JP2014186947A - Electrolyte membrane with support base material, manufacturing method thereof, and method of manufacturing catalyst layer-electrolyte membrane laminate using the electrolyte membrane with support base material - Google Patents

Electrolyte membrane with support base material, manufacturing method thereof, and method of manufacturing catalyst layer-electrolyte membrane laminate using the electrolyte membrane with support base material Download PDF

Info

Publication number
JP2014186947A
JP2014186947A JP2013062508A JP2013062508A JP2014186947A JP 2014186947 A JP2014186947 A JP 2014186947A JP 2013062508 A JP2013062508 A JP 2013062508A JP 2013062508 A JP2013062508 A JP 2013062508A JP 2014186947 A JP2014186947 A JP 2014186947A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
catalyst layer
base material
support base
support substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013062508A
Other languages
Japanese (ja)
Inventor
Eiji Kanda
英嗣 神田
Hiroshi Kishimoto
比呂志 岸本
Kazufumi Kotani
和史 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2013062508A priority Critical patent/JP2014186947A/en
Publication of JP2014186947A publication Critical patent/JP2014186947A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an electrolyte membrane with a support base material improved in mass-productivity without impairing quality of the electrolyte membrane.SOLUTION: An electrolyte membrane 7 with a support base material comprises: an electrolyte membrane 2; a first support base material 4 formed on at least one surface of the electrolyte membrane 2; and a second support base material 5 stuck on a surface of the first support base material 4 opposite to the surface stuck with the electrolyte membrane 2. In the first support base material 4, a cut C is formed to divide the first support base material into a first portion including at least a part of an outer edge and a second portion excluding the first portion.

Description

本発明は、固体高分子形燃料電池を構成する触媒層−電解質膜積層体を形成するのに用いる支持基材付き電解質膜に関する。 The present invention relates to an electrolyte membrane with a supporting substrate used for forming a catalyst layer-electrolyte membrane laminate constituting a polymer electrolyte fuel cell.

燃料電池は、電解質の両面に電極が配置され、水素と酸素の電気化学反応により発電する電池であり、発電時に発生するのは水のみである。このように従来の内燃機関と異なり、二酸化炭素等の環境負荷ガスを発生しないために次世代のクリーンエネルギーシステムとして普及が見込まれている。その中でも特に固体高分子形燃料電池は、作動温度が低く、電解質の抵抗が少ないことに加え、活性の高い触媒を用いるので小型でも高出力を得ることができ、早期の実用化が見込まれている。   A fuel cell is a cell in which electrodes are arranged on both sides of an electrolyte and generates electricity by an electrochemical reaction between hydrogen and oxygen, and only water is generated during power generation. Thus, unlike the conventional internal combustion engine, it is expected to spread as a next-generation clean energy system because it does not generate environmental load gas such as carbon dioxide. Among them, in particular, polymer electrolyte fuel cells have a low operating temperature and low electrolyte resistance. In addition, a highly active catalyst is used, so high output can be obtained even in a small size, and early commercialization is expected. Yes.

上記固体高分子形燃料電池の発電部位は、プロトンを伝導する固体高分子電解質膜と、電極となる触媒層から構成され、電解質膜の両面に触媒層を塗工または熱プレスすることにより電解質膜−電極積層体を得ることができる。しかし、上記固体高分子電解質膜は、熱や湿度により膨潤または収縮してしまい、寸法が大きく変化する性質がある。そのため、塗工により触媒層を形成する場合には、触媒層形成用ペーストに含まれる水や有機溶剤により膨潤し、あるいは、乾燥時に収縮することにより、電解質膜及び触媒層の寸法精度が著しく低下する。また、熱プレスにより触媒層を形成する場合にも、熱プレス時・冷却時の温度変化により膨潤・収縮するため、電解質膜及び触媒層の寸法精度が著しく低下するといった問題があった。電解質膜及び触媒層の寸法精度が低下すると、電解質膜の両面に形成された触媒層の大きさや位置がずれるという課題がある。さらに、触媒層を電解質膜上に形成した後、その外周部に額縁状の支持基材を積層して電解質膜を補強する場合、支持基材に予め設けた開口部が補強しようとする電解質膜や触媒層の大きさに合致しないといった問題があった。また、そういった電解質膜−電極積層体を含むセルを何層にも重ねると、スタックの中で著しく圧力のかかる部位が発生し、耐久性に問題が生じていた。   The power generation site of the polymer electrolyte fuel cell is composed of a solid polymer electrolyte membrane that conducts protons and a catalyst layer that becomes an electrode, and the electrolyte membrane is formed by coating or hot pressing the catalyst layer on both sides of the electrolyte membrane. -An electrode laminated body can be obtained. However, the above-mentioned solid polymer electrolyte membrane has the property that the size changes greatly due to swelling or shrinkage due to heat or humidity. Therefore, when the catalyst layer is formed by coating, the dimensional accuracy of the electrolyte membrane and the catalyst layer is remarkably lowered by swelling with water or an organic solvent contained in the catalyst layer forming paste or shrinking when dried. To do. Further, when the catalyst layer is formed by hot pressing, there is a problem that the dimensional accuracy of the electrolyte membrane and the catalyst layer is remarkably lowered because the catalyst layer swells and shrinks due to temperature changes during hot pressing and cooling. When the dimensional accuracy of the electrolyte membrane and the catalyst layer is lowered, there is a problem that the size and position of the catalyst layer formed on both surfaces of the electrolyte membrane are shifted. Further, after the catalyst layer is formed on the electrolyte membrane, when the electrolyte membrane is reinforced by laminating a frame-like support base material on the outer peripheral portion thereof, the electrolyte membrane to be reinforced by the opening provided in advance in the support base material And there is a problem that the size of the catalyst layer does not match. In addition, when cells including such an electrolyte membrane-electrode laminate are stacked in layers, a portion where a significant pressure is applied in the stack is generated, resulting in a problem in durability.

一方、下記の特許文献1のように、電解質膜の触媒層を形成する周囲に額縁状の支持基材を設けた後にその枠内に触媒層を形成する方法が知られている。当該方法によれば、上述したような触媒層形成時の電解質膜の膨潤、収縮が抑制でき、触媒層の寸法精度を向上させることができることがわかっている。   On the other hand, as disclosed in Patent Document 1 below, a method is known in which a frame-shaped support base material is provided around a catalyst layer of an electrolyte membrane and then a catalyst layer is formed in the frame. According to this method, it has been found that the swelling and shrinkage of the electrolyte membrane during the formation of the catalyst layer as described above can be suppressed, and the dimensional accuracy of the catalyst layer can be improved.

しかしながら、特許文献1に記載している支持基材付き電解質膜(固体高分子電解質膜/絶縁膜接着シート13に相当)の製造方法は、あらかじめ中央部がくり抜かれて額縁状に形成された支持基材(絶縁膜)に固体高分子電解質膜を接着する方法であり、接着までの間の支持基材(絶縁膜)の形状保持が困難であるなど量産性に乏しかった。   However, the manufacturing method of the electrolyte membrane with a supporting substrate (corresponding to the solid polymer electrolyte membrane / insulating membrane adhesive sheet 13) described in Patent Document 1 is a support in which a central portion is cut out in advance to form a frame shape. This is a method of adhering a solid polymer electrolyte membrane to a base material (insulating film), and its mass productivity was poor because it was difficult to maintain the shape of the supporting base material (insulating film) until bonding.

これに対し、特許文献2では、図28(a)〜(c)に示すような支持基材付き電解質膜の製造方法が開示されている。具体的には、図28(a)のように、先に支持基材(絶縁膜)104を固体高分子電解質膜102に接合したのち、図28(b)のように、触媒層を形成する領域の支持基材(絶縁膜)104に切れ目(カットライン)Cを形成した後、図28(c)のように、切れ目Cの内周部を除去する。しかしながら、特許文献2では電解質膜102の一方面及び他方面に平面視矩形状の支持基材104を貼り合わせた後、トムソン刃等によって支持基材104の表面から電解質膜102との接合面まで達する切れ目Cを形成しているため(図28(b))、刃が食い込みすぎると電解質膜102まで傷つけてしまうおそれがあった。また、上記切れ目Cが浅い場合、支持基材104の切れ目Cに囲まれた内周部を除去できないという問題があった。   On the other hand, Patent Document 2 discloses a method for manufacturing an electrolyte membrane with a supporting substrate as shown in FIGS. Specifically, as shown in FIG. 28 (a), the support base (insulating film) 104 is first bonded to the solid polymer electrolyte membrane 102, and then the catalyst layer is formed as shown in FIG. 28 (b). After the cut (cut line) C is formed in the support substrate (insulating film) 104 in the region, the inner peripheral portion of the cut C is removed as shown in FIG. However, in Patent Document 2, after a support substrate 104 having a rectangular shape in a plan view is bonded to one surface and the other surface of the electrolyte membrane 102, the surface of the support substrate 104 is joined to the bonding surface with the electrolyte membrane 102 by a Thomson blade or the like. Since the reaching cut C is formed (FIG. 28B), there is a possibility that the electrolyte membrane 102 may be damaged if the blade bites too much. Moreover, when the said cut | interruption C is shallow, there existed a problem that the inner peripheral part enclosed by the cut | interruption C of the support base material 104 could not be removed.

これに対し、特許文献3では、支持基材の内周部を切断する際に、まず支持基材を一方面から厚み方向に半分切断(ハーフカット)してから電解質膜に貼り合わせて、支持基材の反対面のハーフカット位置と同位置から厚み方向の残り半分を切断する技術が開示されている。当該技術を図29を参照して説明する。まず、図29(a)に示すように、補強用フィルム材204に対して、予め定められた切除領域の外周を型抜き刃210を用いて第1回目のハーフカット(半抜き)を行う。続いて、図29(b)に示すように、補強用フィルム材204のハーフカットがされた面を電解質膜202に接合する。続いて、図29(c)に示すように、補強用フィルム材204を、上記第1回目のハーフカットをした面とは反対面側、かつ第1回目のハーフカット位置と同位置にて、型抜き刃211を用いて第2回目のハーフカットを行う。これにより、補強用フィルム材204には、表面から電解質膜202との接合部分に達する切れ目が形成される。最後に、図29(d)に示すように、補強用フィルム材204上記切れ目に囲まれた部分を除去することにより、電解質膜202の外周縁部に枠状の支持基材204aが貼り合わされた構造となる。このように、特許文献3では、電解質膜202を傷つけることなく、補強用フィルム材204に切れ目を形成することができる。   On the other hand, in Patent Document 3, when the inner peripheral portion of the support base material is cut, the support base material is first cut in half in the thickness direction from one surface (half cut), and then bonded to the electrolyte membrane to support it. A technique for cutting the remaining half in the thickness direction from the same position as the half-cut position on the opposite surface of the substrate is disclosed. This technique will be described with reference to FIG. First, as shown in FIG. 29A, the first half cut (half punching) is performed on the outer periphery of the predetermined cut region using the die cutting blade 210 with respect to the reinforcing film material 204. Subsequently, as shown in FIG. 29 (b), the half-cut surface of the reinforcing film material 204 is joined to the electrolyte membrane 202. Subsequently, as shown in FIG. 29 (c), the reinforcing film material 204 is on the side opposite to the first half-cut surface and at the same position as the first half-cut position. A second half cut is performed using the die cutting blade 211. Thereby, the cut | interruption which reaches the junction part with the electrolyte membrane 202 from the surface is formed in the film material 204 for reinforcement. Finally, as shown in FIG. 29 (d), the frame-shaped support base material 204 a is bonded to the outer peripheral edge portion of the electrolyte membrane 202 by removing the portion surrounded by the above-described cut line of the reinforcing film material 204. It becomes a structure. As described above, in Patent Document 3, a cut can be formed in the reinforcing film material 204 without damaging the electrolyte membrane 202.

しかしながら、上述した特許文献3では、図29(c)に示すように、2回目のハーフカットを行う際に、支持基材204の第1回目のハーフカット位置と対応するように、型抜き刃211の位置を正確に調整しなければならない。そのため、高精度の位置補正装置が必要となる。 However, in Patent Document 3 described above, as shown in FIG. 29 (c), when performing the second half-cut, the die cutting blade is set so as to correspond to the first half-cut position of the support base material 204. The position of 211 must be adjusted accurately. Therefore, a highly accurate position correction apparatus is required.

特開2001−15127号公報JP 2001-15127 A 特開2007−299551号公報JP 2007-299551 A 特開2010−27227号公報JP 2010-27227 A

このように、特許文献1の発明では、支持基材付き電解質膜の量産性がなく、特許文献2の発明では、支持基材を形成する際に電解質膜を傷つけてしまうため、触媒層−電解質膜積層体などに使用する電解質膜の品質を低下させる恐れがあるという問題があった。一方、特許文献3の発明では、電解質膜を傷つけることなく支持基材を形成することができるが、型抜き工程に厳しい精度が求められるので量産性が低下するという問題があった。   Thus, in the invention of Patent Document 1, there is no mass productivity of the electrolyte membrane with a supporting substrate, and in the invention of Patent Document 2, the electrolyte membrane is damaged when the supporting substrate is formed. There has been a problem that the quality of the electrolyte membrane used for the membrane laminate may be deteriorated. On the other hand, in the invention of Patent Document 3, it is possible to form a supporting base material without damaging the electrolyte membrane, but there is a problem that mass productivity is lowered because strict accuracy is required for the die cutting process.

そのため、触媒層形成時の電解質膜の膨潤、収縮が抑制でき、電解質膜及び触媒層の寸法精度を向上させることができる支持基材付き電解質膜であって、電解質膜の品質を損なわず量産性に優れた新規な支持基材付き電解質膜が求められていた。 Therefore, it is an electrolyte membrane with a supporting substrate that can suppress swelling and shrinkage of the electrolyte membrane during the formation of the catalyst layer and improve the dimensional accuracy of the electrolyte membrane and the catalyst layer, and is mass-productive without impairing the quality of the electrolyte membrane There has been a demand for a novel electrolyte membrane with a supporting base material that is excellent in the above.

