JP2014204208A - 予測モード決定方法、動画像符号化装置、及び予測モード決定プログラム - Google Patents

予測モード決定方法、動画像符号化装置、及び予測モード決定プログラム Download PDF

Info

Publication number
JP2014204208A
JP2014204208A JP2013077259A JP2013077259A JP2014204208A JP 2014204208 A JP2014204208 A JP 2014204208A JP 2013077259 A JP2013077259 A JP 2013077259A JP 2013077259 A JP2013077259 A JP 2013077259A JP 2014204208 A JP2014204208 A JP 2014204208A
Authority
JP
Japan
Prior art keywords
block
skip
determination
encoding target
prediction mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013077259A
Other languages
English (en)
Other versions
JP5702820B2 (ja
Inventor
正樹 北原
Masaki Kitahara
正樹 北原
真由子 渡邊
Mayuko Watanabe
真由子 渡邊
忍 工藤
Shinobu Kudo
忍 工藤
清水 淳
Atsushi Shimizu
淳 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013077259A priority Critical patent/JP5702820B2/ja
Publication of JP2014204208A publication Critical patent/JP2014204208A/ja
Application granted granted Critical
Publication of JP5702820B2 publication Critical patent/JP5702820B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】ピクチャ内の符号化対象ブロックをスキップモードにより符号化するか否かを符号化効率が悪化しないように決定し、符号化における演算量を低減する。【解決手段】ブロック単位で予測モードを決定してピクチャを符号化する符号化装置1において、スキップ判定部11は、ピクチャの符号化対象ブロックと、当該符号化対象ブロックに隣接し、かつ、スキップモードで符号化されている参照候補ブロックとの特徴量の差異を計算し、計算された特徴量の差異が当該特徴量について定められた条件を満たすか否かを判定する。そして、定められた条件を満たすと判定した場合に、参照候補ブロックを参照ブロックとし、参照ブロックにおけるスキップモードのコストから求められる閾値と、符号化対象ブロックをスキップモードとした場合のコストとを比較して、符号化対象ブロックの予測モードをスキップモードとするか否かを判定する。【選択図】図1

