JP2014199103A - 車両の変速制御装置 - Google Patents

車両の変速制御装置 Download PDF

Info

Publication number
JP2014199103A
JP2014199103A JP2013074736A JP2013074736A JP2014199103A JP 2014199103 A JP2014199103 A JP 2014199103A JP 2013074736 A JP2013074736 A JP 2013074736A JP 2013074736 A JP2013074736 A JP 2013074736A JP 2014199103 A JP2014199103 A JP 2014199103A
Authority
JP
Japan
Prior art keywords
clutch
shift
capacity
lifter
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013074736A
Other languages
English (en)
Other versions
JP5981870B2 (ja
Inventor
惇 安達
Atsushi Adachi
惇 安達
圭淳 根建
Yoshiaki Nedachi
圭淳 根建
塚田 善昭
Yoshiaki Tsukada
善昭 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2013074736A priority Critical patent/JP5981870B2/ja
Publication of JP2014199103A publication Critical patent/JP2014199103A/ja
Application granted granted Critical
Publication of JP5981870B2 publication Critical patent/JP5981870B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Operated Clutches (AREA)
  • Gear-Shifting Mechanisms (AREA)
  • One-Way And Automatic Clutches, And Combinations Of Different Clutches (AREA)
  • Control Of Transmission Device (AREA)

Abstract

【課題】クラッチ容量を変化させて変速ショックを低減可能な車両の変速制御装置を簡単な構造で実現できるようにする。【解決手段】リフタープレート位置によりクラッチ容量を低減させるクラッチと、シフトスピンドルの回動に伴って、リフタープレートをリフトさせるリフターカムプレート84と、アクチュエータに回動指令を与える制御部とを備える車両の変速制御装置において、リフターカムプレート84のプロフィールは、切断段部113と接続段部110との間にリフターカムプレート84の回動に対してリフト量が一定な第1容量段部111及び第2容量段部112を有し、前記制御部は、リフターカムプレート84を第1容量段部111及び第2容量段部112に位置するよう制御するスピンドル角制御部を有する。【選択図】図7

