JP2014190243A - 燃料噴射制御装置 - Google Patents

燃料噴射制御装置 Download PDF

Info

Publication number
JP2014190243A
JP2014190243A JP2013066722A JP2013066722A JP2014190243A JP 2014190243 A JP2014190243 A JP 2014190243A JP 2013066722 A JP2013066722 A JP 2013066722A JP 2013066722 A JP2013066722 A JP 2013066722A JP 2014190243 A JP2014190243 A JP 2014190243A
Authority
JP
Japan
Prior art keywords
injection
fuel
cylinder
injection amount
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013066722A
Other languages
English (en)
Inventor
Yuji Osada
裕史 長田
Seiji Hirowatari
誠治 廣渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013066722A priority Critical patent/JP2014190243A/ja
Publication of JP2014190243A publication Critical patent/JP2014190243A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】最小噴射量以下の燃料噴射量に対する無駄な徐変処理を省略できる燃料噴射制御装置を提供する。
【解決手段】この燃料噴射制御装置1は、気筒♯1〜♯6毎にポート噴射弁23および筒内噴射弁21を有するエンジン3に対して燃料噴射制御および気筒間空燃比ばらつき異常検出を行う。この燃料噴射制御装置1は、ポート噴射弁23の噴射指令値を値0に変更して筒内噴射弁21に対して気筒間空燃比ばらつき異常検出を行う場合は、ポート噴射弁23の噴射指令値を、最小噴射量TAUMINに到達するまでは徐々に減少させ、最小噴射量TAUMINに到達した後は値0にさせる。
【選択図】図1