Description

本発明は、予測モード決定方法、動画像符号化装置、及び予測モード決定プログラムに関する。
H.264やHEVC(High Efficiency Video Coding)のような映像符号化標準では、ブロック単位で動画像のピクチャの符号化を行う。H.264ではマクロブロック(縦16画素、横16画素のブロック)を単位とし、マクロブロックをサブブロックに分割して符号化できる。また、H.264ではマクロブロックの予測モードとして、スキップモードを利用できる。H.264のスキップモードでは、動きベクトルを周辺の符号化済ブロックの動きベクトルから算出するため、動きベクトルを符号化する必要がない。また、当該動きベクトルで動き補償したときの予測残差ブロックも符号化しない。
一方で、HEVCではLCU(Largest Coding Unit)を単位として符号化を行う。LCUは最大で縦64画素、横64画素(64x64画素)のブロックであり、これをサブブロックに分割して符号化できる。H.264との違いは、サブブロックのサイズのバリエーションが多いことであり、このサブブロックはCU(Coding Unit)と呼ばれる(CUはLCUそのものも含む)。図9にCUサイズのバリエーションを示す。同図の(a)から(d)に示すように、64x64画素のLCUから再帰的に、32x32画素、16x16画素、8x8画素の4つのCUに分割していくことが可能であり、LCUを最上位ノードとし、階層を4つ有する4分木で表現できることもわかる。また、符号化においては、階層数が4以内の任意の4分木構造によるCU分割を利用することができる。この一例を図10に示す。同図に示すように、1階層目のCUはLCUであり、CU1〜CU4の4つのCUに分割される。2階層目のCU2はさらにCU21〜CU24に分割され、2階層目のCU4はさらにCU41〜CU44に分割される。そしてさらに、3階層目のCU42は4階層目となるCU421〜424に分割され、3階層目のCU43は4階層目となるCU431〜434に分割される。HEVCではCUの符号化においてイントラ予測を利用するか、またはインター予測を利用するかを自由に切り替えることができる。なお、CUをさらにPU(Prediction Unit)と呼ばれるサブブロックに分割することも可能である。
HEVCではCUをインター予測で符号化する場合に、スキップモードで符号化するか、他の予測モードで符号化するかを自由に切り替えられる。つまり、一つのピクチャの中で、様々なサイズのブロックにスキップモードを適用できる。また、HEVCのスキップモードでは、動きベクトルそのものを符号化しない点でH.264と同じであるが、動きベクトルと参照画像インデックスの対の候補を含むリスト(以下、「merge candidate list」と記載する。)を生成する。そして、merge candidate listの中からどれを利用するかを選択することができ、そのインデックスを符号化する点で異なる。当該リストに含まれる動きベクトルおよび参照画像インデックスは、隣接する符号化済ブロックや別の符号化済ピクチャで利用された動きベクトルから生成される。
このように、HEVCでは一つのピクチャ内で様々なサイズのブロック(CU)において、スキップモードで符号化できるものの、以下の従来技術の説明では簡略化のため、スキップモードは固定のブロックサイズを単位として利用できるものとする。
スキップモードでは、予測ベクトルを利用して符号化するため、動き探索を行わない。従い、符号化対象ブロックにおける動き探索を行う前に、当該ブロックをスキップモードで符号化するか否かを判定(以下、「スキップ判定」と記載する。)できれば、スキップモードで符号化することになったブロックでの動き探索を省略することが可能となり、符号化における演算量を削減できる。
一般的に、ピクチャ内における各ブロックで選択される予測モードには空間的な相関があり、これを利用してスキップ判定をすることが考えられる。そのような方式として、例えば、非特許文献1に記載の従来技術(以下、「従来技術A」と記載する。)がある。
従来技術Aでは、スキップモードとして符号化済のブロックにおける、スキップモードのコストの平均値に係数を乗算した値を閾値として用い、符号化対象ブロックにおいてスキップモードのコストが当該閾値を下回る場合は、スキップモードと判定する。この方法の適用例を図11に示す。同図に示すように、符号化対象ブロックに対して上に隣接する符号化済ブロック(ブロックC)および左に隣接する符号化済ブロック(ブロックD)においてスキップモードが利用される場合に、ブロックCとブロックDのそれぞれのスキップモードコストの平均に係数を乗じた値を閾値とすることができる。以下では、このような閾値を「スキップ判定閾値」と呼ぶ。
従来技術Aでは、参照する符号化済ブロック自体が従来技術Aによってスキップと判定されたものである場合、信頼性が低いコストに基づいてスキップ判定閾値が決まることとなり、誤判定が生じて符号化効率が低下する恐れがある。
そこで、信頼性が高いコストに基づいてスキップ判定閾値を決定するために、スキップ判定が適用されなかった符号化済ブロックのみを参照することは容易に類推でき、これを従来技術Bとする。従来技術Bでは、図11に示すように、ブロックCおよびブロックDがスキップモードで符号化されていた場合に、ブロックCおよびブロックDがスキップ判定によってスキップモードで符号化することに決定されていたかを判定する。そして、ブロックCとブロックDの両方もしくはいずれかがスキップ判定によってスキップモードと決定されていた場合は、符号化対象ブロックについてのスキップ判定を行わない(それ以外の場合はスキップ判定を行う)。これにより、スキップ判定において信頼性の高い閾値を設定できる。なお、以下では、スキップモードとして符号化されているものの、動き探索の前に行われるスキップ判定ではスキップモードと判定されていないブロックを「最適スキップブロック」と呼ぶ。
Jongho Kim, Seyoon Jeong, Sukhee Cho, and Jin Soo Choi, "Adaptive Coding Unit Early Termination Algorithm for HEVC", 2012 IEEE International Conference on Consumer Electronics(ICCE), p.261-262
従来技術Bではスキップ判定が適用できるブロックが少なく、演算量の削減効果が限定される問題がある。図12に従来技術Bにおいてスキップ判定が適用可能なブロックの一例を示す。同図に示す縦4ブロック、横4ブロックの16ブロックで構成される領域は、ピクチャ内で最適予測モードがスキップモードとなるような領域であり、本領域において、スキップ判定が適用可能なブロックにおいてはスキップ判定を実施し、演算量を削減できる。従来技術Bでスキップ判定が適用可能なブロックは、同図に示す網掛けのブロックとなり、16ブロック中スキップ判定を行えるのは4ブロックのみとなる。
一方で、従来技術Bにおいて、符号化対象ブロックの左側のブロックが最適スキップブロックであれば、当該最適スキップブロックのコストを利用して符号化対象ブロックにおいてスキップ判定を行えるように、制限を緩めた場合を考える。これを、従来技術B-1とする。従来技術B-1の場合、図13に示す網掛けのブロックにおいてスキップ判定が適用可能であり、16ブロック中で半分のブロックにおいてスキップ判定が適用できる。
しかし、従来技術B−1の場合、スキップモードが最適ではないようなブロックにおいてもスキップモードと判定してしまい、符号化効率を損ねる恐れがある。その一例を示す概念図を図14に示す。同図では、左端のブロック列と、それより右の領域で被写体が異なる。そして、左側の被写体(被写体α)についてはスキップモードで符号化することが、最適であるものの、右側の被写体(被写体β)についてはスキップモードで符号化することが最適ではなく、符号化効率の意味では他の予測モードを利用したほうが良いものとする。このような場合、従来技術B−1では、左から2つ目のブロック列において、誤ってスキップモードと判定してしまうことがある。
上記事情に鑑み、本発明は、ピクチャ内の符号化対象ブロックをスキップモードにより符号化するか否かを符号化効率が悪化しないように決定し、符号化における演算量を低減することができる予測モード決定方法、動画像符号化装置、及び予測モード決定プログラムを提供することを目的としている。
本発明の一態様は、ブロック単位で予測モードを決定して動画像の画像データを符号化する動画像符号化装置が実行する予測モード決定方法であって、1つ以上の特徴量について、前記画像データにおける符号化対象ブロックと、当該符号化対象ブロックに隣接し、かつ、スキップモードで符号化されている参照候補ブロックとの前記特徴量の差異を計算するブロック特徴比較ステップと、前記ブロック特徴比較ステップにおいて計算された前記特徴量の差異が、当該特徴量について定められた条件を満たすか否かを判定するスキップ判定実行有無決定ステップと、前記スキップ判定実行有無決定ステップにおいて前記特徴量の差異が当該特徴量について定められた前記条件を満たすと判定された場合に前記参照候補ブロックを参照ブロックとし、前記参照ブロックにおけるスキップモードのコストから求められる閾値と、前記符号化対象ブロックをスキップモードとした場合のコストとを比較して前記符号化対象ブロックの予測モードをスキップモードとするか否かを判定するスキップ判定ステップと、を有することを特徴とする予測モード決定方法である。
また本発明の一態様は、上述する予測モード決定方法であって、前記ブロック特徴比較ステップにおいては、前記特徴量の差異の計算に、前記参照候補ブロックと前記符号化対象ブロックとの動きベクトルの一致度合いの計算を含み、前記スキップ判定実行有無決定ステップにおいては、前記参照候補ブロックと前記符号化対象ブロックとの動きベクトルの一致度合いが所定以内である場合に、動きベクトルについて定められた前記条件を満たすと判定する、ことを特徴とする。