Description

本発明は、車両の変速制御装置に関する。
本発明は、オートマチックトランスミッション車両(AT車)の変速制御装置に関する。AT車では、自動的にシフトが行われるため、変速時のショックをなるべく小さくすることが課題となる。変速ショックは「運転者が体感する加速度の振幅」として捉えることができる。運転者の体感加速度振幅は変速中のカウンタ軸トルクの変化(駆動輪である後輪の駆動力も、カウンタ軸トルクと一対一の関係であり、後輪の駆動力変化もカウンタ軸トルクの変化と同じと見なすことができる)によって生じる。
変速ショックの発生原理を以下に説明する。
特許文献1に示されるような従来例の自動二輪車で1速から2速にシフトアップする状況を想定する。駆動系部品のレシオの例を図15に示す。クラッチアウタの回転数初期値を1500rpmとする。なお、レシオとクラッチアウタの回転数初期値は便宜的なものである。特に回転数初期値は運転者の運転の仕方に応じて様々な値を取り得る。
シフトアップ中のカウンタ軸トルクの推移を図13に、シフトUP時の駆動系部品の回転数推移を図14にそれぞれ示す。クラッチアウタとクラッチセンタとの回転数差を「クラッチ回転数差」と定義する。
まず、図14のカウンタ軸トルクと回転数推移に注目する。
(1)シフトアップ動作前、その時のNe−Th(エンジン回転数−スロットル開度)に応じてクラッチアウタ回転数が1500rpmになっており、一定のカウンタ軸トルクが発生している。駆動系部品の回転数は、クラッチが接続状態のため、すべりが無いと仮定するとクラッチセンタの回転数も1500rpmである。クラッチセンタはメイン軸と一体に回転する。カウンタ軸は、メイン軸によって駆動され、その回転数は1速のギア比3に応じて500rpmとなる。後輪は、カウンタ軸によって駆動され、その回転数は最終減速比2.5に応じて200rpmとなる。
(2)変速が開始され、クラッチが切れると、エンジンからカウンタ軸への駆動力がかからなくなり、カウンタ軸トルクは一旦0になる。駆動系部品の回転数は、実施例が機械式スロットルのため、簡易的にNeが一定のままと仮定すると、クラッチアウタは1500rpmが維持される。ところが、(2)の状態では、クラッチが切断されているため、メイン軸、カウンタ軸、後輪はエンジン(クラッチアウタの回転)によって駆動されるものではなくなる。クラッチオフ状態では、後輪側が変速機側を駆動する格好となる。ここで、車速が一定のままで後輪回転数が200rpmで一定と仮定すると、カウンタ軸の回転数は最終減速比2.5に応じて、500rpmとなり、メイン軸(クラッチセンタ)の回転数は1速の減速比3に応じて1500rpmとなる。結果、クラッチオフ状態でもギアポジションが1速の時点ではクラッチ回転数差は0である。
(3)次に、クラッチが切れた状態のまま、ギアポジションが2速に移動する。クラッチが切れた状態であるため、カウンタ軸トルクは0のままである。駆動系部品の回転数は、クラッチアウタは1500rpmで維持される。(3)の状態でも、後輪側が変速機側を駆動する格好であるため、後輪回転数が200rpmだと、カウンタ軸の回転数は最終減速比2.5に応じて、500rpmとなる。ここで、ギアポジションが2速に移動すると、メイン軸(クラッチセンタ)の回転数は2速の減速比1.5に応じて750rpmとなる。つまり、1速であった(2)の状態よりもクラッチセンタの回転数が下がる。結果、クラッチオフ状態でギアポジションが2速になった時点で、(クラッチアウタ 1500rpm)−(クラッチセンタ 750rpm)=(クラッチ回転数差750rpm)のクラッチ回転数差が発生する。
(4)クラッチが接続されると、クラッチ回転数差がクラッチによって吸収される。多板クラッチは回転数の異なる2つの回転体を、その容量に応じて滑らせながら同じ回転数に合わせて接続していくものであるが、クラッチ容量が大きいと、単位時間当たりのクラッチ回転数差を大きく減じせしめることができる。この際、クラッチ接続に伴い回転数が上げられる側の軸は瞬間的に加速されるため、当該軸のトルクは、クラッチ回転数差が吸収される間、大きく立ち上がる。反対に、クラッチ容量が小さいと、クラッチは滑りやすいため、単位時間当たりのクラッチ回転数差の減少が小さくなる。この際、クラッチ接続に伴い回転数が上げられる側の軸は段々と加速されるため、当該軸のトルクの立ち上がりは低めとなる。回転数差を吸収するための時間は長くなる。
すなわち、回転数差吸収中のカウンタ軸トルクはクラッチ容量によって決まり、クラッチ容量が大きいとカウンタ軸トルクは大きくなり、クラッチ容量が小さいとカウンタ軸トルクは小さくなる。
駆動系部品の回転数は、クラッチセンタが1500rpmで維持されるとすると、メイン軸、カウンタ軸、後輪の回転数はまたエンジン側(クラッチセンタ)によって駆動されるように切り替わる。その結果、(3)の時点で750rpmだったクラッチセンタがクラッチ容量に応じた時間で1500rpmまで加速されていく。
(5)クラッチ回転数差吸収後、変速が終了すると、ギアは変速前よりも1段高くなる。そのため、カウンタ軸トルクは(1)の時点よりも低くなる。駆動系部品の回転数は、クラッチアウタ回転数が1500rpmで維持されるとすると、クラッチ回転数差が吸収されたためクラッチセンタの回転数も1500rpmとなる。クラッチセンタはメイン軸と一体に回転するため、カウンタ軸の回転数は2速のギア比1.5に応じて1000rpmとなり、後輪の回転数は最終減速比2.5に応じて400rpmとなる。
ここで、(3)〜(5)間の後輪の回転数に着目すると、(4)の過程で、後輪回転数は200rpmから400rpmに上がっている。すなわち、加速が生じている。この加速が急速であると、カウンタ軸トルクが急に上がるため、変速ショックとなる。
次に、図13の加速度振幅に注目してタイムチャートを見る。(1)シフトアップ前はカウンタ軸トルクが一定のため、加速度振幅はない。(2)、(3)変速が開始されクラッチが切れると、カウンタ軸トルクがゼロになるため、体感加速度は下がるように振れる。(4)回転数差吸収中の体感加速度は、クラッチ容量に応じたカウンタ軸トルクに応じた値へと追従するように振れる。(5)その後、体感加速度は、シフトアップ完了後のカウンタ軸トルクに応じた値へと追従するように振れる。
変速ショックを抑える観点では、クラッチ回転数差吸収中のクラッチ容量が可変であることが重要となる。その理由は、変速前後のカウンタ軸トルクは運転状態によって高かったり低かったりするが、クラッチ回転数差吸収中はクラッチ容量に応じてカウンタ軸トルクが決まるため、クラッチ容量が一定であると、上記(4)回転数差吸収中と、(5)クラッチ接続完了時に、運転状態によっては加速度振幅が大きくなってしまうためである。
クラッチ容量が可変である場合、変速ショックを抑えるためには、回転数差吸収中のクラッチ容量が変速前後のカウンタ軸トルクの間にくるようにすると良い。このようにすることで、回転数差吸収中のカウンタ軸トルクを変速前後のカウンタ軸トルクになじませることができ、加速度振幅を可及的に抑えることができる。反対に、クラッチ容量が変速前後のカウンタ軸トルクのバンドから離れる程、加速度振幅は大きくなっていき変速ショックを感じやすくなる。
特許文献1に示される従来の変速制御装置では、プレッシャプレートをクラッチ接続方向に付勢するクラッチスプリングと、上記プレッシャプレートと相対変位可能なリフタープレートのリフト量に応じてプレッシャプレートをクラッチ切断方向に付勢するレリーズスプリングとを備え、リフタープレートのリフト量に応じてクラッチ容量が減少する機構が開示されている。特許文献1の構成によれば、変速時のクラッチのつなぎ始めにおけるカウンタ軸とエンジン側との回転差吸収の際、リフタープレートのリフト量を適切に制御することで、クラッチ容量を調整することができ、変速ショックを低減することができる。
特開2005−249083号公報
しかし、上記従来の変速制御装置はクラッチ容量を無段階に調節するタイプであるため、狙いとするクラッチ容量に合わせようとすると、制御システムの部品や制御手法には高精度なものが要求され、構造が複雑になるという課題がある。
本発明は、上述した事情を鑑みてなされたものであり、クラッチ容量を変化させて変速ショックを低減可能な車両の変速制御装置を簡単な構造で実現できるようにすることを目的とする。
上述した課題を解決するため、本発明は、変速機(T)のシフトスピンドル(71)を駆動するアクチュエータ(70)と、メインスプリング(95)の押圧力によって複数のクラッチ板(94)をクラッチ接続方向へ付勢するプレッシャプレート(93)と、当該プレッシャプレート(93)をクラッチ切断方向へリフトするリフタープレート(96)と、当該リフタープレート(96)をクラッチ切断方向へ付勢するレリーズスプリング(97)との共働によりリフタープレート(96)位置によりクラッチ容量を低減させるクラッチ(51)と、前記シフトスピンドル(71)の回動に伴って、前記リフタープレート(96)をリフトさせるリフターカム(84)と、前記アクチュエータ(70)に回動指令を与える制御部(17)とを備える車両の変速制御装置において、前記リフターカム(84)のプロフィールは、クラッチ切断位置(113)とクラッチ接続位置(110)との間に前記リフターカム(84)の回動に対してリフト量が一定な平坦部(111,112)を有し、前記制御部(17)は、前記リフターカム(84)を前記平坦部(111,112)に位置するよう制御するスピンドル角制御部(127)を有することを特徴とする。
本発明によれば、リフターカムを平坦部に位置するよう制御することで、クラッチ容量を、クラッチ切断位置とクラッチ接続位置との間の所定の中間容量に容易にセットできる。平坦部ではリフターカムの回動に対してリフト量が一定であり、平坦部はある程度の範囲を持って設けられるため、平坦部に対応するスピンドル角に制御することは、比較的容易となる。従って、システム部品や制御が比較的簡素なものであっても、クラッチ容量を容易に設定値に合わせることができ、変速ショックを低減可能な変速制御装置とすることができる。
また、本発明は、前記リフターカム(84)の前記平坦部(111,112)は複数設けられ、エンジントルクを推定するエンジントルク推定部(121)をさらに有し、前記スピンドル角制御部(127)は、前記リフターカム(84)を、推定エンジントルク(X1,X2)に応じて複数の平坦部(111,112)の内の1つに位置するように制御することを特徴とする。
本発明によれば、スピンドル角制御部は、リフターカムを、推定エンジントルクに応じて複数の平坦部の内の1つに位置するように制御するため、エンジントルクに基づいてクラッチ容量を選択でき、変速ショックを低減できる。
また、本発明は、前記リフターカム(84)の複数の前記平坦部(111,112)は、リフト量が小さな第1の平坦部(111)と、リフト量が大きな第2の平坦部(112)と、を有し、前記推定エンジントルク(X1,X2)が所定のエンジントルク(Tq)よりも大きいと推定された場合、前記スピンドル角制御部(127)は前記リフターカム(84)が前記第1の平坦部(111)に位置するように制御することを特徴とする。
本発明によれば、推定エンジントルクが所定のエンジントルクよりも大きいと推定された場合、スピンドル角制御部はリフターカムが第1の平坦部に位置するように制御するため、エンジントルクが大きな場合には、リフト量が小さな第1の平坦部に対応した比較的大きなクラッチ容量を得ることができる。これにより、変速前後の大きなエンジントルクに適したクラッチ容量にでき、変速ショックを低減できる。
さらに、前記推定エンジントルク(X1,X2)が前記所定のエンジントルク(Tq)よりも小さいと推定された場合、前記スピンドル角制御部(127)は前記リフターカム(84)が前記第2の平坦部(112)に位置するように制御することを特徴とする。
本発明によれば、推定エンジントルクが所定のエンジントルクよりも小さいと推定された場合、スピンドル角制御部はリフターカムが第2の平坦部に位置するように制御するため、エンジントルクが小さな場合には、リフト量が大きな第2の平坦部に対応した比較的小さなクラッチ容量を得ることができる。これにより、変速前後の小さなエンジントルクに適したクラッチ容量にでき、変速ショックを低減できる。
本発明に係る車両の変速制御装置では、システム部品や制御が比較的簡素なものであっても、クラッチ容量を容易に設定値に合わせることができ、変速ショックを低減可能な変速制御装置とすることができる。
また、エンジントルクに基づいてクラッチ容量を選択でき、変速ショックを低減できる。
また、リフト量が小さな第1の平坦部に対応した比較的大きなクラッチ容量を得ることができるため、変速前後の大きなエンジントルクに適したクラッチ容量にでき、変速ショックを低減できる。
さらに、リフト量が大きな第2の平坦部に対応した比較的小さなクラッチ容量を得ることができるため、変速前後の小さなエンジントルクに適したクラッチ容量にでき、変速ショックを低減できる。
