JP2014211405A - Mems圧力センサー、電子デバイス、高度計、電子機器および移動体 - Google Patents

Mems圧力センサー、電子デバイス、高度計、電子機器および移動体 Download PDF

Info

Publication number
JP2014211405A
JP2014211405A JP2013089119A JP2013089119A JP2014211405A JP 2014211405 A JP2014211405 A JP 2014211405A JP 2013089119 A JP2013089119 A JP 2013089119A JP 2013089119 A JP2013089119 A JP 2013089119A JP 2014211405 A JP2014211405 A JP 2014211405A
Authority
JP
Japan
Prior art keywords
pressure sensor
fixed electrode
mems pressure
mems
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013089119A
Other languages
English (en)
Inventor
洋司 北野
Yoji Kitano
洋司 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2013089119A priority Critical patent/JP2014211405A/ja
Priority to US14/257,328 priority patent/US20140311241A1/en
Priority to CN201410160370.1A priority patent/CN104108678A/zh
Publication of JP2014211405A publication Critical patent/JP2014211405A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/008Transmitting or indicating the displacement of flexible diaphragms using piezoelectric devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

【課題】薄肉のダイヤフラム部を基板に形成することが可能となり、低圧力であっても変形させることができ、正確な微小圧力を計測可能とする圧力センサーを構成することができるMEMS圧力センサーを得る。
【解決手段】圧力に応じて変位するダイヤフラム部と、前記ダイヤフラム部の主面上に形成された共振子と、を備え、前記共振子は、前記主面上に設けられている第1固定電極と、前記主面上に設けられている第2固定電極と、前記第1固定電極と離間し、前記主面の法線方向からの平面視において前記第1固定電極と重なり、前記主面に交差する方向に駆動する可動電極と、前記可動電極を支持し、前記第2固定電極に接続される支持電極と、を備える駆動電極と、を備えているMEMS圧力センサー。
【選択図】図1