本発明は、上記問題を解決するためになされたものであって、触媒層形成時の電解質膜の膨潤、収縮が抑制でき、電解質膜及び触媒層の寸法精度を向上させることができる支持基材付き電解質膜であって、電解質膜の品質を損なわず量産性に優れた支持基材付き電解質膜およびその製造方法、さらに支持基材付き電解質膜を使用した新規な触媒層−電解質膜積層体の製造方法を提供することを目的とする。   The present invention has been made to solve the above problems, and can support the swelling and shrinkage of the electrolyte membrane during the formation of the catalyst layer, and can improve the dimensional accuracy of the electrolyte membrane and the catalyst layer. An electrolyte membrane with a supporting substrate excellent in mass productivity without impairing the quality of the electrolyte membrane, and a method for producing the same, and a novel catalyst layer-electrolyte membrane laminate using the electrolyte membrane with a supporting substrate An object is to provide a manufacturing method.

本発明に係る支持基材付き電解質膜は、上記課題を解決するためになされたものであり、電解質膜と、前記電解質膜の少なくとも一方面に形成された第1の支持基材と、第1の支持基材の前記電解質膜と貼り合わされた面の反対側の面に貼り合わされた第2の支持基材とを備え、第1の支持基材には、外周縁部の少なくとも一部を含む第1の部分と該第1の部分を除く第2の部分とを区分する切れ目が形成されたことを特徴とする。   An electrolyte membrane with a supporting substrate according to the present invention is made to solve the above-described problems, and includes an electrolyte membrane, a first supporting substrate formed on at least one surface of the electrolyte membrane, and a first And a second support substrate bonded to a surface opposite to the surface bonded to the electrolyte membrane of the support substrate, and the first support substrate includes at least a part of the outer peripheral edge portion. A cut is formed that separates the first portion and the second portion excluding the first portion.

このような構成によれば、第1の支持基材によって触媒層形成時の電解質膜の膨潤、収縮を抑制できるので、電解質膜及び触媒層の寸法精度を向上させることができる。また、第1の支持基材と第2の支持基材とを貼り合わせた状態で切れ目を形成することができるので、切れ目を入れる回数も少なく、高性能な装置を用いて位置合わせ等をおこなう必要がないので量産性に優れている。また、第1の支持基材を電解質膜に貼り合わせる前に、切れ目を形成することができるので、切れ目を形成する際に電解質膜が傷つけられるといったおそれもない。又、本発明に係る支持基材付き電解質膜は電解質膜の保管や搬送に適しており、支持基材によって外部環境(温度、湿度等)の変化に対する電解質膜の寸法変化を抑制することができる。   According to such a configuration, since the swelling and shrinkage of the electrolyte membrane during formation of the catalyst layer can be suppressed by the first support substrate, the dimensional accuracy of the electrolyte membrane and the catalyst layer can be improved. In addition, since the cut can be formed in a state where the first support base and the second support base are bonded together, the number of times of making the cut is small, and alignment is performed using a high-performance apparatus. Since there is no need, it is excellent in mass productivity. In addition, since the cut can be formed before the first support substrate is bonded to the electrolyte membrane, there is no fear that the electrolyte membrane is damaged when the cut is formed. In addition, the electrolyte membrane with a supporting substrate according to the present invention is suitable for storage and transportation of the electrolyte membrane, and the supporting substrate can suppress dimensional changes of the electrolyte membrane with respect to changes in the external environment (temperature, humidity, etc.). .

また、上記支持基材付き電解質膜において、前記切れ目の少なくとも一部は、第2の支持基材の厚み方向の一部まで達していてもよい。すなわち、触媒層−電解質膜積層体を作製する際に第2の支持基材は剥離されるため、切れ目は第2の支持基材の一部に達してもよい。このような構成により、第1の基材の第1の部分と第2の部分を確実に分離し、切除することができる。   In the electrolyte membrane with a supporting substrate, at least a part of the cut may reach a part in the thickness direction of the second supporting substrate. That is, since the second supporting substrate is peeled off when the catalyst layer-electrolyte membrane laminate is produced, the break may reach a part of the second supporting substrate. With such a configuration, the first part and the second part of the first base material can be reliably separated and excised.

また、上記支持基材付き電解質膜において、前記第1の部分の少なくとも一部は、前記第2の部分の前記切れ目に隣接する部分に比べ、前記電解質膜との接着強度が大きいことが好ましい。このような構成により、第1の支持基材の切れ目を境に第2の部分を剥離する際に、第1の部分の少なくとも一部は電解質膜との接着強度が大きいため、第2の部分を容易に剥離することができる。   In the electrolyte membrane with a supporting substrate, it is preferable that at least a part of the first portion has a higher adhesive strength with the electrolyte membrane than a portion adjacent to the cut of the second portion. With such a configuration, when the second portion is peeled off at the boundary of the first support base material, at least a portion of the first portion has a high adhesive strength with the electrolyte membrane. Can be easily peeled off.

また、本発明に係る支持基材付き電解質膜の製造方法は、上記課題を解決するためになされたものであり、第1の支持基材と第2の支持基材とを貼り合わせる第1工程と、第2の支持基材と貼り合わされた第1の支持基材に、外周縁部の少なくとも一部を含む第1の部分と該第1の部分を除く第2の部分とを区分する切れ目を形成する第2工程と、第1の支持基材の第2の支持基材が貼り合わされた面の反対側の面に電解質膜を形成する第3工程と、を有することを特徴とする。このような方法によれば、第1の支持基材と第2の支持基材とを貼り合わせた状態で切れ目を形成することができるので、切れ目を入れる回数も少なく、高性能な装置を用いて位置合わせ等をおこなう必要がないため支持基材付き電解質膜を容易に製造できる。また、第1の支持基材を電解質膜に貼り合わせる前に、切れ目を形成することができるので、切れ目を形成する際に電解質膜が傷つけられるといったおそれもない。   Moreover, the manufacturing method of the electrolyte membrane with a support base material which concerns on this invention was made | formed in order to solve the said subject, and the 1st process of bonding a 1st support base material and a 2nd support base material together. And the first support substrate bonded to the second support substrate, the first portion including at least a part of the outer peripheral edge portion, and the second portion excluding the first portion And a third step of forming an electrolyte membrane on the surface of the first support substrate opposite to the surface to which the second support substrate is bonded. According to such a method, since the cut can be formed in a state where the first support substrate and the second support substrate are bonded together, the number of cuts is small, and a high-performance apparatus is used. Therefore, it is not necessary to perform alignment or the like, so that the electrolyte membrane with a supporting substrate can be easily manufactured. In addition, since the cut can be formed before the first support substrate is bonded to the electrolyte membrane, there is no fear that the electrolyte membrane is damaged when the cut is formed.

また、本発明に係る触媒層−電解質膜積層体の製造方法は、本発明に係る支持基材付き電解質膜を準備する工程と、前記第2の支持基材を剥離する工程と、前記第1の支持基材の第2の部分を剥離する工程と、前記電解質膜上の前記第1の支持基材の第2の部分を剥離した部分に触媒層を形成する工程と、を有することを特徴とする。このように、本発明の支持基材付き電解質膜を用いれば、触媒層形成時の電解質膜の膨潤、収縮を抑制できるので、電解質膜及び触媒層の寸法精度を向上させることができる。さらに、電解質膜の傷つきがないため、高品質の触媒層−電解質膜積層体を容易に製造することが可能である。   Moreover, the manufacturing method of the catalyst layer-electrolyte membrane laminated body which concerns on this invention, the process of preparing the electrolyte membrane with a support base material which concerns on this invention, the process of peeling the said 2nd support base material, and said 1st Separating the second portion of the support substrate, and forming a catalyst layer on the portion of the electrolyte membrane from which the second portion of the first support substrate is peeled off. And Thus, if the electrolyte membrane with a supporting substrate of the present invention is used, swelling and shrinkage of the electrolyte membrane during formation of the catalyst layer can be suppressed, so that the dimensional accuracy of the electrolyte membrane and the catalyst layer can be improved. Furthermore, since the electrolyte membrane is not damaged, a high-quality catalyst layer-electrolyte membrane laminate can be easily produced.

触媒層形成時の電解質膜の膨潤、収縮が抑制でき、電解質膜及び触媒層の寸法精度を向上させることができる支持基材付き電解質膜であって、電解質膜の品質を損なわず量産性に優れた支持基材付き電解質膜およびその製造方法、さらに支持基材付き電解質膜を使用した新規な触媒層−電解質膜積層体の製造方法を提供することができる。   An electrolyte membrane with a supporting substrate that can suppress swelling and shrinkage of the electrolyte membrane during the formation of the catalyst layer and can improve the dimensional accuracy of the electrolyte membrane and the catalyst layer, and is excellent in mass productivity without impairing the quality of the electrolyte membrane Further, it is possible to provide an electrolyte membrane with a supporting substrate and a method for producing the same, and a method for producing a novel catalyst layer-electrolyte membrane laminate using the electrolyte membrane with a supporting substrate.

本発明の実施形態1に係る支持基材付き電解質膜の構成を示す断面図である。It is sectional drawing which shows the structure of the electrolyte membrane with a support base material concerning Embodiment 1 of this invention. 図1に示す支持基材付き電解質膜を構成する第1の支持基材の平面図である。It is a top view of the 1st support base material which comprises the electrolyte membrane with a support base material shown in FIG. (a)及び(b)は、第1の支持基材の変形例を示す平面図である。(A) And (b) is a top view which shows the modification of a 1st support base material. 図1に示す支持基材付き電解質膜の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the electrolyte membrane with a support base material shown in FIG. (a)及び(b)は、それぞれ図1に示す支持基材付き電解質膜の製造方法を示す断面図および平面図である。(A) And (b) is sectional drawing and a top view which show the manufacturing method of the electrolyte membrane with a support base material shown in FIG. 1, respectively. (a)は、第1の支持基材と第2の支持基材の積層体の変形例を示す断面図であり、(b)は、第1の支持基材と第2の支持基材の積層体の他の変形例を示す平面図である。(A) is sectional drawing which shows the modification of the laminated body of a 1st support base material and a 2nd support base material, (b) is a 1st support base material and a 2nd support base material. It is a top view which shows the other modification of a laminated body. 図1に示す支持基材付き電解質膜の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the electrolyte membrane with a support base material shown in FIG. 熱プレスされた支持基材付き電解質膜の構成を示す断面図である。It is sectional drawing which shows the structure of the electrolyte membrane with a support base material hot-pressed. (a)および(c)は、支持基材付き電解質膜の変形例を示す断面図であり、(b)は、(a)の支持基材付き電解質膜の製造方法を示す断面図である。(A) And (c) is sectional drawing which shows the modification of the electrolyte membrane with a support base material, (b) is sectional drawing which shows the manufacturing method of the electrolyte membrane with a support base material of (a). (a)は、支持基材付き電解質膜の変形例を示す断面図であり、(b)は、当該支持基材付き電解質膜の上側の第1の支持基材を示す平面図であり、(c)は、当該支持基材付き電解質膜の下側の第1の支持基材を示す平面図である。(A) is sectional drawing which shows the modification of the electrolyte membrane with a support base material, (b) is a top view which shows the 1st support base material of the upper side of the said electrolyte membrane with a support base material, c) is a plan view showing a first support substrate on the lower side of the electrolyte membrane with a support substrate. (a)は、支持基材付き電解質膜の他の変形例を示す断面図であり、(b)および(c)は、当該支持基材付き電解質膜の製造方法を示す断面図であり、(d)は、当該支持基材付き電解質膜から第2の支持基材を除去した構成を示す断面図である。(A) is sectional drawing which shows the other modification of the electrolyte membrane with a support base material, (b) and (c) are sectional drawings which show the manufacturing method of the said electrolyte membrane with a support base material, d) is a cross-sectional view showing a configuration in which the second support substrate is removed from the electrolyte membrane with a support substrate. (a)は、触媒層が形成された触媒層転写フィルムの構成を示す断面図であり、(b)は、当該触媒層転写フィルムの構成を示す平面図である。(A) is sectional drawing which shows the structure of the catalyst layer transfer film in which the catalyst layer was formed, (b) is a top view which shows the structure of the said catalyst layer transfer film. (a)〜(d)は、本発明の実施形態1に係る支持基材付き電解質膜を使用した、本発明の実施形態2に係る触媒層−電解質膜積層体の製造方法を示す断面図である。(A)-(d) is sectional drawing which shows the manufacturing method of the catalyst layer-electrolyte membrane laminated body which concerns on Embodiment 2 of this invention using the electrolyte membrane with a support base material concerning Embodiment 1 of this invention. is there. (a)〜(c)は、本発明の実施形態2に係る触媒層−電解質膜積層体の製造方法を示す断面図である。(A)-(c) is sectional drawing which shows the manufacturing method of the catalyst layer-electrolyte membrane laminated body which concerns on Embodiment 2 of this invention. 本発明の実施形態2の変形例に係る触媒層−電解質膜積層体を示す断面図である。It is sectional drawing which shows the catalyst layer-electrolyte membrane laminated body which concerns on the modification of Embodiment 2 of this invention. 本発明の実施形態2のさらに他の変形例に係る触媒層−電解質膜積層体の構成を示す断面図である。It is sectional drawing which shows the structure of the catalyst layer-electrolyte membrane laminated body which concerns on the further another modification of Embodiment 2 of this invention. (a)〜(c)は、図16に示す触媒層−電解質膜積層体の製造方法の一例を示す断面図である。(A)-(c) is sectional drawing which shows an example of the manufacturing method of the catalyst layer-electrolyte membrane laminated body shown in FIG. (a)〜(d)は、図16に示す触媒層−電解質膜積層体の製造方法の一例を示す断面図である。(A)-(d) is sectional drawing which shows an example of the manufacturing method of the catalyst layer-electrolyte membrane laminated body shown in FIG. (a)及び(b)は、図16に示す触媒層−電解質膜積層体の製造方法の一例を示す断面図である。(A) And (b) is sectional drawing which shows an example of the manufacturing method of the catalyst layer-electrolyte membrane laminated body shown in FIG. (a)〜(d)は、図16に示す触媒層−電解質膜積層体の製造方法の他の例を示す断面図である。(A)-(d) is sectional drawing which shows the other example of the manufacturing method of the catalyst layer-electrolyte membrane laminated body shown in FIG. 本発明の実施形態2の他の変形例に係る触媒層−電解質膜積層体の構成を示す断面図である。It is sectional drawing which shows the structure of the catalyst layer-electrolyte membrane laminated body which concerns on the other modification of Embodiment 2 of this invention. 図21に示す触媒層−電解質膜積層体の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the catalyst layer-electrolyte membrane laminated body shown in FIG. (a)〜(d)は、図21に示す触媒層−電解質膜積層体の製造方法を示す断面図である。(A)-(d) is sectional drawing which shows the manufacturing method of the catalyst layer-electrolyte membrane laminated body shown in FIG. (a)及び(b)は、図21に示す触媒層−電解質膜積層体の製造方法を示す断面図である。(A) And (b) is sectional drawing which shows the manufacturing method of the catalyst layer-electrolyte membrane laminated body shown in FIG. (a)は、本発明の実施形態2のさらに他の変形例に係る触媒層−電解質膜積層体を示す平面図であり、(b)は、当該触媒層−電解質膜積層体の図25(a)の反対方向から見た平面図である。(A) is a top view which shows the catalyst layer-electrolyte membrane laminated body which concerns on the further another modification of Embodiment 2 of this invention, (b) is FIG. 25 () of the said catalyst layer-electrolyte membrane laminated body. It is the top view seen from the opposite direction of a). (a)及び(b)は、本発明の実施形態2のさらに他の変形例に係る触媒層−電解質膜積層体を示す平面図である。(A) And (b) is a top view which shows the catalyst layer-electrolyte membrane laminated body which concerns on the further another modification of Embodiment 2 of this invention. (a)及び(b)は、本発明の実施形態2のさらに他の変形例に係る触媒層−電解質膜積層体の構成を示す断面図である。(A) And (b) is sectional drawing which shows the structure of the catalyst layer-electrolyte membrane laminated body which concerns on the further another modification of Embodiment 2 of this invention. (a)〜(c)は、従来の触媒層−電解質膜積層体の製造方法を示す断面図である。(A)-(c) is sectional drawing which shows the manufacturing method of the conventional catalyst layer-electrolyte membrane laminated body. (a)〜(d)は、従来の他の触媒層−電解質膜積層体の製造方法の一部を示す断面図である。(A)-(d) is sectional drawing which shows a part of manufacturing method of the other conventional catalyst layer-electrolyte membrane laminated body.

