JP2010129247A - Method for manufacturing electrode stack of fuel cell - Google Patents

Method for manufacturing electrode stack of fuel cell Download PDF

Info

Publication number
JP2010129247A
JP2010129247A JP2008300354A JP2008300354A JP2010129247A JP 2010129247 A JP2010129247 A JP 2010129247A JP 2008300354 A JP2008300354 A JP 2008300354A JP 2008300354 A JP2008300354 A JP 2008300354A JP 2010129247 A JP2010129247 A JP 2010129247A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
masking film
film
sealing material
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008300354A
Other languages
Japanese (ja)
Other versions
JP5343529B2 (en
Inventor
Noriyuki Matsukaze
紀之 松風
Yasuta Nakai
康太 中井
Mitsuhiro Negami
光弘 根上
Masaaki Iwatani
政昭 岩谷
Yuji Sakagami
祐治 阪上
Kiyoshi Ichinose
浄 一瀬
Hidenobu Matsuyama
秀信 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008300354A priority Critical patent/JP5343529B2/en
Publication of JP2010129247A publication Critical patent/JP2010129247A/en
Application granted granted Critical
Publication of JP5343529B2 publication Critical patent/JP5343529B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To suppress degradation in electrode quality when an electrode is formed on the surface of an electrolyte membrane and simplify a manufacturing process by eliminating a process for providing a sealing material on an electrolyte membrane in an after-process. <P>SOLUTION: A masking film 13 having double-layer structure comprising a masking film body 9 and an anode gasket 3 is joined to one surface of the electrolyte membrane 1 so that the anode gasket 3 is positioned on the electrolyte membrane 1 side, and a back sheet 17 for reinforcing is joined to the other surface of the electrolyte membrane 1. In this state, an anode layer 19 is formed on the electrolyte membrane 1 by applying catalyst paste from the masking film body 9 side. After that, the masking film body 9 is peeled off from the anode gasket 3, and the back sheet 17 is peeled off from the electrolyte membrane. On the cathode side, a projecting back sheet is joined to the anode side in place of the back sheet 17, and in this state, the same process as that on the anode side is conducted. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電解質膜の表面に電極触媒層を形成する燃料電池電極積層体の製造方法に関する。   The present invention relates to a method for producing a fuel cell electrode laminate in which an electrode catalyst layer is formed on the surface of an electrolyte membrane.

従来、燃料電池における電解質膜の表面に電極触媒層を形成する際、所定の電極形状に切り抜いたマスキングフィルムを電解質膜上に設け、このマスキングフィルムの上から触媒ペーストを塗布し、塗布後にマスキングフィルムを剥がすようにしている。
特開2006−120433号公報
Conventionally, when an electrode catalyst layer is formed on the surface of an electrolyte membrane in a fuel cell, a masking film cut into a predetermined electrode shape is provided on the electrolyte membrane, and a catalyst paste is applied on the masking film. To peel off.
JP 2006-120433 A

ところで、上記した従来のものは、触媒ペーストを塗布する際に、電解質膜の電極形状部分の周縁のマスキングフィルム上にもその一部が塗布され、この一部の触媒ペーストが電解質膜上のペースト電極と連続したものとなりやすい。このため、触媒ペーストを塗布した後にマスキングフィルムを剥がす際には、上記マスキングフィルム上の触媒ペーストとともに電解質膜上の触媒ペーストも一緒に剥がれる恐れがあるので、電池電極の品質低下を招く恐れがある。   By the way, in the above-mentioned conventional one, when applying the catalyst paste, a part thereof is also applied on the masking film at the periphery of the electrode-shaped portion of the electrolyte membrane, and this part of the catalyst paste is paste on the electrolyte membrane. It tends to be continuous with the electrode. For this reason, when the masking film is peeled off after the catalyst paste is applied, the catalyst paste on the electrolyte membrane may be peeled off together with the catalyst paste on the masking film, which may cause deterioration of the quality of the battery electrode. .

そこで、本発明は、電解質膜の表面に電極を形成する際の電極品質の低下を抑えることを目的としている。   Therefore, an object of the present invention is to suppress deterioration of electrode quality when an electrode is formed on the surface of an electrolyte membrane.

本発明は、電解質膜の表面に、マスキングフィルム本体とシール材用フィルムとからなる二層構造のマスキングフィルムを設け、この二層構造のマスキングフィルムの上から電解質膜上に電極触媒層となる触媒ペーストを塗布した後、マスキングフィルム本体をシール材用フィルムから剥がすことを特徴とする。   The present invention provides a two-layered masking film comprising a masking film body and a sealing material film on the surface of an electrolyte membrane, and a catalyst that becomes an electrode catalyst layer on the electrolyte membrane from the two-layered masking film. After the paste is applied, the masking film main body is peeled off from the sealing material film.

本発明によれば、触媒ペーストを塗布する際に、二層構造のマスキングフィルムを電解質膜の表面に設けているので、このマスキングフィルムの表面と電解質膜の表面との間の段差が大きくなる。このため、二層構造のマスキングフィルムの上から触媒ペーストを塗布しても、電解質膜の電極形状部分の周縁のマスキングクフィルム本体上に塗布される一部の触媒ペーストと、電解質膜上の触媒ペーストとが連続したものとなりにくく、したがって、二層構造としたマスキングフィルムのうちマスキングフィルム本体のみを剥がすことで、必要とする電極部分の触媒ペーストの剥がれを抑制でき、電解質膜の表面に電極を形成する際の電極品質の低下を抑えることができる。また、マスキングフィルム本体のみを剥がすことで、シール材用フィルムが電解質膜の周縁表面上に残り、これがシール材となるので、後工程でのシール材を設ける工程を省略でき、製造工程が簡略化する。   According to the present invention, when the catalyst paste is applied, the masking film having a two-layer structure is provided on the surface of the electrolyte membrane, so that the level difference between the surface of the masking film and the surface of the electrolyte membrane is increased. For this reason, even if a catalyst paste is applied on the masking film having a two-layer structure, a part of the catalyst paste applied on the masking film body at the periphery of the electrode-shaped portion of the electrolyte membrane and the catalyst on the electrolyte membrane It is difficult for the paste to become continuous, and therefore, by peeling only the masking film main body out of the two-layered masking film, it is possible to prevent the catalyst paste from peeling off at the required electrode part, and to place the electrode on the surface of the electrolyte membrane. It is possible to suppress the deterioration of the electrode quality when forming. Also, by removing only the masking film body, the film for sealing material remains on the peripheral surface of the electrolyte membrane, which becomes the sealing material, so the process of providing the sealing material in the subsequent process can be omitted, and the manufacturing process is simplified To do.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1,図2は、本発明の一実施形態に係わる燃料電池電極の製造方法を示す模式図であり、図1はアノード側、図2はカソード側のそれぞれの電極について示している。本実施形態では、図3(a)に示すように、電解質膜としての固体高分子電解質膜(以下、単に電解質膜と呼ぶ)1の一方の面にアノードガスケット3を、他方の面にカソードガスケット5をそれぞれ接合して設けた積層体7を製造するものである。これら、アノードガスケット3及びカソードガスケット5はシール材用フィルムを構成している。   1 and 2 are schematic views showing a method of manufacturing a fuel cell electrode according to one embodiment of the present invention. FIG. 1 shows the electrode on the anode side, and FIG. 2 shows the electrode on the cathode side. In this embodiment, as shown in FIG. 3A, an anode gasket 3 is provided on one surface of a solid polymer electrolyte membrane (hereinafter simply referred to as an electrolyte membrane) 1 as an electrolyte membrane, and a cathode gasket is provided on the other surface. The laminated body 7 which joined and provided 5 is manufactured. These anode gasket 3 and cathode gasket 5 constitute a film for a sealing material.