本発明の実施の形態に係る変速制御装置を備えた自動二輪車の左側面図である。 パワーユニットの断面平面図である。 シフター、アクチュエータ部、クラッチ機構及びクラッチリフターを示す断面図である。 クラッチ機構の断面図である。 リフタープレートのリフト量とクラッチ機構のクラッチ容量との関係を示す図である。 リフターカムの平面図である。 図6のVII−VII断面図である。 シフトスピンドルの回転角度とリフタープレートのリフト量との関係を示す図である。 自動変速機の構成を示すブロック図である。 制御ユニットの機能的構成を示すブロック図である。 シフトアップ時に「大容量」でクラッチ接続する場合のカウンタ軸トルクを示す図である。 シフトアップ時に「小容量」でクラッチ接続する場合のカウンタ軸トルクを示す図である。 背景技術を説明する図である。 背景技術を説明する図である。 背景技術を説明する図である。
以下、図面を参照して本発明の一実施の形態について説明する。
図1は、本発明の実施の形態に係る変速制御装置を備えた自動二輪車10の左側面図である。
自動二輪車10は、ヘッドパイプ(不図示)に回動可能に軸支されたハンドル11と、ハンドル11により操舵される前輪12と、駆動輪である後輪13と、運転者が着座するシート14と、後輪13にチェーン15を介して駆動力を供給するパワーユニット16と、パワーユニット16の制御を行う制御ユニット17(制御部)と、バッテリ18とを有する。
自動二輪車10は不図示の車体フレームをベースに構成されており、この車体フレームは車体カバー19により覆われている。制御ユニット17及びバッテリ18はシート14の下部で、車体カバー19の内部に配置されている。パワーユニット16は、前輪12と後輪13の略中間で、シート14の下方やや前方に設けられている。運転者用のステップ20は、パワーユニット16の下部に左右一対で設けられている。
パワーユニット16は、自動変速機T(図2)を備える。自動変速機Tは、クラッチの接続・切断操作が自動化された変速機構50を備え、この自動変速機Tでは、変速用のクラッチ機構51(以下、単にクラッチと言うことがある)の切替え及び変速段(シフト)の切替えが自動で行われる。
次に、パワーユニット16の構成について説明する。
図2はパワーユニット16の断面平面図である。図2では、左右方向が車幅方向、上方向が車両前方、下方向が車両後方に相当する。
パワーユニット16は、走行駆動力を発生するエンジン21と、発電機22と、エンジン21のクランク軸23に設けられた発進クラッチ24と、発進クラッチ24を介して出力されたクランク軸23の駆動力を変速して出力する自動変速機Tとを備える。
パワーユニット16は、シリンダヘッド30a、シリンダ30b及びクランクケース30cが一体的に結合して構成される。クランク軸23は複数のベアリング31によって回転自在に軸支されている。エンジン21は、コンロッド32を介してクランク軸23に連結されたピストン33と、点火プラグ34と、不図示のバルブを開閉動作させて燃焼室35に対する吸排気を行う動弁機構36とを有する。動弁機構36はクランク軸23からタイミングチェーン36aを介して駆動される。
発進クラッチ24は、発進時及び停止時にクランク軸23とプライマリギア37との間を接続及び切断するものであり、クランク軸23の右端部に配置されている。この発進クラッチ24は、クランク軸23の外周に対して相対回転可能なスリーブ38の一端に固定されたカップ状のアウタケース39と、スリーブ38に設けられたプライマリギア37と、クランク軸23の右端部に固定されたアウタプレート40と、アウタプレート40の外周部にウェイト41を介して半径方向外側を向くように取り付けられたシュー42と、シュー42を半径方向内側に付勢するためのスプリング43とを有する。発進クラッチ24では、エンジン回転数が所定値以下の場合にアウタケース39とシュー42とが離間しており、クランク軸23と自動変速機Tとの間が遮断状態(動力が伝達されない切り離し状態)となっている。エンジン回転数が上昇し所定値を超えると、遠心力によってウェイト41がスプリング43に抗して半径方向外側に移動することで、シュー42がアウタケース39の内周面に当接する。これにより、クランク軸23の回転がアウタケース39を介してプライマリギア37に伝達され、動力が伝達される接続状態となる。
クランクケース30cは、発進クラッチ24及びクラッチ機構51(多板クラッチ)を覆うクランクケースカバー30dを右側面に備える。クランクケースカバー30dを取り外すと、発進クラッチ24及びクラッチ機構51は外側に露出する。
自動変速機Tは、前進4段の変速機構50と、クランク軸23側と変速機構50との間の接続を切り替えるクラッチ機構51と、変速機構50及びクラッチ機構51を操作するアクチュエータ機械部55とを備える。アクチュエータ機械部55は、クラッチ機構51を操作するクラッチリフター52と、変速機構50を変速するシフター53と、クラッチリフター52及びシフター53を駆動するアクチュエータ部54(図3)とを備える。アクチュエータ部54は、制御ユニット17(図1)によって制御される。
自動変速機Tは、自動変速(AT)モードと手動変速(MT)モードとの切り替えを行うモードスイッチ26(図9)と、シフトアップまたはシフトダウンを運転者が操作するシフトセレクトスイッチ27(図9)とに接続されている。自動変速機Tは、制御ユニット17の制御により、各センサやモードスイッチ及びシフトセレクトスイッチ27の出力信号に応じてアクチュエータ部54を制御し、変速機構50の変速段を自動的または半自動的に切り換えることができるように構成されている。
すなわち、自動変速モードでは、車速等に基づいてアクチュエータ部54の制御が行われ、変速機構50が自動で変速される。手動変速モードでは、シフトセレクトスイッチ27が運転者によって操作されることで変速が行われる。
変速機構50は、クラッチ機構51から供給される回転を、制御ユニット17の指示に基づいて変速して後輪13に伝達する。この変速機構50は、入力軸としてのメイン軸56と、メイン軸56に対して平行配置されたカウンタ軸57と、メイン軸56に設けられた駆動ギア58a,58b,58c及び58dと、カウンタ軸57に設けられた従動ギア59a,59b,59c及び59dと、駆動ギア58aに係合するシフトフォーク60aと、従動ギア59cに係合するシフトフォーク60bと、シフトフォーク60a,60bを軸方向にスライド自在に保持する支持軸61と、シフトフォーク60a,60bの端部を溝62a,62bに沿わせながらスライドさせるシフトドラム63とを有する。駆動ギア58a,58b,58c及び58dは、この順に従動ギア59a,59b,59c及び59dと噛合している。駆動ギア58bは左右にスライドしたとき、隣接する駆動ギア58a又は58cに側面のドグ歯が係合し、従動ギア59cは左右にスライドしたとき、隣接する従動ギア59b又は59dに側面のドグ歯が係合する。
駆動ギア58a,58cはメイン軸56に対して回転自在に保持され、従動ギア59b,59dはカウンタ軸57に対して回転自在に保持されている。駆動ギア58b及び従動ギア59cはメイン軸56及びカウンタ軸57に対してスプライン結合され軸方向にスライド可能である。駆動ギア58d及び従動ギア59aはメイン軸56及びカウンタ軸57に固定されている。
シフトドラム63がアクチュエータ部54により駆動されて回転すると、シフトフォーク60a,60bはシフトドラム63の溝62a,62bに沿って軸方向に移動し、駆動ギア58b及び従動ギア59cは変速段に応じてスライドする。シフトドラム63は、シフトドラム63の回転角度を制御ユニット17に出力するシフトドラムセンサ63a(図9)を備える。
変速機構50では、駆動ギア58b及び従動ギア59cのスライドに応じて、メイン軸56及びカウンタ軸57間で、ニュートラル状態、または、1速〜4速の何れかの変速歯車対を選択的に用いた動力伝達が可能となる。
メイン軸56及びカウンタ軸57は、ベアリング64a,64b,66a,66bによって回転自在に保持されている。
カウンタ軸57の端部にはスプロケット67が設けられ、スプロケット67はチェーン15を介して後輪13に回転を伝達する。
エンジン21は、クランク軸23の回転速度を検出するエンジン回転数センサ45(図9)、及び、カウンタ軸57の回転速度を検出するカウンタ軸回転数センサ68を備える。また、自動二輪車10は、吸気装置のスロットル開度を検出するスロットル開度センサ(不図示)を備える。カウンタ軸回転数センサ68、エンジン回転数センサ45、及び、上記スロットル開度センサは、検出値を制御ユニット17に供給する。カウンタ軸回転数センサ68の検出値に減速比を考慮することで、車速が算出される。
図3は、シフター53、アクチュエータ部54、クラッチ機構51及びクラッチリフター52を示す断面図である。
図2及び図3を参照し、アクチュエータ部54は、モーター70と、クランクケース30c内を車幅方向に延びるシフトスピンドル71と、モーター70の回転を減速してシフトスピンドル71を駆動する歯車列(不図示)とを備える。
シフトスピンドル71は、クランクケース30cの左側壁30e及びクランクケースカバー30dに両端を軸支されるとともに、メイン軸56のベアリング64bを支持する中間壁部30fによってもその中間部を軸支されている。クランクケースカバー30dには、シフトスピンドル71の回転位置を検出するスピンドル角度センサ72が設けられている。
シフター53は、シフトスピンドル71に支持されるギアシフトアーム73と、シフトフォーク60a,60bと、シフトスピンドル71の回転を蓄力し、蓄力を開放してギアシフトアーム73を回動させる蓄力機構74とを備える。
ギアシフトアーム73は、シフトフォーク60a,60b等を介してシフトドラム63に連結されており、アクチュエータ部54によってギアシフトアーム73が回動されることで、シフトドラム63が回転し、変速が行われる。
蓄力機構74は、シフトスピンドル71の軸上にシフトスピンドル71に対して相対回転可能に設けられる回動アーム75と、ギアシフトアーム73を中立位置に付勢するリターンスプリング76と、シフトスピンドル71の軸上に固定され、シフトスピンドル71と一体に回転するストッパカラー77と、ストッパカラー77から軸方向に離間した位置でシフトスピンドル71の軸上に固定され、シフトスピンドル71と一体に回転する蓄力カラー78と、蓄力カラー78とストッパカラー77との間の軸上に、シフトスピンドル71に対して相対回転可能に設けられる一対のスプリングカラー79a,79bと、スプリングカラー79a,79bの外周に巻付くように設けられる蓄力スプリング80とを備える。
回動アーム75は、シフトスピンドル71の外周面に嵌合する内側円筒部75aと、内側円筒部75aの外周面から蓄力スプリング80側へ軸方向に突出するアーム側係止部75bと、内側円筒部75aの外周面からアーム側係止部75bとは反対側に軸方向へ突出する押圧部75cと、ストッパカラー77側に開放したドグ穴75dとを有する。
ギアシフトアーム73は、回動アーム75の内側円筒部75aの外周面に嵌合する外側円筒部73aと、外側円筒部73aから周方向外側に延出されるアーム部73bとを有する。
ギアシフトアーム73は、回動アーム75に対して相対回転可能に設けられ、回動アーム75の押圧部75cは、ギアシフトアーム73のアーム部73bに形成された規制開口部73cに挿通される。
リターンスプリング76は、ねじりコイルバネであり、ギアシフトアーム73の外側円筒部73aに巻付くように設けられ、押圧部75cを介してギアシフトアーム73を中立位置の方向へ付勢する。ここで、中立位置は、変速操作を行っていない通常時の位置である。回動アーム75が所定角度だけ回動すると、押圧部75cは規制開口部73cの内縁部を押圧し、ギアシフトアーム73を回動させる。規制開口部73cには、中間壁部30fに立設されたピン88が挿通されており、ピン88は、規制開口部73cを介してギアシフトアーム73の回動範囲を規制する。
ストッパカラー77は、回動アーム75のドグ穴75dに挿通されるドグ歯77aを有する。シフトスピンドル71の回転に伴いストッパカラー77が所定角度だけ回転すると、ドグ歯77aはドグ穴75dの内縁を介して回動アーム75を回転方向に付勢する。
蓄力カラー78は、蓄力スプリング80側に軸方向へ突出するカラー側係止部78aと、カラー側係止部78aとは反対側へ軸方向に突出するクラッチ側ドグ歯78bとを有する。
蓄力スプリング80は、ねじりコイルバネであり、一端が回動アーム75のアーム側係止部75bに係止され、他端が蓄力カラー78のカラー側係止部78aに係止される。
ギアシフトアーム73及び回動アーム75は、クラッチ機構51が接続状態にあり、変速機構50に駆動力が発生している状態では、変速機構50によって拘束されており、シフトスピンドル71上で回動不能である。この状態で、アクチュエータ部54によってシフトスピンドル71が回動させられると、蓄力カラー78は、回動アーム75に対して相対回転し、蓄力スプリング80は、一端がアーム側係止部75b側に固定されたままカラー側係止部78a側の他端が回動させられることで変形し、蓄力を開始する。その後、クラッチ機構51が切断されると、変速機構50の拘束力が弱くなり、ギアシフトアーム73及び回動アーム75が回動可能となって蓄力が開放され、ギアシフトアーム73は、蓄力スプリング80の蓄力によって回動させられた回動アーム75の押圧部75cを介して押圧されて回動する。これにより、シフトドラム63が回転し、変速が行われる。