以下、本発明の各実施形態について添付図面を参照して説明する。なお、本発明は、下記の各実施形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The present invention is not limited to the following embodiments.

〔実施形態1〕   [Embodiment 1]

本発明は、「触媒層−電解質膜積層体」の製造に用いることができる「支持基材付き電解質膜」に関するものである。   The present invention relates to an “electrolyte membrane with a supporting substrate” that can be used for producing a “catalyst layer-electrolyte membrane laminate”.

(支持基材付き電解質膜の構成)
図1は、本実施形態に係る支持基材付き電解質膜7の構成を示す断面図である。また、図2は、その支持基材付き電解質膜7を構成する第1の支持基材4の平面図である。
図1の支持基材付き電解質膜7は、電解質膜2と、前記電解質膜2の一方面に貼り合わされた第1の支持基材4と、第1の支持基材4の前記電解質膜2と貼り合わされた面の反対側の面に貼り合わされた第2の支持基材5とを備えている。
(Configuration of electrolyte membrane with supporting substrate)
FIG. 1 is a cross-sectional view illustrating a configuration of an electrolyte membrane 7 with a supporting base material according to the present embodiment. FIG. 2 is a plan view of the first support substrate 4 constituting the electrolyte membrane 7 with the support substrate.
1 includes an electrolyte membrane 2, a first support substrate 4 bonded to one surface of the electrolyte membrane 2, and the electrolyte membrane 2 of the first support substrate 4. And a second support substrate 5 bonded to a surface opposite to the bonded surface.

また、第1の支持基材4には、その厚み方向に外周縁部の少なくとも一部を含む第1の部分と該第1の部分を除く第2の部分とを区分するような切れ目Cが形成されている。つまり、図2に示すように、枠状に形成された切れ目Cにより、第1の支持基材4は切れ目の外周部分として第1の部分P1と、その内周部分として第2の部分P2とに区分される。   In addition, the first support base 4 has a cut C that separates a first portion including at least a part of the outer peripheral edge in the thickness direction and a second portion excluding the first portion. Is formed. That is, as shown in FIG. 2, the first support base 4 has a first portion P1 as an outer peripheral portion of the cut and a second portion P2 as an inner peripheral portion due to the cut C formed in a frame shape. It is divided into.

切れ目Cは、触媒層を形成する領域を設けるにあたり、第1の支持基材4の第2の部分P2がその切れ目Cを切欠に電解質膜2から剥離できるように形成されていればよい。そのため、切れ目Cは第1の支持基材4を厚み方向に貫通していることが好ましいが、完全に貫通していなくてもよいし、反対に切れ目Cの少なくとも一部が第2の支持基材5の厚み方向まで達していてもよい。また、切れ目Cの大きさは、後の工程で形成される触媒層の大きさに応じて適宜設定すればよい。 When providing the area | region which forms a catalyst layer, the cut | interruption C should just be formed so that the 2nd part P2 of the 1st support base material 4 can peel from the electrolyte membrane 2 by using the cut | interruption C as a notch. Therefore, although it is preferable that the cut C penetrates the first support base material 4 in the thickness direction, it may not completely penetrate, and at least a part of the cut C is the second support group. The thickness direction of the material 5 may be reached. Further, the size of the cut C may be appropriately set according to the size of the catalyst layer formed in the subsequent step.

なお、図2では矩形の枠状を例示したが、その一部は図3(a)のように丸みを帯びていてもよいし、図3(b)のように、枠状ではなく第1の支持基材4の対向する2辺に沿って切れ目Cが形成されているだけでもよい。この場合、当該切れ目Cは、第1の支持基材4の外周縁部の左右2辺に沿った部分を含む外側部分P1’(第1の部分)と、当該外側部分P1’を除く内側部分P2’(第2の部分)とを区分している。図3(b)のような形状によれば、第1の支持基材に対して必要な切れ目が2辺しかないので量産性に優れ、特に、ロールtoロールのような、長尺の構成部材を加工して長尺の製品を連続的に製造する方法に適している。 In addition, although the rectangular frame shape was illustrated in FIG. 2, the one part may be rounded like FIG. 3 (a), and it is 1st instead of a frame shape like FIG.3 (b). The cut line C may be formed only along the two opposing sides of the supporting substrate 4. In this case, the cut C includes an outer portion P1 ′ (first portion) including portions along the left and right sides of the outer peripheral edge of the first support base 4 and an inner portion excluding the outer portion P1 ′. P2 ′ (second part) is separated. According to the shape as shown in FIG. 3B, since there are only two sides necessary for the first support substrate, it is excellent in mass productivity, and in particular, a long component such as a roll-to-roll. It is suitable for the method of continuously manufacturing long products by processing

このように、本実施形態では必ずしも、図2および図3(a)に示すように、切れ目Cが、第1の支持基材4の外周縁部の全てを含む外周部分P1と外周部分P1を除く内周部分P2とを区分するように形成する必要はなく、図3(b)に示すように、切れ目Cが、第1の支持基材4の外周縁部の一部を含む外側部分P1’と、該外側部分を除く内側部分P2’とを区分するように形成してもよい。すなわち、「第1の部分」は、図2に示す外周部分P1のように、外周縁部の全てを含んでもよいし、図3(b)に示す外側部分P1’のように、外周縁部の一部のみ含んでもよい。   Thus, in this embodiment, as shown in FIG. 2 and FIG. 3A, the cut C includes an outer peripheral portion P1 and an outer peripheral portion P1 including all of the outer peripheral edge portion of the first support base 4. It is not necessary to form the outer peripheral portion P2 so as to be separated from the outer peripheral portion P2 except for the outer portion P1 where the cut C includes a part of the outer peripheral edge portion of the first support base 4 as shown in FIG. You may form so that 'and inner part P2' except this outer part may be divided. That is, the “first portion” may include the entire outer peripheral edge portion as in the outer peripheral portion P1 shown in FIG. 2, or the outer peripheral edge portion as in the outer portion P1 ′ shown in FIG. You may include only a part of.

(構成部材の材質)
次に、本実施形態に係る支持基材付き電解質膜7の各構成要素の詳細について説明する。
(Materials of components)
Next, the detail of each component of the electrolyte membrane 7 with a support base material which concerns on this embodiment is demonstrated.

電解質膜2は、例えば、基材上に水素イオン伝導性高分子電解質を含有する溶液を塗工し、乾燥することにより形成される。水素イオン伝導性高分子電解質としては、例えば、パーフルオロスルホン酸系のフッ素イオン交換樹脂、より具体的には、炭化水素系イオン交換膜のC−H結合をフッ素で置換したパーフルオロカーボンスルホン酸系ポリマー(PFS系ポリマー)等が挙げられる。電気陰性度の高いフッ素原子を導入することで、化学的に非常に安定し、スルホン酸基の解離度が高く、高いイオン伝導性が実現できる。このような水素イオン伝導性高分子電解質膜の具体例としては、デュポン社製の「Nafion」(登録商標)、旭硝子(株)製の「Flemion」(登録商標)、旭化成(株)製の「Aciplex」(登録商標)、ゴア(Gore)社製の「Gore Select」(登録商標)等が挙げられる。水素イオン伝導性高分子電解質含有溶液中に含まれる水素イオン伝導性高分子電解質の濃度は、通常5〜60重量%程度、好ましくは20〜40重量%程度である。なお、上記の水素イオン伝導性高分子電解質膜以外には、アニオン導電性固高分子電解質膜や液状物質含浸膜も挙げられる。アニオン伝導性電解質膜としては炭化水素系樹脂膜又はフッ素系樹脂等膜が挙げられ、具体例としては炭化水素系樹脂膜としては、旭化成(株)製のAciplex(登録商標)A201,211,221や、トクヤマ(株)製のネオセプタ(登録商標)AM−1,AHA等が挙げられ、フッ素系樹脂膜としては、東ソー(株)製のトスフレックス(登録商標)IE−SF34等が挙げられる。また液状物質含浸膜としては、例えばポリベンゾイミダゾール(PBI)が挙げられる。電解質膜2の厚さは、5〜50μmが好ましい。電解質膜2の大きさ及び形状は、それらを組み込む電池の大きさによって適宜設定すればよい。   The electrolyte membrane 2 is formed, for example, by applying a solution containing a hydrogen ion conductive polymer electrolyte on a substrate and drying it. Examples of the hydrogen ion conductive polymer electrolyte include a perfluorosulfonic acid-based fluorine ion exchange resin, more specifically, a perfluorocarbonsulfonic acid-based resin in which the C—H bond of a hydrocarbon ion-exchange membrane is substituted with fluorine. Examples include polymers (PFS polymers). By introducing a fluorine atom having high electronegativity, it is chemically very stable, the dissociation degree of the sulfonic acid group is high, and high ion conductivity can be realized. Specific examples of such a hydrogen ion conductive polymer electrolyte membrane include “Nafion” (registered trademark) manufactured by DuPont, “Flemion” (registered trademark) manufactured by Asahi Glass Co., Ltd., “ Examples include "Aciplex" (registered trademark), "Gore Select" (registered trademark) manufactured by Gore. The concentration of the hydrogen ion conductive polymer electrolyte contained in the hydrogen ion conductive polymer electrolyte-containing solution is usually about 5 to 60% by weight, preferably about 20 to 40% by weight. In addition to the hydrogen ion conductive polymer electrolyte membrane, an anion conductive solid polymer electrolyte membrane and a liquid substance-impregnated membrane are also included. Examples of the anion conductive electrolyte membrane include a hydrocarbon-based resin membrane or a fluorine-based resin membrane, and specific examples of the hydrocarbon-based resin membrane include Aciplex (registered trademark) A201, 2111, 221 manufactured by Asahi Kasei Corporation. And Neocepta (registered trademark) AM-1, AHA manufactured by Tokuyama Corporation, and the like, and examples of the fluorine-based resin film include Tosflex (registered trademark) IE-SF34 manufactured by Tosoh Corporation. Examples of the liquid substance-impregnated film include polybenzimidazole (PBI). The thickness of the electrolyte membrane 2 is preferably 5 to 50 μm. What is necessary is just to set the magnitude | size and shape of the electrolyte membrane 2 suitably according to the magnitude | size of the battery which incorporates them.

第1の支持基材4および第2の支持基材5の材質は、ポリエステル、ポリアミド、ポリイミド、ポリメチルペンテン、ポリフェニレンオキサイド、ポリサルホン、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、フッ素樹脂などのプラスチック、或いは、アルミニウム、銅、亜鉛などの金属を使用することができる。なお、ポリエステルは、具体的には、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート等を挙げることができる。また、上記のプラスチック及び金属を積層した積層体、或いは、上記のプラスチックにプラズマやコロナなどの表面処理を施し、上記のプラスチックにアルミナ、シリカ、チタニアなどの酸化物を積層した積層体を基材層として使用することもできる。これらの中で、ポリエステル、特にポリエチレンナフタレートは、水蒸気、水、に対するガスバリア性、耐熱性、熱寸法安定性が良好であるため、触媒層形成時の電解質膜の膨潤、収縮を抑える効果や保管安定性が高いことから好ましい。また、製造コストの低減の観点から好ましい。   The materials of the first support substrate 4 and the second support substrate 5 are polyester, polyamide, polyimide, polymethylpentene, polyphenylene oxide, polysulfone, polyether ether ketone, polyphenylene sulfide, a plastic such as fluororesin, or Metals such as aluminum, copper, and zinc can be used. Specific examples of the polyester include polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and polybutylene naphthalate. The base material is a laminate in which the plastic and metal are laminated, or a laminate in which the plastic is subjected to a surface treatment such as plasma or corona, and the plastic is laminated with an oxide such as alumina, silica, and titania. It can also be used as a layer. Among these, polyesters, particularly polyethylene naphthalate, have good gas barrier properties against water vapor, water, heat resistance, and thermal dimensional stability, so the effect of suppressing swelling and shrinkage of the electrolyte membrane during the formation of the catalyst layer and storage It is preferable because of its high stability. Moreover, it is preferable from a viewpoint of reduction of manufacturing cost.