これら各ガスケット3,5は、図4(a)に示す形状にトリム成形する。すなわち、各ガスケット3,5は、外形が例えば長方形であり、枠形状の外周部3a,5aを残して中央部分が切り抜かれ長方形状の電極形成領域3b,5bを形成するとともに、電極形成領域3b,5bの両側部分に貫通孔3c,5cを複数形成する。これら複数の貫通孔3c,5cは、水素ガス,酸化剤ガス及び冷却水のそれぞれのマニホールドを構成するものであり、水素ガス,酸化剤ガス及び冷却水の3つの流体の入口部と出口部に相当し、したがって全部で6個形成してある。   Each of these gaskets 3 and 5 is trim-molded into the shape shown in FIG. That is, each of the gaskets 3 and 5 has an outer shape of, for example, a rectangular shape, and the central portions are cut out so as to leave the frame-shaped outer peripheral portions 3a and 5a, thereby forming rectangular electrode forming regions 3b and 5b. , 5b, a plurality of through holes 3c, 5c are formed. The plurality of through holes 3c and 5c constitute manifolds for hydrogen gas, oxidant gas, and cooling water, and are provided at the inlet and outlet of three fluids of hydrogen gas, oxidant gas, and cooling water. Therefore, a total of six are formed.

ここで、本実施形態では、図4(b)に拡大して示すように、各ガスケット3,5における外周部3a,5aの内周縁3d,5dを、内周縁3d,5dに沿って波形の凹凸形状としている。なお、各ガスケット3,5は、厚さが20μmのPEN(ポリエチレンナフタレート)製で、電解質膜1に接合する側の面にあらかじめ厚さ10μmの粘着剤を塗布してある。   Here, in the present embodiment, as shown in an enlarged view in FIG. 4B, the inner peripheral edges 3d and 5d of the outer peripheral portions 3a and 5a of the gaskets 3 and 5 are corrugated along the inner peripheral edges 3d and 5d. It has an uneven shape. Each of the gaskets 3 and 5 is made of PEN (polyethylene naphthalate) having a thickness of 20 μm, and a pressure-sensitive adhesive having a thickness of 10 μm is previously applied to the surface to be joined to the electrolyte membrane 1.

図1(a)及び図2(a)に示すように、アノード側,カソード側の各ガスケット3,5の上記粘着剤を塗布した側と反対側の面には、厚さ75μmのマスキングフィルム本体9,11を、厚さ1μmの接着層のタック性接着剤でそれぞれ接着している。なお、この接着状態は、後述するようにマスキングフィルム本体9,11を各ガスケット3,5から引き剥がす必要があるので、容易に引き剥がすことができるようにしてある。また、これらマスキングフィルム本体9,11は、各ガスケット3,5の前記図4(a)に示した電極形成領域3b,5bの外形とほぼ整合する長方形状の開口部9a,11aを備えている。   As shown in FIG. 1 (a) and FIG. 2 (a), the masking film main body having a thickness of 75 μm is formed on the surface of each of the gaskets 3 and 5 on the anode side and the cathode side opposite to the side where the adhesive is applied. 9 and 11 are bonded to each other with a tacky adhesive of an adhesive layer having a thickness of 1 μm. In addition, since it is necessary to peel off the masking film main bodies 9 and 11 from the gaskets 3 and 5 as will be described later, this adhesion state can be easily peeled off. The masking film bodies 9 and 11 are provided with rectangular openings 9a and 11a that substantially match the outer shapes of the electrode forming regions 3b and 5b shown in FIG. 4A of the gaskets 3 and 5, respectively. .

上記図1(a)のアノードガスケット3とマスキングフィルム本体9とでアノード側の二層のマスキングフィルム13を構成し、上記図2(a)のカソードガスケット5とマスキングフィルム本体11とでカソード側の二層のマスキングフィルム15を構成している。   The anode gasket 3 and the masking film body 9 in FIG. 1A constitute a two-layer masking film 13 on the anode side, and the cathode gasket 5 and the masking film body 11 in FIG. A two-layer masking film 15 is formed.

次に、図1のアノード側について説明する。図1(b)に示すように、電解質膜1の一方の面に、二層のマスキングフィルム13を、アノードガスケット3が電解質膜1側となるようにして接合する。また、電解質膜1の他方の面には補強用シートとしてのバックシート17を接合する。このバックシート17は、低熱収縮PETフィルム(厚さ100μm〜300μm)と、再剥離耐熱粘着層(厚さ5μm)と、低熱収縮極薄PETフィルム(厚さ12μm)とからなる(例えば、商品名:パナプロテクトET、パナック株式会社製が適用材料)。   Next, the anode side in FIG. 1 will be described. As shown in FIG. 1B, a two-layer masking film 13 is joined to one surface of the electrolyte membrane 1 so that the anode gasket 3 is on the electrolyte membrane 1 side. A back sheet 17 as a reinforcing sheet is joined to the other surface of the electrolyte membrane 1. The back sheet 17 is composed of a low heat shrink PET film (thickness 100 μm to 300 μm), a re-peeling heat-resistant adhesive layer (thickness 5 μm), and a low heat shrink ultrathin PET film (thickness 12 μm) (for example, trade name) : Panaprotect ET, manufactured by Panac Co., Ltd.)

そして、上記図1(b)のように電解質膜1を中心としてその両側に二層のマスキングフィルム13とアノードガスケット3とをそれぞれ接合した状態で、加熱プレスかあるいはホットローラにて両側から加熱・加圧してこれらを接合する。   Then, as shown in FIG. 1 (b), with the electrolyte membrane 1 as the center, the two-layer masking film 13 and the anode gasket 3 are joined to both sides, respectively, and heated and heated from both sides with a hot press or hot roller. These are joined by applying pressure.

その後、図1(c)に示すように、マスキングフィルム13(マスキングフィルム本体9)上から触媒ペーストを塗布する。このとき、アノードガスケット3の電極形成領域3bに対応する位置の電解質膜1上に、触媒ペーストを塗布して電極触媒層であるアノード触媒層19を形成するが、マスキングフィルム本体9の開口部9aの周縁の上面にも触媒ペーストの一部が塗布されて余剰ペースト21が形成される。
この余剰ペースト21と電解質膜1上の触媒ペースト(アノード触媒層19)との間は、二層構造のマスキングフィルム13(マスキングフィルム本体9及びアノードガスケット3)によって比較的大きな段差が形成されるので、これら両者は連続せずに互いに離間した状態となりやすい。
Then, as shown in FIG.1 (c), a catalyst paste is apply | coated from on the masking film 13 (masking film main body 9). At this time, a catalyst paste is applied on the electrolyte membrane 1 at a position corresponding to the electrode formation region 3b of the anode gasket 3 to form an anode catalyst layer 19 as an electrode catalyst layer. A part of the catalyst paste is also applied to the upper surface of the peripheral edge of the substrate to form an excess paste 21.
A relatively large step is formed between the surplus paste 21 and the catalyst paste (anode catalyst layer 19) on the electrolyte membrane 1 by the masking film 13 (masking film body 9 and anode gasket 3) having a two-layer structure. Both of these tend to be separated from each other without being continuous.

