JP2014219107A - セラミックスヒータ型グロープラグ - Google Patents
セラミックスヒータ型グロープラグ Download PDFInfo
- Publication number
- JP2014219107A JP2014219107A JP2011194653A JP2011194653A JP2014219107A JP 2014219107 A JP2014219107 A JP 2014219107A JP 2011194653 A JP2011194653 A JP 2011194653A JP 2011194653 A JP2011194653 A JP 2011194653A JP 2014219107 A JP2014219107 A JP 2014219107A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- conductive ceramic
- conductive
- glow plug
- lead portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23Q—IGNITION; EXTINGUISHING-DEVICES
- F23Q7/00—Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
- F23Q7/001—Glowing plugs for internal-combustion engines
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Resistance Heating (AREA)
Abstract
【課題】導電性セラミックスリード部の抵抗温度係数を導電性セラミックス発熱部の抵抗温度係数よりも小さくして、小電力で効率的に発熱することを可能にしたセラミックスヒータ型グロープラグを提供する。
【解決手段】前記セラミックスヒータは、電気絶縁性のセラミックス絶縁基体と、前記セラミックス絶縁基体の内部の先端側に備えられた導電性セラミックス発熱部と、前記導電性セラミックス発熱部に導電する導電性セラミックスリード部と、を有するヒータであり、通電方向に対して交差する方向に沿った前記導電性セラミックスリード部の断面積を、通電方向に対して交差する方向に沿った前記導電性セラミックス発熱部の断面積よりも大きくするとともに、前記導電性セラミックスリード部の構成材料に粒成長促進材を添加してなる。
【選択図】図3
【解決手段】前記セラミックスヒータは、電気絶縁性のセラミックス絶縁基体と、前記セラミックス絶縁基体の内部の先端側に備えられた導電性セラミックス発熱部と、前記導電性セラミックス発熱部に導電する導電性セラミックスリード部と、を有するヒータであり、通電方向に対して交差する方向に沿った前記導電性セラミックスリード部の断面積を、通電方向に対して交差する方向に沿った前記導電性セラミックス発熱部の断面積よりも大きくするとともに、前記導電性セラミックスリード部の構成材料に粒成長促進材を添加してなる。
【選択図】図3
Description
本発明は、ディーゼルエンジンの始動補助用として使用されるセラミックスヒータ型グロープラグに関する。特に、絶縁基体、発熱部及びリード部がすべてセラミックス材料により構成されたオールセラミックス製のセラミックスヒータを備えたセラミックスヒータ型グロープラグに関する。
従来、ディーゼルエンジンの始動補助用としてセラミックスヒータ型グロープラグが用いられている。かかるセラミックスヒータ型グロープラグに備えられるセラミックスヒータとして、セラミックスヒータの本体部分となる絶縁基体、セラミックスヒータの先端部で発熱する発熱部、及び発熱部に導電するリード部を、すべてセラミックス材料により構成したオールセラミックス製のセラミックスヒータがある(特許文献1を参照)。
上記のようなオールセラミックス製のセラミックスヒータでは、リード部及び発熱部は、導電性セラミックス材料と絶縁性セラミックス材料とを適切な比で混合することで抵抗を調節している。セラミックスヒータ型グロープラグにおいて、少ない電力で効率的に発熱させるためには、発熱部において集中して発熱する温度分布特性を示すことが望ましい。このようなセラミックスヒータ型グロープラグを構成するには、発熱部に通電するリード部が、室温で小さい抵抗値を示し、さらに、高温になっても抵抗値が著しく上昇することのない抵抗温度特性を有することが望ましい。