第1の支持基材の材質は、特に、後述するように第1の支持基材の第1の部分を残した状態で触媒層−電解質膜積層体を固体高分子形燃料電池に組み込む場合は、ガスバリア性、耐熱性、熱寸法安定性の観点からポリエチレンナフタレートを選択することが好ましい。また、第2の支持基材5の材質は、第1の支持基材と異なっていてもよいが、ガスバリア性、耐熱性、熱寸法安定性の観点から同一である方が好ましい。また、第1の支持基材4および第2の支持基材5の大きさ及び形状は、それらを組み込む電池の大きさによって適宜設定すればよいが、第1の支持基材4と第2の支持基材5の平面視の大きさが異なっていてもよい。また、第1の支持基材4および第2の支持基材5の厚さは、20〜100μmが好ましい。   The material of the first support base material is, in particular, when the catalyst layer-electrolyte membrane laminate is incorporated in the polymer electrolyte fuel cell with the first portion of the first support base material remaining as will be described later. Polyethylene naphthalate is preferably selected from the viewpoints of gas barrier properties, heat resistance, and thermal dimensional stability. The material of the second support substrate 5 may be different from that of the first support substrate, but is preferably the same from the viewpoints of gas barrier properties, heat resistance, and thermal dimensional stability. In addition, the size and shape of the first support base 4 and the second support base 5 may be set as appropriate depending on the size of the battery in which they are incorporated, but the first support base 4 and the second support base 5 The magnitude | size of planar view of the support base material 5 may differ. Moreover, as for the thickness of the 1st support base material 4 and the 2nd support base material 5, 20-100 micrometers is preferable.

(支持基材付き電解質膜の製造方法)
続いて、支持基材付き電解質膜7の製造方法について説明する。まず、図4に示すように、第1の支持基材4と第2の支持基材5とを用意し、それらを貼り合わせる。貼り合わせる方法としては、熱溶着による方法や粘着剤を用いる方法等がある。粘着剤の材料としては、例えば、エポキシ系、アクリル系、ゴム系、シリコーン系の粘着剤を使用できる。具体的には、アクリル酸エステル共重合体、メタクリル酸エステル共重合体、天然ゴム(NR)、合成天然ゴム(IR)、スチレン・ブタジエンゴム(SBR)、ポリイソブチレン(PIB)、ブチルゴム(IIR)、シリコーンゴム等を挙げることができる。また、第1の支持基材4と第2の支持基材5との界面は、一様の接着力でなくてもよい。例えば、第2の部分について第2の支持基材と強固に接着しておけば、第2の支持基材を第1の支持基材から剥離する際に一緒に第2の部分を電解質膜から剥離することができる。接着剤の材料としては、ポリオレフィン、ポリプロピレン、熱可塑性エラストマー等のホットメルト系接着剤、アクリル系接着剤、ポリエステル、ポリオレフィン等のオレフィン系接着剤、紫外線硬化樹脂、電子線硬化樹脂などが使用できる。
(Method for producing electrolyte membrane with supporting substrate)
Then, the manufacturing method of the electrolyte membrane 7 with a support base material is demonstrated. First, as shown in FIG. 4, the 1st support base material 4 and the 2nd support base material 5 are prepared, and they are bonded together. As a bonding method, there are a method by heat welding, a method using an adhesive, and the like. As a material for the pressure-sensitive adhesive, for example, an epoxy-based, acrylic-based, rubber-based, or silicone-based pressure-sensitive adhesive can be used. Specifically, acrylic ester copolymers, methacrylic ester copolymers, natural rubber (NR), synthetic natural rubber (IR), styrene-butadiene rubber (SBR), polyisobutylene (PIB), butyl rubber (IIR) And silicone rubber. Further, the interface between the first support substrate 4 and the second support substrate 5 may not have a uniform adhesive force. For example, if the second portion is firmly adhered to the second support substrate, the second portion is removed from the electrolyte membrane together when the second support substrate is peeled from the first support substrate. Can be peeled off. As the material for the adhesive, hot melt adhesives such as polyolefin, polypropylene and thermoplastic elastomer, acrylic adhesives, olefin adhesives such as polyester and polyolefin, ultraviolet curable resins, electron beam curable resins and the like can be used.

続いて、図5(a)及び(b)に示すように、第1の支持基材4の厚み方向に切れ目Cを形成する。切れ目Cは、例えば型抜き機を用いて形成することができる。型抜き機は、上下に往復移動可能な平面視矩形状のトムソン刃を備えた切断装置を例示することができ、トムソン刃を第1の支持基材4と同じ又はそれ以上となるように高さを調整してから第1の支持基材4に対して押し当てることにより、切れ目Cが形成される。   Subsequently, as shown in FIGS. 5A and 5B, a cut C is formed in the thickness direction of the first support base 4. The cut C can be formed using, for example, a die cutting machine. The die cutting machine can exemplify a cutting device provided with a Thomson blade having a rectangular shape in plan view that can be reciprocated up and down, and the height of the Thomson blade is the same as or higher than that of the first support substrate 4. The cut C is formed by pressing against the first support substrate 4 after adjusting the thickness.

また、図6(a)に示すように、切れ目Cは、第2の支持基材5の厚み方向の一部まで達していてもよい。すなわち、切れ目Cの深さに多少の誤差があってもよい。また、図6(b)に示すように、切れ目Cは、面方向に不連続的に(例えば、破線状に)形成してもよい。   Further, as shown in FIG. 6A, the cut C may reach a part in the thickness direction of the second support substrate 5. That is, there may be some errors in the depth of the cut C. Further, as shown in FIG. 6B, the cut C may be formed discontinuously (for example, in a broken line shape) in the surface direction.

次に、第1の支持基材4の第2の支持基材5と貼り合わされた面の反対側の面に電解質膜2を形成する。電解質膜の形成方法は、図7に示すように、予め製膜された電解質膜2を第1の支持基材4に貼り合わせる方法や、第1の支持基材4の上に水素イオン伝導性高分子電解質を含有する溶液を塗工し、乾燥することにより形成する方法がある。電解質膜2を第1の支持基材4上に貼り合わせる際の温度は、50〜200℃が好ましい。また、電解質膜を塗工により形成する場合は、ドクターブレードやスプレーなど公知の印刷法が使用できる。また、乾燥温度は通常50〜150℃であり、60℃〜130℃が好ましい。   Next, the electrolyte membrane 2 is formed on the surface of the first support substrate 4 opposite to the surface bonded to the second support substrate 5. As shown in FIG. 7, the electrolyte membrane is formed by attaching a pre-formed electrolyte membrane 2 to the first support substrate 4 or hydrogen ion conductivity on the first support substrate 4. There is a method in which a solution containing a polymer electrolyte is applied and dried. As for the temperature at the time of bonding the electrolyte membrane 2 on the 1st support base material 4, 50-200 degreeC is preferable. In addition, when the electrolyte membrane is formed by coating, a known printing method such as a doctor blade or spray can be used. Moreover, drying temperature is 50-150 degreeC normally, and 60 to 130 degreeC is preferable.

また、接着性の観点から、第1の支持基材4に易接着処理を施してもよい。易接着処理としては、例えば、プラズマやコロナなどの表面処理や上述した粘着剤や接着剤を塗布する方法がある。また、電解質膜を形成した後に接着性を高める方法として、第1の支持基材4と電解質膜を熱圧着する方法がある。熱圧着する際の温度は、特に限定はないが、100〜250℃程度であり、支持基材と電解質膜の貼り合わせ時よりも高い温度であることが好ましい。また、熱圧着する際の圧力は0.1〜10kN/cm程度であることが好ましい。 In addition, from the viewpoint of adhesiveness, the first support substrate 4 may be subjected to an easy adhesion treatment. Examples of the easy adhesion treatment include a surface treatment such as plasma and corona, and a method of applying the above-described pressure-sensitive adhesive or adhesive. Further, as a method for improving the adhesiveness after forming the electrolyte membrane, there is a method of thermocompression bonding the first support base 4 and the electrolyte membrane. Although the temperature at the time of thermocompression bonding is not particularly limited, it is about 100 to 250 ° C., and is preferably higher than that at the time of bonding the support substrate and the electrolyte membrane. Moreover, it is preferable that the pressure at the time of thermocompression bonding is about 0.1 to 10 kN / cm.

特に、第1の支持基材4の第1の部分について、上述した方法で接着強度を高めておくと、第1の支持基材4の第2の部分の剥離性が良好になる。また、触媒層を形成する際の電解質膜の寸法安定性を更に向上させることができる。また、第1の支持基材4の第1の部分を残したまま固体高分子形燃料電池に組み込んだ際には、接着性が高いほど、動作時の電解質膜2の膨潤伸縮を抑えるエッジシールとして良好に機能する。また、電解質膜2の平面視の大きさは、第1の支持基材4と同じでもよいが、コストの観点から第1の支持基材4よりも小さい方が好ましい。 In particular, when the adhesive strength of the first portion of the first support substrate 4 is increased by the method described above, the peelability of the second portion of the first support substrate 4 is improved. In addition, the dimensional stability of the electrolyte membrane when forming the catalyst layer can be further improved. Moreover, when it is incorporated into a polymer electrolyte fuel cell with the first portion of the first support substrate 4 left, an edge seal that suppresses swelling expansion and contraction of the electrolyte membrane 2 during operation is increased as the adhesiveness is higher. As well as it works. The size of the electrolyte membrane 2 in plan view may be the same as that of the first support substrate 4, but is preferably smaller than the first support substrate 4 from the viewpoint of cost.

図8は、熱プレスされた支持基材付き電解質膜7を示す断面図である。熱プレスによって、支持基材付き電解質膜7では、第1の支持基材4の電解質膜2との接合面のうち、外周部分P1の一部と電解質膜2とが接合する領域R1における接着強度が、当該接合面の他の部分よりも大きくなっている。つまり、外周部分P1の少なくとも一部は、内周部分P2の切れ目C1に隣接する部分R2に比べ、電解質膜2との接着強度が大きくなる。これにより、触媒層−電解質膜積層体を作製する工程で、第1の支持基材4の切れ目Cの内周部分P2を剥離する際に、内周部分P2の切れ目Cに隣接する部分R2は、電解質膜2との接着強度が小さいため、切れ目Cが形成された部分が剥離の起点となる。一方、外周部分P1の一部は電解質膜2との接着強度が大きいため、外周部分P1は剥離されない。よって、内周部分P2を容易に剥離することができる。   FIG. 8 is a cross-sectional view showing the hot-pressed electrolyte membrane 7 with a supporting substrate. In the electrolyte membrane 7 with the supporting base material, the adhesive strength in the region R1 where a part of the outer peripheral portion P1 and the electrolyte membrane 2 are joined out of the joint surfaces of the first supporting base material 4 with the electrolyte membrane 2 by hot pressing. However, it is larger than the other part of the joint surface. That is, at least a part of the outer peripheral portion P1 has a higher adhesive strength with the electrolyte membrane 2 than the portion R2 adjacent to the cut C1 of the inner peripheral portion P2. Thereby, in the step of producing the catalyst layer-electrolyte membrane laminate, when the inner peripheral portion P2 of the cut C of the first support substrate 4 is peeled off, the portion R2 adjacent to the cut C of the inner peripheral portion P2 is Since the adhesive strength with the electrolyte membrane 2 is small, the portion where the cut C is formed becomes the starting point of peeling. On the other hand, since a part of the outer peripheral part P1 has high adhesive strength with the electrolyte membrane 2, the outer peripheral part P1 is not peeled off. Therefore, the inner peripheral portion P2 can be easily peeled off.

上記、本発明の製造方法によれば、第1の支持基材4の切れ目Cが第1の支持基材4を電解質膜2に貼り合わせる前に形成されるため、電解質膜2が傷つけられるといった不都合は生じない。また、切れ目Cを形成するために高度な位置あわせや切れ込みの調整が不要であるため、特殊な技術や高性能の装置は必要ない。したがって、電解質膜2を傷つけず、かつ、高性能の装置を用いることなく、支持基材付き電解質膜7を作製することができる。   According to the manufacturing method of the present invention, the cut C of the first support base 4 is formed before the first support base 4 is bonded to the electrolyte membrane 2, so that the electrolyte membrane 2 is damaged. There is no inconvenience. In addition, since advanced alignment and adjustment of the slit are not required to form the cut C, no special technique or high-performance apparatus is required. Therefore, the electrolyte membrane 7 with a supporting substrate can be produced without damaging the electrolyte membrane 2 and without using a high-performance apparatus.

(支持基材付き電解質膜の変形例1)
続いて、本実施形態に係る支持基材付き電解質膜の変形例について説明する。図9(a)は、本実施形態の変形例1に係る支持基材付き電解質膜7aの構成を示す断面図である。支持基材付き電解質膜7aは、電解質膜2と、前記電解質膜2の両面に貼り合わされた第1の支持基材4と、第1の支持基材4の前記電解質膜2と貼り合わされた面の反対側の面に貼り合わされた第2の支持基材5とを備え、各第1の支持基材4には、外周縁部の少なくとも一部を含む第1の部分と該第1の部分を除く第2の部分とを区分する切れ目Cが形成されている構成である。このような支持基材付き電解質膜7aは、図9(b)に示すように、図5に示す第1の支持基材4と第2の支持基材5の積層体を電解質膜2の両面から貼り合わせることにより作製することができる。また、第1の支持基材4に形成された切れ目Cの位置は、両面で異なっていてもよい。具体的には、図9(c)に示すように、枠状に形成された第1の支持基材4の切れ目Cが上下で大きさが異なっていてもよい。
(Modification 1 of electrolyte membrane with supporting substrate)
Then, the modification of the electrolyte membrane with a support base material concerning this embodiment is demonstrated. Fig.9 (a) is sectional drawing which shows the structure of the electrolyte membrane 7a with a support base material which concerns on the modification 1 of this embodiment. The electrolyte membrane 7a with a supporting substrate is composed of the electrolyte membrane 2, the first supporting substrate 4 bonded to both surfaces of the electrolyte membrane 2, and the surface of the first supporting substrate 4 bonded to the electrolyte membrane 2. And a second support base material 5 bonded to the opposite surface of the first support base material 4. Each first support base material 4 includes a first portion including at least a part of an outer peripheral edge portion and the first portion. This is a configuration in which a break C is formed that separates the second portion excluding. As shown in FIG. 9B, such an electrolyte membrane 7a with a supporting substrate is obtained by forming a laminate of the first supporting substrate 4 and the second supporting substrate 5 shown in FIG. It can produce by pasting together. Further, the position of the cut C formed in the first support base 4 may be different on both sides. Specifically, as shown in FIG. 9C, the cut line C of the first support base 4 formed in a frame shape may be different in size in the vertical direction.

