JP2014192367A - 太陽電池モジュール及びその製造方法 - Google Patents
太陽電池モジュール及びその製造方法 Download PDFInfo
- Publication number
- JP2014192367A JP2014192367A JP2013066965A JP2013066965A JP2014192367A JP 2014192367 A JP2014192367 A JP 2014192367A JP 2013066965 A JP2013066965 A JP 2013066965A JP 2013066965 A JP2013066965 A JP 2013066965A JP 2014192367 A JP2014192367 A JP 2014192367A
- Authority
- JP
- Japan
- Prior art keywords
- cell
- solar cell
- solar
- tab
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
【課題】部材を追加することなく、セルタブの断線と、セルの破壊を同時に防止すること。
【解決手段】太陽電池セル同士がセルタブにより電気的且つ機械的に接続された太陽電池モジュールであって、セルタブは、太陽電池セル1と当接する当接部と、セル間に相当するセル間領域部とで構成され、前記セル間領域部で結晶粒径がより小さい。つまりセルタブのセル間に相当するセル間領域部のみ圧延し、圧延部2aの端部2b及び非圧延部2cは太陽電池セル1にはんだ付けする。
【選択図】図1−4
【解決手段】太陽電池セル同士がセルタブにより電気的且つ機械的に接続された太陽電池モジュールであって、セルタブは、太陽電池セル1と当接する当接部と、セル間に相当するセル間領域部とで構成され、前記セル間領域部で結晶粒径がより小さい。つまりセルタブのセル間に相当するセル間領域部のみ圧延し、圧延部2aの端部2b及び非圧延部2cは太陽電池セル1にはんだ付けする。
【選択図】図1−4
Description
本発明は、太陽電池モジュール及びその製造方法に関する。
太陽電池モジュールは、光起電力効果によって太陽光を電力に変換する太陽電池セルを、ガラスや樹脂で封止した構造となっている。
通常、太陽電池セル1枚では発電量が不足するため、複数枚の太陽電池セルを直列、または直並列で接続した構造となっている。太陽電池セルを直列に接続する方法としては、太陽電池セルの表側に形成した電極と、これに隣接する太陽電池セルの裏側に形成した電極とを、セルタブと呼ばれる導体線で接続する方法が一般的である。これらの接続された太陽電池セルとセルタブは、ガラスや樹脂等で形成される板状基材と樹脂によって封止される。
セルタブは、太陽電池モジュールの機能である光電変換による発電において、各太陽電池セルで発生した電力を集めて外部に出力するという重要な役割を担っており、断線すると太陽電池セルの出力低下や、断線箇所のアーク放電による発火を引き起こす可能性がある。よって、セルタブの断線は、太陽電池モジュールの性能保証と安全性確保という面にとって、致命的な故障の1つである。しかしながら、太陽電池モジュールは熱膨張係数の大きく異なる部材を組み合わせて構成されていることが多いため、温度変化による熱膨張収縮でセルタブに応力が生じ、応力による疲労で断線が発生する。
従来例では、疲労による断線を防止するために、セルタブに応力を緩和する緩衝形状、例えばU字型形状や、スパイラル形状等を設けている(例えば特許文献1、2)。また、セルタブにリン青銅等のばね材を用い、セルタブ自体の疲労強度を向上する構造、あるいは板状基材と太陽電池セル間に線状構造物を挿入して熱膨張収縮を抑制する構造などが開示されている(例えば特許文献3)。
しかしながら、上記従来の技術によれば、セルタブは太陽電池セルで発生した電力を集め、外部に出力するという役割から、電気抵抗が低いことが求められる。また、はんだ付け等によるセルとセルタブの接続後に、セルとセルタブの熱膨張差を緩和し、脆いセルの破壊を防ぐという観点から、セルタブは軟らかい材料であることが必要であるが、軟らかいと疲労強度が低く、疲労により断線し易いという問題がある。
特許文献3では、セルタブの材料に、リン青銅等のばね材を用いているが、ばね材は電気抵抗が高く、セルタブの材料としては不向きである。更に、ばね材は硬いため、はんだ付け後のセルとセルタブの熱膨張差を緩和することができず、セルが破壊されてしまう。
また、特許文献1,2のように、U字型形状や、スパイラル形状等を設けるといった緩衝形状を設けるのは、U字型に曲げるための部材の追加および、太陽電池モジュール組立て前にセルタブにスパイラル加工を行なうことが必要となる。このため、太陽電池モジュールのコストが大幅に上昇してしまうという問題があった。
本発明は、上記に鑑みてなされたものであって、コストの上昇を最小限に抑えつつ、セルタブの断線防止とセルの破壊防止を同時に実現することの可能な太陽電池モジュール及びその製造方法を得ることを目的としている。
上述した課題を解決し、目的を達成するために、本発明は、太陽電池セル同士がセルタブにより電気的且つ機械的に接続された太陽電池モジュールにおいて、セルタブを、太陽電池セルと当接する当接部と、セル間に相当するセル間領域部とで構成し、セル間領域部で結晶粒径がより小さくなるようにしている。
本発明によれば、セルタブの断線が発生しやすい箇所である、隣り合うセル間に相当する部分で、結晶粒径がより小さくなるようにし、選択的に硬度を高め、耐力を高くすることで、疲労による断線を含む断線を防止することができる。
以下に、本発明にかかる太陽電池モジュール及びその製造方法の実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。
実施の形態1.