Description

本発明は、MEMS圧力センサー、電子デバイス、高度計、電子機器および移動体に関する。
従来、圧力を検出するデバイスとしては、特許文献1に示すような半導体圧力センサーが知られていた。特許文献1に示す半導体圧力センサーは、シリコンウエハーに歪受感素子を形成し、シリコンウエハーの歪受感素子形成面と反対側の面を研磨し、薄肉化することによってダイヤフラム部を形成し、圧力によって変位するダイヤフラム部に生じる歪を歪受感素子によって検出し、その検出結果を圧力に変換するものであった。
特開2001−332746号公報
しかし、特許文献1に示す歪受感素子を備える圧力センサーでは、シリコンウエハーを薄肉化する必要があり、圧力センサーからの信号を処理する演算部となる半導体装置(IC)との一体化を困難にするものであった。
一方、半導体装置の製造方法、装置によって微小機械システムを製造する、いわゆるMEMS(Micro Electro Mechanical Systems)素子が注目されている。MEMS素子を用いることによって、極めて小型の各種センサー、あるいは発振器などを得ることができる。これらはMEMS技術によって微細な振動素子を基板上に形成し、振動素子の振動特性を利用して、加速度の検出、基準信号の生成、などを行う素子を得ることができる。
このMEMS技術を用いて振動素子を形成し、MEMS振動素子の振動周波数の変動によって圧力を検出する圧力センサーを構成することにより、ICとの一体化された圧力センサーを実現することが可能となる。更に、薄肉のダイヤフラム部を基板に形成することが可能となり、低圧力であっても変形させることができ、正確な微小圧力を計測可能とする圧力センサーを構成することができるMEMS圧力センサーを得る。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。
〔適用例1〕本適用例のMEMS圧力センサーは、圧力に応じて変位するダイヤフラム部と、前記ダイヤフラム部の主面上に形成された共振子と、を備え、前記共振子は、前記主面上に設けられている第1固定電極と、前記主面上に設けられている第2固定電極と、前記第1固定電極と離間し、前記主面の法線方向からの平面視において前記第1固定電極と重なり、前記主面に交差する方向に駆動する可動電極と、前記可動電極を支持し、前記第2固定電極に接続される支持電極と、を備える駆動電極と、を備えていることを特徴とする。
本適用例のMEMS圧力センサーによれば、ダイヤフラム部に外部圧力が付加されることによりダイヤフラム部には撓みが生じ、共振子の振動特性、すなわち共振周波数に変化をもたらす。この外部圧力と、共振子の周波数特性の変化と、の関係を導き出すことによって、共振子の周波数特性の変化から外部圧力を検出するMEMS圧力センサーを得ることができる。
〔適用例2〕上述の適用例において、前記ダイヤフラム部は、前記主面の裏面に形成された凹部と、前記凹部の底面と前記主面とで構成される薄肉部と、を備え、前記第1固定電極および前記第2固定電極の対向する端部間の距離をaとし、前記ダイヤフラム部の前記凹部の前記主面の法線方向からの平面視の平面形状における内接円の直径をbBとした場合、
0<a≦0.3bB
であることを特徴とする。
上述の適用例によれば、信号強度を低下させることなく、付加される圧力によるダイヤフラム部の変形を第1固定電極と可動電極との間隙の変化に効率よく変換し、間隙部の変化に伴う共振周波数の変化を確実に検出することができる共振子を備えるMEMS圧力センサーを得ることができる。
〔適用例3〕上述の適用例において、前記ダイヤフラム部の前記凹部の前記主面の法線方向からの平面視の平面形状における直径cを有する前記内接円の同心円の領域に前記第1固定電極が配置され、前記直径cは、
0<c≦0.93bB
であることを特徴とする。
上述の適用例によれば、ダイヤフラム部に付加される圧力が小さく、ダイヤフラム部の変位量、すなわち撓み量が小さくても、第1固定電極と可動電極との間隙を大きく生じさせることができ、微小な圧力を検出することができるMEMS圧力センサーを得ることができる。
〔適用例4〕上述の適用例において、前記主面の法線方向からの平面視において、前記凹部の前記底面における平面形状の底面内接円の直径をbBとし、前記裏面における前記凹部の開口の平面形状の開口内接円の直径をbWとした場合、
B<bW
であることを特徴とする。
上述の適用例によれば、凹部の底面と、凹部の側壁とで構成される角部が鋭角とならず、ダイヤフラム部の撓み変形が繰り返されても角部での応力集中などによる基板を構成するウエハーの損傷を抑制することができる。更に、凹部を成形する際のエッチング性を向上させることができ、生産性を向上させることができる。
〔適用例5〕本適用例の電子デバイスは、上述の適用例に記載のMEMS圧力センサーと、基板の前記裏面における前記凹部の前記開口および前記底面を圧力変動領域に露出させて保持する保持手段と、を備えることを特徴とする。
本適用例の電子デバイスによれば、ダイヤフラム部に外部圧力が付加されることによりダイヤフラム部には撓みが生じ、共振子の振動特性、すなわち共振周波数に変化をもたらす。この外部圧力と、共振子の周波数特性の変化と、の関係を導き出すことによって、共振子の周波数特性の変化から外部圧力を検出する電子デバイスとしての圧力センサーが得られる。
〔適用例6〕本適用例の高度計は、上述の適用例に記載のMEMS圧力センサーと、前記裏面における前記凹部の前記開口および前記底面を圧力変動領域に露出させて保持する保持手段と、前記MEMS圧力センサーの測定データを処理するデータ処理部と、を備えていることを特徴とする。
本適用例の高度計によれば、ダイヤフラム部に外部圧力が付加されることによりダイヤフラム部には撓みが生じ、共振子の振動特性、すなわち共振周波数に変化をもたらす。この外部圧力と、共振子の周波数特性の変化と、の関係を導き出すことによって、共振子の周波数特性の変化から外部圧力を検出し、その圧力値から高度を算出することができる高度計を得られる。
〔適用例7〕本適用例の電子機器は、上述の適用例に記載のMEMS圧力センサー、電子デバイスもしくは高度計を備えていることを特徴とする。
本適用例の電子機器によれば、極低圧の圧力値が得られ、その圧力値を基に動作させる電子機器を得ることができる。