Description

本発明は、気筒毎にポート噴射弁および筒内噴射弁を有する多気筒内燃機関に対して燃料噴射制御および気筒間空燃比ばらつき異常検出を行う燃料噴射制御装置に関し、特に、気筒間空燃比ばらつき異常検出を行う場合に、ポート噴射弁および筒内噴射弁のうちの一方の噴射弁の噴射指令値を値0に徐変させる技術に関する。
特許文献1には、気筒毎にポート噴射弁および筒内噴射弁を有する多気筒内燃機関に対して燃料噴射制御および気筒間空燃比ばらつき異常検出を行う装置が開示されている。この装置では、異常検出が行われる場合に、ポート噴射弁と筒内噴射弁との噴き分け率が異常検出用の値に徐変される(例えば図12参照)。
特開2012−202373号公報
特許文献1では、異常検出が行われる場合に噴き分け率が異常検出用の値に徐変されるが、その徐変により、一方の噴射弁の燃料噴射量が値0に徐変される場合が考慮されていないので、下記の問題が発生する。
即ち、例えば、前記異常検出用の値が値0(即ちポート噴射弁の燃料噴射割合が0%で筒内噴射弁の燃料噴射割合が100%)の場合は、異常検出が行われる場合に、ポート噴射弁の燃料噴射量は値0に徐変される筈である。
しかし、実際は、ポート噴射弁の燃料噴射量は最小噴射量(即ちハード特性上制御可能な最小噴射量)までは徐変されるが、最小噴射量に到達した以降は、演算処理上でポート噴射弁の燃料噴射量を値0に徐変させる徐変処理が実行されるだけで、ポート噴射弁の燃料噴射量は最小噴射量で止まったままである。そして、最小噴射量到達時から所定時間経過した時(即ち演算処理上でポート噴射弁の燃料噴射量が値0になった時)に、ポート噴射弁の燃料噴射量が値0に一気に変更される。
このため、最小噴射量到達時から所定時間経過時までの間の徐変処理は、無駄な徐変処理となる。この無駄な徐変処理により、処理負担が増加し、また、異常検出に使用できる時間が短くなり、また、最小噴射量付近の不安定な燃料噴射制御が増加するという問題が発生する。
そこで、本発明は、上記の問題点を鑑みてなされたものであり、最小噴射量以下の燃料噴射量に対する無駄な徐変処理を省略できる燃料噴射制御装置を提供することを目的とする。
上記課題を解決するために、本発明の燃料噴射制御装置は、気筒毎にポート噴射弁および筒内噴射弁を有する多気筒内燃機関に対して燃料噴射制御および気筒間空燃比ばらつき異常検出を行う燃料噴射制御装置において、前記ポート噴射弁の噴射指令値が値0に変更されて前記筒内噴射弁の燃料噴射に対して気筒間空燃比ばらつき異常検出が行われる場合は、前記ポート噴射弁の噴射指令値は、前記ポート噴射弁が噴射し得る最小噴射量に到達するまでは徐々に減少され、前記最小噴射量に到達した後は値0にされることを特徴とする。なお、上記の「徐々に減少」とは、漸次減少とされ、時間経過と共に当該噴射指令値が前記最小噴射量に近づくことである。
上記の構成によれば、ポート噴射弁の噴射指令値が値0に変更されて筒内噴射弁に対して気筒間空燃比ばらつき異常検出が行われる場合は、ポート噴射弁の噴射指令値は、ポート噴射弁が噴射し得る最小噴射量に到達するまでは徐々に減少され、最小噴射量に到達した後は値0にされるので、ポート噴射弁に対し、最小噴射量未満の燃料噴射量に対する徐変処理(即ち無駄な徐変処理)を省略できる。
これにより、無駄な徐変処理が省略される分、処理負担を軽減できる。また、無駄な徐変処理が省略される分、より速く、ポート噴射弁の噴射指令値を値0にでき、異常検出を行う時間を長く確保できる。また、最小噴射量付近の不安定な燃料噴射制御を低減できる。また、ポート噴射弁の噴射指令値は、最小噴射量に到達するまでは徐々に減少されるので、空燃比荒れを防止できる。
また、本発明の燃料噴射制御装置は、上記に記載の燃料噴射制御装置であって、前記気筒間空燃比ばらつき異常検出の終了後は、前記ポート噴射弁の噴射指令値は、前記最小噴射量以上の所定噴射量から制御されることを特徴とする。
上記の構成によれば、気筒間空燃比ばらつき異常検出の終了後は、ポート噴射弁の噴射指令値は、最小噴射量以上の所定噴射量から制御されるので、異常検出終了後も、ポート噴射弁に対し、最小噴射量未満の燃料噴射量に対する徐変処理(即ち無駄な徐変処理)を省略できる。これにより、処理負担を軽減でき、また、最小噴射量付近の不安定な燃料噴射制御を低減できる。
本発明の燃料噴射制御装置によれば、最小噴射量未満の燃料噴射量に対する徐変処理(即ち無駄な徐変処理)を省略できる。
本発明の実施形態に係る燃料噴射制御装置の構成概略図である。 エンジンの運転状態と噴き分け率との対応関係を規定したマップの一例である。 異常検出モード時の噴き分け率の変化のさせ方を説明する図である。 本発明の実施形態に係る燃料噴射制御装置の要部の動作を説明するタイミングチャートである。
以下、本発明の実施形態を添付図面を参照して詳細に説明する。
≪実施形態≫
<構成説明>
図1は、本発明の実施形態に係る燃料噴射制御装置の構成概略図である。