図1−1は本発明の実施の形態1による太陽電池モジュールの断面構造を示す図、図1−2は本発明の実施の形態1による太陽電池モジュールの受光面側からの構造を示す平面図(透光性部材は省略する)、図1−3は本発明の実施の形態1による太陽電池モジュールの一部破断斜視図、図1−4は同要部拡大斜視図である。なお図1−1は図1−2のA−A断面図である。図2−1及び図2−2は、従来例および本発明の実施の形態1によるセルタブの比較構造説明図である。図3は本発明の実施の形態1によるセルタブの加工工程を示す図である。この太陽電池モジュールは、受光面側に表面電極1a、反受光面側に裏面電極1bが形成された太陽電池セル1と、太陽電池セル1をセルタブ2によって直列または直並列に接続する、そして、このセルタブ2は、圧延加工により結晶粒径を小さくすることで硬度と耐力が高められた圧延部2aと、これに連設された非圧延部2cを持ち、表面にはんだがコーティングされている。2bは圧延部2aの端部であり、非圧延部2cと圧延部2aの端部2bとが太陽電池セル1との当接部を構成している。そしてセルタブ2で接続された太陽電池セル1を、透光性材料からなる板状基材3と、板状基材4とで、受光面側および反受光面側から挟むとともに、太陽電池セル1とセルタブ2を封止する熱可塑後に架橋反応によって硬化する樹脂5とを具備している。20ははんだである。ここで硬度とは、ブリネル硬さやビッカース硬さで代表される一定荷重で圧子を押付け、除荷後の圧痕の形状を測定する押込み硬さのことである。
図1−1は本発明の実施の形態1による太陽電池モジュールの断面構造を示す図、図1−2は本発明の実施の形態1による太陽電池モジュールの受光面側からの構造を示す平面図(透光性部材は省略する)、図1−3は本発明の実施の形態1による太陽電池モジュールの一部破断斜視図、図1−4は同要部拡大斜視図である。なお図1−1は図1−2のA−A断面図である。図2−1及び図2−2は、従来例および本発明の実施の形態1によるセルタブの比較構造説明図である。図3は本発明の実施の形態1によるセルタブの加工工程を示す図である。この太陽電池モジュールは、受光面側に表面電極1a、反受光面側に裏面電極1bが形成された太陽電池セル1と、太陽電池セル1をセルタブ2によって直列または直並列に接続する、そして、このセルタブ2は、圧延加工により結晶粒径を小さくすることで硬度と耐力が高められた圧延部2aと、これに連設された非圧延部2cを持ち、表面にはんだがコーティングされている。2bは圧延部2aの端部であり、非圧延部2cと圧延部2aの端部2bとが太陽電池セル1との当接部を構成している。そしてセルタブ2で接続された太陽電池セル1を、透光性材料からなる板状基材3と、板状基材4とで、受光面側および反受光面側から挟むとともに、太陽電池セル1とセルタブ2を封止する熱可塑後に架橋反応によって硬化する樹脂5とを具備している。20ははんだである。ここで硬度とは、ブリネル硬さやビッカース硬さで代表される一定荷重で圧子を押付け、除荷後の圧痕の形状を測定する押込み硬さのことである。
ここで耐力とは、0.2%耐力のことである。明確な降伏現象を示さない材料では、弾性変形と塑性変形の境界を便宜上つけるため、降伏応力に相当する応力を耐力と定義している。鋼の降伏時の永久ひずみが約0.002(0.2%)であることから、除荷時の永久ひずみが0.2%になる応力を0.2%耐力と呼び、降伏応力の代用として使用されている。耐力は引張試験によって測定される。
本実施の太陽電池セルは、半導体基板としてのp型単結晶シリコン基板の受光面側には、受光面側電極が形成されており、表銀バス電極が該表銀グリッド電極と直交するように設けられており、それぞれ底面部においてn型不純物拡散層に電気的に接続している。表銀バス電極および表銀グリッド電極は銀材料により構成されている。p型単結晶シリコン基板の裏面(受光面と反対側の面)には、全体にわたって裏面電極が設けられている。
