JP2014203612A - 薄膜ヒータ及びその製造方法 - Google Patents

薄膜ヒータ及びその製造方法 Download PDF

Info

Publication number
JP2014203612A
JP2014203612A JP2013077671A JP2013077671A JP2014203612A JP 2014203612 A JP2014203612 A JP 2014203612A JP 2013077671 A JP2013077671 A JP 2013077671A JP 2013077671 A JP2013077671 A JP 2013077671A JP 2014203612 A JP2014203612 A JP 2014203612A
Authority
JP
Japan
Prior art keywords
thin film
silicone rubber
layer
insulating
rubber layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013077671A
Other languages
English (en)
Inventor
隆雄 西川
Takao Nishikawa
隆雄 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuma Giken Co Ltd
Original Assignee
Mitsuma Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuma Giken Co Ltd filed Critical Mitsuma Giken Co Ltd
Priority to JP2013077671A priority Critical patent/JP2014203612A/ja
Publication of JP2014203612A publication Critical patent/JP2014203612A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

【課題】熱膨張率の差異に起因する問題点が解消され、長期間にわたって安定して使用することができる薄膜ヒータ及びその製造方法を提供する。【解決手段】本発明の薄膜ヒータは、電気的に絶縁性のシリコーンゴムにより構成される第1の絶縁性シリコーンゴム層(10)と、第1の絶縁性シリコーンゴム層上に一体的に形成され、抵抗発熱体として機能する導電性シリコーンゴム薄膜体(11)と、前記第1の絶縁性シリコーンゴム層上に前記導電性シリコーンゴム薄膜体を被覆するように形成した第2の絶縁性シリコーンゴム層(12)と、導電性シリコーンゴム薄膜体と電気的に接続した給電電極(13a,13b)とを有する。本発明の薄膜ヒータは3つのシリコーンゴム層により構成されるので、熱膨張係数の差異に起因する課題が解決され、長期間にわたって安定して使用することが可能である。【選択図】 図1