シフトドラムセンサ63aの検出結果に基づいて変速の完了が検知されると、シフトスピンドル71は逆回転され、ギアシフトアーム73は元の位置に復帰するとともに、クラッチ機構51が接続される。
蓄力スプリング80は、蓄力に伴い、コイル状部の軸線がシフトスピンドル71の軸線に対して傾斜するように変形し、コイル状部の両端部80a,80bが、軸方向に2分割されたスプリングカラー79a,79bにそれぞれ当接する。詳細には、両端部80a,80bは、周方向に略180°異なる部分がスプリングカラー79a,79bにそれぞれ当接する。本実施の形態では、スプリングカラー79a,79bが、軸方向に分割式であり互いに相対回転可能であるため、両端部80a,80bが当接した際には、スプリングカラー79a,79bは、力を逃がすようにそれぞれ独立して回転する。このため、蓄力スプリング80を捩じって蓄力する際のフリクションを低減でき、スムーズに蓄力できる。
クラッチリフター52は、シフトスピンドル71上に回動可能に軸支されるクラッチレバー81と、メイン軸56と略同軸の位置関係でクランクケースカバー30dの内面に固定される支持軸82と、支持軸82に固定される板状のベース部材83と、クラッチレバー81に連結されるとともに、ベース部材83に対向して設けられるリフターカムプレート84(リフターカム)と、リフターカムプレート84とベース部材83との間に狭持される複数のボール85とを備える。
クラッチレバー81は、蓄力カラー78に隣接してシフトスピンドル71上に設けられる筒部81aと、筒部81aから径方向外側に延出するレバー部81bとを有する。筒部81aには、蓄力カラー78のクラッチ側ドグ歯78bが噛み合うクラッチ側ドグ穴81cが形成されている。
リフターカムプレート84は、クラッチレバー81のレバー部81b先端に設けられたピン86に連結される連結部84aと、ベース部材83に面するリフター部84bとを有する。リフター部84b及びベース部材83の互いに対向する面には、ボール85を狭持するカム部84c,83aがそれぞれ形成されている。リフターカムプレート84は、中央に設けられたガイド穴84dに、ベース部材83のガイド軸83bが嵌合することで、軸方向の移動をガイドされる。また、リフター部84bの先端部には、ボールベアリング87が設けられており、リフターカムプレート84は、ボールベアリング87を介してクラッチ機構51に接続される。
クラッチレバー81が回動されると、リフターカムプレート84は、ピン86を介してガイド軸83bを中心に回動され、カム部84cがボール85に対して滑ることで、軸方向に移動する。クラッチ機構51は、リフターカムプレート84の軸方向の移動に連動して、接続及び切断される。
クラッチレバー81のクラッチ側ドグ穴81cは、蓄力カラー78のクラッチ側ドグ歯78bよりも周方向に大きな幅を有しており、クラッチ側ドグ歯78bは、蓄力カラー78が所定の角度だけ回転した時に初めてクラッチ側ドグ穴81cを周方向に押圧し、クラッチレバー81を回動させる。ここで、蓄力カラー78の上記所定の角度は、蓄力スプリング80が十分な力を蓄力する角度よりも大きな角度である。すなわち、本実施の形態では、蓄力スプリング80の蓄力が完了した後に、クラッチレバー81が回動されてクラッチ機構51が切断され、蓄力が開放される。このため、迅速に変速を行うことができる。
図4は、クラッチ機構51の断面図である。
図2〜図4に示すように、メイン軸56の軸端には、クランク軸23のプライマリギア37に噛み合うプライマリドリブンギア69が、メイン軸56に対して相対回転可能に軸支されている。
クラッチ機構51は、プライマリドリブンギア69に固定されるカップ状のクラッチアウタ91と、クラッチアウタ91の径方向内側に設けられ、メイン軸56に一体に固定されるクラッチセンタ92と、メイン軸56の軸方向に移動可能なプレッシャプレート93と、プレッシャプレート93とクラッチセンタ92との間に設けられるクラッチ板94と、クラッチを接続する方向にプレッシャプレート93を付勢するメインスプリング95と、クラッチを切断する方向にプレッシャプレート93を移動させるリフタープレート96と、リフタープレート96とプレッシャプレート93との間に狭持されるレリーズスプリング97と、クラッチ板94とプレッシャプレート93との間に狭持されるジャダースプリング98と、プレッシャプレート93に一体に固定されるバックトルクリミット部材99とを備える。クラッチセンタ92及びプレッシャプレート93は組み合されて一体となり、クラッチアウタ91の内側に配置されるクラッチインナ90を構成する。
クラッチアウタ91は、プライマリドリブンギア69の外側面に一体に固定される円板部91aと、円板部91aの周縁部からメイン軸56と略同軸の位置関係で延びる外側円筒部91bとを備える。クラッチアウタ91は、プライマリドリブンギア69と一体にメイン軸56に対して相対回転可能である。
クラッチセンタ92は、メイン軸56に固定される円筒状のハブ部92aと、ハブ部92aの軸端部からクラッチアウタ91の内周面近傍まで径方向外側に延びる円板状の受け板部92bとを備える。受け板部92bには、レリーズスプリング97が挿通されるバネ通し孔92cが形成されている。バネ通し孔92cは、受け板部92bの周方向に並べて複数形成されている。また、受け板部92bは、クラッチ板94を受ける受け面92dを外周部に有する。クラッチセンタ92は、スプライン嵌合及びナット89によってメイン軸56に固定されており、メイン軸56に対し、相対回転不能且つ軸方向に移動不能である。
プレッシャプレート93は、クラッチアウタ91の内側においてクラッチセンタ92の受け板部92bに対向する向きで配置される内側円板部93aと、内側円板部93aの周縁部からクラッチアウタ91の円板部91a側にメイン軸56と略同軸の位置関係で延びる内側円筒部93bと、内側円筒部93bの先端部からクラッチアウタ91の内周面近傍まで径方向外側に延びる押圧板部93cとを備える。プレッシャプレート93は、クラッチセンタ92に対し、所定の回転角度だけ相対回転可能に形成されている。
内側円板部93aの中央には、クラッチセンタ92のハブ部92aの外周面に摺動自在に嵌合する嵌合孔93dが形成されている。また、内側円板部93aには、クラッチセンタ92のバネ通し孔92cを貫通してリフタープレート96側へ延びるレリーズボス100が立設されている。レリーズボス100は、円柱状に形成されており、嵌合孔93dの周囲において、周方向に略等間隔で複数設けられている。レリーズボス100は、リフタープレート96に当接する平坦な当接面100aを先端に有する。
クラッチ板94は、クラッチアウタ91に設けられる外側摩擦板94aと、クラッチセンタ92に設けられる内側摩擦板94bとを備え、外側摩擦板94a及び内側摩擦板94bは、プレッシャプレート93とクラッチセンタ92との間に交互に複数枚重ねて配置されている。各外側摩擦板94aは、クラッチアウタ91の外側円筒部91bにセレーション嵌合によって支持されており、クラッチアウタ91の軸方向に移動可能且つクラッチアウタ91に対して回転不能に設けられている。
各内側摩擦板94bは、プレッシャプレート93の内側円筒部93bの外周面にスプライン嵌合によって支持されており、プレッシャプレート93の軸方向に移動可能且つプレッシャプレート93に対して回転不能に設けられている。
各外側摩擦板94aの内、プレッシャプレート93の押圧板部93cに直接当接する外側摩擦板94a1は、他の外側摩擦板94aよりも内周部が大径となっており、この内周部と内側円筒部93bとの間にはジャダースプリング98が設けられる。ジャダースプリング98は、リング状の皿バネであり、各内側摩擦板94b、及び、外側摩擦板94a1を除く各外側摩擦板94aをクラッチセンタ92の受け板部92b側へ押圧する。
プレッシャプレート93の内側円筒部93bの内側の内側円板部93aには、円板状のバックトルクリミット部材99が固定されている。
バックトルクリミット部材99は、内側円筒部93bの内周面に嵌合する円筒部99aと、円筒部99aの底に設けられる底板部99bとを有する。底板部99bの中央には、ハブ部92aが挿通される孔部99cが形成されている。底板部99bにおいて孔部99cの周囲には、プレッシャプレート93を貫通してクラッチセンタ92の受け板部92bに臨むカム部99dが複数形成されている。カム部99dは、受け板部92bに固定されたリフターピン119に係合する。
バックトルクリミット部材99、及び、受け板部92bに固定されるリフターピン119は、バックトルクリミッタ機構を構成する。バックトルクリミッタ機構は、例えば、特開平8−93786号公報に記載された公知のものであり、順方向の動力伝達とは逆方向に所定値以上のトルクが作用した場合に、クラッチを接続状態から半クラッチ状態にする機構である。
後輪13側から所定値以上のバックトルクが作用すると、プレッシャプレート93がクラッチセンタ92に対して相対回転することで、カム部99dがリフターピン119上を摺動し、プレッシャプレート93はクラッチ切断方向に移動する。バックトルクリミッタ機構によれば、バックトルクに起因する変速ショックを低減できる。
クラッチセンタ92のハブ部92aにおける円板部91a側の外周面には、リング状のクリップ102が嵌め込まれ、クリップ102は、メインスプリング95を受けるリング状のリテーナー103を支持する。
メインスプリング95は、リング状の皿バネであり、バックトルクリミット部材99の底板部99bとリテーナー103との間で狭持される。詳細には、メインスプリング95は、クラッチセンタ92のハブ部92aとプレッシャプレート93の内側円筒部93bとの間に配置され、外径部がバネ受け部材104を介してバックトルクリミット部材99に支持され、内径部がリテーナー103に支持される。
メインスプリング95は、プレッシャプレート93とクラッチセンタ92とでクラッチ板94を狭持する方向、すなわち、クラッチを接続する方向へプレッシャプレート93を付勢する。
リフタープレート96は、円板状に形成されており、クラッチセンタ92とリフターカムプレート84(図3)との間に配置される。リフタープレート96は、ボールベアリング87が嵌着されるベアリング支持孔部96aを中央部に有し、レリーズスプリング97を受けるバネ座部96bをベアリング支持孔部96aの周囲に複数有する。バネ座部96bは、リフタープレート96のクラッチセンタ92に対向する面を一段窪ませて形成されている。
ベアリング支持孔部96aには、ボールベアリング87の外輪が嵌着され、ボールベアリング87の内輪は、リフターカムプレート84のリフター部84bの外周面に嵌着されている。このため、リフタープレート96は、リフターカムプレート84と共に軸方向に移動可能であるとともにリフターカムプレート84に対して相対回転可能である。
レリーズスプリング97は、メイン軸56の軸方向に延びるコイルバネであり、その内径部がレリーズボス100に挿通されて支持され、プレッシャプレート93の内側円板部93aとリフタープレート96のバネ座部96bとの間に狭持される。
レリーズスプリング97は、プレッシャプレート93を挟んでメインスプリング95の反対側に配置されており、メインスプリング95とは逆方向、すなわち、クラッチを切断する方向へプレッシャプレート93を付勢する。通常の状態(クラッチ接続状態)におけるレリーズスプリング97の付勢力は、0または、メインスプリング95の付勢力に比して十分小さい値に設定されている。
図4に示すクラッチ接続状態では、メインスプリング95の付勢力がレリーズスプリング97の付勢力よりも十分大きいため、プレッシャプレート93はクラッチ板94をクラッチセンタ92に強く付勢しており、クラッチは完全に接続されている。このクラッチ接続状態では、レリーズボス100の当接面100aとバネ座部96bとの間には、隙間Gが形成されている。
シフトスピンドル71(図3)の回転に伴いクラッチレバー81が回動されてリフターカムプレート84が軸方向に移動すると、リフタープレート96は、ボールベアリング87を介して押圧され、隙間Gを小さくする方向にリフトされる。
リフタープレート96が隙間Gを小さくする方向へリフトされて、レリーズスプリング97の付勢力がメインスプリング95の付勢力よりも大きくなると、プレッシャプレート93は、クラッチ切断方向への移動を開始する。リフタープレート96は、レリーズスプリング97と共働して、リフタープレート96のリフト位置によりクラッチ容量を低減させる。
図5は、リフタープレート96のリフト量とクラッチ機構51のクラッチ容量との関係を示す図である。ここで、図5では、リフタープレート96のリフト量が0でクラッチ接続状態の場合のクラッチ容量を1と表示している。
図5に示すように、クラッチ機構51では、リフタープレート96のリフトの開始の直後に、クラッチ容量は1から減少し始める。リフタープレート96が連続的にリフトされた場合、リフト量の増加に比例してレリーズスプリング97のクラッチ切断方向への付勢力は増加し、クラッチ容量は1から半クラッチ状態を経て0まで線形的に減少する。本実施の形態では、クラッチは、隙間Gが0になる前、すなわち、バネ座部96bがレリーズボス100の当接面100aに当接する前に切断され、クラッチ容量が0になるように設定されている。