このように構成された太陽電池セル1では、太陽光が太陽電池セル1の受光面側から半導体基板のpn接合面(半導体基板とn型不純物拡散層との接合面)に照射されると、ホールと電子が生成される。pn接合部の電界によって、生成された電子はn型不純物拡散層に向かって移動し、ホールは基板に向かって移動する。これにより、n型不純物拡散層に電子が過剰となり、基板にホールが過剰となる結果、光起電力が発生する。この光起電力はpn接合を順方向にバイアスする向きに生じ、n型不純物拡散層に接続した受光面側電極がマイナス極となり、基板に接続した裏面側電極がプラス極となって、図示しない外部回路に電流が流れる。
セルタブ2としては主にCuが用いられることが多いが、Ag、Au、Alあるいはこれらを主成分とする合金のような電気伝導率が大きい金属を用いてもよい。
ところで、セルタブは以下に示す技術的課題を有していた。すなわち、太陽電池セルとはんだによってCuのセルタブが接合されているが、この接合部の線膨張係数は、太陽電池セルがSiからなり、およそ3ppm/℃、Cuおよそ18ppm/℃と大きく異なっていることが問題である。すなわち、太陽電池モジュールは屋根に設置され昼は直射日光を受け、夜は外気によって冷却されるため、数十度の温度変化が一日に生じる。サイズ200mmの場合、200×(18−3)×10-6×温度変化が伸びによる寸法差である。例えば温度差を40℃(外気温ではなくセルの温度)とすると0.12mmの長さの差が生じる。はんだ層の厚みは非常に薄いことと、セルの表面は太陽光の受光効率を向上するため、微細な凹凸加工がなされていることから、非常に割れやすく、約100MPa程度の応力から割れが発生する。このようなセルの割れを防止するため通常はセルタブには熱処理により耐力を著しく低減した材料を用いている。
この手法としては通常は焼きなましと呼ばれる熱処理を用いる。すなわち所謂ホールペッチの式と呼ばれる結晶の粒径と降伏点の関係が有名であり、降伏点は結晶粒径の平方に反比例することが知られている。すなわち結晶粒径が細かいほど降伏点が高い関係にある。Feのような降伏点というような現象はないものの、このような金属の性質はCuにも基本的には当てはまる。すなわち引き抜きや圧延によって得られたCuの条は結晶粒が非常に微細になり加工硬化しているため、前述の0.12mmといった熱歪によって大きな応力を発生し、セルが割れてしまう。また、硬度に対してもホールペッチの式は成立ち、硬度は結晶粒径の平方に反比例することが知られている。
この問題の解決のために本実施の形態では、前述した焼きなまし処理を線材にほどこし、耐力を通常のCu条の数分の1程度に下げて、すなわちCu条の耐力を100MPa以下としている。この背反として疲労寿命が小さくなっていることが挙げられる。ここで疲労寿命とは、同じ歪を繰り返し加えたときの破壊までのサイクル数によって測定される値をいうものとする。すなわちコフィンマンソン則として知られている金属疲労に関する経験則によると、金属の疲労寿命は、塑性歪振幅と大きな相関がある。すなわち耐力が極端に下げられた結果、ある歪に対して塑性変形領域で使われるため、たとえば百年以内に疲労破壊してしまう。
このため例えばコストを下げようとしてセルタブの素材を変更しようとしても、信頼性試験に多大な時間を要するなどの問題があった。またセル間の距離を下げてモジュールを小型化しようとしても、セルタブに生じる曲げ応力の影響が大きくなり、自由にセル間の距離を下げられなかった。本実施の形態ではセルと接合されている部分の耐力は低いまま、セル間の橋渡しをしている部分の耐力値を上げて、より高い応力に耐えられるようにする太陽電池モジュールを得るものである。
この太陽電池モジュールにおけるセルタブの製造に際しては、図3にその加工工程を示すように、太陽電池セルの間に相当するセル間領域部で結晶粒径がより小さくなるように選択的に圧延加工する工程を含む。先ずボビン31に巻かれているセルタブ2を引出し、ローラ32によりその一部分が薄くなるように圧延加工し、圧延部2aを形成する。このとき圧延によって薄くした部分は図1−3、もしくは図2−2のように楕円形にしてもよいし、途中の部分は同じ幅としてもよい。セルタブの元々の幅から徐々に幅が広がっていく部分を備えることは、段差の発生を防ぎ、段差部に発生する極端な応力集中部の発生を抑制する作用を目的としているが、途中の部分は一定の幅であってもよい。このような徐々に幅の変わる形状は、ローラ32の間隙を適宜セルタブ2の流れに対して適切な速度で変化させることで実現できる。
