JP2023074174A - Manufacturing method of fuel battery, manufacturing method of membrane electrode assembly, membrane electrode assembly, composite of membrane electrode assembly and air-permeability base material, and fuel battery - Google Patents

Manufacturing method of fuel battery, manufacturing method of membrane electrode assembly, membrane electrode assembly, composite of membrane electrode assembly and air-permeability base material, and fuel battery Download PDF

Info

Publication number
JP2023074174A
JP2023074174A JP2021186987A JP2021186987A JP2023074174A JP 2023074174 A JP2023074174 A JP 2023074174A JP 2021186987 A JP2021186987 A JP 2021186987A JP 2021186987 A JP2021186987 A JP 2021186987A JP 2023074174 A JP2023074174 A JP 2023074174A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
electrode
membrane
spray
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021186987A
Other languages
Japanese (ja)
Inventor
正文 松永
Masafumi Matsunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mtek Smart Corp
Original Assignee
Mtek Smart Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mtek Smart Corp filed Critical Mtek Smart Corp
Priority to JP2021186987A priority Critical patent/JP2023074174A/en
Publication of JP2023074174A publication Critical patent/JP2023074174A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To manufacture a film and an electrode assembly of a fuel battery without deformation and with a peripheral edge by coating an electrolyte film thin and deformable even in the air, with an electrode ink carrying an electrolyte solution and a catalyst and made of carbon and water or water and an alcohol system.SOLUTION: A masking base material is laminated in a movement direction of a polymer electrolyte laminated onto a back sheet or an air permeability base material, and a masking base material is set so as to be orthogonal to the movement direction of the polymer electrolyte at the time of a coating start and a coating termination of the electrode on a heating suction roll. Thereby, a peripheral edge of the electrode and a non-coated part are formed by coating an electrode ink thereto.SELECTED DRAWING: Figure 4

Description

本発明はPEFC(Polymer Electrolyte membrane Fuel Cell)型燃料電池の膜・電極アッセンブリーの製造方法、及びその方法により製造された燃料電池に関する。
更に詳細には電極インクを電解質膜に直接塗布するCCM( Catalyst coated membrane)式電解質膜への電極形成方法に係る。本発明による塗布とは特に限定しないが、ロールコート、スリットダイ(スロットノズル)コート、スクリーンプリンティング、カーテンコート、ディスペンス、インクジェット、スプレイを含む霧化(含む繊維化)施与、静電霧化(含む繊維化)施与等の粒子や繊維を被塗物に塗布する工法を含み、マイクロカーテン施与も含む。
マイクロカーテンとは広角パターンのエアレススプレイノズル等で液体などを0.3MPa前後の比較的低圧でスプレイする際、霧になる前の液膜の部分を使用して被塗物とスプレイノズルを相対移動して塗布する方法であって塗面にオーバースプレイ粒子は発生しない。被塗物を通り過ぎて距離が離れると霧状に変化する。
また霧化(繊維化)施与とはスプレイによる粒子化以外に、固形微粒子を含む液体などを超音波により分散しながら霧化したり、エレクトロスピニングなどのスピン、回転体による遠心力で粒子化したり繊維化したりして塗布することである。メルトブローン方式などを液体に応用して粒子や繊維をつくりだす方法も含まれ、前記超音波霧化や遠心霧化では霧化した粒子の方向性が不安定であるので圧縮エアの力を借りて(air assist)対象物にそれらを付着あるいは塗布する工法を指す。本発明ではこれらを総称して以下スプレイとして説明する。
The present invention relates to a method for manufacturing a membrane-electrode assembly for a PEFC (Polymer Electrolyte membrane Fuel Cell) fuel cell, and a fuel cell manufactured by the method.
More specifically, the present invention relates to a method of forming electrodes on a CCM (Catalyst Coated Membrane) type electrolyte membrane in which electrode ink is directly applied to the electrolyte membrane. The application according to the present invention is not particularly limited, but includes roll coating, slit die (slot nozzle) coating, screen printing, curtain coating, dispensing, inkjet, atomization (including fiberization) application including spraying, electrostatic atomization ( It includes a method of applying particles or fibers to an object to be coated, such as application, and also includes microcurtain application.
Micro curtain is a wide-angle pattern airless spray nozzle, etc., when spraying liquid at a relatively low pressure of around 0.3 MPa. In this method, overspray particles are not generated on the coated surface. When it passes the object to be coated and the distance is increased, it changes into a mist.
In addition, atomization (fibrillation) application is not only atomization by spraying, but also atomization while dispersing liquids containing solid fine particles by ultrasonic waves, spin such as electrospinning, and particleization by centrifugal force of a rotating body. It is applied by fibrizing. It also includes a method of creating particles and fibers by applying the meltblown method to liquids. In the above-mentioned ultrasonic atomization and centrifugal atomization, the directionality of the atomized particles is unstable, so compressed air is used ( air assist) refers to a method of attaching or applying them to an object. In the present invention, these are collectively referred to as sprays below.

