JP2014187627A - 近接センサシステム - Google Patents

近接センサシステム Download PDF

Info

Publication number
JP2014187627A
JP2014187627A JP2013062346A JP2013062346A JP2014187627A JP 2014187627 A JP2014187627 A JP 2014187627A JP 2013062346 A JP2013062346 A JP 2013062346A JP 2013062346 A JP2013062346 A JP 2013062346A JP 2014187627 A JP2014187627 A JP 2014187627A
Authority
JP
Japan
Prior art keywords
resonance
circuit unit
frequency
unit
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013062346A
Other languages
English (en)
Inventor
Shinichiro Suzuki
慎一郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2013062346A priority Critical patent/JP2014187627A/ja
Priority to PCT/JP2014/051853 priority patent/WO2014156275A1/ja
Publication of JP2014187627A publication Critical patent/JP2014187627A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K17/95Proximity switches using a magnetic detector
    • H03K17/952Proximity switches using a magnetic detector using inductive coils
    • H03K17/953Proximity switches using a magnetic detector using inductive coils forming part of an oscillator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/023Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring distance between sensor and object

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Electronic Switches (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

【課題】サイズを変えることなく、検出距離を長くすることのできる近接センサシステムを提供する。
【解決手段】被検出体Aの近接を検出する近接センサシステム100であって、所定の発振周波数で磁界を形成する発振回路部を備えるセンサユニット10と、被検出体Aに設けられ、所定の発振周波数に基づく共振周波数を有する共振回路部を備える被検出ユニット50と、を備える。前述の発振回路部は、検出用コイル21と、発振回路25と、を含んで構成される。
【選択図】図1