次に、図1(d)のように、マスキングフィルム本体9をアノードガスケット3から引き剥がす。これにより、電解質膜1の一方の面にアノード触媒層19を形成するとともに、その周囲の電解質膜1上にアノードガスケット3を設けたことになり、アノード側の電極触媒層の形成作業が終了する。   Next, as shown in FIG. 1 (d), the masking film body 9 is peeled off from the anode gasket 3. Thus, the anode catalyst layer 19 is formed on one surface of the electrolyte membrane 1, and the anode gasket 3 is provided on the surrounding electrolyte membrane 1, so that the operation of forming the electrode catalyst layer on the anode side is completed. .

次に、図2のカソード側について説明する。まず、図2(b)に示すように、前記図1(d)のマスキングフィルム本体9を引き剥がした状態から、この引き剥がした側に補強用凸状シートとしての凸状バックシート23を接合する。この凸状バックシート23は、アノードガスケット3の電極形成領域3bに入り込む凸部23aを有しており、アノードガスケット3の前記図1に示したバックシート17と同一材質かつ同一厚さ(凸部23aを含まない厚さ)でよい。   Next, the cathode side in FIG. 2 will be described. First, as shown in FIG. 2B, from the state in which the masking film main body 9 in FIG. 1D is peeled off, a convex back sheet 23 as a reinforcing convex sheet is joined to the peeled side. To do. This convex backsheet 23 has a convex portion 23a that enters the electrode forming region 3b of the anode gasket 3, and is the same material and the same thickness (convex portion) as the backsheet 17 shown in FIG. The thickness does not include 23a.

その後、図2(c)に示すように、バックシート17を電解質膜1から引き剥がし、この引き剥がした側の電解質膜1の表面に、図2(a)に示してある二層のマスキングフィルム15を、図2(d)のようにカソードガスケット5が電解質膜1側となるように接合する。このとき、加熱プレスかあるいはホットローラにて両側から加熱・加圧してこれらを接合する。   Thereafter, as shown in FIG. 2 (c), the back sheet 17 is peeled off from the electrolyte membrane 1, and the two-layer masking film shown in FIG. 2 (a) is formed on the surface of the electrolyte membrane 1 on the peeled side. 15 is joined so that the cathode gasket 5 is on the electrolyte membrane 1 side as shown in FIG. At this time, they are heated and pressed from both sides with a hot press or a hot roller to join them.

続いて、図2(e)に示すように、マスキングフィルム15(マスキングフィルム本体11)上から触媒ペーストを塗布する。このとき、カソードガスケット5の電極形成領域5bに対応する位置の電解質膜1上に、触媒ペーストを塗布して電極触媒層であるカソード触媒層25を形成するが、マスキングフィルム本体11の開口部11aの周縁の上面にも触媒ペーストが塗布されて余剰ペースト27が形成される。   Then, as shown in FIG.2 (e), a catalyst paste is apply | coated from on the masking film 15 (masking film main body 11). At this time, a catalyst paste is applied on the electrolyte membrane 1 at a position corresponding to the electrode formation region 5b of the cathode gasket 5 to form the cathode catalyst layer 25 as an electrode catalyst layer. A surplus paste 27 is formed by applying the catalyst paste to the upper surface of the periphery of the substrate.

この余剰ペースト27と電解質膜1上の触媒ペースト(カソード触媒層25)との間は、二層構造のマスキングフィルム15(マスキングフィルム本体11及びカソードガスケット5)によって比較的大きな段差が形成されるので、これら両者は連続せずに互いに離間した状態となりやすい。   A relatively large step is formed between the surplus paste 27 and the catalyst paste (cathode catalyst layer 25) on the electrolyte membrane 1 by the masking film 15 (masking film body 11 and cathode gasket 5) having a two-layer structure. Both of these tend to be separated from each other without being continuous.

次に、図2(e)の状態から、バックシート23をアノードガスケット3及び電解質膜1から引き剥がすとともに、マスキングフィルム本体11をカソードガスケット5から引き剥がし、さらに規定の製品長さにカットすることで、前記図3(a)に示した積層体7が完成する。   Next, from the state of FIG. 2 (e), the back sheet 23 is peeled off from the anode gasket 3 and the electrolyte membrane 1, and the masking film body 11 is peeled off from the cathode gasket 5 and further cut to a specified product length. Thus, the laminate 7 shown in FIG. 3A is completed.

この積層体7は、図3(b)に示すように、アノードガスケット3及びカソードガスケット5の外側にキャリアシールと呼ばれる支持部材29,31を配置し、さらにアノード触媒層19及びカソード触媒層25上にガス拡散層となるGDL33,35を配置する。これにより、燃料電池用MEA(膜電極接合体)36が完成する。   As shown in FIG. 3 (b), the laminate 7 has support members 29 and 31 called carrier seals arranged outside the anode gasket 3 and the cathode gasket 5, and further on the anode catalyst layer 19 and the cathode catalyst layer 25. GDLs 33 and 35 to be gas diffusion layers are disposed in Thereby, the fuel cell MEA (membrane electrode assembly) 36 is completed.

上記したように本実施形態では、図1(c)の状態からマスキングフィルム本体9を引き剥がす際に、マスキングフィルム本体9上の余剰ペースト21は、アノード触媒層19との間に、マスキングフィルム本体9及びアノードガスケット3による段差が形成されている。このため、余剰ペースト21とアノード触媒層19とは、連続せずに互いに離間した状態となりやすい。したがって、この離間状態でマスキングフィルム本体9をアノードガスケット3から引き剥がしても、アノード触媒層19が一緒に剥がれることを抑制でき、電解質膜1の一方の面に電極(アノード)を形成する際の電極品質の低下を抑えることができる。   As described above, in this embodiment, when the masking film main body 9 is peeled off from the state of FIG. 1C, the surplus paste 21 on the masking film main body 9 is between the anode catalyst layer 19 and the masking film main body 19. 9 and a step due to the anode gasket 3 are formed. For this reason, the excess paste 21 and the anode catalyst layer 19 are likely to be separated from each other without being continuous. Therefore, even if the masking film main body 9 is peeled off from the anode gasket 3 in this separated state, the anode catalyst layer 19 can be prevented from being peeled off together, and an electrode (anode) can be formed on one surface of the electrolyte membrane 1. A decrease in electrode quality can be suppressed.

同様にして、図2(e)の状態からマスキングフィルム本体11を引き剥がす際に、マスキングフィルム本体11上の余剰ペースト27は、カソード触媒層25との間に、マスキングフィルム本体11及びカソードガスケット5による段差が形成されているので、これら両者は連続せずに互いに離間した状態となりやすい。したがって、この離間状態でマスキングフィルム本体11をアノードガスケット5から引き剥がしても、カソード触媒層25が一緒に剥がれることを抑制でき、電解質膜1の他方の表面に電極(カソード)を形成する際の電極品質の低下を抑えることができる。   Similarly, when the masking film body 11 is peeled off from the state of FIG. 2 (e), the surplus paste 27 on the masking film body 11 is between the cathode catalyst layer 25 and the masking film body 11 and the cathode gasket 5. Therefore, the two are not continuous and are likely to be separated from each other. Therefore, even if the masking film body 11 is peeled off from the anode gasket 5 in this separated state, it is possible to prevent the cathode catalyst layer 25 from being peeled off together, and when forming the electrode (cathode) on the other surface of the electrolyte membrane 1. A decrease in electrode quality can be suppressed.

