
WO2019230297A1 (en) Nonaqueous electrolyte secondary battery
JP2002237330A (en) Nonaqueous secondary battery
WO2023189467A1 (en) Negative electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

LAPS Cancellation because of no payment of annual fees