Description

本発明に係るいくつかの態様は、例えば、高周波発振型の近接センサシステムに関する。
従来、この種の近接センサとして、ケースの長手方向に沿って収納された検出信号処理用のプリント基板を備える近接スイッチにおいて、スイッチの動作状態を表示するための表示素子をプリント基板の一側に備えるようにしたものが知られている(例えば、特許文献1参照)。この近接スイッチによれば、表示素子がプリント基板の幅方向略中央部に装着されず、基板の幅方向の一側に装着されているので、ディスクリートLEDをプリント基板に実装したりすることなく、表示素子の点灯をスイッチ外部から容易に確認することができる。
特開平11−312446号公報
ところで、従来の近接センサでは、被検出体の近接(有無)を検出することができる検出距離が、磁束を発生させ、磁界を形成する検出面の直径の長さに比例していた。そのため、検出距離を長くする場合、検出面の直径を大きくする必要があり、ひいては近接センサのサイズ(大きさまたは寸法)が大きくなっていた。
本発明のいくつかの態様は前述の問題に鑑みてなされたものであり、サイズを変えることなく、検出距離を長くすることのできる近接センサシステムを提供することを目的の1つとする。
本発明に係る近接センサシステムは、被検出体の近接を検出する近接センサシステムであって、所定の発振周波数で磁界を形成する発振回路部を備えるセンサユニットと、被検出体に設けられ、前述の所定の発振周波数に基づく共振周波数を有する共振回路部を備える被検出ユニットと、を備える。
かかる構成によれば、所定の発振周波数で磁界を形成する発振回路部を備えるセンサユニット10、センサユニットの所定の発振周波数に基づく共振周波数を有する共振回路部を備える被検出ユニットと、を備える。ここで、発振回路部が所定の発振周波数で磁界を形成し、共振回路部が当該所定の発振周波数に基づく共振周波数を有するので、共振回路部は共振する。共振する共振回路部には、磁界(または磁界の磁束)の変化がわずかなときでも、共振していない(非共振の)場合と比較して大きな電圧が発生する。そして、共振回路部により消費される電力(エネルギー)は、発振回路部にエネルギーの損失を与える。よって、センサユニットと被検出体とが近づくときに、磁界(または磁界の磁束)の変化がわずかな(小さい)場合、すなわち、センサユニットと被検出体との検出距離が従来よりも遠い場合でも、被検出体に設けられた被検出ユニットの共振回路部が発振回路部にエネルギー損失を与え、発振回路部の所定の値、例えば、Q値、発振周波数、発振振幅、検出用コイルの内部抵抗やインダクタンス、インピーダンスなどの値が変化するので、被検出体の近接を検出することが可能となる。
また、近接センサシステムは、被検出体に設けられた被検出ユニットの共振回路部が、センサユニットの発振回路部にエネルギー損失を与え、当該エネルギー損失を利用し、被検出体の近接を検出しているので、被検出体が非磁性体であっても発振回路部にエネルギー損失を与えることができ、非磁性体である被検出体を検出することが可能である。また、磁界(磁界の磁束)の変化によって、被検出体自体ではなく、被検出体に設けられた被検出ユニットの共振回路部がエネルギーを損失を与えるので、検出距離は被検出体の種類に依存しない(検出距離は被検出体の種類によって変化しない)。さらに、被検出体に設けられた被検出ユニットの共振回路部を用いることで、従来の近接センサのように電磁誘導作用または電磁誘導作用による渦電流損を利用する場合と比較して、被検出体の大きさ、検出面の形状などの影響も受けにくい、という利点(メリット)を得ることができる。
好ましくは、共振回路部は、抵抗器と、コイルと、コンデンサと、を含む。
かかる構成によれば、共振回路部は、抵抗器と、コイルと、コンデンサと、を含む。これにより、共振回路部の共振周波数は、コイルのインダクタンスと、コンデンサのキャパシタンスとを用いて算出することが可能となる。したがって、発振回路部の所定の発振周波数に基づいてコイルのインダクタンスとコンデンサのキャパシタンスとを設定することで、所定の発振周波数に基づく共振周波数を有する共振回路部を、容易に構成(実現)することができる。
また、抵抗器の抵抗は、共振周波数に影響を与えない一方、抵抗器の抵抗を変えることで、共振回路部のQ値の周波数特性を変化させることが可能となる。したがって、抵抗器の抵抗を使用態様(使用目的)あわせて設定することで、共振周波数を変化させることなく、共振回路部のQ値の周波数特性を所望の特性にすることができる。
好ましくは、前述の抵抗器は、可変抵抗器である。
かかる構成によれば、共振回路部は可変抵抗器を備える。これにより、所定の発振周波数の誤差が大きい場合に、可変抵抗器の抵抗を相対的に大きい値に変更することで、共振回路部のQ値は、広い周波数帯でQ値の大きい広帯域化された周波数特性にすることができ、共振回路部は、所定の発振周波数の誤差を吸収することが可能となる。したがって、所定の発振周波数の誤差が大きい場合でも、被検出ユニットの共振回路部のQ値を大きくすることができ、被検出体の近接を検出することができる。一方、所定の発振周波数の誤差が小さい場合に、可変抵抗器の抵抗を相対的に小さい値に変更することで、共振回路部のQ値は、狭い周波数帯でQ値の大きい挟帯域化された周波数特性にすることができ、共振周波数の近傍で大きな最大値を有することが可能となる。したがって、磁界(または磁界の磁束)の変化がわずかな(小さい)ときでも、被検出ユニットの共振回路部のQ値を大きくすることでき、発振回路部のQ値が大きく変化(低下)するので、検出距離をさらに長くすることができる。
好ましくは、前述のコンデンサは、可変コンデンサである。
かかる構成によれば、共振回路部は可変コンデンサを備える。ここで、可変コンデンサのキャパシタンスは、共振周波数を変化させるので、可変コンデンサのキャパシタンスを変更することで、共振回路部のQ値の周波数特性において、中心線(中心軸)である共振周波数をシフト(移動)させることができる。よって、所定の発振周波数の誤差がプラスである場合、可変コンデンサのキャパシタンスを小さい値に変更することで、共振回路部のQ値の周波数特性をプラス方向にシフトすることができ、所定の発振周波数の誤差がマイナスである場合、可変コンデンサのキャパシタンスを小さい値に変更することで、共振回路部のQ値の周波数特性をマイナス方向にシフトすることができる。したがって、所定の発振周波数の誤差や実際の所定の発振周波数自体が既知である場合、被検出ユニットの共振回路部を共振させることができ、検出距離を維持しつつ、被検出体の近接を検出することができる。
好ましくは、被検出ユニットは、共振回路部を収容する非磁性の筐体を備える。
かかる構成によれば、被検出ユニットは、共振回路部を収容する非磁性の筐体を備える。これにより、発振回路部が形成する磁界の磁束を共振回路部に作用させることできるとともに、共振回路部を外部の環境から保護することができる。したがって、被検出ユニットは、例えば、耐水性、耐油性、耐汚れ、耐振動、耐衝撃、耐熱、耐寒などの耐環境性能を向上させることができ、近接センサシステムは、耐環境性が要求される用途に好適に適用することができる。
好ましくは、発振回路部は、コイルと、コンデンサと、を含む。
かかる構成によれば、発振回路部が、コイルと、コンデンサとを含む。ここで、コイルに所定の発振周波数で電流が流れると、コイルは磁束を発生させ、センサユニットと被検出体との間に、磁界(磁場)を形成する。これにより、所定の発振周波数で磁界を形成する発振回路部を、容易に構成(実現)することができる。
また、コイルおよびコンデンサで構成される共振回路の共振周波数は、コイルのインダクタンスおよびコンデンサのキャパシタンスを用いて算出することができる。したがって、発振回路部の所定の発振周波数を算出される共振周波数と同一に設定することで、共振回路のインピーダンスを最大にすることができ、発振回路部の消費電力を低減させることができる。
本発明の近接センサシステムによれば、同一の検出面の直径を有する従来の近接センサと比較して、検出距離を2倍以上にすることができ、センサユニットのサイズを変えることなく、検出距離を長くすることができる。言い換えれば、近接センサシステムは、同一の検出距離を有する従来の近接センサと比較して、検出面の直径を小さくすることができ、センサユニットを小型化することができる。