また、本実施形態で製造した積層体7は、二層構造としたマスキングフィルム13(15)のうちシール材用フィルム3(5)が電解質膜1の周縁に残り、これがシール材となるので、後工程でのシール材を設ける工程を省略でき、製造工程を簡略化することができる。
また、図1(b)の状態でアノード側の触媒ペーストを塗布するときには、補強用のバックシート17を塗布側と反対側に設けてあるので、電解質膜1の皺発生を抑制でき、塗布作業の効率化及び積層体7の高品質化を達成することができる。
Moreover, since the laminated body 7 manufactured in the present embodiment has a two-layered masking film 13 (15), the sealing material film 3 (5) remains on the periphery of the electrolyte membrane 1, and this serves as a sealing material. A process of providing a sealing material in a post process can be omitted, and the manufacturing process can be simplified.
Further, when the anode side catalyst paste is applied in the state of FIG. 1B, the reinforcing back sheet 17 is provided on the side opposite to the application side, so that generation of wrinkles in the electrolyte membrane 1 can be suppressed, and the application work It is possible to achieve higher efficiency and higher quality of the laminate 7.

同様にして、図2(d)の状態でカソード側の触媒ペーストを塗布するときには、補強用の凸状バックシート23を塗布側と反対側に設けてあるので、電解質膜1の皺発生を抑制でき、塗布作業の効率化及び積層体7の高品質化を達成することができる。このとき、凸状バックシート23は、アノード触媒層19に接触するようにアノードガスケット3の電極形成領域3b内に向けて突出する凸部23aを備えているので、アノードガスケット3を設けた後であっても、補強用シートとしての機能を発揮でき、電解質膜1の皺発生を抑制できる。   Similarly, when the cathode-side catalyst paste is applied in the state of FIG. 2D, the reinforcing convex back sheet 23 is provided on the side opposite to the application side, so that generation of wrinkles on the electrolyte membrane 1 is suppressed. In addition, the efficiency of the coating operation and the high quality of the laminate 7 can be achieved. At this time, since the convex backsheet 23 includes the convex portion 23a that protrudes into the electrode forming region 3b of the anode gasket 3 so as to be in contact with the anode catalyst layer 19, after the anode gasket 3 is provided, Even if it exists, the function as a sheet | seat for reinforcement can be exhibited and generation | occurrence | production of the flaw of the electrolyte membrane 1 can be suppressed.

このように、本実施形態では、アノード側の電極を形成するときの触媒ペースト塗布時であっても、またアノード側の電極形成後のカソード側の電極を形成するときの触媒ペースト塗布時であっても、厚さが100μm〜300μmのバックシート17もしくは凸状バックシート23を備えている。このため、電解質膜1や電解質膜1に接合してあるガスケット3,5などを含む接合体の皴やうねり、変形を抑制でき、高品質な積層体7を製造することができる。   Thus, in this embodiment, even when the catalyst paste is applied when forming the anode side electrode, it is also when the catalyst paste is applied when forming the cathode side electrode after forming the anode side electrode. However, the back sheet 17 or the convex back sheet 23 having a thickness of 100 μm to 300 μm is provided. For this reason, it is possible to suppress wrinkling, undulation, and deformation of the joined body including the electrolyte membrane 1 and the gaskets 3 and 5 joined to the electrolyte membrane 1, and the high-quality laminate 7 can be manufactured.

また、本実施形態では、図4(b)に示したように、各ガスケット3,5における電極形成領域3b,5bの外側の外周部3a,5aの内周縁3d,5dを波形の凹凸形状としているので、内周縁3d,5dの周長が、直線状とした場合に比較して長くなる。
例えば、波形状を、半円形状を繰り返す形状とすれば、直線状とした場合に対し1.57(π/2)倍長くなる。これにより、圧縮された状態の各ガスケット3,5における内周縁3d,5dの電解質膜1に作用する荷重が分散され、直線状とした場合に比較して1/1.57に荷重が減少する。この結果、内周縁3d,5dの電解質膜1への食い込み量が低減するので、電解質膜1の部分的な薄肉化を抑制できて、電解質膜1の強度低下を抑制することができ、高品質な燃料電池用MEA36ひいては燃料電池を製造することが可能となる。
In the present embodiment, as shown in FIG. 4B, the inner peripheral edges 3d and 5d of the outer peripheral portions 3a and 5a outside the electrode forming regions 3b and 5b in the gaskets 3 and 5 are formed into corrugated irregular shapes. As a result, the peripheral lengths of the inner peripheral edges 3d and 5d are longer than in the case where they are linear.
For example, if the wave shape is a shape that repeats a semicircular shape, the wave shape is 1.57 (π / 2) times longer than a straight shape. As a result, the load acting on the electrolyte membrane 1 on the inner peripheral edges 3d and 5d in the compressed gaskets 3 and 5 is dispersed, and the load is reduced to 1 / 1.57 as compared with the case where the gaskets are linear. . As a result, the amount of penetration of the inner peripheral edges 3d and 5d into the electrolyte membrane 1 is reduced, so that partial thinning of the electrolyte membrane 1 can be suppressed, and the strength reduction of the electrolyte membrane 1 can be suppressed. Thus, it becomes possible to manufacture a fuel cell MEA 36 and thus a fuel cell.

また、燃料電池の運転時に、アノード,カソード間での差圧によるストレスが加わりやすい反応ガスの入口部,出口部(例えば図4(a)のA部,B部)付近や、運転時に温度の上がりやすい反応面中央に対応する部位(例えば図4(a)のC部,D部)付近については、他の部位よりも波形状を細かく形成して、周長をより長くしてもよい。これにより、上記ストレスが加わりやすい部位での荷重をより分散でき、各ガスケット3,5における内周縁3d,5dの電解質膜1への食い込み量をより低減することができる。   In addition, during operation of the fuel cell, the reaction gas is likely to be stressed due to the pressure difference between the anode and the cathode. In the vicinity of the inlet and outlet of the reaction gas (for example, A and B in FIG. 4A), In the vicinity of the part corresponding to the center of the reaction surface that is likely to rise (for example, part C and part D in FIG. 4A), the peripheral length may be made longer by forming the wave shape finer than other parts. Thereby, the load in the part where the stress is easily applied can be further dispersed, and the amount of biting into the electrolyte membrane 1 of the inner peripheral edges 3d and 5d in the gaskets 3 and 5 can be further reduced.

また、上記図4(a)のA部,B部で示す反応ガスの入口部,出口部付近や、図4(a)のC部,D部で示す反応面中央に対応する部位付近のみに、凹凸形状を設定してもよい。これにより、特にストレスが加わりやすい部位での荷重を分散でき、各ガスケット3,5における特にストレスが加わりやすい部位での内周縁3d,5dの電解質膜1への食い込み量を低減することができる。   Further, only in the vicinity of the reaction gas inlet and outlet portions shown by the A and B portions in FIG. 4A and near the site corresponding to the reaction surface center shown by the C and D portions in FIG. The uneven shape may be set. Thereby, it is possible to disperse the load at a portion where stress is particularly likely to be applied, and to reduce the amount of biting into the electrolyte membrane 1 of the inner peripheral edges 3d and 5d at the portion where stress is particularly likely to be applied.