〔適用例8〕本適用例の移動体は、上述の適用例に記載のMEMS圧力センサー、電子デバイス、高度計もしくは電子機器を備えていることを特徴とする。
本適用例の移動体によれば、極低圧の圧力値が得られ、その圧力値を基に動作させる電子機器を備える移動体を得ることができる。
第1実施形態に係るMEMS圧力センサーを示す、(a)は平面図、(b)は(a)に示すA−A´部の断面図、(c)は(a)にしめすB−B´部の断面図。 第1実施形態に係るMEMS圧力センサーの、(a)は静的状態、(b)は加圧状態の動作を説明するMEMS振動子部の構成図。 第1実施形態に係るMEMS圧力センサーを示し、(a)はダイヤフラム部が円形平面形状、(b)はダイヤフラム部が六角形平面形状を備える平面図、(c)は加圧状態を示す断面図。 第1実施形態に係るMEMS圧力センサーにおける第1固定電極の配置を説明する平面図。 第1実施形態に係るMEMS圧力センサーのその他の形態を示す、(a)は平面図、(b)は(a)に示すC−C´部の断面図、(c)はMEMS振動子部の拡大断面図。 第1実施形態に係るMEMS圧力センサーのその他の形態を示す断面図。 第2実施形態に係る高度計を示す、(a)は構成図、(b)は(a)に示すD部拡大図。 その他の形態に係る高度計を示す部分断面図。 第3実施形態に係る移動体を示す外観図。
以下、図面を参照して、本発明に係る実施形態を説明する。
(第1実施形態)
図1に第1実施形態に係るMEMS圧力センサーを示し、(a)は後述する被覆層を透過した状態での平面図、(b)は(a)に示すA−A´部の断面図、(c)は(a)に示すB−B´部の断面図である。図1(b)に示すように、本実施形態に係るMEMS圧力センサー100は、ウエハー基板11と、ウエハー基板11の主面11aに形成された第1酸化膜12と、第1酸化膜12上に形成された窒化膜13と、により構成される基板10を備えている。ウエハー基板11は、シリコン基板であり、後述する半導体装置、いわゆるICを形成するウエハー基板11としても用いられている。
基板10の第1の面としての主面10a、すなわち窒化膜13の表面13a、に共振子としてのMEMS振動子20が形成されている。MEMS振動子20は、図1(b)に示す第1導電層21に備える第1固定電極21aと、駆動電極としての第2導電層22に備える可動電極22aと、により構成される。図1(b)にも示すように、第1導電層21は、第1固定電極21aと図示しない外部配線とに接続する第1配線部21bとを備えている。また、第2導電層22は、可動電極22aと、主面10a上に形成された第2固定電極22cと、可動電極22aを支持し、第2固定電極22cとに接続される支持電極22bと、を備え、第2固定電極22cを図示しない外部配線とに接続する第2配線部22dとを備えている。第1導電層21および第2導電層22は、導電性のポリシリコンをフォトリソグラフィーによりパターニングすることで形成される。なお、第1導電層21および第2導電層22は、本実施形態ではポリシリコンを用いる例を示すが、これに限定されるものではない。
MEMS振動子20は、第1固定電極21aと可動電極22aと、の間に可動電極22aが可動可能な空間としての間隙部Gが形成されている。また、MEMS振動子20は、基板10の主面10a上に形成された空間Sに収容されるように形成されている。空間Sは、次のように形成される。第1導電層21および第2導電層22が形成された後、第2酸化膜40を形成する。第2酸化膜40には、第2導電層22の形成と同時にポリシリコンによる、後述する空間壁部30の最下層33と接続されるように最下層33が露出される穴が形成され、第1配線層31がフォトリソグラフィーによるパターニングにより形成される。
更に、第3酸化膜50が第2酸化膜40上に形成される。第3酸化膜50には、第1配線層31が露出する穴が形成され、第2配線層32がフォトリソグラフィーによるパターニングにより形成される。第2配線層32は、後述する空間壁部30の最上層を構成する壁部32aと、MEMS振動子20を収納する空間Sを構成する蓋部32bと、を備えている。更に、第2配線層32の蓋部32bには、空間Sを形成するために製造過程で形成された空間Sの領域にある第2酸化膜40および第3酸化膜50をリリースエッチングするための開口32cを備えている。
次に、第2配線層32の開口32cを露出させるように保護膜60が形成され、開口32cより第2酸化膜40および第3酸化膜50をエッチングするエッチング液が導入され、リリースエッチングより空間Sが形成される。空間Sは、最下層33と、第1配線層31と、第2配線層32と、によって形成される空間壁部30に囲まれた領域である。
MEMS振動子20に設けられている間隙部Gは、上述した空間Sの形成時におけるリリースエッチングにより形成される。すなわち、第1導電層21が形成された後、第1固定電極21a上に図示しない第4酸化膜が形成され、第4酸化膜上に可動電極22aが形成される。そして、第4酸化膜がリリースエッチングによって、第2酸化膜40および第3酸化膜50とともに除去され、間隙部Gが形成される。なお、上述したリリースエッチングによって除去される空間Sに相当する領域の第2酸化膜40および第3酸化膜50、そして第4酸化膜は、犠牲層と呼ばれている。
リリースエッチングが終了し、空間Sが形成されると被覆層70が形成され、保護膜60に覆われていない第2配線層32の蓋部32bを覆い、開口32cが封止される。これにより空間Sは密閉される。
こうしてMEMS圧力センサー100が形成される。本実施形態に係るMEMS圧力センサー100では、MEMS振動子20に対応する基板10の主面10aの反対面である第2の面としての基板10の裏面10c側からウエハー基板11に凹部11bが形成されている。凹部11bが形成されることにより、MEMS振動子20が形成される主面10aの領域では薄肉部11cが形成される。この薄肉部11cと、薄肉部11c上に形成される第1酸化膜12と、窒化膜13と、によりダイヤフラム部10bが構成される。言い換えると、ダイヤフラム部10bの領域の主面10a上にMEMS振動子20が形成されている。