この実施形態に係る燃料噴射制御装置1は、図1に示すように、気筒♯1〜♯6毎にポート噴射弁23および筒内噴射弁21を有する多気筒内燃機関(エンジン3)に対して燃料噴射制御および気筒間空燃比ばらつき異常検出を行うものである。この燃料噴射制御装置1では、ポート噴射弁23および筒内噴射弁21のうちの一方の噴射弁の噴射指令値(例えば目標ポート噴射量Qp*)が値0に変更されて他方の噴射弁の燃料噴射に対して気筒間空燃比ばらつき異常検出が行われる場合は、前記一方の噴射弁の噴射指令値は、前記一方の噴射弁が噴射し得る最小噴射量(即ちハード特性上制御可能な最小噴射量)TAUMINに到達するまでは徐々に減少され、最小噴射量TAUMINに到達した後は値0にされる点に特徴がある。なお、上記の「徐々に減少」とは、漸次減少とされ、時間経過と共に当該噴射指令値が最小噴射量TAUMINに近づくことである。以下、この燃料噴射制御装置1について詳細に説明する。
この燃料噴射制御装置1は、図1に示すように、車両に搭載されたエンジン3と、エンジン3を制御する制御装置5とを備えている。
エンジン3は、多気筒内燃機関の一例であり、例えば、車両用のV型6気筒デュアル噴射式エンジンである。エンジン3は、エンジン本体7と、エンジン本体7に空気を供給する吸気系統9と、エンジン本体7から排気される排気ガスを外部に排出する排気系統11とを備えている。
エンジン本体7は、第1バンク13および第2バンク15を有している。第1バンク13には、3個の気筒(気筒♯1,♯3,♯5)が配置されており、第2バンク15には、3個の気筒(気筒♯2,♯4,♯6)が配置されている。各気筒♯1〜♯6はそれぞれ、吸気ポート17、排気ポート19、筒内噴射弁21、ポート噴射弁23および点火プラグ25を備えている。
各吸気ポート17は、対応気筒内に空気を吸入させるために対応気筒に形成された開口部であり、各吸気ポート17にはそれぞれ、吸気通路27が接続されている。各排気ポート19は、対応気筒内から排気ガスを排気するために対応気筒に形成された開口部であり、各排気ポート19には、共通の排気マニホールド37が接続されている。各筒内噴射弁21は、対応気筒内に配置され、対応気筒内に燃料を直接噴射するものである。各ポート噴射弁23は、対応気筒の吸気通路27に配置され、対応気筒の吸気ポート17に向けて燃料を噴射するものである。なお、筒内噴射弁21およびポート噴射弁23は、制御装置5により制御される電磁式噴射弁として構成されている。各点火プラグ25は、制御装置5の制御に応じて、対応気筒内に吸入された混合気(即ち吸気ポート17からの吸入空気と噴射弁21,23からの噴射燃料との混合気)に点火するものである。
吸気系統9は、エンジン3の各気筒♯1〜♯6に空気を供給するものである。吸気系統9は、各気筒♯1〜♯6の吸気ポート17に接続された吸気通路27と、各吸気通路27と接続された共通のサージタンク29と、外気を取り込む取込口(図示省略)とサージタンク29とを接続する吸気ダクト31とを備えている。
吸気ダクト31には、上流側から順にエアフローメータ33およびスロットル弁35が配置されている。エアフローメータ33は、吸気ダクト31を通過する吸入空気量を検出するものである。スロットル弁35は、電子制御式スロットル弁として構成されている。スロットル弁35は、制御装置5の制御に応じてスロットル開度を変化させて吸気ダクト31の流路断面を変化させることで、吸気ダクト31を通過する吸入空気量を制御するものである。
排気系統11は、エンジン3の各気筒♯1〜♯6から排気される排気ガスを外部に排出するものである。排気系統11は、第1バンク13の各気筒♯1,♯3,♯5から排気される排気ガスを外部に排出するための第1排気系統11Aと、第2バンク15の各気筒♯2,♯4,♯6から排気される排気ガスを外部に排出するための第2排気系統11Bとを備えている。
第1排気系統11Aは、第1バンク13の各気筒♯1,♯3,♯5の排気ポート19に接続された共通の排気マニホールド37と、排気ガスを外部に排出するための排出口(図示省略)と排気マニホールド37とを接続する排気ダクト39とを備えている。
排気ダクト39の上流側と下流側にはそれぞれ、三元触媒からなる上流触媒41aと下流触媒41bが配設されている。上流触媒41aおよび下流触媒41bは、排気ガス中のNOx、HCおよびCOを浄化するものであり、排気ガスの空燃比がストイキ近傍のときに効果的に排気ガス中のNOx、HCおよびCOを浄化する。
上流触媒41aの上流側には、触媒前センサ43aが配設されている。また、上流触媒41aの下流側(ここでは上流触媒41aと下流触媒41bとの間)には、触媒後センサ43bが配設されている。触媒前センサ43aおよび触媒後センサ43bは、排気ダクト39を流れる排気ガスの酸素濃度に基づいて空燃比(混合気中の吸入空気量と燃料噴射量の比)を検出するものである。
第2排気系統11Bの構成は、第1排気系統11Aの構成と同様であるので、図1において第1排気系統11Aと同じ構成要素には同じ符号を付して説明を省略する。
制御装置5には、各種センサとして、エアフローメータ33、触媒前センサ43a、触媒後センサ43b、クランク角センサ45、および、アクセル開度センサ47が接続されている。クランク角センサ45は、エンジン3のクランク角を検出するものである。アクセル開度センサ47は、アクセルペダルの踏込量(アクセル開度)を検出するものである。各種センサ33,43a,43b,45,47の検出値は、制御装置5に出力されている。制御装置5は、クランク角センサ45の検出値に基づいて、エンジン回転速度Neを検出し、エアフローメータ33の検出値に基づいて負荷(各気筒#1〜#6の吸入空気量の充填量)KLを検出する。