また本発明の一態様は、上述する予測モード決定方法であって、前記ブロック特徴比較ステップにおいては、前記特徴量の差異の計算に、前記参照候補ブロックと前記符号化対象ブロックとの複雑さ指標値の大小の計算を含み、前記スキップ判定実行有無決定ステップにおいては、前記符号化対象ブロックの複雑さが前記参照候補ブロックの複雑さを上回る場合に、複雑さ指標値について定められた前記条件を満たすと判定する、ことを特徴とする。
また本発明の一態様は、上述する予測モード決定方法であって、前記符号化対象ブロックに隣接し、かつ、スキップモードで符号化されている参照候補ブロックが複数存在する場合、前記ブロック特徴比較ステップにおいては、前記符号化対象ブロックと複数の前記参照候補ブロックそれぞれとの前記特徴量の差異を計算し、前記スキップ判定実行有無決定ステップにおいては、複数の前記参照候補ブロックのうち、前記ブロック特徴比較ステップにおいて計算された前記特徴量の差異が当該特徴量について定められた条件を満たす参照候補ブロックを参照ブロックとする、ことを特徴とする。
また本発明の一態様は、上述する予測モード決定方法であって、前記ブロック特徴比較ステップにおいては、当該符号化対象ブロックに隣接し、かつ、スキップモードで符号化されているブロックのうち、所定のサイズより大きなブロックを参照候補ブロックとする、ことを特徴とする。
また本発明の一態様は、ブロック単位で予測モードを決定して動画像の画像データを符号化する動画像符号化装置であって、1つ以上の特徴量について、前記画像データにおける符号化対象ブロックと、当該符号化対象ブロックに隣接し、かつ、スキップモードで符号化されている参照候補ブロックとの前記特徴量の差異を計算し、計算された前記特徴量の差異が、当該特徴量について定められた条件を満たすか否かを判定するブロック特徴比較部と、前記ブロック特徴比較部において前記特徴量の差異が当該特徴量について定められた前記条件を満たすと判定された場合に前記参照候補ブロックを参照ブロックとし、前記参照ブロックにおけるスキップモードのコストから求められる閾値と、前記符号化対象ブロックをスキップモードとした場合のコストとを比較して前記符号化対象ブロックの予測モードをスキップモードとするか否かを判定するコスト比較部と、を備えることを特徴とする動画像符号化装置である。
また本発明の一態様は、動画像符号化装置として用いられるコンピュータに、上述する予測モード決定方法の各ステップを実行させるための予測モード決定プログラムである。
本発明により、ピクチャ内の符号化対象ブロックをスキップモードにより符号化するか否かを符号化効率が悪化しないように決定し、符号化における演算量を低減することができる。
本発明の第1の実施形態による符号化装置の機能構成を示すブロック図である。 同実施形態による処理対象CUに対する予測モード及び最適分割判定の処理フローを示す図である。 同実施形態による下位CUにおける最適分割を統合した処理対象CU分割の例を示す図である。 同実施形態によるスキップ判定部の詳細な機能構成を示すブロック図である。 同実施形態によるスキップ判定の処理フローを示す図である。 第2の実施形態によるスキップ判定の処理フローを示す図である。 第3の実施形態による処理対象CUに対する予測モード及び最適分割判定の処理フローを示す図である。 同実施形態による左もしくは上に処理対象CUと異なるサイズの最適スキップCUが存在する状況の例を示す図である。 従来技術によるCUサイズのバリエーションを示す図である。 従来技術によるLCUのCU分割例を示す図である。 従来技術によるスキップ判定において参照されるブロックを示す図である。 従来技術によるスキップ判定が適用可能なブロックを示す図である。 他の従来技術によるスキップ判定が適用可能なブロックを示す図である。 他の従来技術による被写体境界におけるスキップ判定の例を示す図である。
以下、図面を参照して本発明の実施形態を説明する。
本発明の一実施形態による予測モード決定方法では、動画像の画像データであるピクチャをブロック単位で符号化する動画像符号化方式において符号化対象ブロックの予測モードを決定する際に、符号化対象ブロックのスキップ判定に先立って、最適スキップブロックと符号化対象ブロックとの特徴の比較を行う。そして、スキップ判定を行っても符号化効率の悪化が生じないと推定される場合に限り、当該最適スキップブロックを参照ブロックとして用い、スキップ判定を行う。なお、最適スキップブロックとは、スキップモードとして符号化されているものの、スキップ判定ではスキップモードと判定されていないブロックである。
最適スキップブロックと符号化対象ブロックとの特徴の比較は、複数の評価方法により行うことが考えられ、本実施形態では、全ての評価方法で所定の条件が満たされた場合に限り、最適スキップブロックを参照候補ブロックから参照ブロックとし、スキップ判定を行う。評価方法の一例としては、最適スキップブロック(参照ブロック)の動きベクトルと符号化対象ブロックの動きベクトルとの比較がある。これらの動きベクトルの距離が所定の閾値より小さい場合、これらの2つのブロックは同じ被写体に属すと推定できるため、スキップ判定を行っても符号化効率の悪化はないと推定できる。
また、評価方法の別の例としては、最適スキップブロック(参照ブロック)の複雑さ指標値と符号化対象ブロックの複雑さ指標値とを比較し、符号化対象ブロックの複雑さが上回る場合にスキップ判定をするというものが考えられる。複雑さ指標値は、それぞれのブロックの原画像に関するアクティビティを利用できる。一般的に、複雑なブロックほど予測において予測残差エネルギーが大きくなる傾向がある。そのため、符号化対象ブロックの複雑さが最適スキップブロックを上回るにも関わらず、符号化対象ブロックをスキップモードで符号化した場合のコストがスキップ判定閾値を下回るということは、符号化対象ブロックをスキップモードで符号化しても符号化効率の悪化はないと考えられる。
以下では、HEVC(High Efficiency Video Coding)に準拠したビットストリームを出力する符号化装置(動画像符号化装置)に本発明を適用した場合の実施形態を示す。CU(Coding Unit)サイズとしては、LCU(Largest Coding Unit)を64x64画素をとし、最小CUサイズを8x8画素とした4階層のCUサイズのバリエーションを利用できるものとする。なお、実施形態の説明を簡単にするため、CUをより小さいブロックに分割したPU(Prediction Unit)は利用しないものとする。
[第1の実施形態]
図1は、本実施形態による符号化装置1の構成を示す機能ブロック図である。同図に示すように、符号化装置1は、スキップ判定部11、ブロック分割決定部12、インター予測部13、イントラ予測部14、切替部15、変換部16、量子化部17、エントロピー符号化部18、逆量子化部19、逆変換部20、ループフィルタ部21、及び参照画像メモリ22を備えて構成される。符号化装置1には、動画像の符号化対象ピクチャにおける、符号化対象LCUが入力される。一方で、当該LCUに対応した符号化ストリームが符号化装置1の出力となる。これが符号化対象ピクチャ内の各LCUについてラスタスキャン順に繰り返し実行されることで、符号化対象ピクチャが符号化される。
HEVCにおいては、LCUをCUに分割し、各CUにおいてイントラ予測もしくはインター予測を行って、その差分を符号化する。そこで、ブロック分割決定部12は、符号化装置1に入力された符号化対象LCUのCU分割を行い、さらに各々のCUがイントラ予測とインター予測のいずれを用いるかを判定する。インター予測部13は、ブロック分割決定部12の指示に従い、インター予測によりCUの予測画像を生成する。イントラ予測部14は、ブロック分割決定部12の指示に従い、イントラ予測によってCUの予測画像を生成する。切替部15は、ブロック分割決定部12の決定に従って、インター予測部13により生成されたCUの予測画像と、イントラ予測部14により生成されたCUの予測画像との出力を切り替え、符号化対象LCUの予測画像を出力する。符号化装置1に入力された符号化対象LCUの画像と、切替部15から出力された符号化対象LCUのイントラ予測またはインター予測の予測画像との差分画像が計算されると、差分画像が変換部16に入力される。
変換部16は、入力された差分画像を変換係数に変換し、量子化部17は、変換部16により変換された変換係数を量子化する。エントロピー符号化部18は、量子化部17において得られた量子化値をエントロピー符号化し、符号化ストリームとして符号化装置1から出力する。一方で、逆量子化部19は、量子化部17において得られた変換係数の量子化値を逆量子化する。逆変換部20は、逆量子化部19において逆量子化された結果を逆変換する。ループフィルタ部21は、逆変換部20において逆変換により得られた画像と、切替部15から出力された符号化対象LCUのイントラ予測またはインター予測の予測画像との和にループフィルタを適用する。参照画像メモリ22は、ループフィルタ部21によりループフィルタが適用された画像を格納する。なお、このように作成された画像は、HEVCに準拠した復号器で得られる復号画像と同等であり、参照画像メモリ22内の画像は、インター予測部13における後の符号化対象LCUのインター予測の参照画像として利用される。また、逆変換部20により逆変換された画像と、切替部15から出力されたイントラ予測またはインター予測のLCUの予測画像との和は、イントラ予測部14における後の符号化対象LCUのイントラ予測の参照画像として利用される。