なお、上記した波形状の凹凸形状に代えて、矩形や鋸歯などの凹凸形状により内周縁3d,5dの周長を長くしてもよい。   In addition, instead of the above-described wave-shaped uneven shape, the peripheral lengths of the inner peripheral edges 3d and 5d may be increased by an uneven shape such as a rectangle or a sawtooth.

また、図5に示すように、各ガスケット3,5の内周縁3d,5dを円弧形状とすることで、内周縁3d,5dの電解質膜1への食い込み量を低減させて、電解質膜1の強度低下を抑制することもできる。この際、図5(a)に示すレーザ加工ヘッド37から照射するレーザ光39や、図5(b)に示す熱板あるいは熱線などの発熱源41からの放射熱43によって内周縁3d,5dを溶融させることで、溶融表面を表面張力によりR形状(円弧形状)とすることができる。   Further, as shown in FIG. 5, the inner peripheral edges 3d and 5d of the gaskets 3 and 5 are formed in an arc shape, so that the amount of biting into the electrolyte film 1 by the inner peripheral edges 3d and 5d can be reduced. Strength reduction can also be suppressed. At this time, the inner peripheral edges 3d and 5d are moved by the laser light 39 irradiated from the laser processing head 37 shown in FIG. 5A and the radiant heat 43 from the heat source 41 such as a hot plate or a heat ray shown in FIG. 5B. By melting, the molten surface can be made into an R shape (arc shape) by surface tension.

なお、上記図5に示した内周縁3d,5dの円弧形状は、少なくとも電解質膜1に接触する側のみ形成するようにしてもよい。また、上記円弧形状と、前記図4(b)に示した凹凸形状を組み合わせてもよい。   The arc shape of the inner peripheral edges 3d and 5d shown in FIG. 5 may be formed only at least on the side in contact with the electrolyte membrane 1. Moreover, you may combine the said circular arc shape and the uneven | corrugated shape shown in the said FIG.4 (b).

次に、前記図3(a)に示した積層体7の製造工程ついて図6の簡略化した製造装置を用いて説明する。図1(a)に示すアノード側の二層のマスキングフィルム13を構成するマスキングフィルム本体9はフィルム供給部45から供給されて、その下流のカット手段47により、中央部分を切り抜くようにカットして開口部9aを形成すべくトリム成形する。一方、二層のマスキングフィルム13におけるアノードガスケット3は、ガスケット供給部49から供給されて、その下流のカット手段51により、図4(a)のように電極形成領域3b及び貫通孔3cを形成すべくトリム成形する。   Next, the manufacturing process of the laminate 7 shown in FIG. 3A will be described using the simplified manufacturing apparatus of FIG. The masking film main body 9 constituting the two-layer masking film 13 on the anode side shown in FIG. 1 (a) is supplied from the film supply unit 45 and cut by the cutting means 47 downstream thereof so as to cut out the central portion. Trim forming to form the opening 9a. On the other hand, the anode gasket 3 in the two-layer masking film 13 is supplied from the gasket supply section 49, and the electrode forming region 3b and the through hole 3c are formed by the cutting means 51 downstream thereof as shown in FIG. Trim as much as possible.

なお、カット手段47,51としては、本実施形態ではトムソン刃を用いて打ち抜くが、これに限ることはなく、例えばレーザ加工によって切断してもよい。   In this embodiment, the cutting means 47 and 51 are punched using a Thomson blade. However, the cutting means 47 and 51 is not limited to this, and may be cut by laser processing, for example.

上記それぞれトリム成形したマスキングフィルム本体9とアノードガスケット3は、図示しない接着剤塗布手段によって塗布したタック性接着剤により互いに接着し一体化して二層のマスキングフィルム13とする。そしてこの二層のマスキングフィルム13と、膜供給部53から供給する電解質膜1と、バックシート供給部55から供給するバックシート17とを、その下流側のホットローラなどの圧着手段57によって互いに加圧接合する(図1(b))。   The trimmed masking film body 9 and the anode gasket 3 are bonded and integrated with each other by a tacky adhesive applied by an adhesive application means (not shown) to form a two-layer masking film 13. The two-layer masking film 13, the electrolyte membrane 1 supplied from the membrane supply unit 53, and the backsheet 17 supplied from the backsheet supply unit 55 are added to each other by a pressing means 57 such as a hot roller on the downstream side. Pressure bonding is performed (FIG. 1B).

上記圧着手段57の下流の塗工手段59では、電解質膜1上に触媒ペーストを塗布してアノード触媒層19を形成し(図1(c))、その後、ヒータなどの乾燥手段61によって塗布した触媒ペーストを乾燥させる。乾燥後は、剥離手段63によってマスキングフィルム本体9をアノードガスケット3から引き剥がし(図1(d))、引き剥がしたマスキングフィルム本体9はローラ65に巻き取る。   In the coating means 59 downstream of the pressure-bonding means 57, a catalyst paste is applied on the electrolyte membrane 1 to form the anode catalyst layer 19 (FIG. 1 (c)), and then applied by a drying means 61 such as a heater. Dry the catalyst paste. After drying, the masking film main body 9 is peeled off from the anode gasket 3 by the peeling means 63 (FIG. 1 (d)), and the peeled masking film main body 9 is wound around a roller 65.

続いて、その下流側で、バックシート供給手段67から凸状バックシート23を供給し、この凸状バックシート23を上流側から送られてくるアノードガスケット3及びアノード触媒層19上に接合し(図2(b))、その後、剥離手段69によってバックシート17を電解質膜1から引き剥がし(図2(c))、引き剥がした電解質膜1はローラ71に巻き取る。   Subsequently, on the downstream side, the convex backsheet 23 is supplied from the backsheet supply means 67, and the convex backsheet 23 is joined onto the anode gasket 3 and the anode catalyst layer 19 sent from the upstream side ( After that, the back sheet 17 is peeled off from the electrolyte membrane 1 by the peeling means 69 (FIG. 2C), and the peeled electrolyte membrane 1 is wound around the roller 71.

さらに、その下流側では、カソード側の二層のマスキングフィルム15を構成するマスキングフィルム本体11がフィルム供給部73から供給されて、その下流の前記カット手段47と同様のカット手段75により、中央部分を切り抜くようにカットして開口部11aを形成すべくトリム成形する。一方、二層のマスキングフィルム15におけるカソードガスケット5は、ガスケット供給部77から供給されて、その下流の前記カット手段51と同様のカット手段79により、図4(a)のように電極形成領域5b及び貫通孔5cを形成すべくトリム成形する。   Further, on the downstream side, the masking film body 11 constituting the two-layer masking film 15 on the cathode side is supplied from the film supply unit 73, and the central portion is cut by the cutting means 75 similar to the cutting means 47 on the downstream side. Is trimmed to form an opening 11a. On the other hand, the cathode gasket 5 in the two-layer masking film 15 is supplied from the gasket supply section 77 and is cut by the same cutting means 79 as the cutting means 51 downstream thereof as shown in FIG. And trim forming to form the through holes 5c.