Description

本発明は、導電性シリコーンゴム薄膜体を抵抗発熱体として利用する薄膜ヒータ及びその製造方法に関するものである。
ポットや保温器の加熱手段として、シーズヒータや面状発熱体が使用されている。従来の面状発熱体として、面状の金属材料により構成される金属発熱体と、金属発熱体を両面側からそれぞれ被覆する第1及び第2のシリコーンラバー層と、これらシリコーンラバー層を包むガラスクロスとを有する面状発熱体が既知である(例えば、特許文献1参照)
別の面状発熱体として、シリコーン樹脂中にカーボン粉末が混合された板状の発熱体と、この板状の発熱体の両側にそれぞれ配置した1対の板状電極とを有する面状発熱体が既知である(例えば、特許文献2参照)。この既知の面状発熱体では、シリコーン樹脂中にカーボン粉末が分散された導電性の合成樹脂板を抵抗発熱体として用い、導電性の合成樹脂板の両側にステンレスネットにより構成される電極が設けられている。この面状発熱体は、180℃の温度付近からヒータの抵抗値が急増し、その変曲点を超えると電流が急激に低下する特性を有し、この抵抗値の急激な変化を利用して自己温度制御型の面状ヒータが構成されている。
特開2011−86444号公報 特開2004−241274号公報
面状発熱体の重要な機能として、抵抗発熱体の外周を電気的に絶縁性の絶縁性材料で被覆し、安定して使用できることが要求される。特許文献1に開示された面状発熱体においては、発熱体として金属材料が用いられ、発熱体を被覆する材料としてシリコーンラバーが用いられている。シリコーン樹脂は優れた耐熱性及び絶縁性を有するので、抵抗発熱体を被覆する絶縁性材料として好適である。しかしながら、抵抗発熱体として金属材料の発熱体を用いた場合、金属の発熱体とシリコーンラバーは、熱膨張係数が大幅に相違するため、長期間にわたって繰り返し使用すると、金属の発熱体とシリコーンラバーとの間の接着が劣化し、シリコーンラバーが破損する危険性がある。さらに、発熱体を被覆するシリコーンラバーが破損した場合、絶縁劣化が発生し事故の原因となるおそれがある。
特許文献2に開示された面状ヒータにおいては、シリコーン樹脂にカーボン粉末が混合された板状の発熱体が用いられ、電極材料としてステンレスネットが用いられている。しかしながら、シリコーン樹脂の熱膨張係数とステンレスネットの熱膨張係数が異なるため、発熱体と電極との間に剥離現象が発生し、事故の原因となる欠点がある。さらに、発熱体の構造は、カーボン粉末が分散したシリコーン樹脂の板状体であり、固体のシリコーン樹脂中に固体のカーボン粉末が分散した構造である。従って、カーボンの熱膨張係数と固体のシリコーン樹脂の熱膨張係数が相違するため、昇温と降温を繰り返すと、熱膨張係数の差異に起因して、カーボン分散シリコーン樹脂体の発熱体にクラックが発生するおそれがある。しかも、熱膨張率の差異に起因してカーボン粒子間の接合状態も変化し、電流路を形成するネットワーク構造が変化し、この結果抵抗発熱体の抵抗値が変動する不具合もある。さらに、特許文献2に記載の面状発熱体では、発熱体の両側に配置された電極本体が剥き出しの状態にされており、実用上危険性が高く、実用化するには極めて困難である。
さらに、特許文献2に記載の面状ヒータで用いられている発熱体は、シリコーン樹脂中にカーボン粉末が混合された合成樹脂材料で構成され、この発熱体は180℃の温度付近において、抵抗値が急増する特性を利用して自己制御型のヒータを構成している。しかしながら、発熱体の抵抗値が特定の温度を超えると急増する特性を有する場合、変曲点以外の温度条件下で使用する場合、温度コントロールが極めて困難であり、実用上種々の難点が認められる。
さらに、特許文献2には、発熱体としてシリコーン樹脂中にカーボン粉末が分散された抵抗発熱体を用いることが記載されているものの、その具体的な製造方法は開示されていない。
本発明の目的は、上述した熱膨張率の差異に起因する問題点が解消され、長期間にわたって安定して使用することができる薄膜ヒータを提供することにある。
さらに、本発明の別の目的は、シリコーンゴム材料を主体とし、長期間にわたって安定して使用することができる薄膜ヒータを提供することにある。
さらに、本発明の別の目的は、シリコーンゴム材料を主体とする薄膜ヒータの製造方法を提供することにある。
本発明による薄膜ヒータは、導電性シリコーンゴム薄膜体を抵抗発熱体として用いる薄膜ヒータであって、電気的に絶縁性のシリコーンゴムにより構成される第1の絶縁性シリコーンゴム層と、第1の絶縁性シリコーンゴム層上に形成され、抵抗発熱体として機能する導電性シリコーンゴム薄膜体と、前記第1の絶縁性シリコーンゴム層上に前記導電性シリコーンゴム薄膜体を被覆するように形成した第2の絶縁性シリコーンゴム層と、前記導電性シリコーンゴム薄膜体と電気的に接続した給電電極とを有することを特徴とする。
本発明者が種々の実験及び解析を行った結果、液状シリコーンにカーボン粉末やグラファイトを混合すると良好に分散し、導電性のシリコーン層が形成されることが判明した。しかしながら、ベースシート上に形成された導電性シリコーン層について加硫して導電性シリコーンゴム層を形成した場合、得られた導電性シリコーンゴム層の抵抗値は数1000Ω程度であり、抵抗値が大きすぎ、抵抗発熱体として好適な抵抗値の発熱体が実現されないことが判明した。この問題点を解決するためさらに実験を重ねたところ、電気的に絶縁性のシリコーンのベースシート上に導電性の液状シリコーンの薄膜層を形成し、常圧条件下においてシリコーン薄膜層が部分的に加硫されるまで(半加硫状態となるまで)常圧加硫処理を行い、続いて加圧条件下においてシリコーン薄膜層全体が加硫されるまで加圧加硫処理を行うことにより、抵抗発熱体として好適な抵抗値を有する導電性シリコーンゴム薄膜体が形成できることが判明した。すなわち、例えば数100Wのヒータを実現する場合、20〜60Ω程度の抵抗値の抵抗発熱体が必要になる。この場合、発明者による実験結果によれば、ベースシート上に100μm程度の厚さの導電性シリコーン薄膜層を形成し、常圧加硫処理及び加圧加硫を行うことにより、ほぼ20〜60Ω程度の抵抗発熱体が実現されることが確認された。さらに、導電性シリコーンゴム薄膜体の抵抗値は、室温から200℃の温度範囲において繰り返し使用してもほぼ一定値を維持することも確認された。