スキップ判定部11は、符号化対象ブロックにおける動き探索を行う前に、当該ブロックをスキップモードで符号化するか否かを判定するスキップ判定を行う。なお、本実施形態では、スキップ判定はLCUでのみ実施し、スキップ判定によって当該LCUがスキップモードで符号化されると判定された場合、より小さいCUに関する処理(各CUサイズにおけるイントラ/インター予測、CU分割の比較による最適CU分割の決定)は行わないものとし、これにより大幅な演算量削減を実現する。このフローを図2に示す。
図2は、処理対象CUに対する予測モード及び最適分割判定の処理フローを示す図である。本実施形態では、スキップ判定によりLCUがスキップモードとして符号化すると判定されなかった場合、ブロック分割決定部12は、当該LCUを再帰的に4分割した全てのCUについてRDコストを求めて最適なCU分割を決定する。RDコストは以下の式(1)で与えられる。
RDコスト=D+λR …(1)
ここで、DとRはそれぞれ、処理対象CUについてある予測モード(スキップモード、イントラ予測等)を適用したときの符号化歪と発生符号量である。符号化歪は、処理対象CUの各画素に関する原画像と復号画像の二乗誤差の総和とする。λは、ラグランジュの未定乗数である。同図に示す処理フローは、処理対象のCUにおけるフローを示したものであり、ブロック分割決定部12は、処理対象CUを4つに分割したCU(下位CU)を処理対象として、さらに本フローを再帰的に呼び出す形になっている。すなわち、LCUについて本フローを実行することで、全てのCUサイズに処理が行われ、最適なCU分割が決定される。本フローを用いて、スキップ判定部11、ブロック分割決定部12、インター予測部13、イントラ予測部14の動作を説明する。
まず、ステップS101において、スキップ判定部11は、処理対象CUがLCUであるか否かを判定する。スキップ判定部11は、処理対象CUがLCUであると判定した場合(ステップS101:YES)、ステップS102の処理に移り、その処理対象CU、つまり、符号化対象LCUの上もしくは左に隣接するLCUが最適スキップブロックであるか否かをチェックする。最適スキップブロックは、後述するステップS103におけるスキップ判定を行わずにスキップモードで符号化すると判定されていたブロック、すなわち、ステップS105以降のフローにより、他の予測モードとの比較の結果、スキップモードとなったブロックである。符号化対象LCUの上に隣接するLCU及び左に隣接するLCUとも最適スキップブロックではないとスキップ判定部11が判定した場合(ステップS102:NO)、符号化装置1は後述するステップS105以降の処理を行う。符号化対象LCUに隣接する上もしくは左のLCUが最適スキップブロックであるとスキップ判定部11が判定した場合(ステップS102:YES)、符号化装置1はステップS103のスキップ判定の処理を行う。
ステップS103のスキップ判定の処理に移った場合、インター予測部13は、処理対象LCUをスキップモードで符号化し、処理対象LCUをスキップモードで符号化した場合のRDコストを算出する。この際、インター予測部13は、スキップモードによる符号化において生成されたmerge candidate listに含まれる各々の参照画像インデックスと動きベクトルの対を利用した場合についてRDコストを算出し、RDコストが最小になる参照画像インデックスと動きベクトルをスキップモードの符号化において利用するものと決定する。インター予測部13は、このように決定したスキップモードで利用する動きベクトル、及び参照画像インデックスと、対応するRDコストとをスキップ判定部11に出力する。スキップ判定部11は、これらのインター予測部13からの入力に基づいてスキップ判定を行う。このスキップ判定部11の動作の詳細は、後述する。
ステップS104において、符号化装置1は、スキップ判定部11によるスキップ判定の結果による分岐を行う。符号化装置1は、符号化対象LCUをスキップモードで符号化すると判定されなかった場合は(ステップS104:NO)、ステップS105の処理に移り、スキップモードで符号化すると判定された場合は(ステップS104:YES)、ステップS113の処理に移る。
ステップS113に処理が移った場合、ブロック分割決定部12は、符号化対象LCUの「最適分割」は、LCUをCUとすることであると決定し(つまり、分割しない)、本CUに関する処理を完了する。ブロック分割決定部12は、符号化対象LCUをスキップモードで符号化した予測画像を出力するようインター予測部13に指示し、切替部15をインター予測部13側に切替える。
次にステップS105以降の処理の説明をする。ステップS105以降の処理は、スキップ判定が行われない場合、もしくはスキップ判定ではスキップモードで符号化すると判定されなかった場合の処理であり、本実施形態のスコープ外のため、様々な手法が考えられ、以下では一例を説明する。ステップS105において、インター予測部13は、ブロック分割決定部12の指示により、インター予測の各予測モードで処理対象CUの予測画像を生成し、各予測モードのRDコストを算出する。ここで、インター予測の各予測モードとは、スキップモード、動きベクトルと予測残差を符号化する通常インターモードとする。通常インターモードについては動き探索も行う。ステップS106において、イントラ予測部14は、ブロック分割決定部12の指示により、イントラ予測で処理対象CUの予測画像を生成し、イントラ予測のRDコストを算出する。ステップS107において、ステップS105およびステップS106で求められた全ての予測モードのRDコストがブロック分割決定部12に入力され、これらのRDコストが比較される。ブロック分割決定部12は、RDコストが最小になる予測モードを処理対象CUの最適予測モードと決定する。
ステップS108において、ブロック分割決定部12は、処理対象CUが最小CUサイズ(8x8画素)であるか否かを判定する。もし、最小CUサイズであればそれ以上の分割はできない。そのため、ブロック分割決定部12は、処理対象CUが最小CUサイズであると判定した場合(ステップS108:YES)、ステップS113の処理を行い、処理対象CUをそれ以上小さいCUに分割しないことを「最適分割」として設定するとともに、そのRDコストを保存し、本CUに関する処理を完了する。
処理対象CUが最小CUサイズでないと判定した場合(ステップS108:NO)、ステップS109の処理において、ブロック分割決定部12は、処理対象CUを4つに分割したCU(下位CU)を処理対象として本フロー(図2のフロー全体)を呼び出す。このとき、4つの下位CUは左上、右上、左下、右下の順に呼び出される。なお、これはシーケンシャルに行われ、左上の下位CUのフローが完了した後に右上の下位CUのフローが呼び出される(あるCUを符号化するために必要な左/上/左上のCUの処理を完了させるためである)。そして、4つの下位CUにおける本フローが完了した後、ブロック分割決定部12は、ステップS110の処理に移る。
ステップS110において、ブロック分割決定部12は、ステップS107で求められた処理対象CUの最適予測モードのRDコストと、4つの下位CUのフローにおいて求められた最適分割に対応するRDコストの総和を比較する。なお、下位CUの最適分割に対応するRDコストは、当該下位CUを処理対象として再帰的に実行された当該フローにおけるステップS112もしくはステップS113の処理で保存されているものであることに注意する。ステップS111において、ブロック分割決定部12は、比較結果により分岐を行う。処理対象CUの最適予測モードのRDコストのほうが小さかった場合(ステップS111:YES)、ブロック分割決定部12はステップS113の処理に移り、処理対象CUをそれ以上小さいCUに分割しないことを最適分割として設定し、処理対象CUの最適予測モードのRDコストを最適分割に対応するRDコストとして保存する。それ以外の場合(ステップS111:NO)、ブロック分割決定部12はステップS112の処理に移り、4つの下位CUにおける最適分割を統合した分割(後述する図3に例を示す)を、処理対象CUにおける最適分割とするとともに、対応するRDコスト(4つの下位CUにおける最適分割のRDコストの総和)を保存する。
ブロック分割決定部12は、最適分割のCU毎に、最適予測モードの予測画像の出力をインター予測部13、イントラ予測部14に指示するともに、切替部15を最適予測モードに基づいて切替える。
図3は、4つの下位CUにおける最適分割を統合した処理対象CU分割の例を示す図である。同図に示す例では、処理対象CUを構成する下位CU1、下位CU4については、さらに小さいCUへの分割が最適分割であり、下位CU2、下位CU3については当該下位CUが最適分割であると判断されている。処理対象CUの最適分割は、これらの下位CU1〜CU4の最適分割を統合したものとなる。
次に、図1に示す符号化装置1におけるスキップ判定部11の構成の詳細、及び図2に示す処理フローにおけるステップS103のスキップ判定処理の詳細について説明する。
図4は、スキップ判定部11の詳細な機能構成を示すブロック図である。同図に示すようにスキップ判定部11は、ブロック特徴比較部111、及びコスト比較部112を備えて構成される。ブロック特徴比較部111は、符号化対象LCU(入力画像)の特徴量と、符号化対象LCUに隣接する上または左の最適スキップブロックの特徴量を比較して、符号化対象LCUについてスキップ判定を行うか否かを判定する。コスト比較部112は、ブロック特徴比較部111がスキップ判定を行うと判定した場合、符号化対象LCUをスキップモードで符号化した場合のRDコストと閾値とを比較し、スキップモードで符号化するか否かのスキップ判定を行う。
図5は、図2に示す処理フローにおけるステップS103のスキップ判定処理の詳細な処理フローを示す図である。同図に示すスキップ判定の処理フローに従って、図4に示すスキップ判定部11のブロック特徴比較部111、及びコスト比較部112の処理を説明する。なお、このスキップ判定処理を行う場合には、符号化対象LCUに隣接する上または左のLCUが最適スキップブロック(以下、「最適スキップLCU」と記載する。)となっている。