上記それぞれトリム成形したマスキングフィルム本体11とカソードガスケット5は、図示しない接着剤塗布手段によって塗布したタック性接着剤によって互いに接着して一体化して二層のマスキングフィルム15とする。そしてこの二層のマスキングフィルム15を、上記バックシート17を剥がした電解質膜1上に供給し、これらを前記したアノードガスケット3及び凸状バックシート23とともにホットローラなどの圧着手段81によって加圧接合する(図2(d))。   The mask film body 11 and the cathode gasket 5 that have been trim-molded are bonded and integrated with each other by a tacky adhesive applied by an adhesive application means (not shown) to form a two-layer masking film 15. Then, this two-layer masking film 15 is supplied onto the electrolyte membrane 1 from which the back sheet 17 has been peeled off, and these are pressure-bonded together with the above-described anode gasket 3 and convex back sheet 23 by means of pressure bonding means 81 such as a hot roller. (FIG. 2D).

上記圧着手段81の下流の塗工手段83では、電解質膜1上に触媒ペーストを塗布してカソード触媒層25を形成し(図2(e))、その後、ヒータなどの乾燥手段85によって塗布した触媒ペーストを乾燥させる。乾燥後は、剥離手段87によってマスキングフィルム本体11及び凸状バックシート23を引き剥がし、これら引き剥がしたマスキングフィルム本体11及び凸状バックシート23はローラ89及び91にそれぞれ巻き取る。   In the coating means 83 downstream of the pressure bonding means 81, a catalyst paste is applied on the electrolyte membrane 1 to form the cathode catalyst layer 25 (FIG. 2 (e)), and then applied by a drying means 85 such as a heater. Dry the catalyst paste. After drying, the masking film main body 11 and the convex back sheet 23 are peeled off by the peeling means 87, and the masking film main body 11 and the convex back sheet 23 thus peeled off are wound around rollers 89 and 91, respectively.

なお、前記した塗工手段59,83としては、スプレー,ダイコータ,スクリーン印刷、バーコータなど特に限定するものではない。   The coating means 59 and 83 are not particularly limited, such as spray, die coater, screen printing, and bar coater.

上記マスキングフィルム本体11及び凸状バックシート23を引き剥がした後の電解質膜1とその両側のガスケット3,5とからなる三層の連続した帯状積層体は、剥離手段87の下流側のトリミング手段93によって規定の大きさ(長さ)にカットして前記図3(a)に示した積層体7とする。   A three-layer continuous strip-shaped laminate composed of the electrolyte membrane 1 after peeling off the masking film body 11 and the convex back sheet 23 and the gaskets 3 and 5 on both sides thereof is trimmed on the downstream side of the peeling means 87. The laminated body 7 shown in FIG. 3A is cut into a predetermined size (length) by 93.

なお、上記実施形態では、アノード電極層19を先に形成しているが、カソード電極層25を先に形成するようにしてもよい。   In the above embodiment, the anode electrode layer 19 is formed first, but the cathode electrode layer 25 may be formed first.

本発明の一実施形態に係わる燃料電池電極(アノード側)の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the fuel cell electrode (anode side) concerning one Embodiment of this invention. 本発明の一実施形態に係わる燃料電池電極(カソード側)の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the fuel cell electrode (cathode side) concerning one Embodiment of this invention. (a)は図1,2の製造方法によって製造した積層体の断面図、(b)は(a)の積層体を基に製造した燃料電池用MEAの断面図である。(a) is sectional drawing of the laminated body manufactured by the manufacturing method of FIG.1, 2, (b) is sectional drawing of MEA for fuel cells manufactured based on the laminated body of (a). (a)は図3(a)におけるガスケットの平面図、(b)は(a)のガスケット内周縁の形状を拡大して示す平面図である。(A) is a top view of the gasket in Fig.3 (a), (b) is a top view which expands and shows the shape of the gasket inner periphery of (a). ガスケットの内周縁を円弧形状とする断面図で、(a)はレーザ加工によるもの、(b)は発熱源によるものである。It is sectional drawing which makes the inner periphery of a gasket circular arc shape, (a) is based on laser processing, (b) is based on a heat-generation source. 図3(a)の積層体を製造するための製造工程図である。It is a manufacturing-process figure for manufacturing the laminated body of Fig.3 (a).

符号の説明Explanation of symbols

1 固体高分子電解質膜(電解質膜)
3 アノードガスケット(シール材用フィルム)
3d アノードガスケットの内周縁
5 カソードガスケット(シール材用フィルム)
5d カソードスケットの内周縁
9,11 マスキングフィルム本体
13,15 二層構造のマスキングフィルム
17 バックシート(補強用シート)
19 アノード触媒層(電極触媒層)
23 凸状バックシート(補強用凸状シート)
25 カソード触媒層(電極触媒層)
1 Solid polymer electrolyte membrane (electrolyte membrane)
3 Anode gasket (film for sealing material)
3d Inner peripheral edge of anode gasket 5 Cathode gasket (film for sealing material)
5d Inner peripheral edge of cathode sket 9,11 Masking film body 13,15 Double layer masking film 17 Back sheet (reinforcing sheet)
19 Anode catalyst layer (electrode catalyst layer)
23 Convex Back Sheet (Convex Convex Sheet)
25 Cathode catalyst layer (electrode catalyst layer)

Claims (6)