このように、レリーズスプリング97を介してプレッシャプレート93を押圧することで、剛体を介してプレッシャプレート93を押圧する場合に比して、緩やかに且つ高精度にクラッチ容量を減少させることができる。
図6は、リフターカムプレート84の平面図である。
リフターカムプレート84のリフター部84bは円板状に形成されており、連結部84aは、リフター部84bの外周部の一部から径方向外側に突出して形成されている。ボール85に当接するカム部84cは、ガイド穴84dの周囲おいて、周方向の複数箇所(本実施の形態では3個所)に分かれて配置されている。各カム部84cの形状は同一形状である。ボール85は、カム部84cに対応して3個所に設けられる。連結部84aには、クラッチレバー81のピン86が連結されるガイド孔84eが形成されている。
リフターカムプレート84は、シフトスピンドル71の正転または逆転に伴い、クラッチレバー81のピン86を介して操作され、ガイド穴84dに嵌合するガイド軸83bを中心に回動し、カム部84cがボール85上を滑ることで、軸方向に移動する。すなわち、リフターカムプレート84は、クラッチレバー81の回転方向の移動量をリフターカムプレート84の軸方向の移動量に変換する。そして、リフターカムプレート84の軸方向の移動量は、カム部84cの形状によって決まる。
図7は、図6のVII−VII断面図である。
カム部84cは、複数のクラッチ容量を得られるように、複数の段部を有する階段状のカムプロフィールを備える。
カム部84cは、クラッチ機構51のクラッチ接続状態に対応した接続段部110(クラッチ接続位置)を基準位置として有する。接続段部110は、カム部84cの最も深い位置に形成された段部であり、接続段部110にボール85が係合した状態では、クラッチ機構51は完全に接続されている。カム部84cには、接続段部110を基準位置とし、シフトダウン方向及びシフトアップ方向が、接続段部110の周方向の両側に設定されている。本実施の形態では、カム部84cは、シフトスピンドル71が正転するとシフトアップ方向に回動し、シフトスピンドル71が逆転するとシフトダウン方向に回動する。ここで、「シフトアップ方向」は、ボール85がリフターカムプレート84に対して相対的にシフトアップ方向に移動する方向であり、実際のリフターカムプレート84の回動方向はシフトアップ方向とは逆の方向であるが、以下の説明では、図7中に矢印で示す方向をシフトアップ方向とする。同様に、「シフトダウン方向」は、ボール85がリフターカムプレート84に対して相対的にシフトダウン方向に移動する方向であり、実際のリフターカムプレート84の回動方向はシフトダウン方向とは逆の方向であるが、以下の説明では、図7中に矢印で示す方向をシフトダウン方向とする。
接続段部110に隣接してシフトダウン方向には、シフトダウン用段部114が形成されている。シフトダウン用段部114は、カム部84cにおいて最も高い段部であり、リフターカムプレート84のリフト方向の軸線に直交する平坦面となっている。
接続段部110に隣接してシフトアップ方向には、接続段部110に近い順に、接続段部110よりも高い段部である第1容量段部111(第1の平坦部)と、第1容量段部111よりも高い段部である第2容量段部112(第2の平坦部)と、第2容量段部112よりも高い段部である切断段部113(クラッチ切断位置)とが形成されている。
第1容量段部111、第2容量段部112及び切断段部113は、シフトダウン用段部114に平行な平坦面である。
接続段部110と第1容量段部111と第2容量段部112と切断段部113との間は、互いに略等しい角度の斜面部115,116,117によってそれぞれ接続されている。また、斜面部115,116,117の上端及び下端は曲面状に滑らかに形成されている。接続段部110とシフトダウン用段部114とは、斜面部118によって接続されている。斜面部118の上端及び下端は曲面状に滑らかに形成されている。斜面部118の傾斜度は斜面部115,116,117の傾斜度よりも大きい。ボール85は、斜面部115,116,117,118上を滑らかに移動する。
切断段部113とシフトダウン用段部114との高さは同一であり、図6に示すように、一つの切断段部113は、隣接する他のカム部84cのシフトダウン用段部114に連続している。
接続段部110は、ボール85よりも曲率が大きな曲面状底部110aと、斜面部115及び斜面部118とにより構成されており、ボール85は、斜面部115及び斜面部118に支持されて曲面状底部110aに当接しない。すなわち、ボール85は、接続段部110内の定位置に納まる。一方、第1容量段部111、第2容量段部112、切断段部113及びシフトダウン用段部114は、ボール85が平坦面上を平行移動可能な一定の幅を備える。
図8は、シフトスピンドル71の回転角度とリフタープレート96のリフト量との関係を示す図である。リフタープレート96のリフト量は、リフターカムプレート84のリフト量に相当する。また、図7では、カム部84cに沿って移動するボール85の中心の軌跡Qと、クラッチ機構51が切断されるリフターカムプレート84のリフト量であるクラッチ切れリフト量Yとが示されている。クラッチ切れリフト量Yは、ボール85の中心を基準に示されている。
シフトスピンドル71が所定量だけ回動されてリフターカムプレート84が回動され、ボール85が第1容量段部111に移動すると、リフターカムプレート84の接続段部110からのリフト量はリフト量L1となる。この状態では、リフタープレート96は、リフト量L1だけクラッチ切断方向にリフトされる。リフト量L1は、クラッチ切れリフト量Yよりも小さい。すなわち、ボール85が第1容量段部111に位置する状態では、クラッチ機構51は半クラッチ状態となり、図5に示すように、例えば、リフト量L1におけるクラッチ容量は0.6である。
また、第1容量段部111は、リフターカムプレート84のリフト方向の軸線に直交する平坦面により構成される第1容量範囲R1を有し、第1容量範囲R1内では、一定のリフト量L1が得られる。第1容量範囲R1が得られるシフトスピンドル71の第1角度範囲A1(図8)は、第1容量段部111の幅に対応した一定の幅を有する。このため、シフトスピンドル71の回転角度、周辺部品及び制御方法等の精度をそれほど高くしなくとも、リフト量L1を得て、半クラッチ状態にできる。
シフトスピンドル71の駆動により、ボール85が第2容量段部112に移動すると、リフターカムプレート84はリフト量L1よりもさらにリフトされ、リフタープレート96のクラッチ切断方向へのリフト量はリフト量L2となる。このリフト量L2は、リフト量L1よりも大きく、クラッチ切れリフト量Yよりも小さい。すなわち、ボール85が第2容量段部112に位置する状態では、クラッチ機構51はさらに容量が小さい半クラッチ状態となり、図5に示すように、例えば、リフト量L2におけるクラッチ容量は0.3である。
また、第2容量段部112は、リフターカムプレート84のリフト方向の軸線に直交する平坦面により構成される第2容量範囲R2を有し、第2容量範囲R2内では、一定のリフト量L2が得られる。第2容量範囲R2が得られるシフトスピンドル71の第2角度範囲A2は、第2容量段部112の幅に対応した一定の幅を有する。このため、シフトスピンドル71の回転角度、周辺部品及び制御方法等の精度をそれほど高くしなくとも、リフト量L2を得て、半クラッチ状態にできる。
シフトスピンドル71の駆動により、ボール85が切断段部113に移動すると、リフターカムプレート84のリフト量は最大となり、リフタープレート96のクラッチ切断方向へのリフト量はリフト量L3となる。このリフト量L3は、クラッチ切れリフト量Yよりも大きい。すなわち、ボール85が切断段部113に位置する状態では、クラッチ機構51は完全に切断された状態となり、図5に示すように、リフト量L3におけるクラッチ容量は0である。
また、切断段部113は、リフターカムプレート84のリフト方向の軸線に直交する平坦面により構成される切断範囲R3を有し、切断範囲R3内では、一定のリフト量L3が得られる。切断範囲R3が得られるシフトスピンドル71の第3角度範囲A3は、切断段部113の幅に対応した一定の幅を有する。このため、シフトスピンドル71の回転角度、周辺部品及び制御方法等の精度をそれほど高くしなくとも、リフト量L3を得て、クラッチ機構51を切断状態にできる。
シフトスピンドル71の駆動により、ボール85がシフトダウン用段部114に移動すると、リフターカムプレート84のリフト量は、リフト量L3となり、クラッチ機構51は切断される。また、シフトダウン用段部114は、リフターカムプレート84のリフト方向の軸線に直交する平坦面により構成される切断範囲R4を有し、切断範囲R4内では、一定のリフト量L3が得られる。切断範囲R4が得られるシフトスピンドル71の第4角度範囲(不図示)は、切断範囲R4の幅に対応した一定の幅を有する。このため、シフトスピンドル71の回転角度、周辺部品及び制御方法等の精度をそれほど高くしなくとも、リフト量L3を得て、クラッチ機構51を切断状態にできる。
すなわち、本実施の形態では、クラッチ機構51のクラッチ容量は、ボール85のカム部84cに対するセット位置によって4段階が設けられている。詳細には、クラッチ容量は、接続段部110に対応する「最大容量」と、第1容量段部111に対応する「大容量」と、第2容量段部112に対応する「小容量」と、切断段部113に対応し、クラッチ容量が0となる「最低容量」との4段階を有する。
図9は、自動変速機Tの構成を示すブロック図である。
図9に示すように、自動変速機Tは、発進クラッチ24、プライマリギア37、クラッチ機構51、メイン軸56、変速機構50、カウンタ軸57、チェーン15、スプロケット67及び後輪13を備え、クランク軸23の動力を後輪13まで機械的に伝達する駆動伝達部130と、変速機構50及びクラッチ機構51を機械的に操作する行うアクチュエータ機械部55と、アクチュエータ機械部55を制御する電装部131とを備える。アクチュエータ機械部55及び電装部131は、変速制御装置140を構成する。
アクチュエータ機械部55は、シフトスピンドル71と、シフター53と、蓄力機構74と、シフトドラム63と、クラッチリフター52とを備える。
電装部131は、制御ユニット17と、ハンドル11に設けられるハンドルスイッチ132と、エンジン回転数センサ45と、モーター70と、スピンドル角度センサ72と、シフトドラムセンサ63aと、カウンタ軸回転数センサ68とを備える。ハンドルスイッチ132は、モードスイッチ26及びシフトセレクトスイッチ27を備える。
制御ユニット17は、ハンドルスイッチ132、エンジン回転数センサ45、スピンドル角度センサ72、シフトドラムセンサ63a及びカウンタ軸回転数センサ68からの信号に基づいて、モーター70を制御し、変速操作及びクラッチ操作を自動で行う。
図10は、制御ユニット17の機能的構成を示すブロック図である。ここで、図10では、自動二輪車10の走行中に、クラッチ機構51を切断して変速機構50の歯車列を操作してシフトアップした後において、クラッチ機構51を再び接続する段階の制御ユニット17の機能的構成がブロック図で示されている。図10に示す処理は、所定の時間毎に繰り返し実行される。
制御ユニット17は、エンジン回転数センサ45、スピンドル角度センサ72、シフトドラムセンサ63a及びカウンタ軸回転数センサ68から入力された信号を処理する車体センサインターフェイス部120と、エンジントルク推定部121と、目標ギアポジション決定部122と、変速モード決定部123と、クラッチ制御モード決定部124とを備える。
車体センサインターフェイス部120は、エンジン回転数センサ45の検出値を処理してエンジン回転数としてクラッチ制御モード決定部124に出力する。また、車体センサインターフェイス部120は、クラッチ機構51のクラッチ滑り回転数をクラッチ制御モード決定部124に出力する。クラッチ滑り回転数は、クラッチ機構51の下流側のカウンタ軸回転数センサ68の検出値に現在のギアレシオを考慮した回転数とエンジン回転数センサ45から得られるエンジン回転数との差である。クラッチ滑り回転数により、変速中のクラッチ接続状態が判定される。クラッチ滑り回転数が大きいほど、クラッチの接続状態は弱い。
また、車体センサインターフェイス部120は、スピンドル角度センサ72から得られた信号を、実スピンドル角として、クラッチ制御モード決定部124及び後述のスピンドル角制御部127に出力する。
エンジントルク推定部121は、エンジン回転数センサ45及びスロットル開度センサの検出値と、吸気温度及び大気圧等の環境補正要素とに基づき、予め格納されているマップに基づいて、現在(変速機構50の歯車列の変速操作の直前)のエンジントルクを推定し、エンジントルク推定値を変速モード決定部123に出力する。
目標ギアポジション決定部122は、カウンタ軸回転数センサ68の検出値に基づき、目標とするギアポジションを決定し、この目標ギアポジションを変速モード決定部123に出力する。
変速モード決定部123は、現在のギアポジションと目標ギアポジションとに基づいて、シフトアップするシフトアップモード及びシフトダウンするシフトダウンモードのいずれかを決定し、決定した変速モードをクラッチ制御モード決定部124に出力する。