本発明の発明者はこのような問題にかんがみて、オールセラミックス製のセラミックスヒータを用いたセラミックスヒータ型グロープラグにおいて、導電性セラミックスリード部を構成するセラミックス材料に粒成長促進材を添加することによりこのような問題を解決できることを見出し、本発明を完成させたものである。すなわち、本発明は、導電性セラミックスリード部の抵抗温度係数を導電性セラミックス発熱部の抵抗温度係数よりも小さくして、小電力で効率的に発熱することを可能にしたセラミックスヒータ型グロープラグを提供することを目的とする。
本発明によれば、セラミックスヒータと、前記セラミックスヒータが一端側に保持されるとともに他端側がハウジングの内部孔に挿入されて固定された金属製外筒と、前記金属製外筒内で前記セラミックスヒータの一方の電極に接続された電極取出部材と、を備え、前記金属製外筒内に封止材として耐熱絶縁体粒子を封入したセラミックスヒータ型グロープラグにおいて、前記セラミックスヒータは、電気絶縁性のセラミックス絶縁基体と、前記セラミックス絶縁基体の内部の先端側に備えられた導電性セラミックス発熱部と、前記導電性セラミックス発熱部に導電する導電性セラミックスリード部と、を有するヒータであり、通電方向に対して交差する方向に沿った前記導電性セラミックスリード部の断面積を、通電方向に対して交差する方向に沿った前記導電性セラミックス発熱部の断面積よりも大きくするとともに、前記導電性セラミックスリード部の構成材料に粒成長促進材を添加してなることを特徴とするセラミックスヒータ型グロープラグが提供され、上述した問題を解決することができる。
本発明のセラミックスヒータ型グロープラグによれば、導電性セラミックスリード部に粒成長促進材を添加することとしているため、導電性セラミックスリード部を構成する導電性セラミックス材料の平均粒径を、導電性セラミックス発熱部を構成する導電性セラミックス材料の平均粒径よりも大きくすることができる。したがって、導電性セラミックスリード部の抵抗温度係数が導電性セラミックス発熱部の抵抗温度係数よりも小さくなって、大きな電流が流れても導電性セラミックスリード部での発熱を抑制することができる。その結果、導電性セラミックス発熱部において効率的に発熱させることを可能にすることができる。
また、本発明のセラミックスヒータ型グロープラグにおいて、前記導電性セラミックスリード部の構成材料のうちの導電性セラミックス材料が網目構造を有することが好ましい。このように導電性セラミックスリード部を構成することにより、導電性セラミックスリード部の室温での比抵抗を下げることができ、導電性セラミックスリード部での発熱をさらに抑制することができる。
また、本発明のセラミックスヒータ型グロープラグにおいて、導電性セラミックス発熱部及び前記導電性セラミックスリード部の主たる構成材料が同一の材料からなることが好ましい。このように導電性セラミックス発熱部及び導電性セラミックスリード部の主たる構成材料を同一の材料とすることにより、導電性セラミックス発熱部と導電性セラミックスリード部との接合部の強度を高めることを可能にすることができる。
また、本発明のセラミックスヒータ型グロープラグにおいて、前記導電性セラミックス発熱部の構成材料のうちの導電性セラミックス材料の平均粒径を1.0としたときに、前記導電性セラミックスリード部の構成材料のうちの導電性セラミックス材料の平均粒径が1.2〜3.0の範囲内の値であることが好ましい。このように導電性セラミックス発熱部及び導電性セラミックスリード部を構成することにより、導電性セラミックスリード部の抵抗温度係数が導電性セラミックス発熱部の抵抗温度係数よりも小さくなって、導電性セラミックス発熱部において効率的に発熱させることを可能にすることができる。
以下、本発明にかかるセラミックスヒータ型グロープラグに関する実施の形態を、図面に基づいて具体的に説明する。
なお、それぞれの図中において同じ符号が付されているものは、特に説明がない限り同一の構成要素を示しており、適宜説明が省略されている。
なお、それぞれの図中において同じ符号が付されているものは、特に説明がない限り同一の構成要素を示しており、適宜説明が省略されている。
[第1の実施の形態]
1.グロープラグの基本的構成