近接センサシステムの概略構成を説明する構成図である。 発振回路部の等価回路の一例を説明する回路図である。 図1に示した被検出ユニットの一例を説明する回路図である。 図1に示した近接センサシステムにおける検出距離ごとの周波数とQ値との関係を示すグラフである。 図1に示した近接センサシステムにおける検出距離とQ値との関係を示すグラフである。 図3に示した共振回路部における周波数とQ値との関係を示すグラフである。 図1に示した被検出ユニットの他の例を説明する回路図である。 図1に示した被検出ユニットのさらに他の例を説明する回路図である。 図1に示した被検出ユニットのさらに他の例を説明する回路図である。
以下に本発明の実施の形態を説明する。以下の図面の記載において、同一または類似の部分には同一または類似の符号で表している。但し、図面は模式的なものである。したがって、具体的な寸法などは以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。なお、以下の説明において、図面の上側を「上」、下側を「下」、左側を「左」、右側を「右」という。
図1ないし図9は、本発明に係る近接センサシステムの一実施形態を示すためのものである。図1は、近接センサシステム100の概略構成を説明する構成図である。図1に示すように、近接センサシステム100は、検出対象物である被検出体Aと接触することなく、被検出体Aの近接または有無を検出するためのものである。近接センサシステム100は、センサユニット10と、被検出ユニット50と、を備える。
センサユニット10は、非接触式の検出手段である。センサユニット10は、直径の長さ(以下、単に直径という)Mの検出面(図1において左端面)を有する。被検出ユニット50は、例えば、プレート状(板状)に形成されており、被検出体Aの表面(図1において右端面)に設けられる。近接センサシステム100は、センサユニット10の検出面と被検出体Aに設けられた被検出ユニットの表面との距離が検出距離D以下になったときに、被検出体Aの近接(有無)を検出することが可能となる。
センサユニット10は、ケース11と、カバー12と、検出コイル21と、プリント基板13と、ケーブル14と、を備える。ケース11は、例えば、金属製の円筒形または略円筒形状の筒体である。ケース11の内部には、検出コイル21、プリント基板13、およびケーブル14の一端部(図1において左端部)が収容される。ケース11の開口端部(図1において左端部)には、カバー12が装着される。カバー12は、例えば、樹脂製で非導電性の部材であり、検出コイル12の開放端側(図1において左側)を覆う。検出用コイル21は、例えば、コアコイル型のインダクタであり、磁性材料のコア21aと、当該コア21aに巻き付けた電磁コイル21bと、を含んで構成される。プリント基板13には、各種の電子部品や電子回路が実装され、ケーブル14の一端部が電気的に接続される。プリント基板13は、例えば、発振回路25と、検出回路部30と、を備える。発振回路25は、検出用コイル21と電気的に接続されるとともに、検出回路部30と電気的に接続される。検出用コイル21および発振回路25は、後述する発振回路部20を構成する。検出回路部30は、発振回路部20から出力される信号(出力信号)に基づいて、被検出体Aの近接(有無)を判定するためのものである。検出回路部30は、例えば、発振回路部20のQ値に基づいて、被検出体Aの近接を判定する。
本実施形態では、プリント基板13が、発振回路25および検出回路部30を備える例を示したが、これに限定されない。プリント基板13は、表示回路、出力回路、信号増幅回路、などをさらに備えるようにしてもよい。
また、本実施形態では、図1に示すように、検出コイル21がケース11およびカバー12によって覆われる、いわゆるシールド構造のセンサユニット10の例を示したが、これに限定されない。センサユニット10は、検出コイル21がケース11から被検出体A側(図1において左側)に突出して露出する、いわゆる非シールド構造であってもよい。
図2は、発振回路部20の等価回路の一例を説明する回路図である。図2に示すように、発振回路部20は、検出用コイル21と、発振回路25と、を含んで構成される。発振回路25は、検出用コイル21を所定の発振周波数f0で発振駆動するためのものである。発振回路25は、例えば、発振用コンデンサ(キャパシタ)26と、バイアス回路27と、カレントミラー回路28と、電圧電流変換回路29と、を含んで構成される。また、発振回路25は、図1に示した検出回路部30に接続される出力端子25aおよび出力端子25bを備える。
検出用コイル21と、発振回路25の発振用コンデンサ26とは、LC発振回路20Aを構成し、検出用コイル21および発振用コンデンサ26は並列に接続される。一方、バイアス回路27は、電流源27aと、トランジスタTr1とを含んで構成される。LC発振回路20Aは、バイアス回路27から所定のバイアス電流Ibが供給されると、図2において両矢印で示す電圧VTが発生する。LC発振回路20Aに発生した電圧VTは、バイアス回路27のトランジスタTr1を介して電圧電流変換回路29のトランジスタTr2のベースに印加される。
電圧電流変換回路29は、トランジスタTr2に加え、抵抗器29aを含んで構成される。抵抗器29aは、トランジスタTr2のエミッタと、発振回路25の基準電位(グラウンド)の線、つまり、図2において出力端子25bに接続される線との間に、直列に接続される。また、抵抗器29aは、後述する帰還電流を設定する抵抗器として機能する(帰還電流設定用抵抗器の役割を果たす)。
電圧電流変換回路29のトランジスタTr2のコレクタ電流は、カレントミラー回路28のトランジスタTr3に流れる。当該トランジスタTr3と、トランジスタTr4とは、カレントミラー回路28を構成する。トランジスタTr4のコレクタ電流Ifbは、前述した帰還電流としてLC発振回路20Aに帰還(フォードバック)される。
出力端子25aと出力端子25bとは、電圧電流変換回路29の抵抗器29aの両端にそれぞれ接続される。これにより、図2において両矢印で示す抵抗器29aに印加される電圧VReが、発振回路部20の信号(出力信号)として検出回路部30に出力される。
以上のように構成された発振回路部20において、LC発振回路20Aは所定の発振周波数f0で発振する。ここで、検出用コイル21に所定の発振周波数f0で電流が流れると、検出用コイル21は磁束を発生させ、センサユニット10と被検出体Aとの間に、磁界(磁場)を形成する。このように、センサユニット10の発振回路部20によって、所定の発振周波数f0で磁界が形成される。
検出用コイル21が内部抵抗R1およびインダクタンスL1であり、発振用コンデンサ26がキャパシタンス(静電容量)C1である場合、LC発振回路20Aの共振周波数f1は以下の式(1)で表すことができる。
Figure 2014187627
但し、共振周波数f1の単位は[Hz]である。
このように、発振回路部20が、検出用コイル21と、発振用コンデンサ26とを含むことにより、検出用コイル21および発振用コンデンサ26で構成されるLC発振回路20Aの共振周波数f1は、検出用コイル21のインダクタンスL1および発振用コンデンサ26のキャパシタンスC1を用いて式(1)で算出することができる。
本実施形態では、発振回路部20の所定の発振周波数f0は、式(1)で算出される共振周波数f1と同一の値に設定される。しかしながら、発振回路部20の所定の発振周波数f0は、所定の周波数であればよく、共振周波数f1と同一の値に限定されない。
また、本実施形態では、説明の簡略化のため、図2に示す発振回路部20の例を示したが、これに限定されない。発振回路部20は、所定の発振周波数f0で磁界を形成すればよく、例えば、発振回路部20として、周知のコルピッツ発振回路などを用いるようにしてもよい。さらに、発振回路部20は、自励式発振回路に限定されず、他励式発振回路であってもよい。
図3は、図1に示した被検出ユニット50の一例を説明する回路図である。図3に示すように、被検出ユニット50は、筐体51と、筐体51の内部に収容される共振回路部60と、を備える。