なお、楕円形状のローラを用いることで、徐々に圧延部の幅を変化させるようにしてもよい。このように圧延により幅を広く、厚みを薄くした部分を設けたことで、圧延加工により結晶粒径が小さくなり、その部分の耐力が増大するため、実際の使用時の温度サイクルにより生じる熱応力に対して、弾性範囲内で受け止めることができ、すなわち塑性歪の振幅としては小さくなり、コフィンマンソン則に知られているように、破断までの寿命を長くすることができる。
ところで、セル間領域部のセルタブに最も高い熱応力がかかる部分はセルの最も外側との接合部である。そこで好ましくは図1−4に示すように、セルタブ2の圧延部2aをセルとの接合部の端部(、もしくは若干セル中央側)から始まるようにしている。すなわち断面図でセルタブのセルとの接合部の端部は既に厚みが薄くなっている。この領域は耐力が上がっているが、セルの最も外側との接合部である。セルの中央部ではセルとセルタブが完全に固定されているため、セルとセルタブの熱膨張差を緩和できる箇所が無い。そのため、セルの熱応力が最も高くなり、セルタブの耐力を低減しないとセルの割れが発生する。しかし、セルの最も外側では、セル間のセルタブが固定されていないため、セルとセルタブの熱膨張差を緩和でき、セルの熱応力は比較的小さい。そのため、セルの中央部のセルの熱応力は、焼きなましにより著しく耐力を低減したセルタブを用いることで低減し、セルの熱応力の比較的小さい、端部もしくは若干セル中央側からセルタブの耐力を高め、結果としてセル間に、耐力の低い箇所がなくなっている。このように少なくともセル間の部分全てにおいて何らかの圧延が実施されていることで、飛躍的に太陽電池モジュールとしての長期信頼性を高められる。このとき圧延の幅は一定である必要はなく、曲率の高い部分で幅を広くし、曲率の小さい部分で幅を狭くするのが好ましい。これは、曲線部の曲率の変化という形で伸びの差が吸収されることで、セル間の距離変化に対する熱応力の処理がなされるためである。
このように、セルタブの断線が発生する箇所である、隣り合うセル間に相当する部分のみをローラ等で圧延する。そしてセルタブ2の圧延部2aの端部2bを太陽電池セル1とはんだ付けする。セルタブのセル間領域部に相当する領域を、圧延による加工硬化で硬くすることができ、セルタブの断線が発生する箇所のみ硬くすることで、疲労による断線を防止することができる。そしてまた、セルタブのセルと接続する部分は軟らかいため、セルとセルタブの熱膨張差を緩和することができ、セルの破壊も防止することができる。
加えて、圧延によりセルタブの断線箇所が薄くなることで、熱膨張収縮時に発生する曲がりの、内外側の変形量の差が減少し、更なる疲労強度の向上が期待できる。また、セルタブの圧延部の端は厚みの減少と幅の増大によりフィレット形状となり、応力集中による断線が懸念されるが、セルタブ2の圧延部2aの端をセルとはんだ付け等による接続で一体化することにより、セルタブ2の圧延部2aの端での断線を防止することができる。
このようにして形成されたセルタブを用いて、太陽電池セル1を接続し実装する。図4−1及び図4−2は太陽電池モジュールの実装工程を示す図である。まず、セルタブ2を所定の長さに切断し、非圧延部2cの一部を予めフラックスが塗布された太陽電池セル1の表面電極1a、非圧延部2cの残部を予めフラックスが塗布された太陽電池セル1と隣り合う太陽電池セル1nの裏面電極1bと当接する位置で保持する。その後、図4−1に示すように、加熱手段8によって太陽電池セル1と太陽電池セル1nとセルタブ2を加熱し、セルタブ2表面のはんだを融解させることで、太陽電池セル1とセルタブ2、セルタブ2と太陽電池セル1nをそれぞれはんだ付けにより接続する。その時、セルタブ2の圧延部2aは、セル1と隣り合うセル1nの間に位置するよう保持され、セルタブ2の圧延部2aの端部2bは、太陽電池セル1または太陽電池セル1nの表面電極1aまたは裏面電極1bとはんだ付け等により接続されている。次に、同様の手段で太陽電池セル1(または太陽電池セル1n)を複数枚直列に接続し、ストリング6を形成する。更に、必要に応じてストリング6を並列に接続し、アレイ7を形成する。