上述した実験結果に基づき、本発明では、抵抗発熱体として導電性シリコーンゴム薄膜体を用い、抵抗発熱体を包囲する電気的絶縁材料として絶縁性のシリコーンゴム層を用いる。このように構成すれば、抵抗発熱体とその周囲に形成される絶縁性材料は共にシリコーンゴムにより構成され、これらの材料の熱膨張係数はほぼ一致する。従って、動作中に、同一の熱膨張係数のもとで3つのシリコーンゴム層が一体となって膨張及び収縮するので、絶縁破壊が発生する不都合が解消される。
さらに重要なこととして、シリコーンゴムは、熱的にすなわち温度変化に対して弾性変形可能な材料である。従って、抵抗発熱体を構成する導電性シリコーンゴム薄膜体に関して、カーボンやグラファイトにより構成される電流路のネットワークは熱的に弾性変形可能なシリコーンゴムにより支持される。従って、抵抗発熱体の外周に設けた絶縁性のシリコーンゴム層が伸縮しても、動作中にネットワークを支持するシリコーンゴムも同様に伸縮するため、電流路を構成するネットワークはほとんど変化せず、抵抗発熱体自身は温度変化に対してほぼ一定の抵抗値を維持することができる。この結果、導電性シリコーンゴム薄膜体の厚さや幅又はパターン形状を調整することにより、所望の抵抗値を有する抵抗発熱体を形成することが可能になる。
本発明による薄膜ヒータでは、抵抗発熱体の厚さは100μm程度に設定することができ、抵抗発熱体を被覆する絶縁性シリコーンゴム層の厚さは数100μm程度に設定することが可能である。従って、厚さが約1mm程度で熱容量が小さく且つ弾性変形可能な薄膜ヒータが実現される。さらに、シリコーンゴムは機械的に弾性変形可能であり、薄膜ヒータ自身が機械的に変形可能であるため、ホットプレートのように特有の表面形状を有するベース材料の裏面に密着するように直接取り付けることが可能である。この結果、ヒータで発生した熱エネルギーが被加熱体に直接伝達するので、熱交換効率が高く昇温性に優れた薄膜ヒータが実現される。すなわち、現在ポットの加熱手段として利用されているシーズヒータの場合、シーズヒータをホットプレート等に直接取り付けることができず、空気層を介して加熱する。この場合、空気層から熱が消散するため、加熱効率が低い問題点がある。これに対して、本発明のヒータの場合、ホットプレートやポットの底部に直接貼り付けることがきるので、被加熱体を直接加熱することができ、加熱効率が一層高くなる効果が達成される
本発明による薄膜ヒータの製造方法は、導電性シリコーンゴム薄膜体を抵抗発熱体として用いる薄膜ヒータの製造方法であって、
ベースプレート上に電気的に絶縁性の第1の絶縁性シリコーンゴム層を形成する工程と、
前記第1の絶縁性シリコーンゴム層上に導電性シリコーン薄膜層を形成する工程と、
常圧条件下において、前記導電性シリコーン薄膜層が部分的に加硫されるように常圧加硫処理を行い、続いて加圧条件下において加圧加硫処理を行って前記導電性シリコーン薄膜層全体を加硫し、前記第1の絶縁性シリコーンゴム層上に導電性シリコーンゴム薄膜体を形成する工程と、
前記導電性シリコーンゴム薄膜体が形成されている第1の絶縁性シリコーンゴム層上に、前記導電性シリコーンゴム薄膜体を覆うように電気的に絶縁性のシリコーンゴムから成る第2の絶縁性シリコーンゴム層を形成する工程とを含むことを特徴とする。
本発明者による実験結果によれば、カーボン粒子やグラファイトが分散した液状シリコーンを用い、絶縁性のシリコーンゴム層上に導電性シリコーン層形成し、その後加硫処理を行った場合、抵抗値が数1000Ωの抵抗発熱体が形成され、抵抗値が高すぎ、薄膜ヒータや面状ヒータに好適な抵抗値を有する抵抗発熱体を形成することができなかった。この課題を解決するため、種々の実験及び解析を行った結果、常圧条件下において半加硫状態となるまで常圧加硫処理を行い、続いて加圧条件下においてシリコーン薄膜層全体が加硫されまで加圧加硫を行うことにより、数10Ω程度の抵抗値の抵抗発熱体が形成されることが判明した。すなわち、本発明では、導電性シリコーン薄膜層について、常圧条件下において架橋反応が部分的に進行した半加硫処理を行い、続いて、半加硫状態(半ゴム状態)の導電性シリコーン層を加圧条件下において導電性シリコーン薄膜層全体が加硫されるまで加圧加硫処理を行う。
抵抗発熱体の抵抗値が大きすぎる原因は、液状シリコーン中にカーボン粒子を分散させて加硫しただけでは、隣接するカーボン粒子間に密な接触状態が形成されず、安定したネットワークが形成されないことにあると考えられる。そこで、加圧条件下において加硫処理を行う。この場合、導電性シリコーン薄膜層が全く加硫されていない状態で加圧した場合、導電性シリコーン層が横方向に拡がるだけである。そのため、本発明では、比較的低い加硫温度で部分的に架橋反応を起こさせて半加硫状態(半ゴム状態)を形成する。続いて、高温の加圧条件下において、導電性シリコーン薄膜層全体が加硫されるまで加圧加硫を行う。半加硫状態において、導電性シリコーン層を高温加圧すれば、導電性シリコーン層は部分的に架橋反応が進行した状態で圧縮された状態になり、この圧縮状態で架橋反応が進行するため、カーボン粒子間に密な接触状態が形成されながら架橋反応が進行する。この結果、安定したカーボン粒子のネットワークが形成された状態で架橋反応が進行するため、抵抗値の小さな導電性シリコーンゴム薄膜体が形成されるものと解される。
本発明による薄膜ヒータの製造方法は、導電性シリコーンゴム薄膜体を抵抗発熱体として用いる薄膜ヒータの製造方法であって、
電気的に絶縁性の第1の絶縁性シリコーンゴム層上に導電性シリコーン薄膜層を形成する工程と、
常圧条件下において、前記導電性シリコーン薄膜層が部分的に加硫されるように常圧加硫処理を行い、続いて加圧条件下において加圧加硫処理を行って前記導電性シリコーン薄膜層全体を加硫し、前記第1の絶縁性シリコーンゴム層上に導電性シリコーンゴム薄膜体を形成する工程と、
前記第1の絶縁性シリコーンゴム層及び導電性シリコーンゴム薄膜体を含むシリコーンゴムの積層体について2次加硫を行う工程と、
前記導電性シリコーンゴム薄膜体が形成されている第1の絶縁性シリコーンゴム層上に、前記導電性シリコーンゴム薄膜体を覆うように電気的に絶縁性のシリコーンゴムから成る第2の絶縁性シリコーンゴム層を形成する工程とを含むことを特徴とする。