ステップS201において、ブロック特徴比較部111は、符号化対象LCUの特徴量と最適スキップLCUの特徴量を計算する。そして、ステップS202において、ブロック特徴比較部111は、符号化対象LCUの特徴量と最適スキップLCUの特徴量を比較して、符号化対象LCUについてスキップ判定を行うか否かを判定する。なお、符号化対象LCUの上および左の両LCUとも最適スキップLCUであった場合、ここでは左の最適スキップLCUの特徴量と比較する。上および左の両LCUとも最適スキップLCUであった場合の処理のバリエーションについては後述する第2の実施形態において説明する。本実施形態では、アクティビティを用いた比較、動きベクトルを用いた比較といった2つの特徴量による比較を行い、それぞれにおいて所定の条件(スキップ判定実行サブ条件)を満たした場合に、「スキップ判定実行条件」を満たしたと判断してステップS204以降のスキップ判定処理を行う。なお、本実施形態においては2つの特徴量を比較しているが、比較する特徴量は1つでもよく、あるいは2つ以上の任意の数の特徴量の比較を行っても良い。本実施形態では、以下に示す2つの特徴による(比較1)、及び(比較2)を行う。
(比較1)アクティビティを用いた比較(スキップ判定実行サブ条件1を満たすか否かの判定):
アクティビティは対象ブロックのテクスチャの複雑さを示す指標である。具体的には、対象ブロックを複数のサブブロックに分割し、各サブブロックに関する原画像の画素値の分散を求める。そして、対象ブロックにおけるサブブロックの分散の平均/最小値、最大値のいずれかをアクティビティとする。対象ブロックそのものをサブブロックと考えた場合(すなわち対象ブロックは1つのサブブロックで構成される場合)、対象ブロックの分散そのものがアクティビティになる。本実施形態においては、例えば、LCUを4つのサブブロックに均等分割したときの、それぞれのサブブロックの分散の平均値をアクティビティとできる。そこで、ステップS201において、ブロック特徴比較部111は、入力された符号化対象LCUおよび参照画像メモリ22に記憶されている最適スキップLCUの原画像を利用し、上記のような方法で符号化対象LCUのアクティビティACT_encおよび最適スキップLCUのアクティビティACT_refを求める。ブロック特徴比較部111は、以下の式(2)に示す条件を満たした場合、スキップ判定実行サブ条件1を満たすと判定する。
ACT_enc>ACT_ref …(2)
(比較2)動きベクトルを用いた比較(スキップ判定実行サブ条件2を満たすか否かの判定):
スキップ判定実行サブ条件2では、符号化対象LCUの動きベクトルと最適スキップLCUの動きベクトルを比較する。ただし、それぞれの動きベクトルが参照する参照画像が同一であるか否か(参照画像インデックスが同一であるか否か)もチェックする。このチェックもブロック特徴比較部111において行われ、インター予測部13から入力される動きベクトルと参照画像インデックスを利用する。利用する動きベクトルおよび参照画像インデックスとしては、それぞれのLCUにおいて、スキップモードでの符号化に用いる動きベクトルおよび参照画像インデックスを利用することが考えられる。あるいは、最適スキップLCUについては、スキップモード以外の予測モードにおける動きベクトルおよび参照画像インデックスを利用することも考えられる。すなわち、LCUにおける動きを表すものであれば、どのように求めた動きベクトル、参照画像インデックスでも良い。ここで、符号化対象LCUの動きベクトル、参照画像インデックスをそれぞれ、MV_enc、REFIDX_encとし、参照画像メモリ22に記憶されている最適スキップLCUの動きベクトル、参照画像インデックスをそれぞれ、MV_ref、REFIDX_refとする。これらはそれぞれ、x成分とy成分を要素とする2次元ベクトルである。動きベクトルの比較としては、MV_encとMV_refが同一ベクトルであるか否かの比較や、MV_encとMV_refの間のユークリッド距離による判定などによる動きベクトルの一致度合いの判定が考えられる。本実施形態ではユークリッド距離を利用し、以下の2つの条件1及び条件2が満たされた場合、ブロック特徴比較部111は、スキップ判定実行サブ条件2を満たすと判断する。
(条件1):REFIDX_encとREFIDX_refは等しい。
(条件2):MV_encとMV_refの間のユークリッド距離は所定の閾値以下である。
ステップS202において、ブロック特徴比較部111は、スキップ判定実行条件を満たすか否かの判定により条件分岐する。上記のスキップ判定実行サブ条件1、2のいずれかまたは両方が満たされない場合(ステップS202:NO)、ブロック特徴比較部111は、スキップ判定実行条件が満たされないため、ステップS203の処理に移り、スキップ判定を行わないことを示すスキップ判定有無情報をコスト比較部112に通知する。コスト比較部112は、スキップ判定有無情報がスキップ判定を行わないことを示しているため、符号化対象LCUをスキップモードで符号化すると判定しないことをスキップ判定情報としてブロック分割決定部12に通知し、当該フローを完了する。一方で、スキップ判定実行サブ条件1、2の両方が満たされた場合(ステップS202:YES)、ブロック特徴比較部111は、スキップ判定実行条件が満たされたと判断し、スキップ判定を行うことを示すスキップ判定有無情報をコスト比較部112に通知する。コスト比較部112は、スキップ判定有無情報がスキップ判定を行うことを示している場合、ステップS204の処理に移り、スキップ判定を行う。
ステップS204において、まず、コスト比較部112は、スキップ判定閾値を設定する。スキップ判定閾値は前述のように特徴量の比較を行った、符号化対象LCUに隣接する上もしくは左のLCUをスキップモードで符号化した際のRDコストに係数を乗じたものとする。つまり、当該RDコストをRD_refとし、係数をscaleとすると、スキップ判定閾値は、以下の式(3)となる。
スキップ判定閾値=RD_ref×scale …(3)
ステップS204において、コスト比較部112は、符号化対象LCUをスキップモードで符号化した場合のRDコストとスキップ判定閾値とを比較する。ステップS205において、コスト比較部112は、RDコストがスキップ判定閾値を下回ると判断した場合には(ステップS205:YES)、ステップS206の処理に移る。ステップS206において、コスト比較部112は、符号化対象LCUをスキップモードで符号化すると判定し、判定結果をスキップ判定情報としてブロック分割決定部12に通知して当該フローを完了する。一方、コスト比較部112は、RDコストがスキップ判定閾値以上であると判断した場合には(ステップS205:NO)、ステップS203の処理に移る。ステップS203において、コスト比較部112は、符号化対象LCUをスキップモードで符号化すると判定しないことをスキップ判定情報としてブロック分割決定部12に通知し、当該フローを完了する。
[第2の実施形態]
上述した第1の実施形態では、図2のフローのステップS102において、符号化対象LCUに隣接する上、左の両方のLCUが最適スキップLCUであったときに、ステップS103においては無条件に左のLCUを参照してスキップ判定を行っていた。本実施形態では、隣接する上、及び左の両方のLCUが最適スキップLCUであったときの別の実施形態を示す。また、本実施形態は、参照するブロックが隣接する上、左のブロックだけでなく、隣接する左上のブロックを含むなど、複数ブロックを参照する場合に容易に応用できる。以下、第1の実施形態との差分を中心に説明する。
図6は、本実施形態によるスキップ判定の処理フロー示す。本実施形態では、図5に示す第1の実施形態によるスキップ判定の処理フローが示す処理に代えて、同図に示す処理フローが示す処理を行う。同図に示すフローを用いて、本実施形態について説明する。
ステップS301において、ブロック特徴比較部111は、符号化対象LCUの特徴量と隣接する上、及び左の最適スキップLCUの特徴量とを比較して、符号化対象LCUについてスキップ判定を行うか否かを判定する。本実施形態で用いる特徴量とスキップ判定実行サブ条件は、第1の実施形態と同様とする。すなわち、ブロック特徴比較部111は、符号化対象LCUと隣接する左の最適スキップLCUについて、アクティビティの差異を評価して対応するスキップ判定実行サブ条件を満たすか否かを判定するとともに、動きベクトルおよび参照画像インデックスの差異を評価して対応するスキップ判定実行サブ条件を満たすか否かを判定する。さらに、ブロック特徴比較部111は、同様の判定を、符号化対象LCUと隣接する上の最適スキップLCUについても同様に行う。そして、ステップS302において、ブロック特徴比較部111は、上と左のそれぞれの最適スキップLCUについてスキップ判定実行条件を満たすか否かを判定する。
スキップ判定実行条件を満たす最適LCUブロックが存在しない場合(ステップS302:NO)、ブロック特徴比較部111は、ステップS303の処理に移る。ステップS303において、ブロック特徴比較部111は、スキップ判定を行わないことを示すスキップ判定有無情報をコスト比較部112に通知する。コスト比較部112は、スキップ判定有無情報がスキップ判定を行わないことを示しているため、符号化対象LCUをスキップモードで符号化すると判定しないことをスキップ判定情報としてブロック分割決定部12に通知し、当該フローを完了する。