共振回路部60は、共振用抵抗器61と、共振用コイル(インダクタ)62と、共振用コンデンサ(キャパシタ)63と、を含んで構成される。共振回路部60において、共振用抵抗器61、共振用コイル62、および共振用コンデンサ63は、相互に直列に接続される。
共振回路部60は、発振回路部20の所定の発振周波数f0に基づく共振周波数f2を有する。すなわち、共振回路60は、発振回路部20の所定の発振周波数f0に基づいて、共振周波数f2が設定される。具体的には、共振回路60の共振周波数f2は、所定の発振周波数f0と同一または略同一に設定される。ここで、発振回路部20が所定の発振周波数f0で磁界を形成し、共振回路部60が当該所定の発振周波数f0に基づく共振周波数f2を有するので、共振回路部60は共振する。共振する共振回路部60には、磁界(または磁界の磁束)の変化がわずかなときでも、共振していない(非共振の)場合と比較して大きな電圧が発生する。そして、共振回路部60により消費される電力(エネルギー)は、発振回路部20にエネルギーの損失を与える。よって、センサユニット10と被検出体Aとが近づくときに、磁界(または磁界の磁束)の変化がわずかな(小さい)場合、すなわち、センサユニット10と被検出体Aとの検出距離Dが従来よりも遠い場合でも、被検出体Aに設けられた被検出ユニット50の共振回路部60が発振回路部20にエネルギー損失を与え、発振回路部20の所定の値、例えば、Q値、発振周波数、発振振幅、検出用コイル21の内部抵抗R1やインダクタンスL1、インピーダンスなどの値が変化するので、被検出体Aの近接を検出することが可能となる。
一方、高周波発振型の従来の近接センサは、例えば、直径mの検出面を有し、検出距離dだけ離れた被検出体の近接(有無)を検出する。従来の近接センサは、センサユニットと同様に、検出用コイルを発振回路部によって磁界を形成する。従来の近接センサと被検出体とが近づいて、被検出体が磁界の磁束の作用を受けると、電磁誘導により、当該被検出体に渦電流が流れる。この渦電流によりエネルギーの損失(渦電流損)が生じる結果、発振回路の発振が減衰し、または発振動作が停止する。このとき、発振回路の値、例えば、発振回路のQ値が変化する。このため、従来の近接センサは、Q値の変化を検出することで、被検出体の近接(有無)を検出していた。しかしながら、従来の近接センサでは、被検出体が非磁性体である場合、磁束の作用を受けても渦電流が流れないか、ほとんど流れないので、被検出体は磁性体に限定されていた。
また、従来の近接センサでは、被検出体が磁性体であっても、被検出体の種類によって検出距離dが異なっていた。例えば、検出面の直径mが18[mm]であり、被検出体として鉄を検出する場合、鉄は渦電流損が発生しやすく、Q値の変化が大きいため、検出距離dが7〜8[mm]のときに検出することが可能となる。一方、同じく、検出面の直径mが18[mm]であり、被検出体としてアルミニウムを検出する場合、アルミニウムは渦電流損が発生しにくく、Q値の変化が小さいため、検出距離dが3〜4[mm]のときに検出することが可能となる。
さらに、従来の近接センサでは、被検出体のサイズ(大きさまたは寸法)、検出面の形状などによっても、流れる渦電流が異なるので、その結果、検出距離dも変化してしまう。
これに対し、本実施形態の近接センサシステム100は、被検出体Aに設けられた被検出ユニット50の共振回路部60が、センサユニット10の発振回路部20にエネルギー損失を与え、当該エネルギー損失を利用し、被検出体Aの近接を検出しているので、被検出体Aが非磁性体であっても発振回路部20にエネルギー損失を与えることができ、非磁性体である被検出体Aを検出することが可能である。また、磁界(磁界の磁束)の変化により、被検出体A自体ではなく、被検出体Aに設けられた被検出ユニット50の共振回路部60がエネルギー損失を与えるので、検出距離Dは被検出体Aの種類に依存しない(検出距離Dは被検出体Aの種類によって変化しない)。さらに、被検出体Aに設けられた被検出ユニット50の共振回路部60を用いることで、従来の近接センサのように電磁誘導作用または電磁誘導作用による渦電流損を利用する場合と比較して、被検出体Aの大きさ、検出面の形状などの影響も受けにくい、という利点(メリット)を得ることができる。
図4は、図1に示した近接センサシステム100における検出距離Dごとの周波数とQ値との関係を示すグラフである。なお、図4において、横軸は発振回路部20の周波数f[Hz]を表し、縦軸は発振回路部20のQ値を表す。また、グラフG40は被検出体Aがない、すなわち、検出距離Dが無限遠である場合、グラフG41は検出距離Dが47[mm]である場合、グラフG42は検出距離Dが35[mm]である場合、グラフG43は検出距離Dが27[mm]である場合を示す。さらに、比較のために、近接センサシステム100の直径Mと同一の検出面の直径m(m=M)を有する従来の近接センサにおいて、被検出体として鉄を検出する場合であって、検出距離dが20[mm]である場合に、検出の基準となる発振回路のQ値の値(以下、しきい値という)をグラフH4で示す。図4に示すように、グラフG40では、発振回路部20のQ値は、比較的高い値でほぼ一定である。つまり、発振回路部20の発振(振動)が安定していることを意味する。一方、グラフG41ないしグラフG43では、所定の発振周波数f0の近傍(付近)において、共振回路部60が発振回路部20にエネルギー損失を与え、発振回路部20のQ値は低下している。そして、グラフG41ないしグラフG43のすべてが、発振周波数f0の近傍(付近)において、グラフH4で示すしきい値を下回っている。
図5は、図1に示した近接センサシステム100における検出距離DとQ値との関係を示すグラフである。なお、図5において、横軸は検出距離Dを表し、縦軸は発振回路部20のQ値を表す。また、グラフG5は、発振回路部20の周波数が所定の発振周波数f0である場合を示す。さらに、比較のために、図4の場合と同様に、近接センサシステム100の直径Mと同一の検出面の直経m(m=M)を有する従来の近接センサにおいて、被検出体として鉄を検出する場合であって、発振回路の周波数が同じく所定の発振周波数f0である場合をグラフH5で示す。図5に示すように、グラフH5で示される従来の近接センサは、検出距離Dが20[mm]のときにQ値の値がしきい値Q0以下となり、被検出体の近接を検出することが可能となる。一方、グラフG5で示される近接センサシステム100は、検出距離Dが20[mm]、35[mm]、および47[mm]の全てにおいて、発振回路部20のQ値がしきい値Q0を下回る。その結果、近接センサシステム100は、従来の近接センサの検出距離dである20[mm]に対し、2倍以上の47[mm]であっても、被検出体Aの近接を検出することが可能となる。
図3に示す筐体51は、非磁性材料で製造される非磁性の筐体であることが好ましい。非磁性の性質を有する材料としては、例えば、アルミニウム(AL)、SUS304などのステンレス鋼、銅(Cu)、などが挙げられる。これにより、発振回路部20が形成する磁界の磁束を共振回路部60に作用させることが可能となるとともに、共振回路部60を外部の環境から保護することができる。
図3に示す共振回路部60における共振周波数f2は、共振用抵抗器61が抵抗R2で、共振用コイル62がインダクタンスL2で、共振用コンデンサ63がキャパシタンス(静電容量)C2である場合、以下の式(2)で表すことができる。
Figure 2014187627
但し、共振周波数f2の単位は[Hz]である。
これにより、共振回路部60の共振周波数f2は、共振用コイル62のインダクタンスL2と、共振用コンデンサ63のキャパシタンスC2とを用いて式(2)で算出することが可能となる。