なお、本変形例においても、第1の支持基材の対向する2辺に沿って切れ目Cを形成してもよい。例えば、図10(a)〜(c)に示す支持基材付き電解質膜7bのように構成することもできる。図10(a)は、支持基材付き電解質膜7bを示す断面図である。図10(b)は、支持基材付き電解質膜7bの上側の第1の支持基材4aの平面図であり、第1の支持基材4aには、左右の2辺に沿って切れ目Cが形成されている。図10(c)は、支持基材付き電解質膜7bの下側の第1の支持基材4bの平面図であり、第1の支持基材4bには、上下の2辺に沿って切れ目Cが形成されている。なお、第1の支持基材4a・4bの両方に、図10(b)のような左右の2辺に沿った切れ目Cを形成してもよい。また、支持基材付き電解質膜7bでは、第1の支持基材4a・4bの両方に枠状ではない切れ目を形成したが、第1の支持基材4a・4bのうち、一方に枠状の切れ目を形成し、他方に図10(b)又は(c)に示すような枠状ではない切れ目を形成してもよい。   Also in this modification, the cut line C may be formed along two opposing sides of the first support base. For example, it can also be configured like an electrolyte membrane 7b with a supporting substrate shown in FIGS. 10 (a) to 10 (c). Fig.10 (a) is sectional drawing which shows the electrolyte membrane 7b with a support base material. FIG. 10B is a plan view of the first support substrate 4a on the upper side of the electrolyte membrane 7b with the support substrate, and the first support substrate 4a has cut lines C along two left and right sides. Is formed. FIG. 10C is a plan view of the first support substrate 4b on the lower side of the electrolyte membrane 7b with a support substrate, and the first support substrate 4b has a cut C along two upper and lower sides. Is formed. In addition, you may form the cut | interruption C along two right and left sides like FIG.10 (b) in both 1st support base material 4a * 4b. In addition, in the electrolyte membrane 7b with a supporting base material, the first supporting base materials 4a and 4b are both formed with cuts that are not frame-shaped, but one of the first supporting base materials 4a and 4b has a frame-like shape. A cut line may be formed, and a cut line that is not a frame shape as shown in FIG. 10B or 10C may be formed on the other side.

(支持基材付き電解質膜の変形例2)
続いて、本実施形態に係る支持基材付き電解質膜の変形例2について説明する。図11(a)は、本実施形態の変形例2に係る支持基材付き電解質膜7cの構成を示す断面図である。図9(a)の支持基材付き電解質膜7aとの違いは、電解質膜2の両面に形成された第1の支持基材4及び第2の支持基材5の大きさが電解質膜2より大きく、その外周縁部が電解質膜2の外周縁部より外に出ている点である。また、両面の第1の支持基材4はその外周縁部が接着剤Aを介して接着している。なお、図11(a)において、第1の支持基材の切れ目Cから電解質膜2の外周縁部までの距離xは、例えば10〜100mm程度あればよく、電解質膜2の外周縁部から第1の支持基材4の外周縁部までの距離yは、例えば3〜50mm程度であればよい。
(Variation 2 of electrolyte membrane with supporting substrate)
Then, the modification 2 of the electrolyte membrane with a support base material which concerns on this embodiment is demonstrated. Fig.11 (a) is sectional drawing which shows the structure of the electrolyte membrane 7c with a support base material which concerns on the modification 2 of this embodiment. 9A is different from the electrolyte membrane 7a with the supporting substrate in that the size of the first supporting substrate 4 and the second supporting substrate 5 formed on both surfaces of the electrolyte membrane 2 is larger than that of the electrolyte membrane 2. It is a point that the outer peripheral edge protrudes outside the outer peripheral edge of the electrolyte membrane 2. Moreover, the outer peripheral edge part of the 1st support base material 4 of both surfaces has adhere | attached via the adhesive agent A. FIG. In FIG. 11A, the distance x from the cut C of the first support substrate to the outer peripheral edge of the electrolyte membrane 2 may be about 10 to 100 mm, for example, and the distance x from the outer peripheral edge of the electrolyte membrane 2 The distance y to the outer peripheral edge of one supporting substrate 4 may be about 3 to 50 mm, for example.

このような支持基材付き電解質膜7cは、以下のように作成することができる。まず、図11(b)に示すような第1の支持基材4と第2の支持基材5の積層体を2枚準備する。図11(b)の積層体は、上述した方法で、第1の支持基材4と第2の支持基材5とを用意し貼り合せた後で、第1の支持基材4の厚み方向に切れ目Cを形成し、その外周縁部に接着剤Aを塗布し乾燥させたものである。接着剤Aは、公知の材料が使用できるが、ポリオレフィン、ポリプロピレン、熱可塑性エラストマー等のホットメルト系接着剤、アクリル系接着剤、ポリエステル、ポリオレフィン等のオレフィン系接着剤、紫外線硬化樹脂、電子線硬化樹脂が好ましい。なお、第1の支持基材4に設けた接着剤Aは、粘着剤でもよく、粘着剤の場合は、エポキシ系、アクリル系、ゴム系、シリコーン系の粘着剤が好ましい。また、接着剤Aを形成する面積は、第1の支持基材に形成された切れ目Cより外の領域であれば限定されないが、切れ目Cより1〜3mm外側が好ましい。また、接着剤Aは必ずしも電解質膜2が形成される部分に形成されなくともよい。接着剤Aによって形成される接着層の厚みは薄いほど好ましく、例えば20μm以下が好ましい。 Such an electrolyte membrane 7c with a supporting substrate can be prepared as follows. First, two laminates of the first support substrate 4 and the second support substrate 5 as shown in FIG. 11B are prepared. In the laminate of FIG. 11B, the first support base material 4 and the second support base material 5 are prepared and bonded together by the method described above, and then the thickness direction of the first support base material 4 is obtained. A cut line C is formed on the outer periphery, and the adhesive A is applied to the outer peripheral edge portion and dried. As the adhesive A, known materials can be used, but hot melt adhesives such as polyolefin, polypropylene and thermoplastic elastomer, acrylic adhesives, olefin adhesives such as polyester and polyolefin, ultraviolet curable resins, and electron beam curing. Resins are preferred. The adhesive A provided on the first support substrate 4 may be a pressure-sensitive adhesive. In the case of a pressure-sensitive adhesive, an epoxy-based, acrylic-based, rubber-based, or silicone-based pressure-sensitive adhesive is preferable. The area for forming the adhesive A is not limited as long as it is a region outside the cut C formed in the first support base material, but is preferably 1 to 3 mm outside the cut C. Further, the adhesive A does not necessarily have to be formed on the portion where the electrolyte membrane 2 is formed. The thinner the adhesive layer formed by the adhesive A, the more preferable, for example, 20 μm or less.

次に、図11(c)に示すように、第1の支持基材4より小さな面積を有する電解質膜2を図11(b)の積層体によって挟み、該積層体を電解質膜2の両面に貼り合せる。その後、第1の支持基材4に形成された切れ目Cより外の部分を加圧して接着させれば、図11(a)のような支持基材付き電解質膜7cを作成することができる。このときの圧力は1MPa程度が好ましく、必要に応じて加熱してもよい。 Next, as shown in FIG. 11 (c), the electrolyte membrane 2 having an area smaller than that of the first support substrate 4 is sandwiched between the laminates of FIG. 11 (b), and the laminate is placed on both surfaces of the electrolyte membrane 2. Paste. Then, if the part outside the cut line C formed on the first support base material 4 is pressed and adhered, an electrolyte membrane 7c with a support base material as shown in FIG. 11A can be created. The pressure at this time is preferably about 1 MPa, and may be heated as necessary.

なお、図示はしないが、本変形例において、第1の支持基材4の対向する2辺に沿って切れ目Cを形成した場合は、切れ目Cより外の2辺に接着剤Aが塗布されればよい。また、第2の支持基材5の大きさは第1の支持基材4の切れ目を含む大きさであればよく、第1の支持基材4より小さくてもよい。 Although not shown, in the present modification, when the cut C is formed along the two opposite sides of the first support base material 4, the adhesive A is applied to the two sides outside the cut C. That's fine. In addition, the size of the second support substrate 5 may be a size including the cut of the first support substrate 4, and may be smaller than the first support substrate 4.

このように、少なくとも第1の支持基材4が電解質膜2より大きく、電解質2の両面を挟んではみ出した部分の第1の支持基材4同士が接着していれば、触媒層を形成する際の電解質膜2の寸法安定性を更に向上させることができる。また、特に、図11(d)のように、支持基材付き電解質膜7cから第2の支持基材5のみを除去して、第1の支持基材4の第1の部分を残したまま固体高分子形燃料電池に組み込めば、動作時の電解質膜2の膨潤伸縮を抑える他、燃料ガスが電極からセル外部や他方の電極に漏れるのを封止する効果がある。 As described above, if at least the first support base 4 is larger than the electrolyte membrane 2 and the first support bases 4 that protrude from both sides of the electrolyte 2 are bonded to each other, a catalyst layer is formed. The dimensional stability of the electrolyte membrane 2 can be further improved. In particular, as shown in FIG. 11 (d), only the second support substrate 5 is removed from the electrolyte membrane 7 c with the support substrate, leaving the first portion of the first support substrate 4. Incorporation into the polymer electrolyte fuel cell has the effect of sealing the leakage of fuel gas from the electrode to the outside of the cell or the other electrode, in addition to suppressing swelling and expansion of the electrolyte membrane 2 during operation.

〔実施形態2〕
(触媒層−電解質膜積層体の製造方法)
続いて、実施形態1に係る支持基材付き電解質膜7を用いた触媒層−電解質膜積層体(触媒層が電解質膜の両面に形成された積層体)の製造方法について説明する。
本発明の触媒層−電解質膜積層体の製造方法は、少なくとも以下4つの工程を有していればよい。
(1)本発明の支持基材付き電解質膜を準備する工程。
具体的には、電解質膜の少なくとも一方面に貼り合わされた第1の支持基材と、第1の支持基材の前記電解質膜と貼り合わされた面の反対側の面に貼り合わされた第2の支持基材とを備え、第1の支持基材には、外周縁部の少なくとも一部を含む第1の部分と該第1の部分を除く第2の部分とを区分する切れ目が形成された支持基材付き電解質膜を準備する工程。
(2)前記支持基材付き電解質膜における第2の支持基材を剥離する工程。
(3)前記支持基材付き電解質膜における前記第1の支持基材の第2の部分を剥離する工程。
(4)前記電解質膜上の前記第1の支持基材の第2の部分を剥離した部分に触媒層を形成する工程。
[Embodiment 2]
(Method for producing catalyst layer-electrolyte membrane laminate)
Then, the manufacturing method of the catalyst layer-electrolyte membrane laminated body (laminated body in which the catalyst layer was formed in both surfaces of the electrolyte membrane) using the electrolyte membrane 7 with a support base material concerning Embodiment 1 is demonstrated.
The manufacturing method of the catalyst layer-electrolyte membrane laminated body of this invention should just have at least the following four processes.
(1) A step of preparing an electrolyte membrane with a supporting substrate of the present invention.
Specifically, the first support base material bonded to at least one surface of the electrolyte membrane, and the second support surface bonded to the surface of the first support base material opposite to the surface bonded to the electrolyte membrane. The first support substrate is provided with a cut that separates the first portion including at least a part of the outer peripheral edge portion and the second portion excluding the first portion. A step of preparing an electrolyte membrane with a supporting substrate.
(2) The process of peeling the 2nd support base material in the electrolyte membrane with a support base material.
(3) The process of peeling the 2nd part of the said 1st support base material in the said electrolyte membrane with a support base material.
(4) The process of forming a catalyst layer in the part which peeled the 2nd part of the said 1st support base material on the said electrolyte membrane.

以下、一例として、図14(c)に示す触媒層−電解質膜積層体を、触媒層転写フィルムを用いて製造する方法を説明する。
まず、図12(a)及び(b)に示すような、触媒層転写フィルム基材6に触媒層3が塗布された触媒層転写フィルムを作製する。なお、触媒層転写フィルム基材6は、例えば10〜100μmの厚みを有するテフロン(登録商標)基材である。
Hereinafter, as an example, a method for producing the catalyst layer-electrolyte membrane laminate shown in FIG. 14C using a catalyst layer transfer film will be described.
First, as shown in FIGS. 12A and 12B, a catalyst layer transfer film in which the catalyst layer 3 is applied to the catalyst layer transfer film substrate 6 is prepared. The catalyst layer transfer film substrate 6 is a Teflon (registered trademark) substrate having a thickness of 10 to 100 μm, for example.

これらの触媒層3は、公知の白金含有の触媒層とすることができる。具体的には、触媒粒子を担持させた炭素粒子と、水素イオン伝導性高分子電解質とを含有する。水素イオン伝導性高分子電解質としては、上述した電解質膜2に使用されるものと同じ材料を使用することができる。 These catalyst layers 3 can be known platinum-containing catalyst layers. Specifically, it contains carbon particles carrying catalyst particles and a hydrogen ion conductive polymer electrolyte. As the hydrogen ion conductive polymer electrolyte, the same material as that used for the electrolyte membrane 2 described above can be used.

触媒粒子としては、例えば、白金や白金化合物等が挙げられる。白金化合物としては、例えば、ルテニウム、パラジウム、ニッケル、モリブデン、イリジウム、鉄等からなる群から選ばれる少なくとも1種の金属と、白金との合金等が挙げられる。なお、通常は、カソード触媒層及びアノード触媒層に含まれる触媒粒子は白金である。   Examples of the catalyst particles include platinum and platinum compounds. Examples of the platinum compound include an alloy of platinum and at least one metal selected from the group consisting of ruthenium, palladium, nickel, molybdenum, iridium, iron and the like. Usually, the catalyst particles contained in the cathode catalyst layer and the anode catalyst layer are platinum.