図2は、MEMS圧力センサー100の動作を説明する構成図である。図2(a)に示すMEMS圧力センサー100の動作状態は、ダイヤフラム部10bには外力としての外部圧力が掛かっていない、いわゆる静的状態におけるMEMS振動子20の動作を示す。図2(a)に示すように、静的状態におけるMEMS振動子20は、第1固定電極21aに対して間隙部Gを離間して可動電極22aが配置されている。可動電極22aは、基板10の主面10aと支持電極22bの接合点Pfを固定点として、第2固定電極22cにより基板10に固定される片持梁構造となっている。第1固定電極21aおよび可動電極22aに付加される電荷によって生じる静電力が、可動電極22aをF方向に振動させる。また、間隙部Gの静電容量の変化を検出することにより、MEMS振動子20の振動周波数などの振動特性を取得することができる。
上述のように振動させることができるMEMS振動子20を備えるMEMS圧力センサー100に、図2(b)に示すように基板10のダイヤフラム部10bに外力として圧力pが付加され、ダイヤフラム部10bの底面10dに掛かる圧力pによって、ダイヤフラム部10bに応力が掛かり、基板10の主面10aは変形して主面10a´となって撓みδを生じる。このとき、接合点Pfでの変形後のダイヤフラム部10b´の変形後の主面10a´の接線Lt方向は、ダイヤフラム部10bが形成されない基板10の主面10aに対して角度θの傾きが生じる。
主面10aに対する変形後の主面10a´の傾き角θによって、可動電極22aも主面10aに対する傾きが生じ、結果、変形後の間隙部G´は静的状態のMEMS振動子20の間隙部Gに対して拡大され、第1固定電極21aと可動電極22aとの間の静電力が変化し、共振周波数が変化する。この共振周波数の変化と、ダイヤフラム部10bに付加される圧力pとの関係を得ることにより、MEMS圧力センサー100を得ることができる。
上述した通り、ダイヤフラム部10bが圧力pによって変形することにより、間隙部Gが間隙部G´へ変化し、共振周波数の変化として検出する。従って、変化後の間隙部G´への変化量を大きくするように第1固定電極21aと可動電極22aとを配置することが好ましい。第1固定電極21aと可動電極22aとの配置について図3を用いて説明する。図3(a)はMEMS圧力センサー100、および図3(b)はMEMS圧力センサー110の平面図を示し、図3(a)に示すMEMS圧力センサー100はダイヤフラム部10bの平面視形状が円形の場合であり、図1(a)に示す形態と同じである。図3(b)に示すMEMS圧力センサー110は、ダイヤフラム部10eの平面視形状が多角形の一例としての六角形の場合を示す。図3(c)は、ダイヤフラム部10b,10eに圧力pが付加された状態のMEMS振動子20を示す概略断面図である。
図3(a)に示すMEMS圧力センサー100では、ダイヤフラム部10bの平面視形状が円形に形成されている。第1固定電極21aと可動電極22aとの位置関係は、図3(a)に示すように、第2固定電極22cに対向する第1固定電極21aの第1固定電極端部21cと、第1固定電極21aに対向する第2固定電極22cの第2固定電極端部22eとの距離、すなわち第1固定電極端部21cト第2固定電極端部22eとは対向する端部であり、第1固定電極端部21cと第2固定電極端部22eとは距離a、離間している。
また、ダイヤフラム部10bの平面視形状の円形の直径はφbBで形成されている。この場合、
0<a<0.3bB (1)
の条件となるように、第1固定電極端部21cと第2固定電極端部22eとの距離aを設定することが好ましい。図3(c)に示すように接合点Pfでの変形後のダイヤフラム部10b´の変形後の主面10a´の接線Lt方向である、ダイヤフラム部10bが形成されない基板10の主面10aに対する傾き角度θによって、可動電極22aは第1固定電極21aから離間し、圧力pの付加による間隙部G´となる。従って、式(1)に示される条件で距離aを設定することにより、可動電極22aの励振駆動を継続させながらも、付加される圧力pによるダイヤフラム部10bの変形を間隙部G´への変化に効率よく変換し、間隙部Gの間隙部G´への変化に伴う共振周波数の変化を確実に検出することができるMEMS振動子20を備えるMEMS圧力センサー100を得ることができる。
また、図3(b)に示すMEMS圧力センサー110のように、ダイヤフラム部10eの平面視形状が六角形を有している場合、六角形の平面形状に内接する仮想形状の内接円10fの直径を直径bBとして、式(1)の条件に適合させて第1固定電極端部21cと第2固定電極端部22eとの距離aを設定すればよい。
図4は、図3(a),(b)に示したMEMS振動子20のその他の配置を示す平面図であり、図4(a)は、MEMS圧力センサー100に備えるダイヤフラム部10bの平面視形状が円形の場合であり、図4(b)は、MEMS圧力センサー110に備えるダイヤフラム部10eの平面視形状が多角形の一例としての六角形の場合を示す。
図4(a)に示すように、第1固定電極21aの平面視形状(図示、網掛け部)の中心CEが、ダイヤフラム部10bの平面視における直径bBの円形と同心円である直径cの円形領域内となるように配置されている。中心CEが配置される円形領域の直径cは、
0<c≦0.93bB (2)
であることが好ましい。
式(2)に示す条件により設定された領域内に第1固定電極21aの平面形状中心CEが配置されるように第1固定電極21aが配置され、更に、式(1)に示す条件により第1固定電極端部21cと第2固定電極端部22eとの距離aを設定することにより、ダイヤフラム部10bに付加される圧力pが小さく撓みδが小さくても、間隙部G´を大きく生じさせることができる。
図3(c)に示すように、ダイヤフラム部10bを構成する凹部11bは、底面10dにおける平面視形状の直径bBに対して、基板10の裏面10cでの凹部11bの開口の直径bWは、
B<bW
の関係とする。このようにすることにより、凹部11bの底面10dとなるウエハー基板11の凹部底面11dと凹部壁面11eとで構成される角部11fが鋭角にならず、ダイヤフラム部10bの撓み変形が繰り返されても角部11fでの応力集中などによるウエハー基板11の損傷を抑制することができる。更に、凹部11bを成形するエッチング性を向上させることができる。
図4(b)に示すMEMS圧力センサー110の場合、第1固定電極21aの平面視形状(図示、網掛け部)の中心CEが、ダイヤフラム部10eの平面視における仮想形状の内接円10fと同心円である直径cの円形領域内となるように配置されている。中心CEが配置される円形領域の直径cは、式(2)で示す条件であることが好ましい。