その後、図4−2に示すように、形成したストリング6もしくはアレイ7を樹脂5で挟んだ後に、板状基材3と板状基材4で外側から挟む。そして、加圧しながら加熱することによって樹脂5を軟化させ、更に加熱を保持することで架橋反応によって硬化を進行させ、板状基材3と板状基材4の間でストリング6およびアレイ7を封止する。樹脂5の素材としては一般的にEVA(エチレンビニルアセテート)、受光面側の板状基材3の素材としてはガラス、もしくはアクリル樹脂が好適である。
なおセルタブ2の幅は通常0.5〜1mm程度、厚みは0.1〜0.2mm程度であるのが通常であるが、本実施の形態の圧延加工では、例えば幅2mm、厚みが半減程度までを加工範囲とした。そしてその場合、圧延加工による耐力の上昇により、圧延加工前に100MPa以下であったものを150MPa以上に耐力を向上させ、寿命を数倍以上に高められた。もしくは寿命確保のために余分に線材を太くするなどを回避できた。もしくはセル間の距離を縮めても所定の寿命を確保可能となった。
以上説明してきたように、本実施の形態によれば、セルタブとして、軟らかく抵抗の低い素材を用いることで、はんだ付け後のセル破壊の防止と、電力損失の低減を実現することができる。そしてその一方で、断線が発生し易い、セル間に相当する箇所のみ選択的に圧延することで、圧延部2aのみ加工硬化によって硬くすることができ、疲労による断線に対する寿命を向上できる。
また、圧延部2aの両端部2bを、セルとはんだ接合しているため、圧延部の端はフィレット形状となっているが、圧延部2aの端部2bをセルにはんだ付けすることで固定し、フィレット形状となっている圧延部2aの端部2bが、熱膨張収縮により断線するのを防ぐことができる。これにより、セルタブの断線を防止することができる。
また、圧延部2aであるセル間領域部には、曲げ部wを設け、熱膨張収縮に対する緩衝性を持たせている。曲げ部wの曲率が大きいほど緩衝性は向上するが、曲げ部wの内外の変形量の差が大きいと断線につながる。しかし、本実施の形態では、圧延部は薄くなっているので、曲率を大きくしても変形量の差による断線の発生を防止することができる。
さらにまた、セルタブの圧延において、圧延ローラの間隙を適宜セルタブの流れに対して適切な速度で変化させることで、太陽電池の受光面側から見て、楕円形状、または途中の部分は同じ幅となるようにしている。この構成により、セルタブの元々の幅から徐々に幅が広がって行く部分が備えることで、段差の発生を防ぐ事で段差部に発生する極端な応力集中部の発生を抑制し、断線の発生を防止することができる。特に圧延部2aは、セルとの当接部の近傍で、厚みが連続的に変化する厚み傾斜部を構成するようにするのが望ましい。これにより、極端な応力集中部の発生を抑制し、断線の発生をよりよく防止することができる。
実施の形態2.
図5は本発明の実施の形態2による太陽電池モジュールの製造方法で用いられるセルタブの加工工程を示す図である。
図5は本発明の実施の形態2による太陽電池モジュールの製造方法で用いられるセルタブの加工工程を示す図である。
この太陽電池モジュールの製造方法においては、圧延加工する工程を、先ず、セルタブの受光面と水平方向に対して圧延を行う、第1の圧延工程と、その後、前記受光面に対して法線方向に圧延を行う、第2の圧延工程とを含むことを特徴とする。すなわち、セルタブ2の圧延部2aを形成する際、前ローラ33でセルタブ2の断面形状の幅方向に対して圧延を行い(第1の工程)(つまり法線方向に圧力を加える)、その後ローラ32でセルタブ2の厚み方向に対して圧延を行う(第2の工程)(つまり水平方向に圧力を加える)。これを複数回行うようにしてもよい。他は図3に示した前記実施の形態1と同様であるため、ここでは説明を省略するが、同一部位には同一符号を付した。
本実施の形態2の方法では、異なる方向の圧延を複数回行うことにより、厚みを極度に薄くすることなく加工履歴を増やすことができ、より効果的にセルタブのセル間に相当する部分を硬くして、疲労による断線を防止することができる。
なお、セルタブの圧延において、先ず、セルタブの受光面と水平方向に対して圧延を行い、その後、受光面の法線方向に対して圧延を行うことで、セルタブの圧延部2aの厚みを極度に薄くすることなく加工履歴を増やすことができる。また、より効果的に圧延部2aを硬くすることができ、断線の発生を防止することができる。
実施の形態3.