従来、電解質溶液と、カーボン粒子やカーボン繊維に担持した白金からなる微粉の触媒等を溶媒と混合し電極インクとしてGDL(Gas diffusion layer)に塗布して電解質膜に圧着したり、PTFEなどの離形フィルムに塗布して電解質膜に転写したりしていた。前記圧着方法や転写方式は液体が介在しないため電解質膜と電極の間抵抗が生じ燃料電池の性能を落としていた。それを解決する為CCM方式の電極触媒インクを電解質膜に直接塗布する方法が提案されている。 Conventionally, an electrolyte solution and a finely powdered catalyst made of platinum supported on carbon particles or carbon fibers are mixed with a solvent and applied as an electrode ink to a GDL (Gas diffusion layer) and pressed against an electrolyte membrane. It was applied to a mold film and transferred to an electrolyte membrane. Since the pressure bonding method and the transfer method do not involve a liquid, a resistance occurs between the electrolyte membrane and the electrode, resulting in deterioration of the performance of the fuel cell. In order to solve this problem, a method has been proposed in which a CCM type electrode catalyst ink is directly applied to the electrolyte membrane.

特許文献1は本発明者により発明されたCCM方法であって、ロール・ツー・ロール(Roll to Roll)用の電解質膜を巻き出して加熱した吸着ドラム(ロール)や吸着ベルトに吸着した状態で電極インクをスプレイ等により積層塗布し乾燥させる方法である。吸着ドラムなどの加熱により電解質膜が吸着加熱された状態でスプレイ等により薄膜で積層されるのでスプレイ粒子は電解質膜に塗着しレベリングした瞬間に溶媒が瞬時に揮発する。そのため電解質にダメージを与えずまた密着性が高まるので電極と電解質膜の界面抵抗が極限まで低くできるので理想的なCCMとして形成できる。また吸着ドラムと電解質の間に電解質膜より幅の広い通気性の紙やフィルムを介在させて電解質膜を吸引するので吸着ドラムなどの多孔体での吸着痕を残さないようにして電解質膜面全体を均一に吸引しながら塗布できるので理想であるがスプレイの場合スプレイ粒子が飛散するのでマスクが必須であった。 Patent Document 1 is a CCM method invented by the present inventor, in which a roll-to-roll electrolyte membrane is unwound and adsorbed to a heated adsorption drum (roll) or adsorption belt. In this method, the electrode ink is applied in layers by spraying or the like and then dried. Since the electrolyte membrane is adsorbed and heated by the heating of an adsorption drum or the like, it is laminated as a thin film by spraying or the like, so the spray particles adhere to the electrolyte membrane and the solvent instantly evaporates at the moment of leveling. As a result, the electrolyte is not damaged and the adhesion is enhanced, so that the interfacial resistance between the electrode and the electrolyte membrane can be reduced to the utmost limit, so that an ideal CCM can be formed. In addition, since the electrolyte membrane is sucked by interposing a permeable paper or film wider than the electrolyte membrane between the adsorption drum and the electrolyte, the entire surface of the electrolyte membrane is prevented from leaving any adsorption marks on the porous body such as the adsorption drum. It is ideal because it can be applied while uniformly sucking, but in the case of spraying, the spray particles scatter, so a mask was essential.

特許文献2も本発明者により発明された方法であって、ロール・ツー・ロール(Roll to Roll)用の電解質膜の両面に電極形状のマスクとしてのフィルムを貼り合わせたて電極形状の凹部を形成し、それを巻き出して加熱した吸着ロールや吸着ベルトで吸着しながら電極インクを積層塗布して巻き取る方法を提案している。この方式は最初からマスクが両極位置合わせできているので生産性が高く理想的であった。しかし電極部分をくり抜く構造のためくり抜いた未使用部分の材料の無駄が発生していた。また例えば電解質膜幅が250mmで電極サイズが例えば210mm × 210mmなどの真四角で未塗工部(周縁)が20mm以上と広ければ問題ないが、例えば同じ電極面積の60mm×735mmと電解質膜の長手方向に長く長方形でかつ、周縁が10mm程度と狭くかつ3つの電極を形成しようとするとくり抜かれたマスク基材そのもののハンドリングが不安定で正確なマスキングが出来なかった。 Patent document 2 is also a method invented by the present inventor, in which electrode-shaped recesses are formed by bonding films as electrode-shaped masks on both sides of an electrolyte membrane for roll-to-roll. A method is proposed in which the electrode ink is applied in layers while the electrode ink is formed, unwound, and adsorbed by a heated adsorption roll or adsorption belt, and then wound up. This method is ideal because the mask can be aligned with both poles from the beginning, resulting in high productivity. However, due to the structure in which the electrode portion is hollowed out, the unused portion of the hollowed out portion is wasted. For example, if the electrolyte membrane width is 250 mm and the electrode size is a perfect square such as 210 mm × 210 mm, and the uncoated portion (periphery) is as wide as 20 mm or more, there is no problem. The mask base material was elongated in the direction of the rectangle, had a narrow peripheral edge of about 10 mm, and when three electrodes were to be formed, the handling of the mask base itself was unstable and accurate masking could not be performed.