図1は、本発明の第1の実施の形態にかかるディーゼルエンジン用グロープラグ10の断面図である。
図1に示すグロープラグ10は、セラミックスヒータアセンブリ20を備えたセラミックスヒータ型グロープラグとして構成されている。セラミックスヒータアセンブリ20は、セラミックスヒータ21と、電極取出金具23と、電極取出ロッド27と、金属製外筒(シース)25等を主な構成要素として備えている。
1.グロープラグの基本的構成
図1は、本発明の第1の実施の形態にかかるディーゼルエンジン用グロープラグ10の断面図である。
図1に示すグロープラグ10は、セラミックスヒータアセンブリ20を備えたセラミックスヒータ型グロープラグとして構成されている。セラミックスヒータアセンブリ20は、セラミックスヒータ21と、電極取出金具23と、電極取出ロッド27と、金属製外筒(シース)25等を主な構成要素として備えている。
セラミックスヒータ21は、その本体部を構成するセラミックス絶縁基体39の内部に、U字状の導電性セラミックス発熱部(以下、「発熱部」と称する。)37が埋設されている。この発熱部37の両端側には、正極側導電性セラミックスリード部(以下、「正極側リード部」と称する。)35a及び負極側導電性セラミックスリード部(以下、「負極側リード部」と称する。)35bが形成されている。本実施の形態にかかるグロープラグ10において、発熱部37、正極側リード部35a、及び負極側リード部35bはすべて導電性セラミックスにより形成されている。
正極側リード部35a及び負極側リード部35bの端部はそれぞれ正側電極31及び負側電極33として構成されている。このうち、負側電極33は、セラミックス絶縁基体39の外周面に取り出され、金属製外筒25の内面にロウ付け等によって接合されて電気的に接続されている。正側電極31は、発熱部37が埋設されている先端側とは反対側の後端部において外面に露出している。
セラミックス絶縁基体39の後端部にはテーパが形成されており、電極取出金具23の先端側に形成されたカップ状のヘッド部23aが後端部に嵌合し、正側電極31と電極取出金具23とが電気的に接続されている。電極取出金具23のヘッド部23aとセラミックス絶縁基体39の後端部とはロウ付け等によって接合されている。
電極取出金具23の後端側にはコイル部23bが形成され、このコイル部23b内に、導電性金属の剛体からなる電極取出ロッド27の先端部が挿入されて電気的に接続されている。この電極取出ロッド27の後端部は、外部接続端子15の先端部に溶接されて電気的に接続されている。電極取出ロッド27と外部接続端子15との接合箇所の周囲には保護部材13が配置されており、接合状態が強固に保持されている。
セラミックスヒータ21は、金属製外筒25内にロウ付け等によって接合されている。金属製外筒25は、セラミックスヒータ21が固定される先端側の小径部25aと、主として電極取出金具23及び電極取出ロッド27が配置される後端側の大径部25bとを有している。セラミックスヒータ21の正側電極31に電気的に接続されている電極取出金具23及び電極取出ロッド27は、金属製外筒25内に絶縁体混合粉末29を封入して、大径部25bに対してスエージング加工を施すことによって、金属製外筒25内に固定されている。このように構成されるセラミックスヒータアセンブリ20は、図示しないエンジンのシリンダヘッドへの取付金具である円筒状のハウジング11に圧入されて固定されている。
金属製外筒25内に封入された絶縁体混合粉末29は、金属製外筒25と電極取出金具23及び電極取出ロッド27との電気絶縁性を確保する機能だけでなく、電極取出ロッド27を固定する機能、及び、ハウジング11内にセラミックスヒータアセンブリ20を圧入する際に金属製外筒25がハウジング11から受ける圧縮力に抗して金属製外筒25を内部から補強する機能を有している。
このような構造を有するグロープラグ10は、セラミックスヒータ21を小型化することができるとともに、溶接箇所が不要となることに伴って低コストで生産することを可能としている。
2.セラミックスヒータ
図2(a)〜(d)は、本実施の形態にかかるグロープラグ10に備えられたセラミックスヒータ21の構成を説明するために示す図である。図2(a)及び(b)は、それぞれセラミックスヒータ21を側方から見た図であり、図2(b)は、図2(a)のセラミックスヒータ21を図の上方側から見た図を示している。また、図2(c)は、図2(a)のAA断面を矢印方向に見た図であり、図2(d)は、図2(a)のBB断面を矢印方向に見た図である。