図6は本発明の実施の形態3による太陽電池モジュールの製造方法で用いられるセルタブの加工工程を示す図である。この太陽電池モジュールは、セルタブ2の圧延部2aを形成する前、または後に、セルタブ2の圧延部2aを加熱手段34で加熱し、直後に冷却手段35で急冷する。他は図3に示した前記実施の形態1と同様であるため、ここでは説明を省略するが、同一部位には同一符号を付した。
図6は本発明の実施の形態3による太陽電池モジュールの製造方法で用いられるセルタブの加工工程を示す図である。この太陽電池モジュールは、セルタブ2の圧延部2aを形成する前、または後に、セルタブ2の圧延部2aを加熱手段34で加熱し、直後に冷却手段35で急冷する。他は図3に示した前記実施の形態1と同様であるため、ここでは説明を省略するが、同一部位には同一符号を付した。
本実施の形態3の方法では、セルタブの成形工程で、加熱し、直後に冷却手段35で急冷する焼き入れを行うことにより、圧延部2aの金属結晶粒が微細化することで硬くなり、疲労による断線を防止することができる。
以上のように、本実施の形態では、セルタブの圧延において、セルタブを圧延する前、もしくは後にセルタブを加熱し、直後に急冷する。これにより、セルタブ圧延部の金属結晶粒が微細化することで硬くなり、断線の発生を防止することができる。
実施の形態4.
図7−1は本発明の実施の形態4による太陽電池モジュールの断面構造を示す図、図7−2は本発明の実施の形態4による太陽電池モジュールの受光面側からの構造を示す平面図(透光性部材は省略する)である。図7−1は図7−2のA−A断面図である。この太陽電池モジュールでは、セルタブ2が曲げ部をもつことなく、直接隣接する太陽電池セル1nに接続されている点が特徴であり、セル間隔をより狭くすることができる構造である。他は図1−1〜図1−4に示した前記実施の形態1と同様であるため、ここでは説明を省略するが、同一部位には同一符号を付した。
図7−1は本発明の実施の形態4による太陽電池モジュールの断面構造を示す図、図7−2は本発明の実施の形態4による太陽電池モジュールの受光面側からの構造を示す平面図(透光性部材は省略する)である。図7−1は図7−2のA−A断面図である。この太陽電池モジュールでは、セルタブ2が曲げ部をもつことなく、直接隣接する太陽電池セル1nに接続されている点が特徴であり、セル間隔をより狭くすることができる構造である。他は図1−1〜図1−4に示した前記実施の形態1と同様であるため、ここでは説明を省略するが、同一部位には同一符号を付した。
この太陽電池モジュールにおいても、受光面側に表面電極1a、反受光面側に裏面電極1bが形成された太陽電池セル1と、太陽電池セル1をセルタブ2によって直列または直並列に接続する。そして、このセルタブ2は、加熱手段34で加熱し、直後に冷却手段35で急冷する焼き入れにより耐力が高められた圧延部2aを持ち、表面にはんだがコーティングされている。そしてセルタブ2で接続された太陽電池セル1を、透光性材料からなる板状基材3と、板状基材4とで、受光面側および反受光面側から挟むとともに、太陽電池セル1とセルタブ2を封止する熱可塑後に架橋反応によって硬化する樹脂5とを具備している。
本実施の形態では、セルタブ2のセル間領域に相当する圧延部2aをより短くすることができ、より小型化が可能となる。
なお、本願発明は上記実施の形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、上記実施の形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出されうる。例えば、実施の形態に示される全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出されうる。更に、異なる実施の形態にわたる構成要素を適宜組み合わせてもよい。
以上のように、本発明にかかる太陽電池モジュール及びその製造方法は、寿命の向上に有用であり、特に、太陽電池モジュールの長寿命化に適している。
1 太陽電池セル、1a 表面電極、1b 裏面電極、1n 太陽電池セル1と隣り合う太陽電池1と同じ構造の太陽電池セル、2 セルタブ、2a 圧延部、2b 圧延部の端部、2c 非圧延部、3 板状基材、4 板状基材、5 樹脂、6 ストリング、7 アレイ、8 はんだ付け加熱手段、31 ボビン、32 ローラ、33 前ローラ、34 加熱手段、35 冷却手段。
Claims (9)
- 太陽電池セル同士がセルタブにより電気的且つ機械的に接続された太陽電池モジュールであって、
前記セルタブは、前記太陽電池セルと当接する当接部と、セル間に相当するセル間領域部とで構成され、
前記セル間領域部で結晶粒径がより小さいことを特徴とする太陽電池モジュール。 - 前記セル間領域部は、選択的に硬度が高められた領域であることを特徴とする請求項1に記載の太陽電池モジュール。
- 前記セル間領域部は、圧延加工により、選択的に耐力が高められた圧延部であることを特徴とする請求項1に記載の太陽電池モジュール。
- 前記圧延部の両端部は、前記セルとはんだ接合されたことを特徴とする請求項1〜3のいずれか1項に記載の太陽電池モジュール。
- 前記セル間領域部は、曲げ部を有することを特徴とする請求項1〜4のいずれか1項に記載の太陽電池モジュール。
- 太陽電池セルを形成する工程と、
セルタブを形成する工程と、