抵抗発熱体を支持する第1の絶縁性シリコーンゴム層を、例えば金属プレートのような剛性を有する材料体上に接着された状態で加硫する場合、第1の絶縁性シリコーンゴム層は金属プレートに拘束されるため、導電性シリコーン薄膜層を加圧条件下で加圧加硫しても、動作中に絶縁性シリコーンゴム層及びその上に形成された導電性シリコーンゴム薄膜体が変形する不具合は発生しない。これに対して、抵抗発熱体を支持する第1の絶縁性シリコーンゴム層をベースシートとして利用し、フリーな状態で加硫し、その後導電性シリコーン薄膜層を形成し、常圧加硫及び加圧加硫を行って薄膜ヒータを製造すると、導電性シリコーンゴム薄膜体にクラックが発生することが判明した。
上記課題を解決するため、本発明では、アニール処理に相当する2次加硫を行うことができる。すなわち、第1の絶縁性シリコーンゴム層上に導電性シリコーンゴム薄膜体を形成した後、2次加硫を行って応力歪みを緩和する。2次加硫は、導電性シリコーンゴム薄膜体が形成された第1の絶縁性シリコーンゴム層を室温から徐々に加熱し、例えば200℃の温度雰囲気で4時間アニールする。この2次加硫において、第1の絶縁性シリコーンゴム層及びその上に形成された導電性シリコーンゴム薄膜体は同一の温度雰囲気内においてアニールされるため、第1の絶縁性シリコーンゴム層及びその上に形成された導電性シリコーンゴム薄膜体は一体的になり、導電性シリコーンゴム薄膜体にクラックが発生する不具合が解消される。尚、2次加硫は、第2の絶縁性シリコーンゴム層を形成した後、第1及び第2のシリコーンゴム層及び導電性シリコーンゴム薄膜体の3つのシリコーンゴムの積層体について行うこともできる。
本発明の薄膜ヒータは、導電性のシリコーンゴム薄膜体を抵抗発熱体として用い、導電性シリコーンゴム薄膜体の両側を絶縁性シリコーンゴム層で被覆しているので、熱容量が小さく優れた昇温特性を有する薄膜ヒータが実現される。さらに、薄膜ヒータは3つのシリコーンゴム層により構成されるので、機械的弾性変形可能であり、ポットの底部等の所望の位置に直接貼り付けることが可能である。この結果、加熱されるべき被加熱体を直接加熱するため、優れた加熱効率を有する面状ヒータが実現される。
さらに、本発明の薄膜ヒータの製造方法では、導電性シリコーン薄膜層について、常圧条件下における加硫処理と加圧条件下における加硫処理を行っているので、抵抗発熱体として好適な抵抗値を有するシリコーンゴム薄膜体を形成することが可能になる。
本発明による薄膜ヒータの一例を示す図である。 本発明による薄膜ヒータの製造方法の一連の工程を示す図である。 別の薄膜ヒータの製造工程を示す図である。 本発明による薄膜ヒータの用途例を示す図である。 薄膜ヒータの温度と抵抗値との関係を示すグラフである。
図1は本発明による薄膜ヒータの一例を示す図であり、図1(A)線図的平面図、図1(B)は図1(A)のII−II線断面図である。本発明による薄膜ヒータ1は、基材2上に設けることができる。基材2として、各種のベース材料体や被加熱体を用いることができる。また、例えばガラス繊維が含浸されている耐熱性紙、シリコーンゴムスポンジ、耐熱性フェルト(ノーメックス)、石膏ボード、金属プレート等の各種ベース材料を用いることができる。さらに、ポットや保温器の加熱手段として用いる場合、ポットや保温器の底板に直接形成することができる。さらに、アルミニウムの素管の外周に設けることによりヒートローラの加熱手段として用いることもできる。勿論、基材2に対して接着せずフリーな状態に維持し、薄膜ヒータ1を各種の用途部材に貼り付けることも可能である。また、平板状のシリコーンゴムプレート上にシリコーンゴム薄膜体を直接形成して加熱手段として利用することも可能である。尚、本例では、説明の便宜上、基材2としてアルミニウムのプレートを用い、アルミニウムのプレート上に薄膜ヒータを形成する例について説明する。
薄膜ヒータ1は、第1の電気的に絶縁性のシリコーンゴム層10と、その上に形成され、抵抗発熱体として機能する導電性のシリコーンゴム薄膜体11と、導電性シリコーンゴム薄膜体11を覆うように形成した第2の絶縁性シリコーンゴム層12とを有する3層のシリコーンゴム構造体により構成される。さらに、薄膜ヒータ1は、第1の絶縁性シリコーンゴム層10と導電性シリコーンゴム薄膜体11との間に設けられ、導電性シリコーンゴム層11に電気的に接続した2つの給電電極13a及び13bとを有する。本例では、導電性シリコーンゴム薄膜体11は、シート状の発熱体として図示したが、所定の温度分布が得られるようにパターン形状に形成することができる。給電電極13a及び13bは、リード線を介して電源に接続され、抵抗発熱体として機能する導電性シリコーンゴム層に電力が供給される。勿論、第2の絶縁性シリコーンゴム層に温度センサが取付けられ、温調回路(図示せず)の制御のもとで所定の温度に維持されるように制御することができる。尚、給電電極は、厚さが50μmの銅箔を用いる。銅箔以外の電極材料として、例えば直径が20μm又は40μm程度のステレンスのワイャの金属メッシュを用いることも可能である。
本例では、導電性シリコーンゴム薄膜体11は、90mm×300mmの矩形形状に形成し、抵抗値が約20Ωの抵抗発熱体を形成する。第1及び第2の絶縁性シリコーンゴム層10及び12は、導電性シリコーンゴム薄膜体11全体が覆われるサイズに設定する。薄膜ヒータ1の第1及び第2の絶縁性シリコーンゴム層10及び12の厚さは、一例として500μmに設定され、抵抗発熱体として機能する導電性シリコーンゴム層11の厚さは、100μmに設定することができる。この場合、厚さが1.1mmの薄膜ヒータとして利用することができる。
次に、薄膜ヒータの製造工程について説明する。図2は、図1に示す薄膜ヒータを製造するための一連の工程を示す。初めに、基材2を用意する。本例では、基材2としてアルミニウムのプレートを用いる。基材2上に第1の絶縁性シリコーンゴム層10を形成する(ステップ1)。絶縁性シリコーンゴム層は、基材2の表面にプライマー処理を行い、その上に絶縁性のシリコーン層を形成し、続いて加硫処理を行うことにより、絶縁性シリコーンゴム層10が形成される。絶縁性シリコーン層として、液状シリコーン(RTVタイプ)又は固形状のミラブルシリコーン(HTVタイプ)を用い、加硫することにより絶縁性シリコーンゴム層が形成される。ミラブルシリコーンは、厚さが300μm〜数mmの平板状のシリコーンであるため、薄膜ヒータのベースシートとして利用することができる。