さらに、変速モード決定部123は、シフトアップモード時には、シフトアップ用目標クラッチ容量を、エンジントルク推定値が所定のエンジントルクTq(図11)よりも大きいと推定された場合には上記「大容量」に決定し、エンジントルク推定値が所定のエンジントルクTqよりも小さいと推定された場合には上記「小容量」に決定し、決定したシフトアップ用目標クラッチ容量をクラッチ制御モード決定部124に出力する。
また、制御ユニット17は、目標クラッチ容量決定部125と、目標スピンドル角決定部126と、スピンドル角制御部127とを備える。
クラッチ制御モード決定部124は、シフトスピンドル71のスピンドル角、エンジン回転数、クラッチ滑り回転数、変速モード及びシフトアップ用目標クラッチ容量に基づいて、クラッチ制御モードを決定する。具体的には、クラッチ制御モードは、「最大容量」でクラッチを接続する最大容量モードと、「大容量」でクラッチを接続する大容量モードと、「小容量」でクラッチを接続する小容量モードとの3つのモードがあり、クラッチ制御モード決定部124は、決定したクラッチ制御モードを目標クラッチ容量決定部125に出力する。
クラッチ制御モード決定部124は、変速モード決定部123が決定したシフトアップ用目標クラッチ容量に基づき、シフトアップ用目標クラッチ容量が、「大容量」の場合は大容量モードに決定し、「小容量」の場合は小容量モードに決定する。また、クラッチ制御モード決定部124は、大容量モードまたは小容量モードでクラッチを接続した後に、クラッチ滑り回転数が0になったことを検出すると、クラッチ制御モードを最大容量モードに決定する。
目標クラッチ容量決定部125は、クラッチ制御モード決定部124が決定したクラッチ制御モードに基づいて、目標クラッチ容量を、3段の中から決定する。詳細には、目標クラッチ容量決定部125は、大容量モードの場合は「大容量」に決定し、小容量モードの場合は「小容量」に決定し、最大容量モードの場合は「最大容量」に決定し、決定した目標クラッチ容量を目標スピンドル角決定部126に出力する。
目標スピンドル角決定部126は、目標クラッチ容量を、目標スピンドル角に変換し、目標スピンドル角をスピンドル角制御部127に出力する。
スピンドル角制御部127は、シフトスピンドル71のスピンドル角が目標スピンドル角となるように、アクチュエータ機械部55のモーター70をフィードバック制御する。これにより、シフトスピンドル71が目標スピンドル角となり、目標クラッチ容量が得られる。
図11は、シフトアップ時に「大容量」でクラッチ接続する場合のカウンタ軸トルクを示す図である。図11では、変速前後においてエンジン回転数を同一とする条件で、1速から2速にシフトアップする場合が示されている。
変速に伴い、制御ユニット17は、モーター70を駆動し、リフターカムプレート84をシフトアップ方向に回動させることで、ボール85を接続段部110(図7)から切断段部113(図7)に移動させる。これにより、クラッチリフター52がリフトされてクラッチ機構51が切断されるとともに、シフター53、蓄力機構74及びシフトドラム63を介して変速機構50の歯車列が1速から2速に切り替えられる。その後、クラッチ機構51は再び接続されるが、この接続について次に説明する。
図11の状態では、自動二輪車10はカウンタ軸57のトルクが比較的大きい状態で走行しており、エンジントルク推定部121は、2速にシフトアップ後のエンジントルク推定値X1が、所定のエンジントルクTqよりも大きいと推定している。ここで、所定のエンジントルクTqは、クラッチ機構51の「最大容量」の略半分の大きさに設定されている。
変速モード決定部123は、変速モードをシフトアップモードに決定しているとともに、エンジントルク推定値X1が所定のエンジントルクTqよりも大きいことに基づいて、シフトアップ用目標クラッチ容量を「大容量」に決定している。
クラッチ制御モード決定部124は、シフトアップ用目標クラッチ容量の「大容量」の決定に基づき、クラッチ制御モードを大容量モードに決定し、次いで、目標クラッチ容量決定部125は、大容量モードの決定に基づいて、目標クラッチ容量を「大容量」に決定する。目標スピンドル角決定部126は、「大容量」に対応した第1容量段部111にボール85がセットされる目標スピンドル角をスピンドル角制御部127に出力する。スピンドル角制御部127は、上記目標スピンドル角となるようにモーター70を駆動する。これにより、リフターカムプレート84はシフトダウン方向(図7)に回動され、ボール85が切断段部113から第1容量段部111に移動することで、クラッチ機構51は、クラッチ容量が「大容量」の状態で接続が開始される。
なお、歯車列が2速に切り替えられている変速機構50は、公知の間欠送り機構(不図示)によってロックされるとともにシフトスピンドル71の回転から切り離されるため、「大容量」の状態にするためにリフターカムプレート84及びシフトスピンドル71がシフトダウン方向に回動された場合にも影響を受けない。
クラッチ制御モード決定部124は、「大容量」で接続開始後に、クラッチ滑り回転数が0になったことを検出すると、クラッチ制御モードを最大容量モードに決定する。次いで、目標クラッチ容量決定部125は、最大容量モードの決定に基づいて、目標クラッチ容量を「最大容量」に決定する。目標スピンドル角決定部126は、「最大容量」に対応した接続段部110にボール85がセットされる目標スピンドル角をスピンドル角制御部127に出力する。スピンドル角制御部127は、目標スピンドル角となるようにモーター70を駆動する。これにより、リフターカムプレート84はシフトダウン方向(図7)に回動され、ボール85が接続段部110に移動することで、クラッチ機構51は、クラッチ容量が「最大容量」の状態となり接続が完了する。
第1容量段部111で得られるクラッチ容量である「大容量」の大きさは、変速前のカウンタ軸57のトルクと変速後のエンジントルク推定値X1との間の大きさである。このように、変速後のエンジントルク推定値X1に合わせて、クラッチ容量を「大容量」にするため、変速ショックを低減できる。また、クラッチが滑り過ぎることが防止されるため、変速後のクラッチ接続を速やかに完了できる。
図12は、シフトアップ時に「小容量」でクラッチ接続する場合のカウンタ軸トルクを示す図である。図12では、変速前後においてエンジン回転数を同一とする条件で、1速から2速にシフトアップする場合が示されている。
変速に伴い、制御ユニット17は、モーター70を駆動し、リフターカムプレート84をシフトアップ方向に回動させることで、ボール85を接続段部110(図7)から切断段部113(図7)に移動させている。
図12の状態では、自動二輪車10はカウンタ軸57のトルクが図11よりも小さい状態で走行しており、エンジントルク推定部121は、2速にシフトアップ後のエンジントルク推定値X2が、所定のエンジントルクTqよりも小さいと推定している。
変速モード決定部123は、変速モードをシフトアップモードに決定しているとともに、エンジントルク推定値X2が所定のエンジントルクTqよりも小さいことに基づいて、シフトアップ用目標クラッチ容量を「小容量」に決定している。
クラッチ制御モード決定部124は、シフトアップ用目標クラッチ容量の「小容量」の決定に基づき、クラッチ制御モードを小容量モードに決定し、次いで、目標クラッチ容量決定部125は、小容量モードの決定に基づいて、目標クラッチ容量を「小容量」に決定する。目標スピンドル角決定部126は、「小容量」に対応した第2容量段部112にボール85がセットされる目標スピンドル角をスピンドル角制御部127に出力する。スピンドル角制御部127は、上記目標スピンドル角となるようにモーター70を駆動する。これにより、リフターカムプレート84はシフトダウン方向(図7)に回動され、ボール85が切断段部113から第2容量段部112に移動することで、クラッチ機構51は、クラッチ容量が「小容量」の状態で接続が開始される。
クラッチ制御モード決定部124は、「小容量」で接続開始後に、クラッチ滑り回転数が0になったことを検出すると、クラッチ制御モードを最大容量モードに決定する。次いで、目標クラッチ容量決定部125は、最大容量モードの決定に基づいて、目標クラッチ容量を「最大容量」に決定する。目標スピンドル角決定部126は、「最大容量」に対応した接続段部110にボール85がセットされる目標スピンドル角をスピンドル角制御部127に出力する。スピンドル角制御部127は、目標スピンドル角となるようにモーター70を駆動する。これにより、リフターカムプレート84はシフトダウン方向(図7)に回動され、ボール85が接続段部110に移動することで、クラッチ機構51は、クラッチ容量が「最大容量」の状態となり接続が完了する。
第2容量段部112で得られるクラッチ容量である「小容量」の大きさは、変速前のカウンタ軸57のトルクと変速後のエンジントルク推定値X2との間の大きさである。このように、変速後のエンジントルク推定値X2に合わせて、クラッチ容量を「小容量」にするため、クラッチが急激に接続されてしまうことを防止でき、変速ショックを低減できる。
走行中にシフトダウンする場合、制御ユニット17は、シフトスピンドル71を駆動し、リフターカムプレート84をシフトダウン方向に回動させてボール85を接続段部110(図7)からシフトダウン用段部114に移動させ、クラッチを切断する。次いで、制御ユニット17は、シフトスピンドル71の駆動により変速機構50の歯車列を変更して変速し、その後、シフトスピンドル71を逆方向に駆動してリフターカムプレート84をシフトアップ方向に回動し、クラッチを接続する。本実施の形態では、上述のバックトルクリミッタ機構を備えるため、シフトダウンの際にクラッチを一気に接続したとしても、変速ショックが低減される。
以上説明したように、本発明を適用した実施の形態によれば、リフタープレート96をリフトさせるリフターカムプレート84のカム部84cプロフィールは、切断段部113と接続段部110との間にリフターカムプレート84の回動に対してリフト量が一定な第1容量段部111及び第2容量段部112を有し、制御ユニット17は、リフターカムプレート84を第1容量段部111及び第2容量段部112に位置するよう制御するスピンドル角制御部127を有する。このため、リフターカムプレート84を第1容量段部111及び第2容量段部112に位置するよう制御することで、クラッチ容量を、切断段部113と接続段部110との間の所定の中間容量に容易にセットできる。第1容量段部111及び第2容量段部112ではリフターカムプレート84の回動に対してリフト量が一定であり、第1容量段部111及び第2容量段部112はある程度の範囲を持って設けられるため、第1容量段部111及び第2容量段部112に対応するスピンドル角に制御することは、比較的容易となる。従って、アクチュエータ機械部55等のシステム部品や制御方法が比較的簡素なものであっても、クラッチ容量を容易に設定値に合わせることができ、変速ショックを低減可能な変速制御装置140とすることができる。
リフターカムプレート84の第1容量段部111及び第2容量段部112は複数設けられ、変速前後でのエンジン21のエンジントルクを推定するエンジントルク推定部121をさらに有し、スピンドル角制御部127は、リフターカムプレート84を、エンジントルク推定値X1,X2に応じて第1容量段部111及び第2容量段部112の内の1つに位置するように制御するため、エンジントルクに基づいて適切なクラッチ容量を選択でき、変速ショックを低減できる。
また、リフターカムプレート84の複数の第1容量段部111及び第2容量段部112は、リフト量が小さな第1容量段部111と、リフト量が大きな第2容量段部112と、を有し、エンジントルク推定値X1が所定のエンジントルクTqよりも大きいと推定された場合、スピンドル角制御部127はリフターカムプレート84が第1容量段部111に位置するように制御するため、エンジントルクが大きな場合には、リフト量が小さな第1容量段部111に対応した比較的大きなクラッチ容量を得ることができる。これにより、変速前後の大きなエンジントルクに適したクラッチ容量にでき、変速ショックを低減できる。
さらに、エンジントルク推定値X2が所定のエンジントルクTqよりも小さいと推定された場合、スピンドル角制御部127はリフターカムプレート84が第2容量段部112に位置するように制御するため、エンジントルクが小さな場合には、リフト量が大きな第2容量段部112に対応した比較的小さなクラッチ容量を得ることができる。これにより、変速前後の小さなエンジントルクに適したクラッチ容量にでき、変速ショックを低減できる。
10 自動二輪車(車両)
17 制御ユニット(制御部)
51 クラッチ機構(クラッチ)
70 モーター(アクチュエータ)
71 シフトスピンドル
72 スピンドル角度センサ
84 リフターカムプレート(リフターカム)
93 プレッシャプレート
94 クラッチ板
95 メインスプリング
96 リフタープレート
97 レリーズスプリング
110 接続段部(クラッチ接続位置)
111 第1容量段部(第1の平坦部)
112 第2容量段部(第2の平坦部)
113 切断段部(クラッチ切断位置)
121 エンジントルク推定部
127 スピンドル角制御部
140 変速制御装置
T 自動変速機(変速機)
Tq 所定のエンジントルク
X1,X2 エンジントルク推定値(推定エンジントルク)