制御装置5は、エンジン3を制御するエンジン制御部5aと、エンジン3の気筒間空燃比ばらつき異常の検出(インバランス検出)を行う異常検出部5bとを備えている。
エンジン制御部5aは、各種センサ33,43a,43b,45,47の検出値等に基づいて、所望のエンジン出力が得られるように、筒内噴射弁21、ポート噴射弁23、スロットル弁35および点火プラグ25等を制御して、燃料噴射量、燃料噴射時期、スロットル開度および点火時期等を制御する。
より詳細には、エンジン制御部5aは、例えば、アクセル開度センサ47の検出値等に基づいて目標エンジン出力を算出し、その目標エンジン出力およびエアフローメータ33の検出値(即ち吸入空気量)に基づいて、目標空燃比を実現するように、各気筒#1〜#6に対して同一の目標燃料噴射量Qt*を算出する。なお、目標燃料噴射量Qt*は、各気筒#1〜#6毎の1エンジンサイクル中の全燃料噴射量Qtの目標値である。
また、エンジン制御部5aは、触媒前センサ43aおよび触媒後センサ43bの検出値に基づいて、目標空燃比を実現するように目標燃料噴射量Qt*をフィードバック補正する。その際、エンジン制御部5aは、第1バンク13の各気筒#1,#3,#5に対する目標燃料噴射量Qt*のフィードバック補正については、第1排気系統11Aの触媒前センサ43aおよび触媒後センサ43bの検出値に基づいて行い、第2バンク15の各気筒#2,#4,#6に対する目標燃料噴射量Qt*のフィードバック補正については、第2排気系統11Bの触媒前センサ43aおよび触媒後センサ43bの検出値に基づいて行う。
そして、エンジン制御部5aは、エンジン3の通常制御モード時または異常検出モード時に応じて、各気筒#1〜#6の筒内噴射弁21およびポート噴射弁23の噴き分け率αを制御する。
なお、通常制御モードとは、エンジン3の運転状態に応じて噴き分け率αが制御されるモード(異常検出部5bの異常検出が行われないモード)であり、異常検出モードとは、異常検出部5bの異常検出が行われるモードである。また、噴き分け率αは、各気筒#1〜#6毎の1エンジンサイクル中の全燃料噴射量Qtに対するポート噴射量Qpの比であり、0〜1の値を持つ。ポート噴射量Qpはα×Qtで表され、筒内噴射量Qdは(1−α)×Qtで表され、ポート噴射量Qpと筒内噴射量Qdとの噴射割合は、Qp:Qd=α:(1−α)となる。このように噴き分け率αは、ポート噴射量Qpと筒内噴射量Qdとの噴射割合を規定する。なお、噴き分け率αは、各気筒#1〜#6に対して同一値が用いられる。なお、ポート噴射量Qpとは、ポート噴射弁23の燃料噴射量であり、筒内噴射量Qdとは、筒内噴射弁21の燃料噴射量である。
そして、エンジン制御部5aは、噴き分け率αおよび目標燃料噴射量Qt*に基づいて、筒内噴射弁21の目標筒内噴射量(噴射指令値)Qd*およびポート噴射弁23の目標ポート噴射量(噴射指令値)Qp*を決定する。なお、目標筒内噴射量Qd*は、筒内噴射量Qdの目標値であり、Qd*=(1−α)×Qt*として決定される。また、目標ポート噴射量Qp*は、ポート噴射量Qpの目標値であり、Qp*=α×Qt*として決定される。
そして、エンジン制御部5aは、目標筒内噴射量Qd*を実現するように筒内噴射弁21の目標筒内噴射量Qd*を制御して筒内噴射量Qdを制御すると共に、目標ポート噴射量Qp*を実現するようにポート噴射弁23の目標ポート噴射量Qp*を制御してポート噴射量Qpを制御する。また、エンジン制御部5aは、クランク角センサ45の検出値に基づいて、筒内噴射弁21およびポート噴射弁23の燃料噴射時期を制御すると共に点火プラグ25の点火時期を制御する。
より詳細には、エンジン制御部5aは、通常制御モード時では、エンジン3の運転状態(例えばエンジン回転速度Neおよび負荷KLで規定される運転状態)に基づいて、噴き分け率αを制御する。ここでは、エンジン制御部5aには、エンジン3の運転状態と噴き分け率αとの対応関係を規定したマップ(例えば図2参照)が予め設定されており、エンジン制御部5aは、そのマップを用いて、エンジン3の運転状態に基づいて噴き分け率αを制御する。そして、エンジン制御部5aは、この噴き分け率αに基づいて、筒内噴射弁21の目標筒内噴射量Qd*を制御して筒内噴射量Qdを制御すると共に、ポート噴射弁23の目標ポート噴射量Qp*を制御してポート噴射量Qpを制御する。
図2は、エンジン3の運転状態と噴き分け率αとの対応関係を規定したマップ(即ち通常制御モード時に使用されるマップ)の一例である。図2では、噴き分け率αは、エンジン回転速度Neと負荷KLとで規定される各領域に応じて、例えばα1からα4まで変化する。例えばα1=0、α2=0.35、α3=0.5、α4=0.7であるが、これらの値や領域分けは任意に変更可能である。この例では、低回転高負荷側に向かうほどポート噴射量Qpの割合が増加する。またα=α1の領域では噴き分けは行われず筒内噴射のみで燃料が供給される。