前記セルタブにより太陽電池セル同士を電気的且つ機械的に接続する工程とを含む太陽電池モジュールの製造方法であって、
前記セルタブを形成する工程は、前記太陽電池セルの間に相当するセル間領域部で結晶粒径がより小さくなるように選択的に圧延加工する工程を含むことを特徴とする太陽電池モジュールの製造方法。 - 前記圧延加工する工程は、
前記セルタブの流れに対して適切な速度で圧延ローラの間隙を変化させることで、太陽電池の受光面側から見て、楕円形状、または途中の部分は同じ幅とすることを特徴とする請求項6に記載の太陽電池モジュールの製造方法。 - 前記圧延加工する工程は、
先ず、セルタブの受光面と水平方向に対して圧延を行う、第1の圧延工程と、
その後、前記受光面に対して法線方向に圧延を行う、第2の圧延工程とを含むことを特徴とする請求項6または7に記載の太陽電池モジュールの製造方法。 - 前記圧延加工する工程の前、もしくは後にセルタブを加熱し、直後に急冷する焼き入れ工程を含むことを特徴とする請求項6〜8のいずれか1項に記載の太陽電池モジュールの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013066965A JP2014192367A (ja) | 2013-03-27 | 2013-03-27 | 太陽電池モジュール及びその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013066965A JP2014192367A (ja) | 2013-03-27 | 2013-03-27 | 太陽電池モジュール及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014192367A true JP2014192367A (ja) | 2014-10-06 |
Family
ID=51838352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013066965A Pending JP2014192367A (ja) | 2013-03-27 | 2013-03-27 | 太陽電池モジュール及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014192367A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017038050A (ja) * | 2015-08-07 | 2017-02-16 | エルジー エレクトロニクス インコーポレイティド | 太陽電池パネル |
JP2017528919A (ja) * | 2014-09-25 | 2017-09-28 | サンパワー コーポレイション | 太陽電池相互接続 |
CN107393995A (zh) * | 2017-08-31 | 2017-11-24 | 常州天合光能有限公司 | 一种光伏互联条及光伏电池组件 |
WO2020114807A1 (de) * | 2018-12-03 | 2020-06-11 | Hanwha Q Cells Gmbh | Solarzellenstring, solarmodul und verfahren zur herstellung eines solarzellenstrings |
WO2023126149A1 (en) * | 2021-12-29 | 2023-07-06 | Rec Solar Pte. Ltd. | An apparatus for manufacturing an electrode assembly |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004055596A (ja) * | 2002-07-16 | 2004-02-19 | Sharp Corp | 太陽電池モジュールおよびそれを用いた太陽電池モジュールパネルの製造方法 |
JP2008147260A (ja) * | 2006-12-06 | 2008-06-26 | Sharp Corp | インターコネクタ、太陽電池ストリング、太陽電池モジュールおよび太陽電池モジュール製造方法 |
JP2010027659A (ja) * | 2008-07-15 | 2010-02-04 | Shin-Etsu Chemical Co Ltd | 太陽電池モジュール及びその製造方法 |
WO2013161069A1 (ja) * | 2012-04-27 | 2013-10-31 | 三洋電機株式会社 | 太陽電池モジュール及び太陽電池モジュールの製造方法 |
-
2013
- 2013-03-27 JP JP2013066965A patent/JP2014192367A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004055596A (ja) * | 2002-07-16 | 2004-02-19 | Sharp Corp | 太陽電池モジュールおよびそれを用いた太陽電池モジュールパネルの製造方法 |
JP2008147260A (ja) * | 2006-12-06 | 2008-06-26 | Sharp Corp | インターコネクタ、太陽電池ストリング、太陽電池モジュールおよび太陽電池モジュール製造方法 |