絶縁性シリコーンゴム層10の表面にプライマー処理を行う。プライマー処理として、ケイ酸化炎処理を行い、ケイ酸化炎処理された絶縁性シリコーンゴム層上にプライマー層を形成する。プライマーとして、シランカップリング剤を含有するプライマー又はシランカップリング剤を主成分とするプライマーを用いることができる。さらに、シランカップリング剤に加えて、アクリル系ポリマ、ポリエステル系ポリマ、エポキシ系ポリマ等の各種ポリマ材料を含むプライマーを用いことができる。さらに、下地のシリコーンゴムは弾性を有するので、弾性を有するプライマー層も有益であり、シランカップリング剤と、変成シリコーンやエポキシ・変成シリコーンと、アクリル系やポリエステル系等のポリマとを含むプライマーを用いることができる。尚、ケイ酸化炎処理は、例えばプロパンガスのような燃焼ガス中に有機シラン化合物を供給して火炎処理により行われる。
図2(B)に示すように、プライマー処理された絶縁性シリコーンゴム層10上に1対の給電電極13a及び13bを配置する(ステップ2)。給電電極として、銅箔を用いることができる。
次に、図2(c)に示すように、導電性の液状シリコーンを用い、給電電極を覆うように、厚さが100μmの導電性のシリコーン薄膜層20を形成する。導電性シリコーン薄膜層20は、カーボンやグラファイトの粉末が分散した液状シリコーンを用い、例えばシルク印刷により形成することができる。続いて、加硫装置内に配置し、100℃で5分間の常圧加硫を行う(ステップ3)。この常圧加硫により、導電性シリコーン層は部分的に架橋反応が進行し、半加硫状態(半ゴム状態)に変成する。この場合、例えば150℃程度の高温で加硫すると、半加硫を超えて全加硫状態に移行するおそれがある。この不具合を回避するため、本発明では、比較的低い加硫温度で半加硫状態に加硫する。
続いて、半加硫状態の導電性シリコーン層の表面にプレート21を配置し、荷重を掛けた状態で常圧加硫処理よりも高い温度である150℃で15分間加圧加硫を行う(ステップ4)。加圧量は、導電性シリコーン薄膜層の厚さが例えば90%〜80%程度に圧縮されるように行う。また、この加圧加硫は、導電性シリコーン層全体が加硫されまで行われ、導電性シリコーンゴム薄膜体11が形成される。
加圧加硫が終了した後、導電性シリコーンゴム薄膜体の表面にプライマー処理を行う。続いて、導電性シリコーンゴム薄膜体11を覆うように第2の絶縁性シリコーンゴム層12を形成する(ステップ5)。第2の絶縁性シリコーンゴム層12は、厚さ500μmの絶縁性の液状シリコーン層を形成し、続いて150℃の温度雰囲気下で20分間常圧加硫を行うことにより形成される。これにより、基材2上に薄膜ヒータ1が形成される。
尚、給電電極は、第1の絶縁性シリコーンゴム層とシリコーンゴム薄膜体との間だけでなく、第2の絶縁性シリコーンゴム層とシリコーンゴム薄膜体との間に設けることも可能である。
次に、薄膜ヒータを単体で製造する製造方法について説明する。尚、図2で説明した工程と同一の工程については同一符号を付して説明する。ステップ1において、液状シリコーンを用いて、離型剤層が形成されている基材2の表面上に第1の絶縁性シリコーン層30を形成する。続いて、加硫処理を行い、第1のシリコーン層30を第1の絶縁性シリコーンゴム層に変成する。第1の絶縁性シリコーンゴム層と基材2の表面との間には離型剤層が存在するため、第1の絶縁性シリコーンゴム層は基材表面に対して拘束されず、基材2の表面から自由に取り外すことが可能である。尚、加硫前の厚さが数100μm〜数mm程度のシリコーンプレート(ミラブルシリコーン)を用い、シリコーンプレートを加硫して第1の絶縁性シリコーンゴム層30とすることも可能である。或いは、既に加硫されたシリコーンゴムプレートを第1の絶縁性シリコーンゴム層として利用することも可能である。さらに、加硫前のシリコーンプレートの裏面側に耐熱紙を配置し、シリコーンプレートと耐熱紙とを一緒にして加硫し、絶縁性シリコーンゴム層と耐熱紙とが一体化した絶縁性のシリコーンゴム層を形成することも可能である。この場合、耐熱紙の表面のアンカ効果により、シリコーン材料が耐熱紙の表面に固定されるため、プライマー処理は不要である。
次に、ステップ2において、絶縁性シリコーンゴム層の表面にプライマー処理を行う。続いて、プライマー処理された絶縁性シリコーンゴム層10上に2つの給電電極13a及び13bを配置する。
ステップ3において、絶縁性シリコーンゴム層10上に導電性シリコーン薄膜層20を形成する。
ステップ4において、100℃の温度雰囲気下において5分間常圧加硫処理を行い、導電性シリコーン薄膜層20を半加硫状態(半ゴム状態)に変成する。
続いて、ステップ5において、常圧加硫よりも高い温度である150℃の温度雰囲気下において、15分間加圧加硫処理を行う。この加圧加硫処理により、導電性シリコーン薄膜層20は導電性シリコーンゴム薄膜体に変成され、第1の絶縁性シリコーンゴム層上に給電電極及び導電性シリコーンゴム薄膜体11が形成される。
加圧加硫処理の後、基材2と共に又は基材から取り外して絶縁性シリコーンゴム層と導電性シリコーンゴム薄膜体との積層体を200℃の温度雰囲気中において例えば4時間のアニール処理(2次加硫処理)を行う。この2次加硫により、加圧加硫により生じた応力歪みを除去することができる。すなわち、第1の絶縁性シリコーンゴム層が拘束されていない状態で、その上に形成した導電性シリコーン薄膜層について加圧加硫を行うと、絶縁性シリコーンゴム層と導電性シリコーン薄膜体との間に応力歪みが発生する。一方、アニール処理を行えば、絶縁性シリコーンゴム層と導電性シリコーンゴム薄膜体との機械的特性ないしゴム特性が互いに一致し、応力歪みを緩和することができる。
次に、ステップ6において、第1の絶縁性シリコーンゴム層10上に、導電性シリコーンゴム薄膜体を覆うように第2の絶縁性シリコーンゴム層12を形成する。この薄膜ヒータの製造方法では、基材から薄膜ヒータを取り外すことが可能であるため、薄膜ヒータを所望の目的で使用することが可能になり、さらに所望の対象物に貼り付けて使用することも可能である。尚、2次加硫処理は、第1の絶縁性シリコーンゴム層に第2の絶縁性シリコーンゴム層を形成した後、第1及び第2の絶縁性シリコーンゴム層及び導電性シリコーンゴム薄膜体を含む3層構造のシリコーンゴム積層体について行うことも可能である。