炭素粒子は、導電性を有しているものであれば限定的ではなく、公知又は市販のものを広く使用できる。例えば、カーボンブラックや、黒鉛、活性炭等を1種又は2種以上で用いることができる。カーボンブラックの例としては、チャンネルブラック、ファーネスブラック、ケッチェンブラック、アセチレンブラック、ランプブラック等を挙げることができる。炭素粒子の算術平均粒子径は通常5nm〜200nm程度、好ましくは20nm〜80nm程度である。この炭素粒子の平均粒子径は、例えば、粒子径分布測定装置LA−920:(株)堀場製作所製等により測定できる。   The carbon particles are not limited as long as they have electrical conductivity, and known or commercially available carbon particles can be widely used. For example, carbon black, graphite, activated carbon, or the like can be used alone or in combination. Examples of carbon black include channel black, furnace black, ketjen black, acetylene black, and lamp black. The arithmetic average particle diameter of the carbon particles is usually about 5 nm to 200 nm, preferably about 20 nm to 80 nm. The average particle size of the carbon particles can be measured by, for example, a particle size distribution measuring device LA-920: manufactured by Horiba, Ltd.

次に、図13(a)に示すように、支持基材付き電解質膜7を準備する。続いて、図13(b)に示すように、第2の支持基材5を第1の支持基材4から剥離する。続いて、図13(c)に示すように、図13に示す触媒層転写フィルムを、電解質膜2の第1の支持基材4が形成された面と反対側の面と向き合うように配置し、電解質膜2の第1の支持基材4が形成された面と反対側の面上に触媒層3を配置する。このとき、触媒層3の位置は特に限定されないが、転写性の観点から、触媒層3は、第1の支持基材4の切れ目Cと重なり合わないよう、切れ目Cの内部に形成することが好ましい。その後、熱プレスにより触媒層転写フィルム基材6を触媒層3から剥離することで、触媒層3を電解質膜2に転写する。熱プレスの条件は、例えば、50〜200℃、0.5〜10MPa、5〜600秒であることが好ましい。これにより、図13(d)に示すように、電解質膜2の一方面に触媒層3uが形成される。   Next, as shown to Fig.13 (a), the electrolyte membrane 7 with a support base material is prepared. Subsequently, as shown in FIG. 13B, the second support base 5 is peeled from the first support base 4. Subsequently, as shown in FIG. 13 (c), the catalyst layer transfer film shown in FIG. 13 is arranged so as to face the surface of the electrolyte membrane 2 opposite to the surface on which the first support substrate 4 is formed. The catalyst layer 3 is disposed on the surface of the electrolyte membrane 2 opposite to the surface on which the first support substrate 4 is formed. At this time, the position of the catalyst layer 3 is not particularly limited, but from the viewpoint of transferability, the catalyst layer 3 may be formed inside the cut C so as not to overlap the cut C of the first support substrate 4. preferable. Then, the catalyst layer 3 is transferred to the electrolyte membrane 2 by peeling the catalyst layer transfer film substrate 6 from the catalyst layer 3 by hot pressing. The hot press conditions are preferably, for example, 50 to 200 ° C., 0.5 to 10 MPa, and 5 to 600 seconds. As a result, a catalyst layer 3u is formed on one surface of the electrolyte membrane 2 as shown in FIG.

さらに、第1の支持基材4の切れ目Cの内周部分P2を剥離し電解質膜2の一部を露出させる。これにより、図14(a)に示すように、第1の支持基材4の枠状の外周部分P1のみが電解質膜2に残存し、枠状の支持基材4dとなる。支持基材の剥離方法については特に限定されず、例えば、セロテープ(登録商標)や粘着ロール(例えば表面に粘着層が形成された粘着性ロール)による剥離が適用可能である。 Further, the inner peripheral portion P2 of the cut C of the first support base 4 is peeled off to expose a part of the electrolyte membrane 2. As a result, as shown in FIG. 14A, only the frame-shaped outer peripheral portion P1 of the first support substrate 4 remains in the electrolyte membrane 2 to form a frame-shaped support substrate 4d. The method for peeling the support substrate is not particularly limited, and for example, peeling with a cello tape (registered trademark) or an adhesive roll (for example, an adhesive roll having an adhesive layer formed on the surface) is applicable.

次に、図14(b)に示すように、触媒層転写フィルムを触媒層3と電解質膜2とが向き合うように配置し、電解質膜2が露出した支持基材4dの内周部に収まるように触媒層3を配置する。その後、触媒層3uの転写時と同様の条件で熱プレスし、触媒層転写フィルム基材6を触媒層3から剥離することで、触媒層3を電解質膜2に転写する。これにより、電解質膜2の他方面に触媒層3dが形成され、図14(c)に示すような、触媒層−電解質膜積層体1が作製される。尚、図14では触媒層3uおよび触媒層3dの平面視の大きさは異なっているが、図14のように異なってもよいし、同一であってもよい。   Next, as shown in FIG. 14 (b), the catalyst layer transfer film is arranged so that the catalyst layer 3 and the electrolyte membrane 2 face each other, so that the electrolyte membrane 2 is accommodated in the inner peripheral portion of the support base 4d exposed. The catalyst layer 3 is disposed on the surface. Thereafter, the catalyst layer 3u is heat-pressed under the same conditions as in the transfer of the catalyst layer 3u, and the catalyst layer transfer film substrate 6 is peeled from the catalyst layer 3 to transfer the catalyst layer 3 to the electrolyte membrane 2. Thereby, the catalyst layer 3d is formed on the other surface of the electrolyte membrane 2, and the catalyst layer-electrolyte membrane laminate 1 as shown in FIG. 14C is produced. In FIG. 14, the sizes of the catalyst layer 3u and the catalyst layer 3d in plan view are different, but they may be different as shown in FIG. 14 or the same.

また、本発明の製造方法によれば、図13、図14の流れとは異なり、先に電解質膜2の第1の支持基材4が形成された面の触媒層から形成することもできる。すなわち、支持基材付き電解質膜7を準備した後、第2の支持基材及び第1の基材の第2の部分を電解質膜から剥離し、触媒層転写フィルムを、電解質膜2の第1の支持基材4が形成された面に配置して触媒層を電解質膜上に転写することもできる。この時、上記第2の支持基材5の剥離と、第1の支持基材4の切れ目Cの内周部分P2の剥離は、同時に行ってもよい。なお、電解質膜2から第2の支持基材5及び第1の支持基材4の第2の部分を剥離した後、電解質膜2の両面に触媒層転写フィルムを配置して、触媒層3uおよび触媒層3dを同時に転写してもよい。   Moreover, according to the manufacturing method of the present invention, unlike the flow of FIGS. 13 and 14, it can be formed from the catalyst layer on the surface of the electrolyte membrane 2 on which the first support substrate 4 is formed first. That is, after preparing the supporting membrane-attached electrolyte membrane 7, the second supporting substrate and the second portion of the first substrate are peeled off from the electrolyte membrane, and the catalyst layer transfer film is replaced with the first membrane of the electrolyte membrane 2. It is also possible to transfer the catalyst layer onto the electrolyte membrane by disposing it on the surface on which the support substrate 4 is formed. At this time, the peeling of the second supporting substrate 5 and the peeling of the inner peripheral portion P2 of the cut C of the first supporting substrate 4 may be performed simultaneously. In addition, after peeling the 2nd support substrate 5 and the 2nd part of the 1st support substrate 4 from the electrolyte membrane 2, a catalyst layer transfer film is arrange | positioned on both surfaces of the electrolyte membrane 2, and catalyst layer 3u and The catalyst layer 3d may be transferred simultaneously.

また、触媒層−電解質膜積層体に残された支持基材(第1の支持基材の第1の部分)は触媒層−電解質膜積層体から除去してもよいし、そのまま電池に組みいれてもよい。この第1の支持基材の第1の部分を除去する方法は、触媒層−電解質膜積層体から第1の支持基材の第1の部分を剥離する方法でもよいし、第1の支持基材の第1の部分と電解質膜の外周縁部を合わせて切断する方法でもよい。図15は、図14(c)に示す触媒層−電解質膜積層体1から支持基材4dを電解質膜の外周縁部と合わせて切除したものの例である。   Further, the support base material (the first portion of the first support base material) remaining in the catalyst layer-electrolyte membrane laminate may be removed from the catalyst layer-electrolyte membrane laminate, or it may be assembled in a battery as it is. May be. The method of removing the first portion of the first support substrate may be a method of peeling the first portion of the first support substrate from the catalyst layer-electrolyte membrane laminate, or the first support group. A method of cutting the first portion of the material and the outer peripheral edge of the electrolyte membrane together may be used. FIG. 15 shows an example of the support layer 4d cut from the catalyst layer-electrolyte membrane laminate 1 shown in FIG. 14 (c) together with the outer peripheral edge of the electrolyte membrane.

(触媒層−電解質膜積層体の変形例1)
続いて、本実施形態に係る触媒層−電解質膜積層体の変形例について説明する。
(Modification 1 of catalyst layer-electrolyte membrane laminate)
Then, the modification of the catalyst layer-electrolyte membrane laminated body which concerns on this embodiment is demonstrated.

図16は、本実施形態の変形例に係る触媒層−電解質膜積層体1aの構成を示す断面図である。触媒層−電解質膜積層体1aは、触媒層−電解質膜積層体1の両面に支持基材4uおよび支持基材4dが形成された点で図14(c)とは異なる。製造方法について、以下詳述する。   FIG. 16 is a cross-sectional view showing a configuration of a catalyst layer-electrolyte membrane laminate 1a according to a modification of the present embodiment. The catalyst layer-electrolyte membrane laminate 1a is different from FIG. 14C in that the support base 4u and the support base 4d are formed on both sides of the catalyst layer-electrolyte laminate 1. The manufacturing method will be described in detail below.

まず、図17(a)に示すように、電解質膜2の両面に支持基材4と第2の支持基材5の積層体が貼り合わされた支持基材付き電解質膜7aを準備する。続いて、図17(b)に示すように、上側の第2の支持基材5を剥離し、さらに、図17(c)に示すように、上側の第1の支持基材4の切れ目Cの内周部分P2を剥離して、電解質膜2の一部を露出させる。これにより、上側の第1の支持基材4の枠状の外周部分P1のみが電解質膜2に残存し、枠状の支持基材4uとなる。また、第2の支持基材5の剥離と、第1の支持基材4の切れ目Cの内周部の剥離は、同時に行ってもよい。   First, as shown in FIG. 17A, an electrolyte membrane 7a with a supporting substrate in which a laminate of a supporting substrate 4 and a second supporting substrate 5 is bonded to both surfaces of the electrolyte membrane 2 is prepared. Subsequently, as shown in FIG. 17B, the second support substrate 5 on the upper side is peeled off, and further, as shown in FIG. 17C, a break C in the first support substrate 4 on the upper side. The inner peripheral portion P2 is peeled off, and a part of the electrolyte membrane 2 is exposed. As a result, only the frame-shaped outer peripheral portion P1 of the upper first support substrate 4 remains in the electrolyte membrane 2 to form the frame-shaped support substrate 4u. Moreover, you may perform peeling of the 2nd support base material 5, and peeling of the inner peripheral part of the cut | interruption C of the 1st support base material 4 simultaneously.

続いて、図18(a)及び(b)に示すように、触媒層転写フィルムを用いて、電解質膜2上の第1の支持基材4の第2の部分P2を剥離した部分に触媒層3uを形成する。続いて、図18(c)に示すように、下側の第2の支持基材5を剥離し、さらに、図18(d)に示すように、下側の第1の支持基材4の切れ目Cの内周部分P2を剥離して、電解質膜2の一部を露出させる。   Subsequently, as shown in FIGS. 18A and 18B, the catalyst layer is formed on the portion where the second portion P <b> 2 of the first support substrate 4 on the electrolyte membrane 2 is peeled off using the catalyst layer transfer film. 3u is formed. Subsequently, as shown in FIG. 18 (c), the lower second support substrate 5 is peeled, and as shown in FIG. 18 (d), the lower first support substrate 4 is removed. The inner peripheral portion P2 of the cut C is peeled off, and a part of the electrolyte membrane 2 is exposed.

続いて、図19(a)及び(b)に示すように、触媒層転写フィルムを用いて、電解質膜2上の第1の支持基材4の第2の部分P2を剥離した部分に触媒層3dを形成する。これにより、触媒層−電解質膜積層体1aが作製される。このように、本実施形態の変形例に係る触媒層−電解質膜積層体1aは、電解質膜2が支持基材4u・4dに支持されているため、触媒層3u・3dを電解質膜2に転写する際の電解質膜2の寸法変化を抑制することができる。   Subsequently, as shown in FIGS. 19A and 19B, the catalyst layer is formed on the portion where the second portion P <b> 2 of the first support substrate 4 on the electrolyte membrane 2 is peeled off using the catalyst layer transfer film. 3d is formed. Thereby, the catalyst layer-electrolyte membrane laminated body 1a is produced. Thus, in the catalyst layer-electrolyte membrane laminate 1a according to the modification of the present embodiment, since the electrolyte membrane 2 is supported by the support base materials 4u and 4d, the catalyst layers 3u and 3d are transferred to the electrolyte membrane 2. The dimensional change of the electrolyte membrane 2 at the time of performing can be suppressed.

なお、触媒層を形成する順序は上述の流れに限らない。例えば、図20(a)〜(d)に示すように、先に電解質膜2の両面の第2の支持基材を剥離し、その後電解質膜2上の第1の支持基材4の第2の部分P2を剥離し、触媒層3uおよび触媒層3dをそれぞれ形成してもよい。このような順序によれば、転写する側とは反対側の電解質膜上に支持基材がないため、触媒層を転写する際に電解質膜の触媒層が形成される部分(特に触媒層の端部)に圧力が集中されることを抑制でき、電解質膜全体に比較的均一に圧力をかけることができる。その結果、触媒層の周囲で発生する電解質膜の薄膜化が防止できる。   In addition, the order which forms a catalyst layer is not restricted to the above-mentioned flow. For example, as shown in FIGS. 20A to 20D, the second supporting base on both surfaces of the electrolyte membrane 2 is first peeled, and then the second supporting base 4 on the electrolyte membrane 2 is second. The portion P2 may be peeled off to form the catalyst layer 3u and the catalyst layer 3d. According to such an order, since there is no supporting substrate on the electrolyte membrane on the side opposite to the transfer side, the portion where the catalyst layer of the electrolyte membrane is formed when transferring the catalyst layer (particularly the end of the catalyst layer). And the pressure can be applied to the entire electrolyte membrane relatively uniformly. As a result, thinning of the electrolyte membrane generated around the catalyst layer can be prevented.