また、エンジン制御部5aは、異常検出モード時は、噴き分け率αを、筒内噴射弁21に対する異常検出用の値αa(例えばαa=0)と、ポート噴射弁23に対する異常検出用の値αb(例えばαb=0.7)とに順に制御する。この制御を図3に基づいて詳細に説明する。
図3は、異常検出モード時の噴き分け率αの変化のさせ方を説明する図であり、縦軸に噴き分け率αを示し、横軸にエンジン3の制御状態βを示している。図3中の状態βsは、噴き分け率αがαsに制御された状態である。αsは、通常制御モード時の噴き分け率αの値の一例である。状態βtは、噴き分け率αがαtに制御された状態である。αtは、ポート噴射量Qp(従って目標ポート噴射量Qp*)が最小噴射量TAUMINに制御された噴き分け率αである。状態βaは、噴き分け率αがαa(=0)に制御された状態である。状態βbは、噴き分け率αがαb(=0.7)に制御された状態である。
図3では、説明便宜上、全燃料噴射量Qt(従って目標燃料噴射量Qt*)が常時一定に制御される場合で図示されており、これにより、全燃料噴射量Qtに対する最小噴射量TAUMINの割合γが、状態βの変化に対して一定に図示されている。
図3に示すように、異常検出モードが開始すると(例えば状態β=βsの時)、エンジン制御部5aは、例えば、先ず、噴き分け率αをαb(=0.7)に徐々に変化(増加)させる(即ち状態βがβsからβbに徐々に変化する)。これにより、ポート噴射量QpはQt×αbに(従って目標ポート噴射量Qp*はQt*×αbに)徐々に変化される。そして、エンジン制御部5aは、噴き分け率αをαbに一定時間維持する(即ち状態βはβbに一定時間維持される)。この間に、後述のように、異常検出部5bの異常検出が行われる。
そして、エンジン制御部5aは、一定時間経過後(即ち異常検出終了後)、噴き分け率αをαa(=0)に徐々に変化(減少)させる(即ち状態βがβaに徐々に変化する)。これにより、ポート噴射量Qp(従って目標ポート噴射量Qp*)は値0に徐々に減少される。その際、エンジン制御部5aは、噴き分け率αがαtに到達するまでは(即ち状態βがβtに到達するまでは)噴き分け率αを徐々に減少させ、噴き分け率αがαtに到達すると(即ち状態βがβtに到達すると)噴き分け率αを一気に値0に減少させる。これにより、ポート噴射量Qp(従って目標ポート噴射量Qp*)は、最小噴射量TAUMINに到達するまでは徐々に減少され、最小噴射量TAUMINに到達すると一気に値0に減少される。
そして、エンジン制御部5aは、噴き分け率αをαaに一定時間維持する(即ち状態βはβaとβtの間に維持される)。この間に、後述のように、異常検出部5bの異常検出が行われる。そして、エンジン制御部5aは、一定時間経過後(即ち異常検出終了後)、噴き分け率αをαt以上の所定値(例えばαt)に制御し(即ち状態βがβtよりもβs側の状態(例えばβt)に変化し)、その値αtから、噴き分け率αの制御を例えば通常制御モードで再開する。これにより、異常検出終了後は、ポート噴射量Qp(従って目標ポート噴射量Qp*)は、最小噴射量TAUMIN以上の所定噴射量(例えば最小噴射量TAUMIN)から制御される。
なお、エンジン制御部5aは、アクセル開度センサ47の検出値に基づいてアイドルのオン/オフ(即ちアクセルのオン/オフ)状態を検出すると共に、エアフローメータ33の検出値に基づいて負荷KLを検出しており、例えばアイドル・オフ且つ高負荷の場合に、エンジン3の制御モードを異常検出モードに切り換える。
異常検出部5bは、エンジン3の異常検出モード時において、噴き分け率αが異常検出用の値αa,αbに制御されている間に、エンジン3の気筒間空燃比ばらつき異常として、例えば、各気筒#1〜#6のうちの一部の気筒の空燃比がリッチ側に大きくずれるリッチずれ異常(リッチインバランス)を検出する。
なお、エンジン3において、例えば、第1バンク13の各気筒#1,#3,#5のうちの一部の気筒(例えば#1)の噴射弁(例えば筒内噴射弁21)が故障し、各気筒#1,#3,#5間に空燃比のばらつき(インバランス)が発生したとする。例えば気筒#1が他の気筒#3,#5よりも全燃料噴射量Qtが多くなり、気筒#1の空燃比が他の気筒#3,#5の空燃比よりも大きくリッチ側にずれる場合等である。このとき、気筒#1を含む第1バンク13について、前述のフィードバック補正により比較的大きな補正量が与えられれば、各気筒#1,#3,#5の空燃比の平均値を目標空燃比に制御できる場合がある。しかし、気筒別に見ると、気筒#1の空燃比は目標空燃比よりも大きいままで、各気筒#3,#5の空燃比は目標空燃比よりも小さくなり、エミッション上好ましくない。そこで、制御装置5は、このような気筒間空燃比ばらつき異常(ここではリッチずれ異常)を検出する装置として、異常検出部5bを備えている。
より詳細には、異常検出部5bは、触媒前センサ43aおよび触媒後センサ43bのうちの少なくとも一方の検出値に基づいて空燃比変動パラメータXを算出し、その空燃比変動パラメータXが所定の異常判定値Xa以上であれば、異常(即ちリッチずれ異常)と判定し、他方、その空燃比変動パラメータXが所定の異常判定値Xa未満であれば、異常無しと判定する。