図6は、図3に示した共振回路部60における周波数とQ値との関係を示すグラフである。なお、図6において、横軸は共振回路部60の周波数f[Hz]を表し、縦軸は共振回路部60のQ値を表す。また、グラフG61は共振用抵抗器61の抵抗R2が相対的に大きい場合、グラフG62は抵抗器61の共振用抵抗R2が相対的に小さい場合を示す。図6に示すように、共振回路部60の周波数が共振周波数f2であるときに、グラフG61はQ値が最大値Q61になり、グラフG62はQ値が最大値Q62になる。グラフG61およびグラフG62は、共振周波数f2を中心線(中心軸)として対称または略対称な曲線である。グラフG61は、グラフG62の最大値Q62よりも小さい最大値Q61を有する一方、共振周波数f2の近傍(付近)を除く周波数帯でグラフG62よりもQ値が大きい。また、グラフG61は、所定値Q60よりも大きいQ値を有する周波数帯Δf61が、グラフG62の周波数帯Δf62より広い。すなわち、グラフG61は、Q値の最大値Q61を小さくする一方、広い周波数帯でQ値の大きい、広帯域化された曲線である。これに対し、グラフG62は、共振周波数f2の近傍(付近)を除く周波数帯でグラフG61よりもQ値が小さい一方、グラフG61の最大値Q61よりも大きい最大値Q62を有する。また、グラフG62は、所定値Q60よりも大きいQ値を有する周波数帯Δf62が、グラフG61の周波数帯Δf61より狭い。すなわち、グラフG62は、Q値の最大値Q62を大きくする一方、狭い周波数帯でQ値の大きい、狭帯域化された曲線である。ここで、共振用抵抗器61の抵抗R2は、前述した式(2)に示したように、共振周波数f2に影響を与えない一方、図6に示すように、共振用抵抗器61の抵抗R2を変えることで、共振回路部60のQ値の周波数特性を変化させることが可能となる。
本実施形態では、図3において、共振用抵抗器61、共振用コイル62、および共振用コンデンサ63を備える共振回路部60の例を示したが、これに限定されない。以下において、共振器回路部60と異なる共振回路部について説明する。
図7は、図1に示した被検出ユニット50の他の例を説明する回路図である。図7に示すように、被検出ユニット50は、筐体51と、筐体51の内部に収容される共振回路部60Aと、を備える。
共振回路部60Aは、共振用抵抗器61と、共振用コイル62と、共振用コンデンサ63と、を備える。共振回路部60Aにおいて、抵抗器61、共振用コイル62、および共振用コンデンサ63は、相互に並列に接続される。すなわち、図7に示す共振回路部60Aは、図3に示した共振回路部60のように直列共振回路ではなく、並列共振回路である。
共振用抵抗器61が抵抗R2で、共振用コイル62がインダクタンスL2で、共振用コンデンサ63がキャパシタンス(静電容量)C2である場合、図7に示す共振回路部60Aの共振周波数f2は、図3に示した共振回路部60と同様に、前述した式(2)で表すことができる。
図8は、図1に示した被検出ユニット50のさらに他の例を説明する回路図である。図7に示すように、被検出ユニット50は、筐体51と、筐体51の内部に収容される共振回路部60Bと、を備える。
共振回路部60Bは、可変抵抗器61Bと、共振用コイル62と、共振用コンデンサ63と、を備える。共振回路部60Bにおいて、可変抵抗器61B、共振用コイル62、および共振用コンデンサ63は、相互に直列に接続される。すなわち、図8に示す共振回路部60Bは、図3に示した共振回路部60の共振用抵抗器61に代えて、可変抵抗器61Bを備える。
ここで、図2に示した発振回路部20において、検出用コイル21および発振用コンデンサ26は、素子自体の製品のばらつきや、センサユニット10のケース11内への取り付け(組み付け)による変動などによって、インダクタンスL1およびキャパシタンスC1のうちの少なくとも一方が変化することがある。その結果、LC発振回路20Aの共振周波数に誤差が生じ、発振回路部20の所定の発振周波数f0を、かかる誤差を含んだLC発振共振回路20Aの共振周波数と同一に設定する場合、所定の発振周波数f0には誤差±Δf0が生じ得る。この場合、共振回路部60が所定の発振周波数f0に基づく共振周波数f2を設定しようとして、共振周波数f2を式(1)で算出される共振周波数f1と同一に設定しても、実際の発振回路部20の所定の発振周波数f0には誤差±Δf0が存在するので、誤差±Δf0が大きいと、共振周波数f2において共振回路部60のQ値が十分に大きくならず、被検出体Aの近接を検出できないおそれがあった。
これに対し、図8に示す共振回路部60Bは可変抵抗器61Bを備えるので、所定の発振周波数f0の誤差±Δf0が大きい場合に、可変抵抗器61Bの抵抗R2を相対的に大きい値に変更することで、図6に示したグラフG61のように、共振回路部60BのQ値は、広い周波数帯でQ値の大きい広帯域化された周波数特性にすることができ、共振回路部60Bは、所定の発振周波数f0の誤差±Δf0を吸収することが可能となる。一方、所定の発振周波数f0の誤差±Δf0が小さい場合に、可変抵抗器61Bの抵抗R2を相対的に小さい値に変更することで、図6に示したグラフG62のように、共振回路部60BのQ値は、狭い周波数帯でQ値の大きい挟帯域化された周波数特性にすることができ、共振周波数f2の近傍で大きな最大値Q62を有することが可能となる。
図9は、図1に示した被検出ユニット50のさらに他の例を説明する回路図である。図7に示すように、被検出ユニット50は、筐体51と、筐体51の内部に収容される共振回路部60Cと、を備える。
共振回路部60Cは、共振用抵抗器61と、共振用コイル62と、可変コンデンサ63Cと、を備える。共振回路部60Cにおいて、共振用抵抗器61、共振用コイル62、および可変コンデンサ63Cは、相互に直列に接続される。すなわち、図9に示す共振回路部60Cは、図3に示した共振回路部60の共振用コンデンサ63に代えて、可変コンデンサ63Cを備える。
ここで、実際の発振回路部20において、共振周波数f1や所定の発振周波数f0の実測などの方法により、所定の発振周波数f0の誤差±Δf0や所定の発振周波数f0自体が既知である場合、共振用抵抗器61の抵抗R2を変えるよりも、可変コンデンサ63CのキャパシタンスC2を変更する方が好ましい。すなわち、可変コンデンサ63CのキャパシタンスC2は、前述した式(2)に示したように、共振周波数f2を変化させるので、可変コンデンサ63CのキャパシタンスC2を変更することで、図6に示したグラフG61およびグラフG62において、中心線(中心軸)である共振周波数f2をシフト(移動)させることができる。よって、所定の発振周波数f0の誤差がプラスである場合、可変コンデンサ63CのキャパシタンスC2を小さい値に変更することで、グラフG61およびグラフG62をプラス方向(図6において右方向)にシフトすることができ、所定の発振周波数f0の誤差がマイナスである場合、可変コンデンサ63CのキャパシタンスC2を小さい値に変更することで、グラフG61およびグラフG62をマイナス方向(図6において左方向)にシフトすることができる。
本実施形態では、検出回路部30が発振回路部20のQ値に基づいて被検出体Aの近接を判定する例を示したが、これに限定されない。検出回路部30は、発振回路部20のQ値以外に、例えば、発振回路部20の発振周波数、発振振幅、またはインピーダンス、もしくは、検出用コイル21の内部抵抗R1またはインダクタンスL1などの値に基づいて、被検出体Aの近接を判定してもよい。
このように、本実施形態における近接センサシステム100によれば、所定の発振周波数f0で磁界を形成する発振回路部20を備えるセンサユニット10と、センサユニット10の所定の発振周波数f0に基づく共振周波数f2を有する共振回路部60,60A,60B,60Cを備える被検出ユニット50と、を備える。ここで、発振回路部20が所定の発振周波数f0で磁界を形成し、共振回路部60,60A,60B,60Cが当該所定の発振周波数f0に基づく共振周波数f2を有するので、共振回路部60,60A,60B,60Cは共振する。共振する共振回路部60,60A,60B,60Cには、磁界(または磁界の磁束)の変化がわずかなときでも、共振していない(非共振の)場合と比較して大きな電圧が発生する。そして、共振回路部60,60A,60B,60Cにより消費される電力(エネルギー)は、発振回路部20にエネルギーの損失を与える。よって、センサユニット10と被検出体Aとが近づくときに、磁界(または磁界の磁束)の変化がわずかな(小さい)場合、すなわち、センサユニット10と被検出体Aとの検出距離Dが従来よりも遠い場合でも、被検出体Aに設けられた被検出ユニット50の共振回路部60,60A,60B,60Cが発振回路部20にエネルギー損失を与え、発振回路部20の所定の値、例えば、Q値、発振周波数、発振振幅、検出用コイル21の内部抵抗R1やインダクタンスL1、インピーダンスなどの値が変化するので、被検出体Aの近接を検出することが可能となる。