(触媒層−電解質膜積層体の変形例2)
図21は、本実施形態の他の変形例に係る触媒層−電解質膜積層体1bの構成を示す断面図である。触媒層−電解質膜積層体1bは、図14(c)に示す触媒層−電解質膜積層体1と比較して、電解質膜2の外周縁部および支持基材4dにピン穴Pが形成されている点で異なっている。このようにピン穴を形成することによって、両面に形成する触媒層の位置決めが容易になる。
(Modification 2 of catalyst layer-electrolyte membrane laminate)
FIG. 21 is a cross-sectional view showing a configuration of a catalyst layer-electrolyte membrane laminate 1b according to another modification of the present embodiment. Compared with the catalyst layer-electrolyte membrane laminate 1b shown in FIG. 14 (c), the catalyst layer-electrolyte membrane laminate 1b has pin holes P formed on the outer peripheral edge of the electrolyte membrane 2 and the support base 4d. Is different. By forming the pin holes in this way, the positioning of the catalyst layers formed on both surfaces becomes easy.

図22〜図24は、触媒層−電解質膜積層体1bの製造方法の一例を示す説明図である。まず、図22に示すように、実施形態1に係る支持基材付き電解質膜7に触媒層転写フィルム基材6を重ねて位置あわせし、触媒層転写フィルム基材6の外周縁部、電解質膜2の外周縁部、第1の支持基材4の外周部分P1および第2の支持基材5の外周部分P3に、型抜き機で厚み方向に貫通するピン穴Pを2ヶ所形成する。なお、ピン穴Pは、必ずしも第2の支持基材5まで達していなくてもよい。また、触媒層の位置決めができるのであれば、ピン穴Pの数は特に限定されない。   22-24 is explanatory drawing which shows an example of the manufacturing method of the catalyst layer-electrolyte membrane laminated body 1b. First, as shown in FIG. 22, the catalyst layer transfer film substrate 6 is overlapped and aligned with the electrolyte membrane 7 with a support substrate according to the first embodiment, and the outer peripheral edge of the catalyst layer transfer film substrate 6, the electrolyte membrane Two pin holes P penetrating in the thickness direction are formed in the outer peripheral edge portion 2, the outer peripheral portion P 1 of the first support base material 4, and the outer peripheral portion P 3 of the second support base material 5 with a die cutter. Note that the pin hole P does not necessarily reach the second support base 5. Further, the number of pin holes P is not particularly limited as long as the catalyst layer can be positioned.

続いて、図23(a)に示すように、第2の支持基材5を剥離する。続いて、図23(b)に示すように、ピン穴Pにピン8を通して電解質膜2と第1の支持基材4の積層体を固定し、図23(c)に示すように、ピン穴を設けた触媒層転写フィルム基材6を電解質膜2と触媒層3とが向き合うように支持基材付き電解質膜7の上から積層する。その状態で熱プレスし、触媒層3を電解質膜2に転写し、図23(d)に示すように、触媒層3uを形成する。   Subsequently, as shown in FIG. 23A, the second support substrate 5 is peeled off. Subsequently, as shown in FIG. 23 (b), the laminated body of the electrolyte membrane 2 and the first support substrate 4 is fixed to the pin hole P through the pin 8, and the pin hole as shown in FIG. 23 (c). The catalyst layer transfer film substrate 6 provided with the above is laminated from above the electrolyte membrane 7 with a supporting substrate so that the electrolyte membrane 2 and the catalyst layer 3 face each other. In this state, heat pressing is performed to transfer the catalyst layer 3 to the electrolyte membrane 2 to form a catalyst layer 3u as shown in FIG.

続いて、第1の支持基材4の内周部分P2を剥離することにより、図24(a)に示すように、電解質膜2の一部を露出させる。さらに、図24(b)に示すように、電解質膜2が露出した部分に触媒層3dを形成することにより、触媒層−電解質膜積層体1bが作製される。このように、触媒層−電解質膜積層体1bの製造工程では、支持基材付き電解質膜7にピン穴Pを設けることで、電解質膜2の両面に触媒層を形成する際の位置精度をさらに高めることができる。   Subsequently, by peeling off the inner peripheral portion P2 of the first support base material 4, a part of the electrolyte membrane 2 is exposed as shown in FIG. Furthermore, as shown in FIG. 24B, the catalyst layer-electrolyte film laminate 1b is produced by forming the catalyst layer 3d in the portion where the electrolyte membrane 2 is exposed. Thus, in the manufacturing process of the catalyst layer-electrolyte membrane laminate 1b, by providing the pin holes P in the electrolyte membrane 7 with the supporting base material, the positional accuracy when the catalyst layers are formed on both surfaces of the electrolyte membrane 2 is further increased. Can be increased.

本変形例では、触媒層転写フィルム基材6と支持基材付き電解質膜7とを重ねた状態でピン穴を形成していたが、触媒層転写フィルム基材6と支持基材付き電解質膜7とでピン穴の相対位置が同一になるように形成することができるのであれば、触媒層転写フィルム基材6および支持基材付き電解質膜7に対して、個別にピン穴を形成してもよい。   In this modification, pin holes are formed in a state where the catalyst layer transfer film substrate 6 and the electrolyte membrane 7 with a supporting substrate are overlapped, but the catalyst layer transfer film substrate 6 and the electrolyte membrane 7 with a supporting substrate are formed. Can be formed so that the relative positions of the pin holes are the same, the pin holes can be individually formed on the catalyst layer transfer film substrate 6 and the electrolyte membrane 7 with a supporting substrate. Good.

なお、触媒層の位置精度を向上させる技術は、これに限定されない。例えば、電解質膜等にアライメントマークを設け、該アライメントマークによって触媒層と電解質膜との位置合わせを行ってもよい。   In addition, the technique which improves the position accuracy of a catalyst layer is not limited to this. For example, an alignment mark may be provided on the electrolyte membrane and the alignment of the catalyst layer and the electrolyte membrane may be performed using the alignment mark.

(触媒層−電解質膜積層体の変形例3)
図25(a)および(b)は、図10(a)に示した支持基材付き電解質膜7bを用いて作製した触媒層−電解質膜積層体1cであり、本実施形態のさらに他の変形例に係る触媒層−電解質膜積層体1cを示している。つまり、図25(a)は、図10(b)の面に対応し、電解質膜2の一方面の触媒層3uを挟んだ2辺に縦方向に伸びる支持基材4uが形成されている。また、図25(c)は図10(c)の面に対応し、触媒層3dを挟んだ2辺に横方向に伸びる支持基材4dが形成されている。このように、電解質膜2は支持基材4u・4dに支持されているため、触媒層3u・3dを電解質膜2に転写する際、電解質膜2の寸法変化を抑制することができる。
(Modification 3 of catalyst layer-electrolyte membrane laminate)
25 (a) and 25 (b) show a catalyst layer-electrolyte membrane laminate 1c produced using the electrolyte membrane 7b with a supporting base shown in FIG. 10 (a), and still another modification of this embodiment. The catalyst layer-electrolyte membrane laminated body 1c which concerns on an example is shown. That is, FIG. 25A corresponds to the surface of FIG. 10B, and the support base 4 u extending in the vertical direction is formed on two sides sandwiching the catalyst layer 3 u on one surface of the electrolyte membrane 2. FIG. 25C corresponds to the surface of FIG. 10C, and a support base 4d extending in the lateral direction is formed on two sides with the catalyst layer 3d interposed therebetween. Thus, since the electrolyte membrane 2 is supported by the support bases 4u and 4d, when the catalyst layers 3u and 3d are transferred to the electrolyte membrane 2, the dimensional change of the electrolyte membrane 2 can be suppressed.

なお、電解質膜2が長尺の場合、図26(a)に示す触媒層−電解質膜積層体1dのように、電解質膜2上に矩形状の触媒層3を複数パターン状に形成してもよいし、図26(b)に示す触媒層−電解質膜積層体1eのように、長尺の触媒層3を連続して形成してもよい。この場合、長尺の触媒層−電解質膜積層体が製造されるので、適当な箇所でカットして電池に組み込むことができる。 When the electrolyte membrane 2 is long, a rectangular catalyst layer 3 may be formed in a plurality of patterns on the electrolyte membrane 2 as in the catalyst layer-electrolyte membrane laminate 1d shown in FIG. Alternatively, the long catalyst layer 3 may be continuously formed as in the catalyst layer-electrolyte membrane laminate 1e shown in FIG. In this case, since a long catalyst layer-electrolyte membrane laminate is produced, it can be cut at an appropriate location and incorporated into the battery.

以上、本実施形態では、触媒層を触媒層転写フィルムを用いて電解質層に転写してもよく(転写法)、あるいは、触媒層を電解質層に直接塗布してもよい。また、図27(a)に示す触媒層−電解質膜積層体1fのように、触媒層3u・3dと支持基材4u・4dとの間に隙間は生じない形態でもよい。   As described above, in this embodiment, the catalyst layer may be transferred to the electrolyte layer using the catalyst layer transfer film (transfer method), or the catalyst layer may be directly applied to the electrolyte layer. Further, as in the catalyst layer-electrolyte membrane laminate 1 f shown in FIG. 27A, a form in which no gap is generated between the catalyst layers 3 u and 3 d and the support base materials 4 u and 4 d may be used.

さらに、図27(b)に示す触媒層−電解質膜積層体1gのように、触媒層3u・3dを支持基材4u・4dの内周部からはみ出すように形成してもよい。   Further, like the catalyst layer-electrolyte membrane laminate 1g shown in FIG. 27 (b), the catalyst layers 3u and 3d may be formed so as to protrude from the inner peripheral portions of the support bases 4u and 4d.

(固体高分子形燃料電池の製造)
上記の方法で作製した触媒層−電解質膜積層体に対して、ガス拡散層を積層し、必要に応じてガスケットを介在させてセパレータで狭持することにより、固体高分子形燃料電池を製造することができる。なお、第1の支持基材の第1の部分を残したまま電池に組み込む場合で第1の支持基材の第1の部分がガスケットの機能を有する場合、ガスケットを介在させることなく、上記触媒層−電解質膜積層体をセパレータで狭持することができる。また、第1の支持基材の第1の部分がガスケットの機能を有していない場合や、上記触媒層−電解質膜積層体から第1の支持基材の第1の部分を除去した場合は、上記触媒層−電解質膜積層体の支持基材とセパレータとの間にガスケットを介在させた状態で、上記触媒層−電解質膜積層体をセパレータで狭持することが望ましい。
(Manufacture of polymer electrolyte fuel cells)
A polymer electrolyte fuel cell is produced by laminating a gas diffusion layer on the catalyst layer-electrolyte membrane laminate produced by the above method and sandwiching it with a separator with a gasket interposed as necessary. be able to. In the case where the first portion of the first support substrate is incorporated into the battery while leaving the first portion, and the first portion of the first support substrate has the function of a gasket, the catalyst is not interposed without interposing the gasket. The layer-electrolyte membrane laminate can be sandwiched between separators. Moreover, when the 1st part of the 1st support base material does not have the function of a gasket, or when the 1st part of the 1st support base material is removed from the said catalyst layer-electrolyte membrane laminated body It is desirable that the catalyst layer-electrolyte membrane laminate is sandwiched by the separator in a state where a gasket is interposed between the support substrate of the catalyst layer-electrolyte membrane laminate and the separator.

(付記事項)
本発明は、上述した各実施形態に限定されるものではなく、特許請求の範囲に記載した範囲で種々の変更が可能であり、例えば、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる形態も、本発明の技術的範囲に含まれる。
(Additional notes)
The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope described in the claims. For example, technical means disclosed in different embodiments are appropriately combined. The form obtained in this manner is also included in the technical scope of the present invention.

以下に、実施例に基づいて本発明を詳細に説明するが、本発明はこれによって限定されるものではない。   Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited thereto.

<支持基材付き電解質膜の作製>
まず、2枚の矩形平面状のポリエチレンナフタレート(縦7.5cm×横7.5cm、厚さ30μm)を第1の支持基材および第2の支持基材として準備し、これらの支持基材を貼り合わせて、第1の支持基材と第2の支持基材の積層体を作製した。さらに、第1の支持基材のみに縦5.2cm×横5.2cmの矩形状の切れ目を、型抜き機を用いて形成した。
<Production of electrolyte membrane with supporting substrate>
First, two rectangular planar polyethylene naphthalates (length 7.5 cm × width 7.5 cm, thickness 30 μm) were prepared as a first support base and a second support base, and these support bases Were laminated together to produce a laminate of the first support substrate and the second support substrate. Further, a rectangular cut having a length of 5.2 cm and a width of 5.2 cm was formed only on the first supporting substrate using a die cutter.

また、電解質膜としてデュポン社製の「NafionN211」(登録商標)を使用した。電解質膜の大きさは、縦7.5cm×横7.5cmの大きさであり、厚さは25μmである。第1の支持基材の第2の支持基材が貼り合わされた面の反対側の面に、上記電解質膜を貼り合わせて、120℃で熱プレスすることで、支持基材付き電解質膜を作製した。   Moreover, “Nafion N211” (registered trademark) manufactured by DuPont was used as the electrolyte membrane. The size of the electrolyte membrane is 7.5 cm long × 7.5 cm wide, and the thickness is 25 μm. The electrolyte membrane is attached to the surface of the first support substrate opposite to the surface on which the second support substrate is bonded, and hot-pressed at 120 ° C. to produce an electrolyte membrane with a support substrate. did.

<触媒層−電解質膜積層体の作製>
続いて、上述の支持基材付き電解質膜から、以下の要領で触媒層−電解質膜積層体を作製した。
<Production of catalyst layer-electrolyte membrane laminate>
Then, the catalyst layer-electrolyte film | membrane laminated body was produced from the above-mentioned electrolyte membrane with a support base material in the following ways.

まず、支持基材付き電解質膜の第2の支持基材をセロテープ(登録商標)を用いて剥離した。さらに、第1の支持基材の切れ目の内周部分(第2の部分)をセロテープ(登録商標)を用いて剥離した。   First, the 2nd support base material of the electrolyte membrane with a support base material was peeled using the cello tape (trademark). Furthermore, the inner peripheral part (second part) of the cut of the first supporting substrate was peeled off using cello tape (registered trademark).