図2(a)〜(d)は、本実施の形態にかかるグロープラグ10に備えられたセラミックスヒータ21の構成を説明するために示す図である。図2(a)及び(b)は、それぞれセラミックスヒータ21を側方から見た図であり、図2(b)は、図2(a)のセラミックスヒータ21を図の上方側から見た図を示している。また、図2(c)は、図2(a)のAA断面を矢印方向に見た図であり、図2(d)は、図2(a)のBB断面を矢印方向に見た図である。
セラミックス絶縁基体39は、高温状態での電気絶縁性に優れた絶縁性セラミック材料によって構成されている。このようなセラミックス材料としては、例えば、窒化ケイ素(Si3N4)を用いることができる。
発熱部37、正極側リード部35a、及び負極側リード部35bは、炭化タングステン(WC)等の導電性セラミックス材料と、窒化ケイ素等の絶縁性セラミックス材料とを適宜混合して、所望の抵抗を得るように構成されている。このとき、正極側リード部35a及び負極側リード部35bでの発熱を抑え、発熱部37において効率的に発熱させるために、発熱部37における導電性セラミックス材料の混合比率が、正極側リード部35a及び負極側リード部35bにおける導電性セラミックス材料の混合比率よりも低くなるように構成されている。
本実施の形態にかかるグロープラグ10においては、発熱部37、正極側リード部35a、及び負極側リード部35bのすべてが、炭化タングステンと窒化ケイ素との混合物を主たる構成材料として形成されている。同一の材料によって構成することにより、発熱部37と、正極側リード部35a及び負極側リード部35bとの接合部の強度が高められ、接合部において抵抗値が高くなることのないようになっている。
また、本実施の形態にかかるグロープラグ10のセラミックスヒータ21において、正極側リード部35a及び負極側リード部35bは、炭化タングステン及び窒化ケイ素以外に、粒成長促進材を添加して焼成されたものとなっている。粒成長促進材は、炭化タングステンの粒子成長を促進させる機能を有する材料であって、具体的には、クロムやバナジウム(V)、レニウム(Re)の炭化物、ほう化物、酸化物等を用いることができる。
このような粒成長促進材を添加し焼成することによって、炭化タングステンの粒径が、粒成長促進材を添加しない場合よりも大きくなる。その結果、正極側リード部35a及び負極側リード部35bの、温度上昇に対する抵抗値の上昇割合を示す抵抗温度係数が小さくなっている。
図3(a)は、窒化ケイ素と炭化タングステンを混合し、高温で焼成した導電性セラミックスを撮影した顕微鏡写真を示し、図3(b)は、窒化ケイ素と、クロムを添加した炭化タングステンを混合し、高温で焼成した導電性セラミックスを撮影した顕微鏡写真を示している。言うまでもなく、ともに同一の倍率で撮影したものである。
これらの顕微鏡写真において、白く見える部分が炭化タングステン、あるいはクロムを添加した炭化タングステンを示している。図3(a)及び(b)を比較すれば明らかなように、炭化タングステンにクロムを添加しない場合の炭化タングステンの粒径が、炭化タングステンを添加した場合の炭化タングステンの粒径よりも小さくなる。
これらの顕微鏡写真において、白く見える部分が炭化タングステン、あるいはクロムを添加した炭化タングステンを示している。図3(a)及び(b)を比較すれば明らかなように、炭化タングステンにクロムを添加しない場合の炭化タングステンの粒径が、炭化タングステンを添加した場合の炭化タングステンの粒径よりも小さくなる。
さらに、本実施の形態にかかるグロープラグ10のセラミックスヒータ21において、正極側リード部35a及び負極側リード部35bは、駆動前の室温状態での比抵抗を低くするために、炭化タングステンが網目構造を有するとともに窒化ケイ素の周辺に高濃度で分散するように形成されることが好ましい。具体的には、窒化ケイ素の粒状物を調製した後に、この窒化ケイ素の粒状物を、クロムを添加した炭化タングステン粉末で均一にコーティングし、加圧後真空下で高温焼結することによって、導電性セラミックスリード部全域に広がる導電性セラミックスの網目構造を形成することができる。特に、粒成長促進材としてバナジウムやレニウムを用いる場合には、室温状態での比抵抗が上昇しやすいことから、炭化タングステンを網目構造とすることが好ましい。