また、近接センサシステム100は、被検出体Aに設けられた被検出ユニット50の共振回路部60,60A,60B,60Cが、センサユニット10の発振回路部20にエネルギー損失を与え、当該エネルギー損失を利用し、被検出体Aの近接を検出しているので、被検出体Aが非磁性体であっても発振回路部20にエネルギー損失を与えることができ、非磁性体である被検出体Aを検出することが可能である。また、磁界(磁界の磁束)の変化により、被検出体A自体ではなく、被検出体Aに設けられた被検出ユニット50の共振回路部60,60A,60B,60Cがエネルギー損失を与えるので、検出距離Dは被検出体Aの種類に依存しない(検出距離Dは被検出体Aの種類によって変化しない)。さらに、被検出体Aに設けられた被検出ユニット50の共振回路部60,60A,60B,60Cを用いることで、従来の近接センサのように電磁誘導作用または電磁誘導作用による渦電流損を利用する場合と比較して、被検出体Aの大きさ、検出面の形状などの影響も受けにくい、という利点(メリット)を得ることができる。
さらに、近接センサシステム100は、図4および図5に示すように、直径Mと同一の直径m(m=M)を有する従来の近接センサと比較して、検出距離Dを2倍以上にすることができ、センサユニット10のサイズ(大きさまたは寸法)を変えることなく、検出距離を長くすることができる。言い換えれば、近接センサシステム100は、検出距離Dと同一の検出距離d(d=D)を有する従来の近接センサと比較して、検出面の直径Mを小さくすることができ、センサユニット10を小型化することができる。
また、本実施形態における近接センサシステム100によれば、共振回路部60,60A,60B,60Cは、共振用抵抗器61または可変抵抗器61Bと、共振用コイル62と、共振用コンデンサ63または可変コンデンサ63Cと、を含む。これにより、共振回路部60,60A,60B,60Cの共振周波数f2は、共振用コイル62のインダクタンスL2と、共振用コンデンサ63または可変コンデンサ63CのキャパシタンスC2とを用いて式(2)で算出することが可能となる。したがって、発振回路部20の所定の発振周波数f0に基づいて共振用コイル62のインダクタンスL2と共振用コンデンサ63または可変コンデンサ63CのキャパシタンスC2とを設定することで、所定の発振周波数f0に基づく共振周波数f2を有する共振回路部60,60A,60B,60Cを、容易に構成(実現)することができる。
また、共振用抵抗器61または可変抵抗器61Bの抵抗R2は、式(2)に示すように共振周波数f2に影響を与えない一方、図6に示すように、共振用抵抗器61または可変抵抗器61Bの抵抗R2を変えることで、共振回路部60,60A,60B,60CのQ値の周波数特性を変化させることが可能となる。したがって、共振用抵抗器61または可変抵抗器61Bの抵抗R2を使用態様(使用目的)あわせて設定することで、共振周波数f2を変化させることなく、共振回路部60,60A,60B,60CのQ値の周波数特性を所望の特性にすることができる。
また、本実施形態における近接センサシステム100によれば、共振回路部60Bは可変抵抗器61Bを備える。これにより、所定の発振周波数f0の誤差±Δf0が大きい場合に、可変抵抗器61Bの抵抗R2を相対的に大きい値に変更することで、図6に示すグラフG61のように、共振回路部60BのQ値は、広い周波数帯でQ値の大きい広帯域化された周波数特性にすることができ、共振回路部60Bは、所定の発振周波数f0の誤差±Δf0を吸収することが可能となる。したがって、所定の発振周波数f0の誤差±Δf0が大きい場合でも、被検出ユニット50の共振回路部60BのQ値を大きくすることができ、被検出体Aの近接を検出することができる。一方、所定の発振周波数f0の誤差±Δf0が小さい場合に、可変抵抗器61Bの抵抗R2を相対的に小さい値に変更することで、図6に示すグラフG62のように、共振回路部60BのQ値は、狭い周波数帯でQ値が大きい挟帯域化された周波数特性にすることができ、共振周波数f2の近傍で大きな最大値Q62を有することが可能となる。したがって、磁界(または磁界の磁束)の変化がわずかな(小さい)ときでも、被検出ユニット50の共振回路部60BのQ値を大きくすることでき、発振回路部20のQ値が大きく変化(低下)するので、検出距離Dをさらに長くすることができる。
また、本実施形態における近接センサシステム100によれば、共振回路部60Cは可変コンデンサ61Cを備える。ここで、可変コンデンサ63CのキャパシタンスC2は、式(2)に示すように、共振周波数f2を変化させるので、可変コンデンサ63CのキャパシタンスC2を変更することで、図6に示すグラフG61およびグラフG62において、中心線(中心軸)である共振周波数f2をシフト(移動)させることができる。よって、所定の発振周波数f0の誤差がプラスである場合、可変コンデンサ63CのキャパシタンスC2を小さい値に変更することで、グラフG61およびグラフG62をプラス方向(図6において右方向)にシフトすることができ、所定の発振周波数f0の誤差がマイナスである場合、可変コンデンサ63CのキャパシタンスC2を小さい値に変更することで、グラフG61およびグラフG62をマイナス方向(図6において左方向)にシフトすることができる。したがって、所定の発振周波数f0の誤差±Δf0や実際の所定の発振周波数f0自体が既知である場合、共振回路部60Cを共振させることでき、検出距離Dを維持しつつ、被検出体Aの近接を検出することができる。
また、本実施形態における近接センサシステム100によれば、被検出ユニット50は、共振回路部60,60A,60B,60Cを収容する非磁性の筐体51を備える。これにより、発振回路部20が形成する磁界の磁束を共振回路部60,60A,60B,60Cに作用させることできるとともに、共振回路部60,60A,60B,60Cを外部の環境から保護することができる。したがって、被検出ユニット50は、例えば、耐水性、耐油性、耐汚れ、耐振動、耐衝撃、耐熱、耐寒などの耐環境性能を向上させることができ、近接センサシステム100は、耐環境性が要求される用途に好適に適用することができる。
また、本実施形態における近接センサシステム100によれば、発振回路部20が、検出用コイル21と、発振用コンデンサ26とを含む。ここで、検出用コイル21に所定の発振周波数f0で電流が流れると、検出用コイル21は磁束を発生させ、センサユニット10と被検出体Aとの間に、磁界(磁場)を形成する。これにより、所定の発振周波数f0で磁界を形成する発振回路部20を、容易に構成(実現)することができる。
また、検出用コイル21および発振用コンデンサ26で構成されるLC発振回路20Aの共振周波数f1は、検出用コイル21のインダクタンスL1、および発振用コンデンサ26のキャパシタンスC1を用いて式(1)で算出することができる。したがって、発振回路部20の所定の発振周波数f0を式(1)で算出される共振周波数f1と同一に設定することで、LC発振回路20Aのインピーダンスを最大にすることができ、発振回路部20の消費電力を低減させることができる。
なお、前述した各実施形態の構成は、組み合わせたり、あるいは一部の構成部分を入れ替えたりしたりしてもよい。また、本発明の構成は前述した各実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもよい。
10…センサユニット
11…ケース
12…カバー
13…プリント基板
14…ケーブル
20…発振回路部
20A…LC発振回路
21…検出コイル
21a…コア
21b…電磁コイル
25…発振回路
25a,25b…出力端子
26…発振用コンデンサ
27…バイアス回路
28…カレントミラー回路
29…電圧電流変換回路
30…検出回路部
50…被検出ユニット
51…筐体
60,60A,60B,60C…共振回路部
61…共振用抵抗器
61B…可変抵抗器
62…共振用コイル
63…共振用コンデンサ
63C…可変コンデンサ
100…近接センサシステム
A…被検出体
D…検出距離
M…直径