図5にMEMS圧力センサーのその他の形態を示す。図5は、MEMS圧力センサー200を示し、(a)は被覆層70を透過した状態での平面図、(b)は(a)に示すC−C´部の断面図である。なお、MEMS圧力センサー200は、上述したMEMS圧力センサー100,110に備える第2導電層22の構成が異なるのみであり、その他の構成は同じであるので、MEMSセンサー100,110と同じ構成には同じ符号を付し、説明は省略する。
図5(b)に示すように、MEMS圧力センサー200は、基板10の第1の面としての主面10a、すなわち窒化膜13の表面13a、に共振子としてのMEMS振動子20が形成されている。MEMS振動子20は、第1導電層21に備える第1固定電極21aと、第3導電層24に備える可動電極24aと、により構成される。第3導電層24には、可動電極24aから支持電極24bが延設されている。そして、支持電極24bから第2固定電極としての接続電極24cが延設されている。また、基板10の主面10a上には第2導電層23が配設されている。第2導電層23は基板電極23aを備え、基板電極23aに第3導電層24に備える接続電極24cが接続されることにより、第3導電層24は基板電極23aを介して基板10に固定されている。また、第1導電層21は、第1固定電極21aと図示しない外部配線とに接続する第1配線部21bとを備えている。また、第2導電層23は、基板電極23aと図示しない外部配線とに接続する第2配線部23bとを備えている。
第1導電層21および第2導電層23が基板10の主面10a上に導電性のポリシリコンをフォトリソグラフィーによりパターニングし、第1固定電極21aおよび基板電極23aが形成される。形成された第1固定電極21aおよび基板電極23a上に図示しない第4酸化膜が形成される。基板電極23a上の第4酸化膜には、第3導電層24の接続電極24cを基板電極23a上に形成させるための開口が設けられる。そして第4酸化膜上に第3導電層24が形成される。そして、第4酸化膜がリリースエッチングによって、第2酸化膜40および第3酸化膜50とともに除去され、第1固定電極21aと可動電極24aとの間隙として、間隙部Gが形成される。
図5に示すMEMS圧力センサー200では、ダイヤフラム部10bの平面視形状が円形に形成されている。第1固定電極21aと可動電極24aとの位置関係は、MEMS振動子20部分の拡大図である図5(c)に示すように、第1固定電極21aの基板電極23aに対向する第1固定電極端部21cと、第3導電層24の接続電極24cの第1固定電極21aに対向する接続電極端部24dとの距離、すなわち第1固定電極端部21cと接続電極端部24dとは対向する端部であり、第1固定電極端部21cと接続電極端部24dとは距離d、離間している。
第1固定電極端部21cと接続電極端部24dとの距離dは、ダイヤフラム部10bの平面視形状の円形の直径はφbBで形成されている場合、
0<d<0.3bB (3)
の条件となるように設定することが好ましい。すなわち、距離dは上述したMEMS圧力センサー100,110における式(1)の距離aに相当する。また、MEMS圧力センサー110における六角形の平面形状を有するダイヤフラム部10eと同じダイヤフラムを構成した場合であっても、六角形の平面形状に内接する仮想形状の内接円10fの直径を直径bとして(図3参照)、式(3)の条件に適合させて第1固定電極端部21cと接続電極端部24dとの距離dを設定すればよい。
また、図5(a)に示すように、第1固定電極21aの平面視形状(図示、網掛け部)の中心CEが、ダイヤフラム部10bの平面視における直径bBの円形と同心円である直径cの円形領域内となるように配置されている。中心CEが配置される円形領域の直径cは、MEMS圧力センサー200の場合でも式(2)の条件で設定されることが好ましい。
上述したMEMS圧力センサー100,110,200は、外部の圧力によって撓み変形を生じるダイヤフラム部10bの主面10a部上にMEMS振動子20が形成されることにより、ダイヤフラム部10bの僅かな撓み変形、言い換えると、微小な外部圧力であっても、MEMS振動子20の共振周波数に変化がもたらされ、検出可能な圧力センサーを得ることができる。更に、半導体プロセスと同じプロセスによって形成でき、小型の圧力センサーを得ることができる。
上述した通り、本実施形態に係るMEMS圧力センサー100,110,200は半導体製造プロセスを用いて製造される。従って、半導体装置、いわゆるICとの一体化を可能とするものである。図6に、上述したMEMS圧力センサー100と半導体装置を1チップに構成した形態を示す。図6に示すMEMS圧力センサー300は、MEMS圧力センサー100と、半導体装置310と、を1チップに形成した構成を有する。MEMS圧力センサー100は、半導体製造装置を用い、半導体製造方法によって製造することができる微細装置であることから、半導体装置310をMEMS圧力センサー100と同一のウエハー基板11に容易に形成することができる。半導体装置310には、MEMS圧力センサー100を駆動する発振回路、およびMEMS圧力センサー100の周波数変動を演算する演算回路、などを備えている。MEMS圧力センサー300に示すように、半導体装置310を、MEMS圧力センサー100と1チップに形成することにより、小型のセンサーデバイスとしてのMEMS圧力センサーを得ることができる。
(第2実施形態)
第2実施形態として、高度計を図面に基づいて説明する。第2実施形態に係る高度計は、第1実施形態に係るMEMS圧力センサー100,110,200,300を備える電子デバイスとしての圧力センサーを備える電子機器の1形態である。
図7(a)に示すように、第2実施形態に係る高度計1000は筐体1100に、第1実施形態に係るMEMS圧力センサー300と、MEMS圧力センサー300を保持し筐体1100に装着される保持手段としてのセンサー固定枠1200と、MEMS圧力センサー300から得られるデータ信号を高度データへ演算するデータ処理部としての演算部1300と、を備えている。筐体1100には、MEMS圧力センサー300に備えるMEMS圧力センサー100のダイヤフラム部10b(図1参照)が、大気と通気可能とする開口1100aが設けられている。