Claims (4)

  1. 変速機(T)のシフトスピンドル(71)を駆動するアクチュエータ(70)と、メインスプリング(95)の押圧力によって複数のクラッチ板(94)をクラッチ接続方向へ付勢するプレッシャプレート(93)と、当該プレッシャプレート(93)をクラッチ切断方向へリフトするリフタープレート(96)と、当該リフタープレート(96)をクラッチ切断方向へ付勢するレリーズスプリング(97)との共働によりリフタープレート(96)位置によりクラッチ容量を低減させるクラッチ(51)と、前記シフトスピンドル(71)の回動に伴って、前記リフタープレート(96)をリフトさせるリフターカム(84)と、前記アクチュエータ(70)に回動指令を与える制御部(17)とを備える車両の変速制御装置において、
    前記リフターカム(84)のプロフィールは、クラッチ切断位置(113)とクラッチ接続位置(110)との間に前記リフターカム(84)の回動に対してリフト量が一定な平坦部(111,112)を有し、
    前記制御部(17)は、前記リフターカム(84)を前記平坦部(111,112)に位置するよう制御するスピンドル角制御部(127)を有することを特徴とする車両の変速制御装置。
  2. 前記リフターカム(84)の前記平坦部(111,112)は複数設けられ、
    エンジントルクを推定するエンジントルク推定部(121)をさらに有し、
    前記スピンドル角制御部(127)は、前記リフターカム(84)を、推定エンジントルク(X1,X2)に応じて複数の平坦部(111,112)の内の1つに位置するように制御することを特徴とする請求項1記載の車両の変速制御装置。
  3. 前記リフターカム(84)の複数の前記平坦部(111,112)は、リフト量が小さな第1の平坦部(111)と、リフト量が大きな第2の平坦部(112)と、を有し、前記推定エンジントルク(X1,X2)が所定のエンジントルク(Tq)よりも大きいと推定された場合、前記スピンドル角制御部(127)は前記リフターカム(84)が前記第1の平坦部(111)に位置するように制御することを特徴とする請求項2記載の車両の変速制御装置。
  4. 前記推定エンジントルク(X1,X2)が前記所定のエンジントルク(Tq)よりも小さいと推定された場合、前記スピンドル角制御部(127)は前記リフターカム(84)が前記第2の平坦部(112)に位置するように制御することを特徴とする請求項3記載の車両の変速制御装置。
JP2013074736A 2013-03-29 2013-03-29 車両の変速制御装置 Active JP5981870B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013074736A JP5981870B2 (ja) 2013-03-29 2013-03-29 車両の変速制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013074736A JP5981870B2 (ja) 2013-03-29 2013-03-29 車両の変速制御装置