JP2010027659A (ja) * | 2008-07-15 | 2010-02-04 | Shin-Etsu Chemical Co Ltd | 太陽電池モジュール及びその製造方法 |
WO2013161069A1 (ja) * | 2012-04-27 | 2013-10-31 | 三洋電機株式会社 | 太陽電池モジュール及び太陽電池モジュールの製造方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017528919A (ja) * | 2014-09-25 | 2017-09-28 | サンパワー コーポレイション | 太陽電池相互接続 |
US11923474B2 (en) | 2014-09-25 | 2024-03-05 | Maxeon Solar Pte. Ltd. | Solar cell interconnection |
JP2017038050A (ja) * | 2015-08-07 | 2017-02-16 | エルジー エレクトロニクス インコーポレイティド | 太陽電池パネル |
CN107393995A (zh) * | 2017-08-31 | 2017-11-24 | 常州天合光能有限公司 | 一种光伏互联条及光伏电池组件 |
WO2020114807A1 (de) * | 2018-12-03 | 2020-06-11 | Hanwha Q Cells Gmbh | Solarzellenstring, solarmodul und verfahren zur herstellung eines solarzellenstrings |
DE102018130670B4 (de) | 2018-12-03 | 2023-08-31 | Hanwha Q Cells Gmbh | Verfahren zur Herstellung eines Solarzellenstrings |
WO2023126149A1 (en) * | 2021-12-29 | 2023-07-06 | Rec Solar Pte. Ltd. | An apparatus for manufacturing an electrode assembly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4080414B2 (ja) | インターコネクタ、インターコネクタ付き太陽電池セル、太陽電池ストリング、太陽電池モジュール、太陽電池ストリングの製造方法 | |
JP5384004B2 (ja) | 太陽電池モジュール | |
JP5445419B2 (ja) | 太陽電池モジュール及びその製造方法 | |
JP2014192367A (ja) | 太陽電池モジュール及びその製造方法 | |
EP1936699A1 (en) | Solar cell, solar cell provided with interconnector, solar cell string and solar cell module | |
JP2009043842A (ja) | 太陽電池モジュール | |
JP2007109956A (ja) | 太陽電池、太陽電池ストリングおよび太陽電池モジュール | |
JPWO2009019929A1 (ja) | 太陽電池パネル | |
WO2013137204A1 (ja) | 太陽電池モジュール | |
JP5306353B2 (ja) | 太陽電池モジュール | |
JP2010157553A (ja) | 配線シート、配線シート付き太陽電池セル、太陽電池モジュール、配線シート付き太陽電池セルの製造方法および太陽電池モジュールの製造方法 | |
KR101542003B1 (ko) | 태양 전지 모듈 | |
JP6448792B2 (ja) | 太陽電池モジュールおよび太陽電池モジュールの製造方法 | |
JP2008021831A (ja) | 太陽電池、太陽電池ストリングおよび太陽電池モジュール | |
JP5355709B2 (ja) | 太陽電池セル | |
JP2009278011A (ja) | 太陽電池モジュール及び太陽電池セルの接続方法 | |
JP2008085227A (ja) | 太陽電池モジュール | |
JP4519089B2 (ja) | 太陽電池、太陽電池ストリングおよび太陽電池モジュール | |
JP2012094625A (ja) | 太陽電池用導体及びその製造方法 | |
JP6194814B2 (ja) | 太陽電池モジュールの製造方法 | |
JP2010251569A (ja) | 太陽電池モジュール | |
JP5456128B2 (ja) | 太陽電池モジュール | |
JP2014175520A (ja) | 太陽電池モジュ−ル及びその製造方法 | |
JP2019033279A (ja) | 太陽電池モジュール | |
JP2011210868A (ja) | 太陽電池接続用複合平角線及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141010 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150804 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20151201 |