図7(a)に示すD部、すなわちMEMS圧力センサー300の装着部断面の詳細を図7(b)に示す。図7(b)に示すように、開口1100a側にMEMS圧力センサー100のダイヤフラム部10bが露出するように配置されている。また、センサー固定枠1200も、貫通孔1200aを備え、貫通孔1200aもMEMS圧力センサー100のダイヤフラム部10bが露出するように配置されている。センサー固定枠1200とMEMS圧力センサー300とは、センサー固定枠1200の接合面1200bに接着などの手段により接合されている。MEMS圧力センサー300が接合されたセンサー固定枠1200は、ねじ1400により筐体1100に装着される。なお、センサー固定枠1200の筐体への固定方法はねじ1400に限定されず、接着などの固着手段であってもよい。
高度計1000は、筐体1100の開口1100a、およびセンサー固定枠1200の貫通孔1200aを介して通気されているMEMS圧力センサー100のダイヤフラム部10bに付加される圧力変動領域としては大気中に通気され、大気の圧力(以下、大気圧という)を検出し、高度データを出力する。出力される高度データは、図7(a)に示す表示手段2100を備えるパーソナルコンピューター2000(以下、PC2000という)に送信され、PC2000の表示手段2100に表示される。この際、PC2000に備える処理ソフトによって、高度データの記憶、グラフ化、地図データへの表示、など様々なデータ処理を行うことができる。なお、PC2000に代えて、高度計1000にデータ処理装置、表示部、外部操作部、等を備えることもできる。
図8は、第2実施形態に係る高度計1000に備えるMEMS圧力センサー300のその他の形態を示す。図8は、図7(a)に示す高度計1000の図7(a)のD部を示す。図8に示すように、MEMS圧力センサー300は、MEMS圧力センサー300に可撓性と気密性とを備える可撓膜400が固着されている。可撓膜400としては、例えばフッ素樹脂、合成ゴムなどの弾力性を備え、気体透過率の小さい材料、あるいは金属薄膜が好ましい。
可撓膜400は、MEMS圧力センサー100のダイヤフラム部10bを覆うように配置され、フランジ部400aで基板10に固着されている。このとき、基板10と可撓膜400によって形成される空間Q(図示点状ハッチング部)は、例えば空気、不活性ガスなどの気体が充填され、圧力変動領域として形成されている。可撓膜400を備えたMEMS圧力センサー300は、センサー固定枠1200に固着され、筐体1100に装着される。
MEMS圧力センサー300は、可撓膜400を備えることにより、外部の異物、ごみなどがMEMS圧力センサー100に付着することを防止し、清浄に保つことができるため、安定した高度計の性能を得ることができる。また、可撓膜400の外部環境が液体、腐食ガス、などであってもMEMS圧力センサー300の損傷を抑制することができる。
(第3実施形態)
第1実施形態に係るMEMS圧力センサー100,110,200,300、あるいは第2実施形態に係る高度計1000を備える電子機器としてのナビゲーションシステムと、そのナビゲーションシステムを搭載する移動体としての一態様の自動車について説明する。
図9は、電子機器としてのナビゲーションシステム3000を備える移動体としての自動車4000の外観図である。ナビゲーションシステム3000には、図示しない地図情報と、GPS(全地球測位システム:Global Positioning System)からの位置情報取得手段と、ジャイロセンサーおよび加速度センサーと車速データとによる自立航法手段と、第2実施形態に係る高度計1000と、を備え、運転者に視認可能な位置に配設された表示手段3100に所定の位置情報あるいは進路情報を表示する。
図9に示す、自動車4000では、ナビゲーションシステム3000に高度計1000を備えることにより、取得した位置情報に加えて高度情報を取得することができる。高度情報を得ることにより、例えば、一般道路と位置情報上は略同一の位置を示す高架道路を走行する場合、高度情報を持たない場合には、一般道路を走行しているのか高架道路を走行しているのかナビゲーションシステムでは判断できず、優先情報として一般道路の情報を運転者に提供してしまっていた。そこで、本実施形態に係るナビゲーションシステム3000では、高度情報を高度計1000によって取得することができ、一般道路から高架道路へ進入することによる高度変化を検出し、高架道路の走行状態におけるナビゲーション情報を運転者に提供することができる。
また、第1実施形態に係るMEMS圧力センサー100,110,200,300により小型の圧力検出機器を構成することが可能となり、自動車4000に、油圧あるいは空気圧による駆動システムを容易に組み込むことができる。これにより、装置の圧力の監視、および制御データを容易に取得することができる。
10…基板、20…MEMS振動子、30…空間壁部、40…第2酸化膜、50…第3酸化膜、60…保護膜、70…被覆層、100…MEMS圧力センサー。
第1固定電極端部21cと接続電極端部24dとの距離dは、ダイヤフラム部10bの
平面視形状の円形の直径はφbBで形成されている場合、
0<d<0.3bB (3)
の条件となるように設定することが好ましい。すなわち、距離dは上述したMEMS圧力
センサー100,110における式(1)の距離aに相当する。また、MEMS圧力セン
サー110における六角形の平面形状を有するダイヤフラム部10eと同じダイヤフラム
を構成した場合であっても、六角形の平面形状に内接する仮想形状の内接円10fの直径
を直径 B として(図3参照)、式(3)の条件に適合させて第1固定電極端部21cと接続電極端部24dとの距離dを設定すればよい。
図9に示す、自動車4000では、ナビゲーションシステム3000に高度計1000
を備えることにより、取得した位置情報に加えて高度情報を取得することができる。例えば、一般道路と位置情報上は略同一の位置を示す高架道路を走行する場合、高度情報を持たない場合には、一般道路を走行しているのか高架道路を走行しているのかナビゲーションシステムでは判断できず、優先情報として一般道路の情報を運転者に提供してしまっていた。そこで、本実施形態に係るナビゲーションシステム3000では、高度情報を高度計1000によって取得することができ、一般道路から高架道路へ進入することによる高度変化を検出し、高架道路の走行状態におけるナビゲーション情報を運転者に提供することができる。