空燃比変動パラメータXは、例えば下記のように算出される。即ち、異常検出部5bは、1エンジンサイクル内において、所定のサンプル周期τ(単位時間、例えば4ms)毎に、例えば触媒前センサ43aの検出値AFを取得する。そして、異常検出部5bは、空燃比変動パラメータXとして、今回のタイミングで取得した検出値AFnと、前回のタイミングで取得した検出値AFn-1との偏差ΔAFnの絶対値(=|AFn−AFn-1|)を求める。この偏差ΔAFnは、今回のタイミングにおける微分値あるいは傾きと言い換えることができる。なお、精度向上のため、複数の偏差ΔAFnの平均値を空燃比変動パラメータXとしてもよい。
なお、一般に、触媒前センサ43aおよび触媒後センサ43bの検出値AFは、1エンジンサイクルを1周期として周期的に変動する傾向があり、その変動の振幅は、気筒間空燃比ばらつき異常の度合いが大きいほど、大きくなる傾向がある。他方、検出値AFの変動の振幅が大きいほど、検出値AFの微分値または傾き(即ち空燃比変動パラメータX)は大きくなる。よって、気筒間空燃比ばらつき異常の度合いと空燃比変動パラメータXとの間には、正の相関がある。ここでは、この相関を考慮して、空燃比変動パラメータXを用いて気筒間空燃比ばらつき異常の検出が行われている。
<動作説明>
図4に基づいて、この燃料噴射制御装置1の要部の動作(即ちエンジン制御部5aによる異常検出モード時の噴き分け率αの制御動作)を説明する。図4は、この実施形態に係る燃料噴射制御装置の要部の動作を説明するタイミングチャートである。
図4中の各フラグF1〜F10は、エンジン制御部5aの内部で、噴き分け率αを制御する際に使用されるフラグである。
なお、F1は、アイドル判定フラグであり、アイドルのオン/オフ状態を示すフラグである。F2は、噴き分けフラグであり、噴射弁21,23の噴き分けの開始/終了を示すフラグである。噴き分けフラグF2のオンにより、噴き分け率αが開始値(例えば0.5)に設定され、その開始値から噴射弁21,23の噴き分けが開始される。また、噴き分けフラグF2のオフにより、噴き分け率αが例えば値0に設定されて、噴射弁21,23の噴き分けが終了される。F3は、噴き分け可能領域フラグであり、エンジン3の運転状態が噴射弁21,23の噴き分け可能な運転状態であることを示すフラグである。F4は、異常検出指示フラグであり、異常検出部5bの異常検出の実行を指示するフラグである。F5は、ポート噴射割合引き上げフラグであり、ポート噴射割合が要求値まで引き上げられたことを示すフラグである。F6は、ポート噴射割合引き上げ指示フラグであり、ポート噴射割合の引き上げ指示が発生したことを示すフラグである。F7は、ポート噴射要求フラグであり、ポート噴射の要求が発生したことを示すフラグである。F8は、筒内噴射割合引き上げフラグであり、筒内噴射割合が要求値まで引き上げられたことを示すフラグである。F9は、筒内噴射割合引き上げ指示フラグであり、筒内噴射割合の引き上げ指示が発生したことを示すフラグである。F10は、筒内噴射要求フラグであり、筒内噴射の要求が発生したことを示すフラグである。
図4では、噴き分けフラグF2がオンになって噴き分け率αが開始値(例えば0.5)に設定され、且つ、噴き分け可能領域フラグF3がオンになると、エンジン制御部5aでは、噴射弁21,23の噴き分け可能状態(即ち指示フラグF6,F9のオン待ち状態)になる。そして、アイドル判定フラグF1がオフになり(即ちアイドルがオフ状態になり)且つ異常検出指示フラグF4がオンになると、エンジン制御部5aでは、エンジン3の制御モードが異常検出モードになる。
そして、異常検出モードで、ポート噴射要求フラグF7がオンになり且つポート噴射割合引き上げ指示フラグF6がオンになると、エンジン制御部5aでは、噴き分け率αがポート噴射弁23に対する異常検出用の値αb(=0.7)に徐々に増加される。そして、噴き分け率α=αbに到達すると、ポート噴射割合引き上げフラグF5がオンになり、エンジン制御部5aでは、噴き分け率αがαbに一定時間維持される。そして、この一定時間において、異常検出部5bの異常検出(即ちポート噴射弁23のリッチずれ異常検出)が行われる。そして、一定時間経過すると(即ち異常検出が終了すると)、各フラグF5,F6,F7がオフになり、これにより、エンジン制御部5aでは、噴き分け率αが開始値(0.5)に徐々に戻される。
そして、筒内噴射要求フラグF10がオンになり且つ筒内噴射割合引き上げ指示フラグF9がオンになると、エンジン制御部5aでは、噴き分け率αが筒内噴射弁21に対する異常検出用の値αa(=0)に徐々に減少される。そして、噴き分け率αがαtに到達すると(即ちポート噴射量Qp(従って目標ポート噴射量Qp*)が最小噴射量TAUMINになる値に到達すると)、噴き分け率α(即ちポート噴射量Qp(従って目標ポート噴射量Qp*))が一気に値0に減少される。そして、噴き分け率α=0になると、筒内噴射割合引き上げフラグF8がオンになり、エンジン制御部5aでは、噴き分け率αが値0に一定時間維持される。そして、この一定時間において、異常検出部5bの異常検出(即ち筒内噴射弁21のリッチずれ異常検出)が行われる。そして、一定時間経過すると(即ち異常検出が終了すると)、各フラグF8,F9,F10がオフになり、これにより、エンジン制御部5aでは、噴き分け率αがαtに設定され、この値αtから、噴き分け率αが開始値(0.5)に徐々に戻される。