正極側リード部35a及び負極側リード部35bの室温状態での比抵抗が低くなることにより、抵抗温度係数が小さくなることと相俟って、グロープラグ10駆動時における正極側リード部35a及び負極側リード部35bの抵抗を確実に低下させることができる。その結果、発熱部37で効率的に発熱させることができる。
図4は、粒成長促進材を添加しない炭化タングステンと窒化ケイ素とを用いて構成した導電性セラミックス、粒成長促進材としてのバナジウムを添加した炭化タングステンと窒化ケイ素とを用いて構成した導電性セラミックス、及び粒成長促進材としてのバナジウムを添加した炭化タングステンと窒化ケイ素とを用いるとともに炭化タングステンが網目構造を有する導電性セラミックスそれぞれの温度と抵抗との関係を説明するために示す図である。
図4に示すように、炭化タングステンに粒成長促進材としてのバナジウムを添加することにより抵抗温度係数が小さくなり、温度上昇に対する抵抗の上昇率が低下するものの、室温Tenvの状態での比抵抗が、バナジウムを添加しない炭化タングステンを用いた場合よりも大きくなって、結果として、グロープラグ駆動時の抵抗が大きくなる場合がある。しかしながら、バナジウムを添加した炭化タングステンが網目構造を形成するように構成すれば、炭化タングステンの濃度が部分的に高くなるために室温Tenvの状態での比抵抗が小さくなって、グロープラグ駆動時の抵抗を、バナジウムを添加しない炭化タングステンを用いた場合よりも小さくすることができる。
さらに、発熱部37、正極側リード部35a、及び負極側リード部35bの断面(通電方向に対して交差する方向に沿った断面、以下同じ。)は、楕円形状を成している。また、正極側リード部35a及び負極側リード部35bの断面積は、発熱部37の断面積よりも大きくなるように形成されている。粒成長促進材を添加するだけでなく、このような構成を採用することによっても、正極側リード部35a及び負極側リード部35bの抵抗温度係数を低減され、発熱部37で効率的に発熱するようになっている。
ただし、発熱部37、正極側リード部35a及び負極側リード部35bの断面形状は、楕円形状以外に、三角形状や方形状とすることができる。これらの断面形状は、周囲のセラミックス絶縁基体39との接触面積が大きくなることから、発熱効率に有利となる。
3.本実施の形態の効果
以上説明した本実施の形態にかかるグロープラグ10は、正極側リード部35a及び負極側リード部35bに粒成長促進材を添加することとしているため、正極側リード部35a及び負極側リード部35bを構成する導電性セラミックス材料としての炭化タングステンの平均粒径を、発熱部37を構成する炭化タングステンの平均粒径よりも大きくすることができる。したがって、正極側リード部35a及び負極側リード部35bの抵抗温度係数が発熱部37の抵抗温度係数よりも小さくなって、大きな電流が流れても正極側リード部35a及び負極側リード部35bでの発熱を抑制することができる。その結果、発熱部37において効率的に発熱させることを可能にすることができる。
以上説明した本実施の形態にかかるグロープラグ10は、正極側リード部35a及び負極側リード部35bに粒成長促進材を添加することとしているため、正極側リード部35a及び負極側リード部35bを構成する導電性セラミックス材料としての炭化タングステンの平均粒径を、発熱部37を構成する炭化タングステンの平均粒径よりも大きくすることができる。したがって、正極側リード部35a及び負極側リード部35bの抵抗温度係数が発熱部37の抵抗温度係数よりも小さくなって、大きな電流が流れても正極側リード部35a及び負極側リード部35bでの発熱を抑制することができる。その結果、発熱部37において効率的に発熱させることを可能にすることができる。
また、本実施の形態にかかるグロープラグ10においては、粒成長促進材の種類に応じて、炭化タングステンが窒化ケイ素の周囲で網目構造を成すように正極側リード部35a及び負極側リード部35bを構成することとしている。したがって、正極側リード部35a及び負極側リード部35bの室温状態での比抵抗を下げることができ、グロープラグ10の駆動時において、正極側リード部35a及び負極側リード部35bの抵抗を確実に小さくして、発熱部37において効率的に発熱させることを可能にすることができる。