電解質膜の表面に電極触媒層を形成する燃料電池電極積層体の製造方法において、前記電解質膜の表面に、外周部を残して中央部分が切り抜かれた二層構造のマスキングフィルムを設け、この二層構造のマスキングフィルムは、前記電解質膜の外周部の表面に接合されるシール材用フィルムと、このシール材用フィルムに対し前記電解質膜と反対側に接合されるマスキングフィルム本体とを有し、前記二層構造のマスキングフィルムの上から前記電解質膜上に前記電極触媒層となる触媒ペーストを塗布した後、前記マスキングフィルム本体を前記シール材用フィルムから剥がすことを特徴とする燃料電池電極積層体の製造方法。   In the method of manufacturing a fuel cell electrode laminate in which an electrode catalyst layer is formed on the surface of an electrolyte membrane, a masking film having a two-layer structure in which a central portion is cut out except for an outer peripheral portion is provided on the surface of the electrolyte membrane. The masking film having a layer structure has a sealing material film bonded to the surface of the outer peripheral portion of the electrolyte membrane, and a masking film body bonded to the opposite side of the electrolyte membrane with respect to the sealing material film, A fuel cell electrode laminate comprising: a catalyst paste serving as the electrode catalyst layer is applied on the electrolyte membrane from above the two-layer masking film, and then the masking film body is peeled off from the sealing material film. Manufacturing method. 前記電解質膜を間に挟んで前記二層構造のマスキングフィルムと反対側に補強用シートを設け、この補強用シートを設けた状態で前記触媒ペーストを塗布することを特徴とする請求項1に記載の燃料電池電極積層体の製造方法。   The reinforcing paste is provided on the opposite side to the masking film having the two-layer structure with the electrolyte membrane interposed therebetween, and the catalyst paste is applied in a state where the reinforcing sheet is provided. Manufacturing method of the fuel cell electrode laminate. 前記電解質膜の一方の面に前記二層構造のマスキングフィルムを設けるとともに、前記電解質膜を間に挟んで前記二層構造のマスキングフィルムと反対側に前記補強用シートを設け、前記二層構造のマスキングフィルムの上から前記電解質膜の一方の面に、前記電極触媒層としてアノード触媒層とカソード触媒層とのいずれか一方となる触媒ペーストを塗布した後、前記マスキングフィルム本体を前記シール材用フィルムから剥がし、このシール材用フィルム側に、前記切り抜かれた中央部分に対応する凸部を備える補強用凸状シートを設け、前記補強用シートを前記電解質膜から剥がした後、この剥がした後の前記電解質膜の他方の面に、前記二層構造のマスキングフィルムとは別の二層構造のマスキングフィルムを設け、この二層構造のマスキングフィルムの上から前記電解質膜の他方の面に、前記アノード触媒層とカソード触媒層とのいずれか他方となる触媒ペーストを塗布した後、前記マスキングフィルム本体を前記シール材用フィルムから剥がすとともに、前記補強用凸状シートを前記シール材用フィルム及び、前記アノード触媒層とカソード触媒層とのいずれか一方から剥がすことを特徴とする請求項1または2に記載の燃料電池電極積層体の製造方法。   The two-layered masking film is provided on one surface of the electrolyte membrane, and the reinforcing sheet is provided on the opposite side of the two-layered masking film with the electrolyte membrane interposed therebetween. After applying a catalyst paste serving as either the anode catalyst layer or the cathode catalyst layer as the electrode catalyst layer on one surface of the electrolyte membrane from above the masking film, the masking film body is attached to the sealing material film. The reinforcing sheet is provided with a convex portion corresponding to the cut-out central portion on the sealing material film side, and the reinforcing sheet is peeled off from the electrolyte membrane and then peeled off. A masking film having a two-layer structure different from the masking film having the two-layer structure is provided on the other surface of the electrolyte membrane. After applying a catalyst paste which is either the anode catalyst layer or the cathode catalyst layer to the other surface of the electrolyte membrane from above the king film, the masking film body is peeled off from the sealing material film 3. The fuel cell electrode laminate according to claim 1, wherein the reinforcing convex sheet is peeled off from one of the sealing material film and the anode catalyst layer and the cathode catalyst layer. 4. Method. 前記二層構造のマスキングフィルムのシール材用フィルムは、前記中央部分が切り抜かれた後の内周縁の少なくとも前記電解質膜に接触する側が、該内周縁に沿って凹凸形状とされていることを特徴とする請求項1ないし3のいずれか1項に記載の燃料電池電極積層体の製造方法。   The film for a sealing material of the two-layer masking film is characterized in that at least the side of the inner peripheral edge after the central portion that is cut out contacts with the electrolyte membrane has an uneven shape along the inner peripheral edge. The method for producing a fuel cell electrode laminate according to any one of claims 1 to 3. 前記凹凸形状は、前記シール材用フィルムをシール材として燃料電池に組み込んだときの反応ガスの前記電極触媒層に対する入口部近傍及び出口部近傍に設定してあることを特徴とする請求項4項に記載の燃料電池電極積層体の製造方法。 5. The uneven shape is set in the vicinity of an inlet portion and an outlet portion of a reaction gas with respect to the electrode catalyst layer when the sealing material film is incorporated in a fuel cell as a sealing material. The manufacturing method of the fuel cell electrode laminated body of description. 前記シール材用フィルムの内周縁の少なくとも前記電解質膜に接触する側の縁部が凸の曲面形状とされていることを特徴とする請求項1ないし5のいずれか1項に記載の燃料電池電極積層体の製造方法。   6. The fuel cell electrode according to claim 1, wherein at least an edge of an inner peripheral edge of the sealing material film that contacts the electrolyte membrane has a convex curved shape. A manufacturing method of a layered product.
JP2008300354A 2008-11-26 2008-11-26 Method for producing fuel cell electrode laminate Active JP5343529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008300354A JP5343529B2 (en) 2008-11-26 2008-11-26 Method for producing fuel cell electrode laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008300354A JP5343529B2 (en) 2008-11-26 2008-11-26 Method for producing fuel cell electrode laminate

Publications (2)

Publication Number Publication Date
JP2010129247A true JP2010129247A (en) 2010-06-10
JP5343529B2 JP5343529B2 (en) 2013-11-13

Family

ID=42329511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008300354A Active JP5343529B2 (en) 2008-11-26 2008-11-26 Method for producing fuel cell electrode laminate

Country Status (1)

Country Link
JP (1) JP5343529B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036007A1 (en) * 2010-09-13 2012-03-22 凸版印刷株式会社 Membrane electrode assembly, method for producing membrane electrode assembly, and fuel battery
KR101147199B1 (en) 2010-07-22 2012-05-25 삼성에스디아이 주식회사 Membrane-electrode assembly, and fuel cell stack and fablicating mthod of membrane-electrode assembly
WO2012124518A1 (en) 2011-03-15 2012-09-20 凸版印刷株式会社 Manufacturing method and manufacturing device for membrane electrode assembly for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2014013768A (en) * 2013-09-04 2014-01-23 Dainippon Printing Co Ltd Method for manufacturing membrane-catalyst layer assembly
JP2014186947A (en) * 2013-03-25 2014-10-02 Dainippon Printing Co Ltd Electrolyte membrane with support base material, manufacturing method thereof, and method of manufacturing catalyst layer-electrolyte membrane laminate using the electrolyte membrane with support base material
JP2017100110A (en) * 2015-12-04 2017-06-08 東京応化工業株式会社 Functional membrane manufacturing system, functional membrane manufacturing method, fuel cell manufacturing system and fuel cell manufacturing method
JP2018101580A (en) * 2016-12-21 2018-06-28 エムテックスマート株式会社 Method for forming electrode of pefc type fuel cell, and fuel cell
JP2018125247A (en) * 2017-02-03 2018-08-09 エムテックスマート株式会社 Method of manufacturing membrane/electrode assembly of pefc type fuel cell
WO2019035424A1 (en) * 2017-08-17 2019-02-21 エムテックスマート株式会社 Method for manufacturing catalyst-forming electrolyte membrane for pefc fuel cell
CN112825360A (en) * 2019-11-15 2021-05-21 株式会社斯库林集团 Apparatus and method for manufacturing membrane electrode assembly with auxiliary gasket
KR20220035028A (en) * 2019-07-17 2022-03-21 가부시키가이샤 스크린 홀딩스 A method for manufacturing a sub-gasket-forming membrane electrode assembly, an apparatus for manufacturing a sub-gasket-forming membrane electrode assembly, and a sub-gasket base material
CN115020725A (en) * 2022-06-08 2022-09-06 安徽明天氢能科技股份有限公司 Preparation process of long-life membrane electrode
JP2023074174A (en) * 2021-11-17 2023-05-29 エムテックスマート株式会社 Manufacturing method of fuel battery, manufacturing method of membrane electrode assembly, membrane electrode assembly, composite of membrane electrode assembly and air-permeability base material, and fuel battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339022A (en) * 2005-06-02 2006-12-14 Dainippon Printing Co Ltd Electrolyte membrane-electrode assembly with mask film for solid polymer fuel cell, and method of manufacturing same
JP2007035612A (en) * 2005-06-20 2007-02-08 Matsushita Electric Ind Co Ltd Manufacturing method of membrane-electrode assembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339022A (en) * 2005-06-02 2006-12-14 Dainippon Printing Co Ltd Electrolyte membrane-electrode assembly with mask film for solid polymer fuel cell, and method of manufacturing same
JP2007035612A (en) * 2005-06-20 2007-02-08 Matsushita Electric Ind Co Ltd Manufacturing method of membrane-electrode assembly