Publications (2)

Publication Number Publication Date
JP2014199103A true JP2014199103A (ja) 2014-10-23
JP5981870B2 JP5981870B2 (ja) 2016-08-31

Family

ID=52356133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013074736A Active JP5981870B2 (ja) 2013-03-29 2013-03-29 車両の変速制御装置

Country Status (1)

Country Link
JP (1) JP5981870B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191388A (ja) * 2015-03-30 2016-11-10 本田技研工業株式会社 車両の変速装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005249083A (ja) * 2004-03-04 2005-09-15 Honda Motor Co Ltd 多板クラッチ構造
JP2012062992A (ja) * 2010-09-17 2012-03-29 F C C:Kk クラッチ装置におけるクラッチレリーズ機構

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005249083A (ja) * 2004-03-04 2005-09-15 Honda Motor Co Ltd 多板クラッチ構造
JP2012062992A (ja) * 2010-09-17 2012-03-29 F C C:Kk クラッチ装置におけるクラッチレリーズ機構

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191388A (ja) * 2015-03-30 2016-11-10 本田技研工業株式会社 車両の変速装置

Also Published As

Publication number Publication date
JP5981870B2 (ja) 2016-08-31

Similar Documents

Publication Publication Date Title
US10352373B2 (en) Multiple plate clutch
US10543883B2 (en) Speed change apparatus for vehicle
US10066744B2 (en) Transmission apparatus and power unit for a vehicle, and vehicle including same
WO2012066740A1 (ja) トランスミッション及び変速制御システム
JP4561587B2 (ja) 変速制御装置
EP2093449B1 (en) Motorcycle including centrifugal clutch
US10480596B2 (en) Vehicle transmission device
US10012312B2 (en) Speed change apparatus for vehicle
US9481372B2 (en) Speed change apparatus for vehicle
US9822829B2 (en) Controller of vehicle and vehicle
JP6454207B2 (ja) 車両の変速装置
JP5981870B2 (ja) 車両の変速制御装置
JP4616625B2 (ja) 自動変速制御装置
JP2014199102A (ja) 変速装置
JP6322111B2 (ja) 車両の変速装置
JP2014122676A (ja) 坂道発進補助システム
JP6419625B2 (ja) 車両の変速装置
JP2017166700A (ja) 坂道発進補助装置
JP6138645B2 (ja) クラッチ装置
JP2019183873A (ja) 車両の動力伝達装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160729

R150 Certificate of patent or registration of utility model

Ref document number: 5981870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250