また、本実施の形態にかかるグロープラグ10においては、発熱部37、正極側リード部35a及び負極側リード部35bの主たる構成材料として同一の材料を用いることとしている。したがって、発熱部37と、正極側リード部35a及び負極側リード部35bとの接合部の強度を高めることができ、接合部での抵抗の上昇を抑えることができる。
なお、以上説明した本実施の形態にかかるグロープラグ10は、本発明の一態様を示すものであってこの発明を限定するものではなく、それぞれの実施の形態は本発明の範囲内で任意に変更することが可能である。例えば、本実施の形態にかかるグロープラグ10を構成する各構成要素はあくまでも一例であって、任意に変更することが可能である。
また、本実施の形態にかかるグロープラグ10において、発熱部37でより効率的に発熱させるためには、発熱部37を構成する導電性セラミックス材料として、炭化タングステン以外に、比抵抗の高い窒化タンタル(TaN)や炭化タンタル(TaC)、窒化チタン(TiN)、モリブデンのケイ化物(MoSi2,Mo5Si3)の中の一種又は複数を適宜混合してもよい。
また、本実施の形態にかかるグロープラグ10は、電極取出金具23と電極取出ロッド27とにより正側電極を外部に取り出すようにしているが、正側電極の取り出し方はこのような構成に限定されるものではない。例えば、セラミックスヒータ21の正側電極31と外部接続端子15とを一本のワイヤで接続するようになっていてもよい。
以下、本発明にかかるセラミックスヒータ型グロープラグの実施例について説明する。
本実施例では、炭化タングステン粒子と窒化ケイ素粒子とを重量比で63:33の割合で混合した材料を用いて発熱部を形成するとともに、あらかじめ炭化クロム粒子を0.5〜1.0重量%添加した炭化タングステン粒子と、窒化ケイ素粒子とを重量比で71:26の割合で混合した材料を用いて正極側リード部及び負極側リード部を形成し、図1に示す構成を有する実施例としてのセラミックスヒータを10個作製した。
また、炭化タングステン粒子と窒化ケイ素粒子とを重量比で63:33の割合で混合した材料を用いて発熱部を形成するとともに、炭化タングステン粒子と窒化ケイ素粒子とを重量比で71:26の割合で混合した材料を用いて正極側リード部及び負極側リード部を形成し、図1に示す構成を有する比較例としてのセラミックスヒータを作製した。
実施例及び比較例のセラミックスヒータに対して、それぞれ先端温度が1200℃となるように電圧を印加し、このときの消費電力を測定した。その結果、実施例のセラミックヒータの消費電力は、比較例のセラミックヒータの消費電力よりも5〜15W低くなっていることが確認された。
また、先端温度を1200℃に保った状態で、負側電極33の温度を計測した。その結果、実施例のセラミックスヒータにおける温度は、比較例のセラミックスヒータにおける温度よりも30〜40℃低くなっていることが確認された。
また、正極側リード部を構成する炭化タングステンの平均粒径を、株式会社ニコン製光学顕微鏡を用いて測定したところ、実施例のセラミックスヒータの正極側リード部を構成する炭化タングステンの平均粒径が、比較例のセラミックスヒータの正極側リード部を構成する炭化タングステンの平均粒径の1.2〜3.0倍となっていることが確認された。
以上説明したように、粒成長促進材を添加した炭化タングステン及び窒化珪素を焼成した正極側リード部及び負極側リード部を形成し、セラミックスヒータを作製することにより、正極側リード部及び負極側リード部での発熱を抑制できる一方、発熱部で効率的に発熱させることができるようになった。したがって、グロープラグを使用する際の消費電力を低減させることができるようになった。また、小さい消費電力で効率的に発熱させることができるために、発熱部、ひいてはセラミックスヒータ及びグロープラグを小型化することができるようになった。
また、実施例のセラミックスヒータであれば、正側電極及び負側電極の温度を低減することができることから、正側電極及び負側電極を電極取出金具や金属製外筒に接続する接続部の信頼性を向上させることができるようになった。
10:グロープラグ、11:ハウジング、13:保護部材、15:外部接続端子、19:シールリング、20:ヒータアセンブリ、21:セラミックスヒータ、23:電極取出金具、23a:ヘッド部、23b:コイル部、25:金属製外筒、27:電極取出ロッド、29:絶縁体混合粉末、30:接続部、31:正側電極、33:負側電極、35a:正極側導電性セラミックスリード部、35b:負極側導電性セラミックスリード部、37:導電性セラミックス発熱部、39:セラミックス絶縁基体