続いて、支持基材付き電解質膜を160℃、4MPa、120秒の条件で熱プレスした。これにより、支持基材付き電解質膜の外周部のみに圧力がかかり、電解質膜の外周部と電解質膜との接着強度を上げることができた。   Subsequently, the electrolyte membrane with a supporting substrate was hot-pressed under the conditions of 160 ° C., 4 MPa, and 120 seconds. As a result, pressure was applied only to the outer peripheral portion of the electrolyte membrane with a supporting substrate, and the adhesive strength between the outer peripheral portion of the electrolyte membrane and the electrolyte membrane could be increased.

その後、転写法により、電解質膜上の第1の支持基材側から第2の部分を剥離した電解質膜部分に触媒層を形成した。本実施例では、以下のように準備した触媒層転写フィルムを用いて、触媒層を形成した。具体的には、白金触媒担持炭素粒子4g(田中貴金属工業(株)製、「TEC10E50E」)、イオン伝導性高分子電解質膜溶液40g(Nafion5wt%溶液:「DE−520」デュポン社製)、蒸留水12g、n−ブタノール20g及びt−ブタノール20gを配合し、分散機にて攪拌混合することにより、触媒層形成用ペースト組成物を作製した。次に触媒層形成用ペースト組成物を、アプリケーターを用いてテフロン(登録商標)基材上に塗工し、95℃で30分間乾燥させることにより触媒層転写フィルムを作製した。なお、触媒層の塗工量は、白金担持量が0.5mg/cm程度となるようにした。さらに、触媒層転写フィルムを5cm×5cmの大きさにカットし、電解質膜上の第1の支持基材の内周部分を剥離した部分に納まるように配置した。その後、135℃、4MPa、120秒の条件で熱プレスし、触媒層転写フィルムのテフロン(登録商標)基材を剥離することで、アノード触媒層を電解質膜に形成した。同様に触媒層転写フィルムを準備し、アノード触媒層とは反対の電解質膜上に転写法によりカソード触媒層を形成した。 Then, the catalyst layer was formed in the electrolyte membrane part which peeled the 2nd part from the 1st support base material side on an electrolyte membrane by the transfer method. In this example, a catalyst layer was formed using a catalyst layer transfer film prepared as follows. Specifically, 4 g of platinum catalyst-supporting carbon particles (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., “TEC10E50E”), 40 g of an ion conductive polymer electrolyte membrane solution (Nafion 5 wt% solution: “DE-520” manufactured by DuPont), distillation A paste composition for forming a catalyst layer was prepared by blending 12 g of water, 20 g of n-butanol and 20 g of t-butanol, and stirring and mixing with a disperser. Next, the catalyst layer forming paste composition was coated on a Teflon (registered trademark) substrate using an applicator and dried at 95 ° C. for 30 minutes to prepare a catalyst layer transfer film. In addition, the coating amount of the catalyst layer was such that the amount of platinum supported was about 0.5 mg / cm 2 . Further, the catalyst layer transfer film was cut into a size of 5 cm × 5 cm and arranged so that the inner peripheral portion of the first support substrate on the electrolyte membrane was accommodated in the peeled portion. Then, the anode catalyst layer was formed in the electrolyte membrane by heat-pressing on 135 degreeC, 4 Mpa, and 120 second conditions, and peeling the Teflon (trademark) base material of a catalyst layer transfer film. Similarly, a catalyst layer transfer film was prepared, and a cathode catalyst layer was formed on the electrolyte membrane opposite to the anode catalyst layer by a transfer method.

本実施例では、熱プレスによって電解質膜の外周部と電解質膜との接着強度を上げたことにより、触媒層を形成する際の電解質膜の寸法安定性を更に向上させることができた。   In this example, the dimensional stability of the electrolyte membrane when forming the catalyst layer could be further improved by increasing the adhesive strength between the outer periphery of the electrolyte membrane and the electrolyte membrane by hot pressing.

1、1a〜1g 触媒層−電解質膜積層体
2 電解質膜
3 触媒層
3u 触媒層
3d 触媒層
4 第1の支持基材
4u 支持基材
4d 支持基材
5 第2の支持基材
6 触媒層転写フィルム基材
7、7a〜7c 支持基材付き電解質膜
8 ピン
A 接着剤
C 切れ目
P ピン穴
DESCRIPTION OF SYMBOLS 1, 1a-1g Catalyst layer-electrolyte membrane laminated body 2 Electrolyte membrane 3 Catalyst layer 3u Catalyst layer 3d Catalyst layer 4 1st support base material 4u Support base material 4d Support base material 5 2nd support base material 6 Catalyst layer transfer Film substrate 7, 7a-7c Electrolyte membrane with support substrate 8 Pin A Adhesive C Cut P Pin hole

Claims (5)

電解質膜と、
前記電解質膜の少なくとも一方面に形成された第1の支持基材と、
第1の支持基材の前記電解質膜と貼り合わされた面の反対側の面に貼り合わされた第2の支持基材とを備え、
第1の支持基材には、外周縁部の少なくとも一部を含む第1の部分と該第1の部分を除く第2の部分とを区分する切れ目が形成されていることを特徴とする支持基材付き電解質膜。
An electrolyte membrane;
A first support substrate formed on at least one surface of the electrolyte membrane;
A second support substrate bonded to a surface opposite to the surface bonded to the electrolyte membrane of the first support substrate;
The first support base is formed with a cut that separates a first portion including at least a part of the outer peripheral edge portion and a second portion excluding the first portion. Electrolyte membrane with substrate.
前記切れ目の少なくとも一部は、第2の支持基材の厚み方向の一部まで達していることを特徴とする請求項1に記載の支持基材付き電解質膜。   The electrolyte membrane with a supporting base material according to claim 1, wherein at least a part of the cut reaches a part in a thickness direction of the second supporting base material. 前記第1の部分の少なくとも一部は、前記第2の部分の前記切れ目に隣接する部分に比べ、前記電解質膜との接着強度が大きいことを特徴とする請求項1または2に記載の支持基材付き電解質膜。   3. The support base according to claim 1, wherein at least a part of the first portion has a higher adhesive strength to the electrolyte membrane than a portion adjacent to the cut of the second portion. Electrolyte membrane with material. 第1の支持基材と第2の支持基材とを貼り合わせる第1工程と、
第2の支持基材と貼り合わされた第1の支持基材に、外周縁部の少なくとも一部を含む第1の部分と該第1の部分を除く第2の部分とを区分する切れ目を形成する第2工程と、
第1の支持基材の第2の支持基材が貼り合わされた面の反対側の面に電解質膜を形成する第3工程と、
を有することを特徴とする支持基材付き電解質膜の製造方法。
A first step of bonding the first support substrate and the second support substrate;
The first support base material bonded to the second support base material is formed with a cut that separates the first portion including at least part of the outer peripheral edge portion and the second portion excluding the first portion. A second step of
A third step of forming an electrolyte membrane on the surface of the first support substrate opposite to the surface on which the second support substrate is bonded;
The manufacturing method of the electrolyte membrane with a support base material characterized by having.
電解質膜の少なくとも一方面に貼り合わされた第1の支持基材と、第1の支持基材の前記電解質膜と貼り合わされた面の反対側の面に貼り合わされた第2の支持基材とを備え、第1の支持基材には、外周縁部の少なくとも一部を含む第1の部分と該第1の部分を除く第2の部分とを区分する切れ目が形成された支持基材付き電解質膜を準備する工程と、
前記第2の支持基材を剥離する工程と、
前記第1の支持基材の第2の部分を剥離する工程と、
前記電解質膜上の前記第1の支持基材の第2の部分を剥離した部分に触媒層を形成する工程と、
を有することを特徴とする触媒層−電解質膜積層体の製造方法。
A first support substrate bonded to at least one surface of the electrolyte membrane; and a second support substrate bonded to a surface of the first support substrate opposite to the surface bonded to the electrolyte membrane. And the first supporting base material is provided with a support base-provided electrolyte in which a first portion including at least a part of the outer peripheral edge portion and a second portion excluding the first portion are separated. Preparing a membrane;
Peeling the second support substrate;
Peeling the second portion of the first support substrate;
Forming a catalyst layer on a portion where the second portion of the first support substrate on the electrolyte membrane is peeled off;
A method for producing a catalyst layer-electrolyte membrane laminate, comprising:
JP2013062508A 2013-03-25 2013-03-25 Electrolyte membrane with support base material, manufacturing method thereof, and method of manufacturing catalyst layer-electrolyte membrane laminate using the electrolyte membrane with support base material Pending JP2014186947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013062508A JP2014186947A (en) 2013-03-25 2013-03-25 Electrolyte membrane with support base material, manufacturing method thereof, and method of manufacturing catalyst layer-electrolyte membrane laminate using the electrolyte membrane with support base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013062508A JP2014186947A (en) 2013-03-25 2013-03-25 Electrolyte membrane with support base material, manufacturing method thereof, and method of manufacturing catalyst layer-electrolyte membrane laminate using the electrolyte membrane with support base material

Publications (1)

Publication Number Publication Date
JP2014186947A true JP2014186947A (en) 2014-10-02

Family

ID=51834331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013062508A Pending JP2014186947A (en) 2013-03-25 2013-03-25 Electrolyte membrane with support base material, manufacturing method thereof, and method of manufacturing catalyst layer-electrolyte membrane laminate using the electrolyte membrane with support base material

Country Status (1)

Country Link
JP (1) JP2014186947A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027227A (en) * 2008-07-15 2010-02-04 Toyota Motor Corp Method for manufacturing electrolyte membrane for fuel cell electrode
JP2010062009A (en) * 2008-09-04 2010-03-18 Honda Motor Co Ltd Method for manufacturing membrane-electrode structure for fuel cell
JP2010129247A (en) * 2008-11-26 2010-06-10 Nissan Motor Co Ltd Method for manufacturing electrode stack of fuel cell
JP2012234713A (en) * 2011-05-02 2012-11-29 Toyota Motor Corp Method for joining electrolyte membrane and film, and method for manufacturing fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027227A (en) * 2008-07-15 2010-02-04 Toyota Motor Corp Method for manufacturing electrolyte membrane for fuel cell electrode
JP2010062009A (en) * 2008-09-04 2010-03-18 Honda Motor Co Ltd Method for manufacturing membrane-electrode structure for fuel cell
JP2010129247A (en) * 2008-11-26 2010-06-10 Nissan Motor Co Ltd Method for manufacturing electrode stack of fuel cell
JP2012234713A (en) * 2011-05-02 2012-11-29 Toyota Motor Corp Method for joining electrolyte membrane and film, and method for manufacturing fuel cell

Similar Documents

Publication Publication Date Title
JP5363335B2 (en) Gas diffusion layer with built-in gasket
US10270107B2 (en) Fuel cell and manufacturing method for fuel cell
JP2007299551A (en) Manufacturing method of membrane electrode junction for fuel cell
JP2006339022A (en) Electrolyte membrane-electrode assembly with mask film for solid polymer fuel cell, and method of manufacturing same
JP5581618B2 (en) Solid polymer fuel cell member, catalyst layer with an edge seal-electrolyte membrane laminate, electrode with edge seal-electrolyte membrane laminate, and method for producing a polymer electrolyte fuel cell
JP2015215958A (en) Method for manufacturing fuel cell
JP5533134B2 (en) Catalyst layer-electrolyte membrane laminate, catalyst layer with edge seal-electrolyte membrane laminate, membrane-electrode assembly, membrane-electrode assembly with edge seal, and production method thereof
JP5277792B2 (en) Electrolyte membrane-electrode assembly with auxiliary membrane, and polymer electrolyte fuel cell using the same
JP5165947B2 (en) Membrane / electrode assembly and manufacturing method thereof
JP2006244930A (en) Manufacturing method and manufacturing device of electrolyte membrane -catalyst layer junction for solid polymer fuel cell
JP2010225495A (en) Electrolyte membrane with reinforced film, catalyst layer with reinforced film-electrolyte membrane laminate, membrane-electrode assembly with reinforced film, liquid material impregnated electrolyte membrane type fuel cell, and their manufacturing methods
JP2010192392A (en) Porous membrane complex for fuel cell, electrolyte membrane-electrode-porous membrane complex for fuel cell, and manufacturing method of them
JP2017068908A (en) Manufacturing method for resin frame-attached electrolyte membrane-electrode structure
JP5887692B2 (en) Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane-electrode assembly with reinforcing membrane, polymer electrolyte fuel cell, and production method thereof
JP6024398B2 (en) REINFORCED CATALYST LAYER-ELECTROLYTE MEMBRANE LAMINATE, SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING REINFORCING CATALYST LAYER-ELECTROLYTE MEMBRANE
JP5836060B2 (en) Manufacturing method of fuel cell
JP5273207B2 (en) ELECTROLYTE MEMBRANE-ELECTRODE ASSEMBLY WITH MASK FILM FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP6163812B2 (en) Manufacturing method of electrolyte membrane with supporting substrate, manufacturing apparatus of electrolyte membrane with supporting substrate, manufacturing method of catalyst layer-electrolyte membrane laminate using electrolyte membrane with supporting substrate, and electrolyte membrane with supporting substrate Catalyst layer-electrolyte membrane laminate manufacturing apparatus
JP2014186947A (en) Electrolyte membrane with support base material, manufacturing method thereof, and method of manufacturing catalyst layer-electrolyte membrane laminate using the electrolyte membrane with support base material
JP6085935B2 (en) REINFORCED CATALYST LAYER-ELECTROLYTE MEMBRANE LAMINATE, SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING REINFORCING CATALYST LAYER-ELECTROLYTE MEMBRANE
JP2011210465A (en) Catalyst layer-electrolyte membrane laminated body with edge seal, membrane-electrode assembly with edge seal, and solid polymer fuel cell
JP2009230964A (en) Catalyst layer transcription sheet, manufacturing method of electrolyte membrane-catalyst layer assembly using the same, manufacturing method of electrolyte membrane-electrode assembly, and manufacturing method of solid polymer fuel cell
JP5993987B2 (en) Manufacturing method of fuel cell
JP2009238495A (en) Fuel cell and membrane-electrode-gas diffusion layer assembly used this
JP7307109B2 (en) Membrane electrode assembly with gas diffusion layer and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170523