一方で、上の最適スキップLCUと左の最適スキップLCUのいずれかまたは両方がスキップ判定実行条件を満たす場合(ステップS302:YES)、ブロック特徴比較部111は、スキップ判定を行うことを示すスキップ判定有無情報と、スキップ判定実行条件を満たす最適スキップLCUをコスト比較部112に通知する。コスト比較部112は、スキップ判定有無情報がスキップ判定を行うことを示している場合、ステップS304の処理に移る。
ステップS304において、コスト比較部112は、スキップ判定実行条件を満たす最適スキップLCUが1つであるか否かを判定する。ブロック特徴比較部111が、スキップ判定実行条件を満たす最適スキップLCUは1つであると判定した場合(ステップS304:YES)、ステップS305の処理に移る。ステップS305において、コスト比較部112は、スキップ判定実行条件を満たす最適スキップLCUを参照LCUとして、スキップ判定閾値を算出する。この処理は第1の実施形態と同様であるため、説明は省略する。スキップ判定閾値の算出後、コスト比較部112はステップS307の処理に移る。
一方で、ブロック特徴比較部111が、スキップ判定実行条件を満たす最適スキップLCUが複数ある(本実施形態の場合、上および左の両方の最適スキップLCU)と判定した場合(ステップS304:NO)、ステップS306の処理に移る。ステップS306において、コスト比較部112は、最適スキップLCUのスキップモードRDコストに基づく統計量からスキップ判定閾値を算出する。具体的な統計量としては、スキップ判定実行条件を満たす最適スキップLCUのスキップモードのRDコストの平均値、中央値、最小値などが考えられる。例えば、最小値RD_minを利用する場合、スキップ判定閾値は以下の式(4)で与えられる。
スキップ判定閾値=RD_min×scale …(4)
スキップ判定閾値の算出後、コスト比較部112はステップS307の処理に移る。ステップS307以降の処理は、図5のステップS204においてスキップ判定閾値を設定した以降の処理と同様である。
すなわち、ステップS307において、コスト比較部112は、符号化対象LCUをスキップモードで符号化した場合のRDコストと、ステップS305またはステップS306において算出したスキップ判定閾値を比較する。ステップS308において、RDコストが下回ると判定した場合、コスト比較部112は、ステップS309の処理に移る。コスト比較部112は、符号化対象LCUをスキップモードで符号化すると判定し、判定結果をスキップ判定情報としてブロック分割決定部12に通知する。一方、ステップS308において、RDコストがスキップ判定閾値以上であると判断した場合、コスト比較部112は、ステップS303の処理に移る。コスト比較部112は、符号化対象LCUをスキップモードで符号化すると判定しないことをスキップ判定情報としてブロック分割決定部12に通知する。
[第3の実施形態]
HEVCにおいては、各CUサイズにおいてスキップモードで符号化することができる。第1及び第2の実施形態ではLCUについてのみスキップ判定を行っていた。また、これらの実施形態では、参照する最適スキップブロックをLCUのみとした。本実施形態では、各CUサイズにおいてスキップ判定を行うとともに、参照する最適スキップブロックのサイズも様々なサイズを許容する。以下、第1及び第2の実施形態との差分を中心に説明する。
第1及び第2の実施形態における処理対象CUに対する予測モード及び最適分割判定の処理フローは、図2の通りであるが、本実施形態においては、各CUサイズについてスキップ判定を実行する場合があるため、若干フローが異なる。
図7は、本実施形態による処理対象CUに対する予測モード及び最適分割判定の処理フローを示す図である。同図に示す処理フローが図2に示す第1の実施形態の処理フローと異なる点は、処理対象CUのサイズに関わらず、図7に示すステップS401において、処理対象CUに隣接する左もしくは上に最適スキップブロックが存在するか否かを判定している点である。ここで、最適スキップブロックはCUであり(以下、「最適スキップCU」と記載する。)、CUサイズは任意である。
図8は、左もしくは上に処理対象CUと異なるサイズの最適スキップCUが存在する状況の1例を示す。同図に示す例では、16x16画素の処理対象CUの左に隣接し、当該処理対象CUよりも下位階層の8x8画素のCUが最適スキップCUである。
図7のステップS401において、隣接する左もしくは上に最適スキップCUが存在すると判定された場合は(ステップS401:YES)、後述するステップS402の処理に移り、スキップ判定が行われる。一方で、隣接する左もしくは上に最適スキップCUが存在しないと判定された場合は(ステップS401:NO)、ステップS404以降の処理に移る。ステップS404以降のフローは、図2に示すステップS105以降のフローと同じであるため、説明を省略する。
ステップS402のスキップ判定において、スキップ判定部11は、LCUをCUと読み替え、以下の点を除いて、図6に示す第2の実施形態のスキップ判定の処理フローを実行する。
ステップS301において、ブロック特徴比較部111は、符号化対象CUと最適スキップCUの特徴量の比較を行うが、それぞれのCUサイズが異なり、かつ、特徴量の値の大きさがCUサイズに依存して変わるようなものを利用する場合、特徴量について正規化等(サイズに依存しない値へのスケーリング)を行ってから比較する。また、ステップS305およびステップS306においても、RDコストの正規化が必要である。RDコストの場合、符号化歪Dのみの正規化が必要である。従い、コスト比較部112は、あるCUの正規化されたRDコストRD_sを算出するにあたり、当該CUの画素数pnum_CUを利用して、符号化歪Dを以下の式(5)のようにスケーリングし、正規化した符号化歪D_sを算出する。
D_s=D/pnum_CU …(5)
そして正規化されたRDコストRD_sは、次式(6)で与えられる。
RD_s=R+D_s …(6)
図7のステップS402におけるスキップ判定後のステップS403以降の処理は、図2に示すステップS104以降の処理と同様である。つまり、符号化装置1は、符号化対象CUをスキップモードで符号化すると判定されなかった場合は(ステップS403:NO)、ステップS404の処理に移り、スキップモードで符号化すると判定された場合は(ステップS403:YES)、ステップS412の処理に移る。ステップS412の処理は、図2に示すステップS113の処理と同様である。
なお、図7のステップS401においては、存在を判定する対象の最適スキップブロックを任意のサイズとしているものの、CUサイズが所定サイズより大きい最適スキップCUが処理対象CUに隣接する左もしくは上に存在するか否かを判定しても良い。例えば、この所定サイズを8x8画素とした場合、図8に示した例では、8x8画素よりも大きい最適スキップCUが処理対象CUに隣接する左もしくは上に存在しないため、NOと判定し、ステップS404の処理に移る。このようなサイズ制限を設ける理由は次の通りである。すなわち、小さいCUで符号化されている領域は、インター予測およびイントラ予測のいずれにおいても精度の高い予測が出来なかった可能性が高い。このような場合、スキップモードを含めた、あらゆる予測モードにおけるRDコストが著しく大きい。このようにRDコストが著しく大きいような最適スキップCUを参照しないようにするため、小さいサイズのCUを参照しないようにすることが有効である。
[その他のバリエーション]
以上説明した実施形態ではRDコストを利用してスキップ判定を行ったが、符号化歪DをRDコストに置き換えてスキップ判定を行っても、同様の効果を得ることができる。より一般的には、RDコストや符号化歪のように、符号化効率を評価するためのコストであれば、同様の効果を得ることができる。
また、上述した実施形態では、図2のステップS102において、符号化対象LCUの上もしくは左に隣接するLCUが最適スキップブロックであるか否かをチェックしているが、符号化対象LCUの上もしくは左に隣接するLCUが、スキップモードで符号化されたブロックであるか否かを判定してもよい。つまり、符号化対象LCUの上もしくは左に隣接するLCUが、ステップS103におけるスキップ判定でスキップモードと判定されていたブロック、または、ステップS105以降のフローにより、他の予測モードとの比較の結果、スキップモードと判定されていたブロックのいずれかであるか否かを判定する。同様に、図7のステップS401において、処理対象CUに隣接する左もしくは上にスキップモードで符号化されたブロックが存在するか否かを判定するようにしてもよい。最適スキップブロックであるか否かを判定したほうがスキップ判定の信頼性はより高くなるものの、スキップ判定によりスキップモードと判定されたブロックも含めてスキップモードで符号化されたブロックであるか否かを判定する場合でも、従来技術と比較してスキップ判定の信頼性は向上する。
[効果]
本実施形態によれば、従来技術Bと異なり、スキップ判定に先立ち、参照ブロックと符号化対象ブロックの特徴の比較を行う。これにより、動き探索省略を可能とするスキップモードにより符号化するか否かのスキップ判定を行っても符号化効率の悪化が生じないと推定される場合に限り、符号化対象ブロックに対するスキップ判定を行う。このため、参照ブロックを一つとして演算量を削減しても、従来技術Bと比較して符号化効率の悪化を小さくすることができる。
上述した実施形態における符号化装置1をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
ブロック単位で動画像のピクチャの符号化を行うエンコーダに利用可能である。
1…符号化装置, 11…スキップ判定部, 12…ブロック分割決定部, 13…インター予測部, 14…イントラ予測部, 15…切替部, 16…変換部, 17…量子化部, 18…エントロピー符号化部, 19…逆量子化部, 20…逆変換部, 21…ループフィルタ部, 22…参照画像メモリ, 111…ブロック特徴比較部, 112…コスト比較部