Claims (4)
- セラミックスヒータと、前記セラミックスヒータが一端側に保持されるとともに他端側がハウジングの内部孔に挿入されて固定された金属製外筒と、前記金属製外筒内で前記セラミックスヒータの一方の電極に接続された電極取出部材と、を備え、前記金属製外筒内に封止材として耐熱絶縁体粒子を封入したセラミックスヒータ型グロープラグにおいて、
前記セラミックスヒータは、電気絶縁性のセラミックス絶縁基体と、前記セラミックス絶縁基体の内部の先端側に備えられた導電性セラミックス発熱部と、前記導電性セラミックス発熱部に導電する導電性セラミックスリード部と、を有するヒータであり、
通電方向に対して交差する方向に沿った前記導電性セラミックスリード部の断面積を、通電方向に対して交差する方向に沿った前記導電性セラミックス発熱部の断面積よりも大きくするとともに、
前記導電性セラミックスリード部の構成材料に粒成長促進材を添加してなることを特徴とするセラミックスヒータ型グロープラグ。 - 前記導電性セラミックスリード部の構成材料のうちの導電性セラミックス材料が網目構造を有することを特徴とする請求項1に記載のセラミックスヒータ型グロープラグ。
- 前記導電性セラミックス発熱部及び前記導電性セラミックスリード部の主たる構成材料が同一の材料からなることを特徴とする請求項1又は2に記載のセラミックスヒータ型グロープラグ。
- 前記導電性セラミックス発熱部の構成材料のうちの導電性セラミックス材料の平均粒径を1.0としたときに、前記導電性セラミックスリード部の構成材料のうちの導電性セラミックス材料の平均粒径が1.2〜3.0の範囲内の値であることを特徴とする請求項3に記載のセラミックスヒータ型グロープラグ。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011194653A JP2014219107A (ja) | 2011-09-07 | 2011-09-07 | セラミックスヒータ型グロープラグ |
PCT/JP2012/067594 WO2013035429A1 (ja) | 2011-09-07 | 2012-07-10 | セラミックスヒータ型グロープラグ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011194653A JP2014219107A (ja) | 2011-09-07 | 2011-09-07 | セラミックスヒータ型グロープラグ |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014219107A true JP2014219107A (ja) | 2014-11-20 |
Family
ID=47831881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011194653A Withdrawn JP2014219107A (ja) | 2011-09-07 | 2011-09-07 | セラミックスヒータ型グロープラグ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2014219107A (ja) |
WO (1) | WO2013035429A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017079149A (ja) * | 2015-10-20 | 2017-04-27 | 日本重化学工業株式会社 | 浸漬ヒータ |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014220036A1 (de) * | 2014-10-02 | 2016-04-07 | Robert Bosch Gmbh | Glühstiftkerze |
JP6725653B2 (ja) * | 2016-05-17 | 2020-07-22 | 京セラ株式会社 | ヒータおよびこれを備えたグロープラグ |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4562029B2 (ja) * | 2004-10-29 | 2010-10-13 | 日本特殊陶業株式会社 | セラミックヒータ及びその製造方法並びにグロープラグ |