そして、噴き分けフラグF2がオフになると、噴射弁21.23の噴き分けが終了して噴き分け率αが値0に一気に戻される。そして、異常検出指示フラグF4がオフになると、異常検出モードが終了して例えば通常制御モードになる。
<主要な効果>
以上のように、この実施形態によれば、ポート噴射弁23および筒内噴射弁21のうちの一方の噴射弁(例えばポート噴射弁23)の噴射指令値(例えば目標ポート噴射量Qp*)が値0に変更されて他方の噴射弁(例えば筒内噴射弁21)の燃料噴射に対して気筒間空燃比ばらつき異常検出が行われる場合は、前記一方の噴射弁の噴射指令値は、前記一方の噴射弁が噴射し得る最小噴射量TAUMINに到達するまでは徐々に減少され、最小噴射量TAUMINに到達した後は値0にされる(即ち到達すると値0に一気に減少される)ので、前記一方の噴射弁に対し、最小噴射量TAUMIN未満の燃料噴射量に対する徐変処理(即ち無駄な徐変処理)を省略できる。
これにより、無駄な徐変処理が省略される分、処理負担を軽減できる。また、無駄な徐変処理が省略される分、より速く、前記一方の噴射弁の噴射指令値(例えば目標ポート噴射量Qp*)を値0にでき、異常検出を行う時間を長く確保できる。また、最小噴射量TAUMIN付近の不安定な燃料噴射制御を低減できる。また、前記一方の噴射弁の噴射指令値は、最小噴射量TAUMINに到達するまでは徐々に減少されるので、空燃比荒れを防止できる。
また、気筒間空燃比ばらつき異常検出の終了後は、前記一方の噴射弁の噴射指令値(例えば目標ポート噴射量Qp*)は、最小噴射量TAUMIN以上の所定噴射量(例えば最小噴射量TAUMIN)から制御されるので、異常検出終了後も、前記一方の噴射弁に対し、最小噴射量TAUMIN未満の燃料噴射量に対する徐変処理(即ち無駄な徐変処理)を省略できる。これにより、処理負担を軽減でき、また、最小噴射量TAUMIN付近の不安定な燃料噴射制御を低減できる。
また、ここでは、前記一方の噴射弁はポート噴射弁23であるので、ポート噴射弁23の噴射指令値(目標ポート噴射量)Qp*を値0に徐変処理する場合に、前述の効果を得ることができる。
≪変形例≫
前述の実施形態では、異常検出としてリッチずれ異常検出が行われるが、その代わりに、リーンずれ異常(即ち、各気筒#1〜#6のうちの一部の気筒の空燃比がリーン側に大きくずれる異常)検出が行われてもよい。この場合は、例えばアイドル・オンの場合に異常検出モードに切り換えられる。また、この場合は、空燃比変動パラメータXの代わりに、例えば回転変動パラメータYが算出され、その回転変動パラメータYを用いて異常検出が行われる。即ち、回転変動パラメータYが所定の異常判定値Ya以上であれば、異常と判定される。なお、回転変動パラメータYは、今回点火気筒と前回点火気筒との間の30°CA時間の差分であり、30°CA時間とは、クランクシャフトが30°CA回転するのに要した時間である。
また、前述の実施形態では、αb=0.7であるが、例えばαb=1としてもよい。この場合は、噴き分け率αをαbに徐々に変化(増加)させる場合は、噴き分け率αをαa(=0)に徐々に変化(減少)させる場合と同様に徐々に変化させる。即ち、図3に示すように、噴き分け率αがαu(即ち筒内噴射量Qd(従って目標筒内噴射量Qd*)が最小噴射量TAUMINになる噴き分け率α)に到達するまでは噴き分け率αは徐々に増加され、噴き分け率αがαuに到達すると噴き分け率αが一気に値1に増加される。これにより、筒内噴射量Qd(従って目標筒内噴射量Qd*)は、最小噴射量TAUMINに到達するまでは徐々に減少され、最小噴射量TAUMINに到達すると一気に値0に減少される。そして、噴き分け率αが値1に一定時間維持された後(即ち異常検出終了後)、噴き分け率αはαu以下の所定値(例えばαu)に制御され、その値αuから、噴き分け率αの制御が例えば通常制御モードで再開される。これにより、異常検出終了後は、筒内噴射量Qd(従って目標筒内噴射量Qd*)は、最小噴射量TAUMIN以上の所定噴射量(例えば最小噴射量TAUMIN)から制御される。この場合も、前述の実施形態の場合と同様に、筒内噴射弁21について、最小噴射量TAUMIN未満の燃料噴射量に対する徐変処理(即ち無駄な徐変処理)を省略できる。
≪付帯事項≫
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は斯かる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと解される。
本発明は、気筒毎にポート噴射弁および筒内噴射弁を有する多気筒内燃機関に対して燃料噴射制御および気筒間空燃比ばらつき異常検出を行い、気筒間空燃比ばらつき異常検出を行う場合に、ポート噴射弁および筒内噴射弁のうちの一方の噴射弁の噴射指令値を値0に徐変させる燃料噴射制御装置への適用に最適である。
1 燃料噴射制御装置
3 エンジン(多気筒内燃機関)
21 筒内噴射弁
23 ポート噴射弁
Qd 筒内噴射量
Qd* 目標筒内噴射量(噴射指令値)
Qp ポート噴射量
Qp* 目標ポート噴射量(噴射指令値)
TAUMIN 最小噴射量
♯1〜♯6 気筒