Claims (8)

  1. 圧力に応じて変位するダイヤフラム部と、
    前記ダイヤフラム部の主面上に形成された共振子と、を備え、
    前記共振子は、
    前記主面上に設けられている第1固定電極と、
    前記主面上に設けられている第2固定電極と、前記第1固定電極と離間し、前記主面の法線方向からの平面視において前記第1固定電極と重なり、前記主面に交差する方向に駆動する可動電極と、前記可動電極を支持し、前記第2固定電極に接続される支持電極と、を備える駆動電極と、を備えている、
    ことを特徴とするMEMS圧力センサー。
  2. 前記ダイヤフラム部は、前記主面の裏面に形成された凹部と、前記凹部の底面と前記主面とで構成される薄肉部と、を備え、
    前記第1固定電極および前記第2固定電極の対向する端部間の距離をaとし、
    前記ダイヤフラム部の前記凹部の前記主面の法線方向からの平面視の平面形状における内接円の直径をbとした場合、
    0<a≦0.3bB
    である、
    ことを特徴とする請求項1に記載のMEMS圧力センサー。
  3. 前記ダイヤフラム部の前記凹部の前記主面の法線方向からの平面視の平面形状における直径cを有する前記内接円の同心円の領域に前記第1固定電極が配置され、
    前記直径cは、
    0<c≦0.93bB
    である、
    ことを特徴とする請求項2に記載のMEMS圧力センサー。
  4. 前記主面の法線方向からの平面視において、
    前記凹部の前記底面における平面形状の底面内接円の直径をbBとし、
    前記裏面における前記凹部の開口の平面形状の開口内接円の直径をbWとした場合、
    B<bW
    であることを特徴とする請求項2または3に記載のMEMS圧力センサー。
  5. 請求項1から4のいずれか一項に記載のMEMS圧力センサーと、
    基板の前記裏面における前記凹部の前記開口および前記底面を圧力変動領域に露出させて保持する保持手段と、を備える、
    ことを特徴とする電子デバイス。
  6. 請求項1から4のいずれか一項に記載のMEMS圧力センサーと、
    前記裏面における前記凹部の前記開口および前記底面を圧力変動領域に露出させて保持する保持手段と、
    前記MEMS圧力センサーの測定データを処理するデータ処理部と、を備えている、
    ことを特徴とする高度計。
  7. 請求項1から6のいずれか一項に記載のMEMS圧力センサー、電子デバイスもしくは高度計を備えている、
    ことを特徴とする電子機器。
  8. 請求項1から7のいずれか一項に記載のMEMS圧力センサー、圧力センサーデバイス、高度計もしくは電子機器を備えている、
    ことを特徴とする移動体。
JP2013089119A 2013-04-22 2013-04-22 Mems圧力センサー、電子デバイス、高度計、電子機器および移動体 Pending JP2014211405A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013089119A JP2014211405A (ja) 2013-04-22 2013-04-22 Mems圧力センサー、電子デバイス、高度計、電子機器および移動体
US14/257,328 US20140311241A1 (en) 2013-04-22 2014-04-21 Mems pressure sensor, electronic device, altimeter, electronic apparatus, and moving object
CN201410160370.1A CN104108678A (zh) 2013-04-22 2014-04-21 Mems压力传感器、电子器件、高度计以及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013089119A JP2014211405A (ja) 2013-04-22 2013-04-22 Mems圧力センサー、電子デバイス、高度計、電子機器および移動体