JP4989719B2 (ja) * | 2007-03-29 | 2012-08-01 | 京セラ株式会社 | セラミックヒータとその金型 |
KR20090049992A (ko) * | 2007-11-14 | 2009-05-19 | 니뽄 가이시 가부시키가이샤 | 기판 유지체 |
JP5330867B2 (ja) * | 2009-03-10 | 2013-10-30 | 日本特殊陶業株式会社 | セラミックヒータ及びグロープラグ |
-
2011
- 2011-09-07 JP JP2011194653A patent/JP2014219107A/ja not_active Withdrawn
-
2012
- 2012-07-10 WO PCT/JP2012/067594 patent/WO2013035429A1/ja active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017079149A (ja) * | 2015-10-20 | 2017-04-27 | 日本重化学工業株式会社 | 浸漬ヒータ |
Also Published As
Publication number | Publication date |
---|---|
WO2013035429A1 (ja) | 2013-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6313745B2 (ja) | 電気的性能が向上したコロナ点火装置 | |
JP4751392B2 (ja) | ロウ付け構造体、セラミックヒータおよびグロープラグ | |
WO2013035429A1 (ja) | セラミックスヒータ型グロープラグ | |
US6689990B2 (en) | Glow plug with electric conductor connected to metal sleeve | |
WO2015163112A1 (ja) | セラミックスヒータ型グロープラグの製造方法及びセラミックスヒータ型グロープラグ | |
JP2017083103A (ja) | グロープラグ | |
JP6291542B2 (ja) | セラミックヒータおよびグロープラグ | |
WO2016080105A1 (ja) | セラミックスヒータ型グロープラグの製造方法及びセラミックスヒータ型グロープラグ | |
JP2018129211A (ja) | セラミックヒータ及びグロープラグ | |
JP6931566B2 (ja) | グロープラグ | |
JP2004061041A (ja) | セラミックグロープラグ | |
WO2015146554A1 (ja) | セラミックスヒータ型グロープラグ | |
JP6946048B2 (ja) | グロープラグ | |
JP6603321B2 (ja) | ヒータおよびこれを備えたグロープラグ | |
JP6270185B2 (ja) | セラミックスヒータ型グロープラグの製造方法及びセラミックスヒータ型グロープラグ | |
JP6997731B2 (ja) | グロープラグ | |
JP6152469B2 (ja) | セラミックスヒータ型グロープラグ | |
WO2020067508A1 (ja) | ヒータおよびこれを備えたグロープラグ | |
JPH09112904A (ja) | ディーゼルエンジン用グロープラグ | |
JPH07103480A (ja) | セラミック製グロープラグ | |
JP2002206739A (ja) | セラミックスグロープラグおよびその製造方法 | |
EP3461228B1 (en) | Heater and glow plug equipped with same | |
JP7018265B2 (ja) | グロープラグ | |
JP3050262B2 (ja) | セラミック製グロープラグ | |
EP3333483A1 (en) | Glow plug |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20141202 |