Claims (7)

  1. ブロック単位で予測モードを決定して動画像の画像データを符号化する動画像符号化装置が実行する予測モード決定方法であって、
    1つ以上の特徴量について、前記画像データにおける符号化対象ブロックと、当該符号化対象ブロックに隣接し、かつ、スキップモードで符号化されている参照候補ブロックとの前記特徴量の差異を計算するブロック特徴比較ステップと、
    前記ブロック特徴比較ステップにおいて計算された前記特徴量の差異が、当該特徴量について定められた条件を満たすか否かを判定するスキップ判定実行有無決定ステップと、
    前記スキップ判定実行有無決定ステップにおいて前記特徴量の差異が当該特徴量について定められた前記条件を満たすと判定された場合に前記参照候補ブロックを参照ブロックとし、前記参照ブロックにおけるスキップモードのコストから求められる閾値と、前記符号化対象ブロックをスキップモードとした場合のコストとを比較して前記符号化対象ブロックの予測モードをスキップモードとするか否かを判定するスキップ判定ステップと、
    を有することを特徴とする予測モード決定方法。
  2. 前記ブロック特徴比較ステップにおいては、前記特徴量の差異の計算に、前記参照候補ブロックと前記符号化対象ブロックとの動きベクトルの一致度合いの計算を含み、
    前記スキップ判定実行有無決定ステップにおいては、前記参照候補ブロックと前記符号化対象ブロックとの動きベクトルの一致度合いが所定以内である場合に、動きベクトルについて定められた前記条件を満たすと判定する、
    ことを特徴とする請求項1に記載の予測モード決定方法。
  3. 前記ブロック特徴比較ステップにおいては、前記特徴量の差異の計算に、前記参照候補ブロックと前記符号化対象ブロックとの複雑さ指標値の大小の計算を含み、
    前記スキップ判定実行有無決定ステップにおいては、前記符号化対象ブロックの複雑さが前記参照候補ブロックの複雑さを上回る場合に、複雑さ指標値について定められた前記条件を満たすと判定する、
    ことを特徴とする請求項1に記載の予測モード決定方法。
  4. 前記符号化対象ブロックに隣接し、かつ、スキップモードで符号化されている参照候補ブロックが複数存在する場合、
    前記ブロック特徴比較ステップにおいては、前記符号化対象ブロックと複数の前記参照候補ブロックそれぞれとの前記特徴量の差異を計算し、
    前記スキップ判定実行有無決定ステップにおいては、複数の前記参照候補ブロックのうち、前記ブロック特徴比較ステップにおいて計算された前記特徴量の差異が当該特徴量について定められた条件を満たす参照候補ブロックを参照ブロックとする、
    ことを特徴とする請求項1から請求項3のいずれか1項に記載の予測モード決定方法。
  5. 前記ブロック特徴比較ステップにおいては、当該符号化対象ブロックに隣接し、かつ、スキップモードで符号化されているブロックのうち、所定のサイズより大きなブロックを参照候補ブロックとする、
    ことを特徴とする請求項1から請求項4のいずれか1項に記載の予測モード決定方法。
  6. ブロック単位で予測モードを決定して動画像の画像データを符号化する動画像符号化装置であって、
    1つ以上の特徴量について、前記画像データにおける符号化対象ブロックと、当該符号化対象ブロックに隣接し、かつ、スキップモードで符号化されている参照候補ブロックとの前記特徴量の差異を計算し、計算された前記特徴量の差異が、当該特徴量について定められた条件を満たすか否かを判定するブロック特徴比較部と、
    前記ブロック特徴比較部において前記特徴量の差異が当該特徴量について定められた前記条件を満たすと判定された場合に前記参照候補ブロックを参照ブロックとし、前記参照ブロックにおけるスキップモードのコストから求められる閾値と、前記符号化対象ブロックをスキップモードとした場合のコストとを比較して前記符号化対象ブロックの予測モードをスキップモードとするか否かを判定するコスト比較部と、
    を備えることを特徴とする動画像符号化装置。
  7. 動画像符号化装置として用いられるコンピュータに、
    請求項1から請求項5のいずれか1項に記載の予測モード決定方法の各ステップを実行させるための予測モード決定プログラム。
JP2013077259A 2013-04-02 2013-04-02 予測モード決定方法、動画像符号化装置、及び予測モード決定プログラム Active JP5702820B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013077259A JP5702820B2 (ja) 2013-04-02 2013-04-02 予測モード決定方法、動画像符号化装置、及び予測モード決定プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013077259A JP5702820B2 (ja) 2013-04-02 2013-04-02 予測モード決定方法、動画像符号化装置、及び予測モード決定プログラム