Publications (1)

Publication Number Publication Date
JP2014211405A true JP2014211405A (ja) 2014-11-13

Family

ID=51705698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013089119A Pending JP2014211405A (ja) 2013-04-22 2013-04-22 Mems圧力センサー、電子デバイス、高度計、電子機器および移動体

Country Status (3)

Country Link
US (1) US20140311241A1 (ja)
JP (1) JP2014211405A (ja)
CN (1) CN104108678A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105306003A (zh) * 2015-11-20 2016-02-03 中国科学院半导体研究所 环形检测电极面内伸缩谐振器设计及其制备方法
JP2016102737A (ja) * 2014-11-28 2016-06-02 セイコーエプソン株式会社 電子デバイス、物理量センサー、圧力センサー、振動子、高度計、電子機器および移動体
JP2016163032A (ja) * 2015-03-05 2016-09-05 セイコーエプソン株式会社 半導体デバイス、電子機器および移動体
JP2016163915A (ja) * 2015-03-06 2016-09-08 セイコーエプソン株式会社 半導体デバイス、電子機器および移動体
JPWO2020235324A1 (ja) * 2019-05-17 2021-06-10 田中 博由 高低差測定装置および高低差測定方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9189976B2 (en) * 2013-07-10 2015-11-17 Telenav Inc. Navigation system with multi-layer road capability mechanism and method of operation thereof
JP2015068799A (ja) * 2013-09-30 2015-04-13 セイコーエプソン株式会社 物理量センサー、圧力センサー、高度計、電子機器および移動体
JP2016095284A (ja) * 2014-11-17 2016-05-26 セイコーエプソン株式会社 電子デバイス、物理量センサー、圧力センサー、高度計、電子機器および移動体
WO2017111805A1 (en) * 2015-12-24 2017-06-29 Intel Corporation Techniques for integrating three-dimensional islands for radio frequency (rf) circuits
US10352800B2 (en) * 2016-06-03 2019-07-16 Mks Instruments, Inc. Micromachined bulk acoustic wave resonator pressure sensor
CN107764459B (zh) * 2016-08-17 2020-04-21 苏州明皜传感科技有限公司 压力传感器以及其制造方法
JP6654157B2 (ja) * 2017-01-17 2020-02-26 アズビル株式会社 圧力センサ
CN107063514A (zh) * 2017-06-01 2017-08-18 东南大学 一种利用静电原理的压力传感器及其工作方法
CN107246928B (zh) * 2017-06-01 2019-10-11 东南大学 一种利用电磁原理的压力传感器及其工作方法
CN107036739A (zh) * 2017-06-01 2017-08-11 东南大学 一种利用压电原理测量压力的压力传感器及其工作方法
US10921207B2 (en) * 2018-03-28 2021-02-16 Veoneer Us Inc. Sensor assembly with linear contacts
CN109256979B (zh) * 2018-09-15 2020-01-21 西安知微传感技术有限公司 一种具有自洁功能的梳齿驱动器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100404904B1 (ko) * 2001-06-09 2003-11-07 전자부품연구원 차동 용량형 압력센서 및 그 제조방법
EP1682859A4 (en) * 2003-08-11 2007-08-22 Analog Devices Inc CAPACITIVE SENSOR

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016102737A (ja) * 2014-11-28 2016-06-02 セイコーエプソン株式会社 電子デバイス、物理量センサー、圧力センサー、振動子、高度計、電子機器および移動体
JP2016163032A (ja) * 2015-03-05 2016-09-05 セイコーエプソン株式会社 半導体デバイス、電子機器および移動体
JP2016163915A (ja) * 2015-03-06 2016-09-08 セイコーエプソン株式会社 半導体デバイス、電子機器および移動体
CN105306003A (zh) * 2015-11-20 2016-02-03 中国科学院半导体研究所 环形检测电极面内伸缩谐振器设计及其制备方法
JPWO2020235324A1 (ja) * 2019-05-17 2021-06-10 田中 博由 高低差測定装置および高低差測定方法

Also Published As

Publication number Publication date
US20140311241A1 (en) 2014-10-23
CN104108678A (zh) 2014-10-22

Similar Documents

Publication Publication Date Title
JP2014211405A (ja) Mems圧力センサー、電子デバイス、高度計、電子機器および移動体
US8315793B2 (en) Integrated micro-electro-mechanical systems (MEMS) sensor device
US20160146605A1 (en) Gyro sensor, electronic apparatus, and moving body
US20130277775A1 (en) Planar Structure For A Triaxial Gyrometer
CN103712612A (zh) 加速度和角速度谐振检测集成结构及相关mems传感器设备
JP2014115209A (ja) Mems素子、電子デバイス、高度計、電子機器および移動体
US20140373626A1 (en) Inertial force sensor
US20150212526A1 (en) Functional element, electronic device, electronic apparatus, and moving object
US20170267518A1 (en) Pressure sensor, production method for pressure sensor, altimeter, electronic apparatus, and moving object
EP2693182A1 (en) On-chip resonant gyro and pressure sensor
US10627234B2 (en) Gyro sensor, electronic apparatus, and vehicle
US20150268112A1 (en) Physical quantity sensor, altimeter, electronic apparatus, and moving object
WO2015115365A1 (ja) センサおよびその製造方法
US20140157892A1 (en) Mems element, electronic device, altimeter, electronic apparatus, and moving object
US20170248484A1 (en) Pressure sensor, production method for pressure sensor, altimeter, electronic apparatus, and moving object
US20150090029A1 (en) Physical quantity sensor, pressure sensor, altimeter, electronic apparatus, and moving object
US20180252607A1 (en) Pressure sensor, pressure sensor module, electronic apparatus, and vehicle
Traechtler et al. Novel 3-axis gyroscope on a single chip using SOI-technology
JP2014202577A (ja) 圧力センサー素子、電子デバイス、高度計、電子機器および移動体
JP2014115208A (ja) Mems素子、電子デバイス、高度計、電子機器および移動体
JP2014115210A (ja) Mems素子、電子デバイス、高度計、電子機器および移動体
KR101482378B1 (ko) Mems 디바이스
JP4870428B2 (ja) 複合センサ
JP2018116003A (ja) 圧力センサー、圧力センサーの製造方法、高度計、電子機器および移動体
JP2017166857A (ja) 圧力センサー、圧力センサーの製造方法、高度計、電子機器および移動体

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150113