Claims (6)

  1. 被検出体の近接を検出する近接センサシステムであって、
    所定の発振周波数で磁界を形成する発振回路部を備えるセンサユニットと、
    前記被検出体に設けられ、前記所定の発振周波数に基づく共振周波数を有する共振回路部を備える被検出ユニットと、を備える、
    近接センサシステム。
  2. 前記共振回路部は、抵抗器と、コイルと、コンデンサと、を含む、
    請求項1に記載の近接センサシステム。
  3. 前記抵抗器は、可変抵抗器である、
    請求項2に記載の近接センサシステム。
  4. 前記コンデンサは、可変コンデンサである、
    請求項2または3に記載の近接センサシステム。
  5. 前記被検出ユニットは、前記共振回路部を収容する非磁性の筐体を備える
    請求項2ないし4のいずれか一項に記載の近接センサシステム。
  6. 前記発振回路部は、コイルと、コンデンサと、を含む、
    請求項1ないし5のいずれか一項に記載の近接センサシステム。
JP2013062346A 2013-03-25 2013-03-25 近接センサシステム Pending JP2014187627A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013062346A JP2014187627A (ja) 2013-03-25 2013-03-25 近接センサシステム
PCT/JP2014/051853 WO2014156275A1 (ja) 2013-03-25 2014-01-28 近接センサシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013062346A JP2014187627A (ja) 2013-03-25 2013-03-25 近接センサシステム