Claims (2)

  1. 気筒毎にポート噴射弁および筒内噴射弁を有する多気筒内燃機関に対して燃料噴射制御および気筒間空燃比ばらつき異常検出を行う燃料噴射制御装置において、
    前記ポート噴射弁の噴射指令値が値0に変更されて前記筒内噴射弁の燃料噴射に対して気筒間空燃比ばらつき異常検出が行われる場合は、前記ポート噴射弁の噴射指令値は、前記ポート噴射弁が噴射し得る最小噴射量に到達するまでは徐々に減少され、前記最小噴射量に到達した後は値0にされることを特徴とする燃料噴射制御装置。
  2. 請求項1に記載の燃料噴射制御装置であって、
    前記気筒間空燃比ばらつき異常検出の終了後は、前記ポート噴射弁の噴射指令値は、前記最小噴射量以上の所定噴射量から制御されることを特徴とする燃料噴射制御装置。
JP2013066722A 2013-03-27 2013-03-27 燃料噴射制御装置 Pending JP2014190243A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013066722A JP2014190243A (ja) 2013-03-27 2013-03-27 燃料噴射制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013066722A JP2014190243A (ja) 2013-03-27 2013-03-27 燃料噴射制御装置

Publications (1)

Publication Number Publication Date
JP2014190243A true JP2014190243A (ja) 2014-10-06

Family

ID=51836754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013066722A Pending JP2014190243A (ja) 2013-03-27 2013-03-27 燃料噴射制御装置

Country Status (1)

Country Link
JP (1) JP2014190243A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016132994A (ja) * 2015-01-15 2016-07-25 マツダ株式会社 多種燃料エンジンの燃料制御装置
JP2017137822A (ja) * 2016-02-04 2017-08-10 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
CN107035557A (zh) * 2015-11-09 2017-08-11 罗伯特·博世有限公司 用于运行尤其具有双燃料喷射的机动车的内燃机的方法和装置
JP2017145739A (ja) * 2016-02-17 2017-08-24 トヨタ自動車株式会社 自動車
US9856807B2 (en) 2015-08-17 2018-01-02 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine, and control method for internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005171821A (ja) * 2003-12-09 2005-06-30 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2009074440A (ja) * 2007-09-20 2009-04-09 Hitachi Ltd 内燃機関の燃料噴射制御装置
JP2010031815A (ja) * 2008-07-31 2010-02-12 Toyota Motor Corp 燃料噴射システム及びこれを備えた内燃機関システム
JP2012172527A (ja) * 2011-02-17 2012-09-10 Toyota Motor Corp 気筒間空燃比ばらつき異常検出装置
JP2012202373A (ja) * 2011-03-28 2012-10-22 Toyota Motor Corp 気筒間空燃比ばらつき異常検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005171821A (ja) * 2003-12-09 2005-06-30 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2009074440A (ja) * 2007-09-20 2009-04-09 Hitachi Ltd 内燃機関の燃料噴射制御装置
JP2010031815A (ja) * 2008-07-31 2010-02-12 Toyota Motor Corp 燃料噴射システム及びこれを備えた内燃機関システム
JP2012172527A (ja) * 2011-02-17 2012-09-10 Toyota Motor Corp 気筒間空燃比ばらつき異常検出装置
JP2012202373A (ja) * 2011-03-28 2012-10-22 Toyota Motor Corp 気筒間空燃比ばらつき異常検出装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016132994A (ja) * 2015-01-15 2016-07-25 マツダ株式会社 多種燃料エンジンの燃料制御装置
US9856807B2 (en) 2015-08-17 2018-01-02 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine, and control method for internal combustion engine
CN107035557A (zh) * 2015-11-09 2017-08-11 罗伯特·博世有限公司 用于运行尤其具有双燃料喷射的机动车的内燃机的方法和装置
JP2017137822A (ja) * 2016-02-04 2017-08-10 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
JP2017145739A (ja) * 2016-02-17 2017-08-24 トヨタ自動車株式会社 自動車

Similar Documents

Publication Publication Date Title
US8548718B2 (en) Air/fuel ratio variation abnormality detection apparatus, and abnormality detection method
JP4363398B2 (ja) 内燃機関の空燃比制御装置
JP5348190B2 (ja) 内燃機関の制御装置
US9043121B2 (en) Air-fuel ratio variation abnormality detecting device and air-fuel ratio variation abnormality detecting method
US20170248095A1 (en) Control system of internal combustion engine
JP5527247B2 (ja) 気筒間空燃比ばらつき異常検出装置
JP2011027059A (ja) エンジンの制御装置
US8695568B2 (en) Inter-cylinder air-fuel ratio imbalance abnormality determination device
JP5067509B2 (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP2014190243A (ja) 燃料噴射制御装置
JP2014013032A (ja) 気筒間空燃比ばらつき異常検出装置
JP2009185741A (ja) 内燃機関の燃料噴射制御装置
JP2012137049A (ja) 多気筒内燃機関の制御装置
JP2016053305A (ja) 内燃機関の制御装置
JP5691730B2 (ja) 気筒間空燃比ばらつき異常検出装置
WO2011148517A1 (ja) 内燃機関の空燃比制御装置
US8949000B2 (en) Control device and control method for internal combustion engine
JP2004003405A (ja) 触媒劣化判定装置
US20160281625A1 (en) Abnormality determination apparatus
US8635993B2 (en) Air-fuel ratio control device of internal combustion engine
JP5348228B2 (ja) 気筒間空燃比ばらつき異常検出装置
JP6160035B2 (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP2012246814A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP5260770B2 (ja) エンジンの制御装置
JP6331016B2 (ja) 内燃機関の燃料噴射制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161011