次に、薄膜ヒータ単体の用途例について説明する。図4は種々の用途の例を示す。図4(A)は、本発明による薄膜ヒータ40の上側表面上にフッ素樹脂層ないしフッ素樹脂チューブ41を設けた例を示す。シリコーンゴム層の表面に対して適切なプライマー処理を行うことにより、フッ素樹脂層を設けることができ、良好な表面不活性な特性及び表面離型性を必要とする薄膜ヒータに有益である。また、図4(B)は本発明の薄膜ヒータ40をシリコーンスポンジ42上に設けた例を示す。シリコーンスポンジ42は、耐熱性を有すると共に内部に気泡を有するため優れた断熱性も有する。従って、薄膜ヒータの一方の表面を断熱して使用する用途に対して好適な薄膜ヒータが実現される。
さらに、図4(C)は、耐熱性紙43上に薄膜ヒータを一体的に形成した例を示す。シリコーンプレートと耐熱紙とを一緒にして加硫すると、シリコーンゴム層と耐熱紙とが一体化した薄膜ヒータが実現される。この場合、耐熱紙は、他の部材との接着が容易なため、耐熱紙を介して薄膜ヒータを他の部材上に設ける場合に有益である。さらに、図4(D)は、耐熱フェルト44上に薄膜ヒータを一体的に形成した例を示す。耐熱フェルトも断熱材として機能するため、簡易なヒータとして好適である。
さらに、図4(E)は、湾曲した被加熱体45の外周面上に本発明の薄膜ヒータ40を装着した例を示す。シリコーンゴムの薄膜ヒータは、弾性変形可能であるため、湾曲面上に接着剤を介して取り付けることが可能である。この場合、被加熱体に直接熱エネルギーが伝導するため、昇温性に優れた薄膜ヒータが実現される。
次に、種々の条件で実際に製造した薄膜ヒータの特性実験の結果について説明する。図5は製造された薄膜ヒータの温度と抵抗値との関係を示すグラフである。横軸は温度を示し、縦軸は薄膜ヒータの抵抗値を示す。薄膜ヒータの温度は電流を供給しながら昇温させ、放射温度計で測定したデータである。また、抵抗値は、製造された薄膜ヒータに100Vの電圧を印加し、薄膜ヒータに流れる電流量から抵抗値を算出したデータである。図5において、黒丸は、基材としてアルミニウムのベースプレートを用い、アルミニウムのベースシート上に形成された薄膜ヒータ(図2に基づいて製造した薄膜ヒータ)の特性を示す。黒四角は、アルミニウムのベースシート上に離型剤層を形成し、非拘束の状態で第1の絶縁性シリコーンゴム層を形成し、常圧加硫及び加圧加硫処理し、その後第2の絶縁性シリコーンゴム層を形成する前に200℃で4時間アニール処理した薄膜ヒータの特性を示す。白四角は、非拘束の状態で第1の絶縁性シリコーンゴム層を形成し、常圧加硫及び加圧加硫処理し、その後第2の絶縁性シリコーンゴム層を形成した薄膜ヒータ、すなわちアニール処理されていない薄膜ヒータの特性を示す。×印は、非拘束の状態で第1の絶縁性シリコーンゴム層を形成し、導電性シリコーン薄膜層について常圧加硫だけを行った薄膜ヒータの特性を示す。
ベースシート上に第1の絶縁性シリコーンゴム層を形成し、その上に導電性シリコーン層を形成し、常圧加硫処理を行い、第2の絶縁性シリコーンゴム層を形成した薄膜ヒータの場合、すなわち加圧加硫を行っていない薄膜ヒータの場合、初期抵抗値が約1000Ωであり、抵抗値が大きすぎ、抵抗発熱体として機能しなかった。
導電性シリコーン薄膜層について常圧加硫だけを行い、加圧加硫が行われない薄膜ヒータの場合(×印のデータ)、初期抵抗値は約40Ωである。しかし、50℃程度まで昇温すると、抵抗値が無限大に急増した。この現象は、導電性シリコーンゴム薄膜体にクラックが発生し、断線したものであった。
非拘束の状態で第1の絶縁性シリコーンゴム層を形成し、常圧加硫及び加圧加硫処理し、その後第2の絶縁性シリコーンゴム層を形成した薄膜ヒータ、すなわちアニール処理されていない薄膜ヒータの場合(白四角のデータ)、初期抵抗値は約20Ωである。しかし、電流供給に伴い昇温し、100℃を超えると抵抗値が急増し、クラックが発生した。
非拘束の状態で第1の絶縁性シリコーンゴム層を形成し、常圧加硫及び加圧加硫処理し、その後第2の絶縁性シリコーンゴム層を形成する前に200℃で4時間アニール処理した薄膜ヒータの場合(黒四角のデータ)、初期抵抗値は20Ωであった。また、200℃まで昇温させても、抵抗値はほぼ20Ωである。さらに、断続的に電流供給を繰り返しても、クラックは発生せず、抵抗発熱体として良好に動作した。
アルミニウムのベースシート上にプライマー層を介して形成された薄膜ヒータの場合(黒丸のデータ)、初期抵抗値は約20Ωであった。また、200℃まで昇温させても、抵抗値は20Ωを維持した。さらに、断続的に電流供給を繰り返しても、クラックは発生せず、抵抗発熱体として良好に動作した。
上述した実験結果より、以下の技術的事項が見出される。
(1) 抵抗発熱体として適切な抵抗値を有する導電性シリコーンゴム薄膜体を形成するためには、加圧加硫が必須であり、加圧加硫しない場合所望の抵抗値の導電性シリコーンゴム薄膜体を得ることはできない。
(2) ベースシート上に薄膜ヒータを非拘束の状態で形成する場合、2次加硫すなわちアニール処理が必要である。
(3) ベースプレート上に薄膜ヒータをプライマー層を介して形成した場合、アニール処理することなく、抵抗発熱体として所望の抵抗値の導電性シリコーンゴム薄膜体が実現される。
本発明による薄膜ヒータは種々の用途に用いることができる。例えば、ポットや保温器の面状ヒータと用いことができる。さらに、アルミニウムの素管上に第1の絶縁性シリコーンゴム層、導電性シリコーンゴム薄膜体、及び第2の絶縁性シリコーンゴム層を形成することによりヒートロール定着器に用いられるヒートローラが実現される。さらに、お茶やコーヒー等の飲料水を収容するコップ等の容器の底部に貼り付けることにより、簡易なポットが実現される。さらに、基材として断熱性繊維の集合体を用い、その上に第1及び第2の絶縁性シリコーンゴム層及び導電性シリコーンゴム薄膜体を直接形成することにより、携帯型の簡易なヒーターが実現される。
本発明は上述した実施例だけに限定されず、種々の変形や変更が可能である。例えば、上述した実施例で説明した薄膜ヒータの寸法は一例であり、各種用途に応じて適切に設定することができる。特に、絶縁性シリコーンゴム層の厚さ及び導電性シリコーンゴム薄膜体の厚さは、用途に応じて設定することができ。
1 薄膜ヒータ
2 基材
10 第1の絶縁性シリコーンゴム層
11 導電性シリコーンゴム薄膜体
12 第2の絶縁性シリコーンゴム層
13a,13b 給電電極
20 導電性シリコーン薄膜層
21 プレート
30 絶縁性シリコーン層