Publications (2)

Publication Number Publication Date
JP2014204208A true JP2014204208A (ja) 2014-10-27
JP5702820B2 JP5702820B2 (ja) 2015-04-15

Family

ID=52354307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013077259A Active JP5702820B2 (ja) 2013-04-02 2013-04-02 予測モード決定方法、動画像符号化装置、及び予測モード決定プログラム

Country Status (1)

Country Link
JP (1) JP5702820B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109688414A (zh) * 2018-12-19 2019-04-26 同济大学 一种vvc帧内编码单元候选预测模式缩减及块划分提前终止方法
CN112714312A (zh) * 2019-10-24 2021-04-27 腾讯科技(深圳)有限公司 编码模式选择方法、装置以及可读存储介质
CN112839224A (zh) * 2019-11-22 2021-05-25 腾讯科技(深圳)有限公司 一种预测模式选择方法、装置、视频编码设备及存储介质
CN113315967A (zh) * 2021-07-28 2021-08-27 腾讯科技(深圳)有限公司 视频编码方法、装置、介质及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277486A (ja) * 2004-03-23 2005-10-06 Nippon Telegr & Teleph Corp <Ntt> 映像符号化演算量制御方法,映像符号化演算量制御装置,映像符号化演算量制御プログラムおよびそのプログラム記録媒体
JP2007060452A (ja) * 2005-08-26 2007-03-08 Nippon Telegr & Teleph Corp <Ntt> 動画像予測符号化方法、動画像予測符号化装置、動画像予測符号化プログラム及びそのプログラムを記録したコンピュータ読み取り可能な記録媒体
US20070140344A1 (en) * 2005-12-16 2007-06-21 Masato Shima Fast macroblock encoding with the early qualification of skip prediction mode using its temporal coherence
JP2009005217A (ja) * 2007-06-25 2009-01-08 Nippon Telegr & Teleph Corp <Ntt> 画像符号化方法,画像復号方法,画像符号化装置,画像復号装置,画像符号化プログラム,画像復号プログラムおよびコンピュータ読み取り可能な記録媒体
JP2009021673A (ja) * 2007-07-10 2009-01-29 Nippon Telegr & Teleph Corp <Ntt> 符号化パラメータ決定方法、符号化パラメータ決定装置、符号化パラメータ決定プログラムおよびそのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP2013157662A (ja) * 2012-01-26 2013-08-15 Nippon Telegr & Teleph Corp <Ntt> 動画像符号化方法,動画像符号化装置および動画像符号化プログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277486A (ja) * 2004-03-23 2005-10-06 Nippon Telegr & Teleph Corp <Ntt> 映像符号化演算量制御方法,映像符号化演算量制御装置,映像符号化演算量制御プログラムおよびそのプログラム記録媒体
JP2007060452A (ja) * 2005-08-26 2007-03-08 Nippon Telegr & Teleph Corp <Ntt> 動画像予測符号化方法、動画像予測符号化装置、動画像予測符号化プログラム及びそのプログラムを記録したコンピュータ読み取り可能な記録媒体
US20070140344A1 (en) * 2005-12-16 2007-06-21 Masato Shima Fast macroblock encoding with the early qualification of skip prediction mode using its temporal coherence
JP2009005217A (ja) * 2007-06-25 2009-01-08 Nippon Telegr & Teleph Corp <Ntt> 画像符号化方法,画像復号方法,画像符号化装置,画像復号装置,画像符号化プログラム,画像復号プログラムおよびコンピュータ読み取り可能な記録媒体
JP2009021673A (ja) * 2007-07-10 2009-01-29 Nippon Telegr & Teleph Corp <Ntt> 符号化パラメータ決定方法、符号化パラメータ決定装置、符号化パラメータ決定プログラムおよびそのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP2013157662A (ja) * 2012-01-26 2013-08-15 Nippon Telegr & Teleph Corp <Ntt> 動画像符号化方法,動画像符号化装置および動画像符号化プログラム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109688414A (zh) * 2018-12-19 2019-04-26 同济大学 一种vvc帧内编码单元候选预测模式缩减及块划分提前终止方法
CN112714312A (zh) * 2019-10-24 2021-04-27 腾讯科技(深圳)有限公司 编码模式选择方法、装置以及可读存储介质
CN112714312B (zh) * 2019-10-24 2023-07-18 腾讯科技(深圳)有限公司 编码模式选择方法、装置以及可读存储介质
CN112839224A (zh) * 2019-11-22 2021-05-25 腾讯科技(深圳)有限公司 一种预测模式选择方法、装置、视频编码设备及存储介质
CN112839224B (zh) * 2019-11-22 2023-10-10 腾讯科技(深圳)有限公司 一种预测模式选择方法、装置、视频编码设备及存储介质
CN113315967A (zh) * 2021-07-28 2021-08-27 腾讯科技(深圳)有限公司 视频编码方法、装置、介质及电子设备
CN113315967B (zh) * 2021-07-28 2021-11-09 腾讯科技(深圳)有限公司 视频编码方法、装置、介质及电子设备

Also Published As

Publication number Publication date
JP5702820B2 (ja) 2015-04-15

Similar Documents

Publication Publication Date Title
EP3560197B1 (en) Low-complexity sign prediction for video coding
JP6995952B2 (ja) インタ予測方法及びその装置
KR102620624B1 (ko) 영상 복호화 방법 및 컴퓨터로 읽을 수 있는 기록 매체
KR102244085B1 (ko) 예측 움직임 벡터 유도 방법 및 이러한 방법을 사용하는 장치
US10904567B2 (en) Intra prediction mode-based image processing method, and apparatus therefor
US10602155B2 (en) Intra prediction method and apparatus
TWI502966B (zh) 影像編碼方法、裝置、影像解碼方法、裝置及電腦程式
JP5702820B2 (ja) 予測モード決定方法、動画像符号化装置、及び予測モード決定プログラム
JP2015211386A (ja) 動画像符号化装置、動画像符号化方法及び動画像符号化用コンピュータプログラム
JP6259272B2 (ja) 映像符号化装置及び映像符号化プログラム
JP5798467B2 (ja) 符号化タイプ決定装置及び動画像符号化装置、符号化タイプ決定方法及び動画像符号化方法、プログラム
JP5592246B2 (ja) コンテクスト適応エントロピー符号化方法,コンテクスト適応エントロピー復号方法,コンテクスト適応エントロピー符号化装置,コンテクスト適応エントロピー復号装置およびそれらのプログラム
JP2016187134A (ja) 予測モード判定方法及び予測モード判定プログラム
JP6694086B2 (ja) 映像符号化装置、映像復号装置、映像符号化方法、映像復号方法及びプログラム
JP6323185B2 (ja) 動画像符号化装置、動画像符号化方法及び動画像符号化用コンピュータプログラム
JP6392702B2 (ja) 符号量推定方法、映像符号化装置及び符号量推定プログラム
JP6438376B2 (ja) 映像符号化装置、映像復号装置、映像符号化方法、映像復号方法、映像符号化プログラム及び映像復号プログラム
KR20140124446A (ko) 인트라 예측을 이용한 비디오 부호화/복호화 방법 및 장치
KR20130069681A (ko) 움직임 벡터 부호화 방법 및 장치와 그를 이용한 영상 부호화/복호화 방법 및 장치

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150220

R150 Certificate of patent or registration of utility model

Ref document number: 5702820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150