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9954242B2 (en) 2010-07-22 2018-04-24 Kolon Industries, Inc. Membrane-electrode assembly with a protective layer, and fuel cell stack and fabricating method of membrane-electrode assembly
KR101147199B1 (en) 2010-07-22 2012-05-25 삼성에스디아이 주식회사 Membrane-electrode assembly, and fuel cell stack and fablicating mthod of membrane-electrode assembly
WO2012036007A1 (en) * 2010-09-13 2012-03-22 凸版印刷株式会社 Membrane electrode assembly, method for producing membrane electrode assembly, and fuel battery
JPWO2012036007A1 (en) * 2010-09-13 2014-02-03 凸版印刷株式会社 Membrane electrode assembly, method for manufacturing membrane electrode assembly, and fuel cell
JP5831454B2 (en) * 2010-09-13 2015-12-09 凸版印刷株式会社 Membrane electrode assembly, method for manufacturing membrane electrode assembly, and fuel cell
WO2012124518A1 (en) 2011-03-15 2012-09-20 凸版印刷株式会社 Manufacturing method and manufacturing device for membrane electrode assembly for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2014186947A (en) * 2013-03-25 2014-10-02 Dainippon Printing Co Ltd Electrolyte membrane with support base material, manufacturing method thereof, and method of manufacturing catalyst layer-electrolyte membrane laminate using the electrolyte membrane with support base material
JP2014013768A (en) * 2013-09-04 2014-01-23 Dainippon Printing Co Ltd Method for manufacturing membrane-catalyst layer assembly
JP2017100110A (en) * 2015-12-04 2017-06-08 東京応化工業株式会社 Functional membrane manufacturing system, functional membrane manufacturing method, fuel cell manufacturing system and fuel cell manufacturing method
JP2018101580A (en) * 2016-12-21 2018-06-28 エムテックスマート株式会社 Method for forming electrode of pefc type fuel cell, and fuel cell
WO2018116875A1 (en) * 2016-12-21 2018-06-28 エムテックスマート株式会社 Method for forming electrode of pefc-type fuel cell, and fuel cell
CN110100341B (en) * 2016-12-21 2022-08-26 玛太克司马特股份有限公司 Method for forming electrode of PEFC type fuel cell and fuel cell
CN110100341A (en) * 2016-12-21 2019-08-06 玛太克司马特股份有限公司 The electrode forming method and fuel cell of PEFC type fuel cell
WO2018143179A1 (en) * 2017-02-03 2018-08-09 エムテックスマート株式会社 Method for manufacturing membrane/electrode assembly of pefc-type fuel cell
JP2018125247A (en) * 2017-02-03 2018-08-09 エムテックスマート株式会社 Method of manufacturing membrane/electrode assembly of pefc type fuel cell
JP2019036476A (en) * 2017-08-17 2019-03-07 エムテックスマート株式会社 Manufacturing method of catalyst-forming electrolyte membrane for pefc fuel cell
WO2019035424A1 (en) * 2017-08-17 2019-02-21 エムテックスマート株式会社 Method for manufacturing catalyst-forming electrolyte membrane for pefc fuel cell
CN111033849A (en) * 2017-08-17 2020-04-17 玛太克司马特股份有限公司 Method for manufacturing catalyst-formed electrolyte membrane for PEFC type fuel cell
CN111033849B (en) * 2017-08-17 2023-06-20 玛太克司马特股份有限公司 Method for manufacturing fuel cell and fuel cell
KR20220035028A (en) * 2019-07-17 2022-03-21 가부시키가이샤 스크린 홀딩스 A method for manufacturing a sub-gasket-forming membrane electrode assembly, an apparatus for manufacturing a sub-gasket-forming membrane electrode assembly, and a sub-gasket base material
KR102564101B1 (en) 2019-07-17 2023-08-04 가부시키가이샤 스크린 홀딩스 Method for manufacturing a membrane electrode assembly with a sub-gasket, apparatus for manufacturing a membrane-electrode assembly with a sub-gasket, and substrate for a sub-gasket
CN112825360A (en) * 2019-11-15 2021-05-21 株式会社斯库林集团 Apparatus and method for manufacturing membrane electrode assembly with auxiliary gasket
CN112825360B (en) * 2019-11-15 2024-04-12 株式会社斯库林集团 Apparatus and method for manufacturing membrane electrode assembly with auxiliary gasket
JP2023074174A (en) * 2021-11-17 2023-05-29 エムテックスマート株式会社 Manufacturing method of fuel battery, manufacturing method of membrane electrode assembly, membrane electrode assembly, composite of membrane electrode assembly and air-permeability base material, and fuel battery
CN115020725A (en) * 2022-06-08 2022-09-06 安徽明天氢能科技股份有限公司 Preparation process of long-life membrane electrode
CN115020725B (en) * 2022-06-08 2023-08-22 安徽明天氢能科技股份有限公司 Preparation process of long-life membrane electrode

Also Published As

Publication number Publication date
JP5343529B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5343529B2 (en) Method for producing fuel cell electrode laminate
JP6722574B2 (en) Electrolyte membrane with resin frame/electrode structure and method for manufacturing the same
JP2013517606A (en) 5-layer membrane electrode assembly having peripheral portions bonded thereto and manufacturing method thereof
JP2011065877A (en) Manufacturing method and manufacturing device of member for solid polymer fuel cell
JP2020140933A (en) Fuel cell and manufacturing method thereof
JP2002289207A (en) Manufacturing method for hydrogen ion conductive polymer membrane with catalyst layer for fuel cell
JP2009134953A (en) Membrane electrode assembly with frame, and method of continuously manufacturing fuel battery cell
KR101755506B1 (en) Component for fuel cell and manufacturing for the same
JP2013169771A (en) Pressure-bonding device of film-shaped material to be pressure-bonded and method of manufacturing membrane electrode assembly for fuel cell
JP2010062009A (en) Method for manufacturing membrane-electrode structure for fuel cell
WO2010010440A1 (en) Membrane-electrode assembly, method of producing the assembly, and solid polymer-type fuel cell employing the same
JP5954233B2 (en) Method and apparatus for manufacturing transfer roller and membrane electrode assembly
JP5979100B2 (en) Manufacturing method of membrane electrode assembly and electrolyte membrane winding roller
JP5900311B2 (en) Fuel cell and manufacturing method thereof
JP2010225463A (en) Fuel cell electrode, and manufacturing method thereof
JP5714801B2 (en) Manufacturing method of membrane electrode assembly
JP2008269909A (en) Manufacturing method of membrane electrode assembly used for fuel cell, and membrane electrode assembly
JP2007328935A (en) Fuel cell, membrane-electrode assembly used therefor, and membrane-electrode assembly manufacturing method
JP2020027792A (en) Manufacturing apparatus for assembly of cells for fuel battery
JP5201349B2 (en) Membrane-electrode assembly manufacturing method for fuel cell
JP2014086324A (en) Bonding device and bonding method
JP2013149378A (en) Bonding device
JP2008059853A (en) Manufacturing method of membrane-electrode assembly, and fuel cell
JP2023066214A (en) Gas diffusion layer for fuel cell, and method for manufacturing gas diffusion layer for fuel cell
JP2022072699A (en) Method for manufacturing separator for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Ref document number: 5343529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150