Claims (11)

  1. 導電性シリコーンゴム薄膜体を抵抗発熱体として用いる薄膜ヒータであって、電気的に絶縁性のシリコーンゴムにより構成される第1の絶縁性シリコーンゴム層と、第1の絶縁性シリコーンゴム層上に一体的に形成され、抵抗発熱体として機能する導電性シリコーンゴム薄膜体と、前記第1の絶縁性シリコーンゴム層上に前記導電性シリコーンゴム薄膜体を被覆するように形成した第2の絶縁性シリコーンゴム層と、前記導電性シリコーンゴム薄膜体と電気的に接続した給電電極とを有することを特徴とする薄膜ヒータ。
  2. 請求項1に記載の薄膜ヒータにおいて、前記第1の絶縁性シリコーンゴム層は、剛性を有するベースプレート上に形成されていることを特徴とする薄膜ヒータ。
  3. 請求項1又は2に記載の薄膜ヒータにおいて、前記第1及び第2の絶縁性シリコーンゴム層、及び導電性シリコーンゴム薄膜体は、温度変化に対して弾性変形可能であることを特徴とする薄膜ヒータ。
  4. 請求項1、2又は3に記載の薄膜ヒータにおいて、前記導電性シリコーンゴム薄膜体は、前記第1の絶縁性シリコーンゴム層上に形成した導電性シリコーン薄膜層を、常圧条件下において常圧加硫処理を行い、続いて加圧条件下において加圧加硫処理を行うことにより第1の絶縁性シリコーンゴム層上に一体的に形成されることを特徴とする薄膜ヒータ。
  5. 導電性シリコーンゴム薄膜体を抵抗発熱体として用いる薄膜ヒータの製造方法であって、
    ベースプレート上に電気的に絶縁性の第1の絶縁性シリコーンゴム層を形成する工程と、
    前記第1の絶縁性シリコーンゴム層上に導電性シリコーン薄膜層を形成する工程と、
    常圧条件下において、前記導電性シリコーン薄膜層が部分的に加硫されるように常圧加硫処理を行い、続いて加圧条件下において加圧加硫処理を行って前記導電性シリコーン薄膜層全体を加硫し、前記第1の絶縁性シリコーンゴム層上に導電性シリコーンゴム薄膜体を形成する工程と、
    前記導電性シリコーンゴム薄膜体が形成されている第1の絶縁性シリコーンゴム層上に、前記導電性シリコーンゴム薄膜体を覆うように電気的に絶縁性のシリコーンゴムから成る第2の絶縁性シリコーンゴム層を形成する工程とを含むことを特徴とする薄膜ヒータの製造方法。
  6. 導電性シリコーンゴム薄膜体を抵抗発熱体として用いる薄膜ヒータの製造方法であって、
    電気的に絶縁性の第1の絶縁性シリコーンゴム層上に導電性シリコーン薄膜層を形成する工程と、
    常圧条件下において、前記導電性シリコーン薄膜層が部分的に加硫されるように常圧加硫処理を行い、続いて加圧条件下において加圧加硫処理を行って前記導電性シリコーン薄膜層全体を加硫し、前記第1の絶縁性シリコーンゴム層上に導電性シリコーンゴム薄膜体を形成する工程と、
    前記導電性シリコーンゴム薄膜体が形成されている第1の絶縁性シリコーンゴム層上に、前記導電性シリコーンゴム薄膜体を覆うように電気的に絶縁性のシリコーンゴムから成る第2の絶縁性シリコーンゴム層を形成する工程と、
    前記第1の絶縁性シリコーンゴム層と導電性シリコーンゴム薄膜体との積層体、又は前記第1の絶縁性シリコーンゴム層と、導電性シリコーンゴム薄膜体と、第2の絶縁性シリコーンゴム層とを含む積層体について2次加硫を行う工程とを含むことを特徴とする薄膜ヒータの製造方法。
  7. 請求項5又は6に記載の薄膜ヒータの製造方法において、前記常圧加硫処理は、加硫開始後シリコーン薄膜層が部分的に加硫した半加硫状態で停止され、続いて、加圧条件下において導電性シリコーン薄膜層全体が加硫されるまで加圧加硫することを特徴とする薄膜ヒータの製造方法。
  8. 請求項5から7までのいずれか1項に記載の薄膜ヒータの製造方法において、前記導電性シリコーン薄膜層の形成に先立って前記第1の絶縁性シリコーンゴム層の表面に対してプライマー処理が行われ、当該プライマー処理は、前記第1の絶縁性シリコーンゴム層の表面にケイ酸化炎処理を行い、続いてプライマー層が形成されることを特徴とすることを特徴とする薄膜ヒータの製造方法。
  9. 請求項8に記載の薄膜ヒータの製造方法において、前記プライマー処理されたベースシート上に給電電極を構成する金属箔又は金属メッシュを配置し、その後導電性シリコーン薄膜層が形成されることを特徴とする薄膜ヒータの製造方法。
  10. 請求項5から9までのいずれか1項に記載の薄膜ヒータの製造方法において、前記第1の絶縁性シリコーンゴム層は、固形状のミラブルシリコーンを加硫することにより形成され、前記第2の絶縁性シリコーンゴム層は、液状シリコーン層を加硫することにより形成されることを特徴とする薄膜ヒータの製造方法。
  11. 請求項6に記載の薄膜ヒータの製造方法において、前記2次加硫は、200℃の温度雰囲気においてほぼ4時間行われることを特徴とする薄膜ヒータの製造方法。