Publications (1)

Publication Number Publication Date
JP2014187627A true JP2014187627A (ja) 2014-10-02

Family

ID=51623277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013062346A Pending JP2014187627A (ja) 2013-03-25 2013-03-25 近接センサシステム

Country Status (2)

Country Link
JP (1) JP2014187627A (ja)
WO (1) WO2014156275A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111707868B (zh) * 2020-05-18 2022-04-12 华为数字能源技术有限公司 振荡电路的检测方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039727A (ja) * 1983-08-12 1985-03-01 沖電気工業株式会社 非接触接点信号伝達装置
JPH05315929A (ja) * 1992-05-12 1993-11-26 Seiko Instr Inc 物体近接検出装置
JP5419781B2 (ja) * 2010-03-31 2014-02-19 アズビル株式会社 近接スイッチ

Also Published As

Publication number Publication date
WO2014156275A1 (ja) 2014-10-02

Similar Documents

Publication Publication Date Title
JP6515107B2 (ja) 複数の共振センサに対する単一チャネルインタフェースを備えた誘導性位置感知
WO2014156276A1 (ja) 近接センサシステム
JP6248785B2 (ja) 送電装置および受電装置
US9222805B2 (en) Circuit system and method for evaluating a sensor
US7938022B2 (en) Flowmeter with an oscillation circuit receiving electric power in a non-insulating manner
US10573453B2 (en) Position sensing using coil sensor
US10444096B2 (en) Distance compensation
JP2010216863A (ja) 近接センサ
JP4398911B2 (ja) 変位センサ
CN103906994A (zh) 基于涡流的角度传感器
KR101921700B1 (ko) 누설 자기장 상쇄 방법
US7106052B2 (en) Inductive proximity switch with differential coil arrangement
JP2014092418A (ja) 位置検出センサおよび位置検出装置
WO2014156275A1 (ja) 近接センサシステム
CN105102307B (zh) 用于确定金属物体的位置的传感器装置、转向角传感器装置、方法
KR20170127564A (ko) 위치 센서
US9638651B2 (en) Method and circuit for evaluating a physical quantity detected by a sensor
JP5914827B2 (ja) 力センサ及びそれを用いた力検知装置、並びに力検知方法
JP2009264992A (ja) 誘導型近接センサ
JP4831686B2 (ja) 高周波発振型近接センサ
JP3809635B2 (ja) コイルの銅抵抗補償回路
JP2017517010A (ja) 特に誘電体目標物や金属目標物までの距離測定装置
JP2000131120A (ja) 磁性体のレベル検知装置
JP2008091147A (ja) 近接センサ及び近接センサ用コア
JP2021118427A (ja) 近接センサ