JP2013077671A 2013-04-03 2013-04-03 薄膜ヒータ及びその製造方法 Pending JP2014203612A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013077671A JP2014203612A (ja) 2013-04-03 2013-04-03 薄膜ヒータ及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013077671A JP2014203612A (ja) 2013-04-03 2013-04-03 薄膜ヒータ及びその製造方法

Publications (1)

Publication Number Publication Date
JP2014203612A true JP2014203612A (ja) 2014-10-27

Family

ID=52353898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013077671A Pending JP2014203612A (ja) 2013-04-03 2013-04-03 薄膜ヒータ及びその製造方法

Country Status (1)

Country Link
JP (1) JP2014203612A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016111358A1 (ja) * 2015-01-09 2016-07-14 株式会社朝日Fr研究所 複合発熱材及びその製造方法
KR20170062606A (ko) * 2015-11-27 2017-06-08 삼성디스플레이 주식회사 디스플레이 장치용 광보정 시스템
JP6174220B1 (ja) * 2016-10-07 2017-08-02 イシイ株式会社 面状発熱体、面状発熱装置、面状発熱体用電極、及び面状発熱体の製造方法
KR20200122518A (ko) * 2019-04-18 2020-10-28 송기현 면상발열체 및 이를 채용한 차량용 온열시트
KR20210069565A (ko) * 2019-12-03 2021-06-11 안소윤 면상발열체 및 이를 채용한 휴대용 온열찜질장치
KR102356847B1 (ko) * 2021-01-11 2022-02-08 주식회사 교린 에너지 절감형 유연 면상 발열체
JP7320153B1 (ja) * 2023-03-29 2023-08-02 住友理工株式会社 内部気泡推定装置および架橋反応シミュレーション装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016111358A1 (ja) * 2015-01-09 2016-07-14 株式会社朝日Fr研究所 複合発熱材及びその製造方法
JPWO2016111358A1 (ja) * 2015-01-09 2017-07-27 株式会社朝日Fr研究所 複合発熱材及びその製造方法
KR20170062606A (ko) * 2015-11-27 2017-06-08 삼성디스플레이 주식회사 디스플레이 장치용 광보정 시스템
KR102518721B1 (ko) * 2015-11-27 2023-04-07 삼성디스플레이 주식회사 디스플레이 장치용 광보정 시스템
JP6174220B1 (ja) * 2016-10-07 2017-08-02 イシイ株式会社 面状発熱体、面状発熱装置、面状発熱体用電極、及び面状発熱体の製造方法
JP2018060760A (ja) * 2016-10-07 2018-04-12 イシイ株式会社 面状発熱体、面状発熱装置、面状発熱体用電極、及び面状発熱体の製造方法
KR20200122518A (ko) * 2019-04-18 2020-10-28 송기현 면상발열체 및 이를 채용한 차량용 온열시트
KR102183876B1 (ko) * 2019-04-18 2020-11-27 안소윤 면상발열체 및 이를 채용한 차량용 온열시트
KR20210069565A (ko) * 2019-12-03 2021-06-11 안소윤 면상발열체 및 이를 채용한 휴대용 온열찜질장치
KR102661119B1 (ko) * 2019-12-03 2024-04-26 안소윤 면상발열체 및 이를 채용한 휴대용 온열찜질장치
KR102356847B1 (ko) * 2021-01-11 2022-02-08 주식회사 교린 에너지 절감형 유연 면상 발열체
JP7320153B1 (ja) * 2023-03-29 2023-08-02 住友理工株式会社 内部気泡推定装置および架橋反応シミュレーション装置

Similar Documents

Publication Publication Date Title
JP2014203612A (ja) 薄膜ヒータ及びその製造方法
KR101460397B1 (ko) 방열과 발열 기능을 가지는 전지 조립체
TWI691399B (zh) 用於可撓式加熱器之基板、層板、及組件,可撓式加熱器,及其製造方法
JP2018511909A5 (ja) フレキシブルヒータのための積層物およびアセンブリ、フレキシブルヒータ、ならびに製造方法
CN103202093B (zh) 面状发热体及其制造方法
TWI307542B (en) Substrate processing device
EP2701460B1 (en) Spiral tube-like heater
JP2009009835A (ja) 面状発熱体
CN102529284A (zh) 压合装置及使用该压合装置的电路板压合方法
CN102045900A (zh) 一种新型电加热单元
KR20190018600A (ko) 탄소섬유를 이용한 배터리 보온용 발열체 및 그 제조 방법
US20200015323A1 (en) High-Performance Far-Infrared Surface Heating Element of Carbon Composite Material and Application Thereof
US20140076877A1 (en) Heating apparatus, manufacturing method thereof, and heating system for electric blanket/carpet
CN107439053A (zh) 用于弯曲表面的加热装置
JP5173921B2 (ja) 太陽電池モジュールのラミネータ
KR101481222B1 (ko) 배터리 모듈용 발열 시트
KR20140082032A (ko) 배터리 모듈용 면상발열체 및 이를 포함하는 배터리 모듈
JP2017010724A (ja) 発熱シート
WO2018183334A1 (en) Heating jacket and method of making heating jacket
JP5461244B2 (ja) 配管の加熱装置
KR101059958B1 (ko) 전기 핫 플레이트
JP4647846B2 (ja) 面発熱体及びその製造方法
KR101468637B1 (ko) 유연성 카본 히터 제조방법 및 그 카본 히터
TW200950573A (en) Sheet heater
US20190124723A1 (en) Thermistor heater with heat dissipation structure and assembling method thereof