マスキングが正確にできて、特に水の排出と酸素の取入れで理想的な三相構造が求められる特にカソード極にマイクロポア、メソポア構造が形成できるスプレイ、特にパルス的スプレイをもって行うウェット膜でのCCM方式により高性能な膜・電極アッセンブリーを自動的に製造できる装置や方法が業界では切望されていた。塗布方法はスプレイに限定するものではなくスロットノズル等も本発明では使用することができる。スロットノズルを使用する場合長手方向や交差するマスク基材の片方あるいは両方とも使用しなくてもよいケースがあるが電極の寸法制度を高めるには必須である。 CCM in wet membranes with precise masking, especially with the ideal three-phase structure for water discharge and oxygen uptake, especially for the formation of micropore and mesopore structures at the cathode electrode, especially with pulsed spraying. The industry has longed for an apparatus and method that can automatically manufacture high-performance membrane-electrode assemblies according to the method. The application method is not limited to spraying, and a slot nozzle or the like can also be used in the present invention. When a slot nozzle is used, one or both of the longitudinal and cross mask substrates may not be used in some cases.

特開2004-351413JP 2004-351413 特開2005-63780JP 2005-63780

電解質膜は25ミクロン以下更には15ミクロン以下と薄くまた引っ張ると伸びがあり、空気中の水分でさえ簡単に変形する極めてデリケートな基材のため電極インクを直接塗布する電極形成は極めて難しく、加熱吸着ロールなどに加熱吸着した電解質膜にスプレイ法、特にインパクトパルス方式で電極インクを電解質膜界面で溶媒を瞬時に揮発させながら薄膜で積層することが求められていた。かつ電極の周囲はセパレーターやガスケットなどとアッセンブリーするための所望する寸法の未塗工部(周縁)が必要とされていた。 The electrolyte membrane is thin, less than 25 microns, or even less than 15 microns. It stretches when pulled, and is extremely delicate and easily deformed even by moisture in the air. It has been required to laminate the electrode ink as a thin film by a spray method, particularly an impact pulse method, on the electrolyte membrane heated and adsorbed by an adsorption roll or the like while instantaneously volatilizing the solvent at the interface of the electrolyte membrane. In addition, an uncoated portion (periphery) of a desired size is required around the electrode for assembly with a separator, gasket, or the like.

本発明は前述の課題を解決するためになされたもので、本発明の目的は高品質で耐久性のあるPEFC型燃料電池用膜・電極アッセンブリー(MEA)の製造方法とそのMEAを用いた燃料電池を提供することである。
より具体的にはロール・ツー・ロール(Roll to Roll)の電解質膜に直接電極インクを薄膜で塗布し、必要により積層し、電極インク未塗工部分の周縁のある高性能の膜・電極アッセンブリーを製造し、ひいては高性能の燃料電池を製造することにある。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing a high-quality and durable membrane-electrode assembly (MEA) for a PEFC fuel cell, and a fuel using the MEA. It is to provide batteries.
More specifically, a thin film of electrode ink is applied directly to the roll-to-roll electrolyte membrane, laminated as necessary, and a high-performance membrane/electrode assembly with a peripheral edge where the electrode ink is not applied. is to be manufactured, and by extension, a high-performance fuel cell is to be manufactured.

本発明はバックシートまたはサポート基材に積層された長尺の電解質膜を巻き出し装置で連続的または間欠的に巻き出して移動させ電解質膜に電極インクを塗布し、電解質膜に電極を形成して巻き取り装置で巻き取る燃料電池の膜・電極アッセンブリー製造方法であって、前記巻出し工程から、塗布開始位置までの間に電解質膜の電極の縁または周縁作成のために両側に細く長尺の第一のマスキング基材を前記電解質膜に積層する工程と、電解質膜を加熱吸着しながら塗布装置で電極インクを塗布する工程と、電極インクを乾燥させる工程と、塗布終了位置から巻き取り装置までの間に前記第一のマスキング基材を除去する工程とからなることを特徴とする燃料電池の膜・電極アッセンブリーの製造方法を提供する。 In the present invention, a long electrolyte membrane laminated on a back sheet or a support substrate is continuously or intermittently unwound by an unwinding device and moved to apply an electrode ink to the electrolyte membrane to form an electrode on the electrolyte membrane. A method for manufacturing a fuel cell membrane-electrode assembly, which is wound by a winding device, wherein a thin and long strip is formed on both sides for forming the edge or peripheral edge of the electrode of the electrolyte membrane from the unwinding step to the coating start position. laminating the first masking base material on the electrolyte membrane; applying the electrode ink with a coating device while heating and adsorbing the electrolyte membrane; drying the electrode ink; and removing the first masking substrate during the process of manufacturing a membrane-electrode assembly for a fuel cell.

本発明は前記電解質膜に形成される電極が電解質膜の幅方向に複数あることを特徴とする燃料電池の膜・電極アッセンブリーの製造方法を提供する。 The present invention provides a method of manufacturing a membrane-electrode assembly for a fuel cell, wherein a plurality of electrodes are formed on the electrolyte membrane in the width direction of the electrolyte membrane.

本発明では電解質膜の移動方向と直交して第二のマスキング基材が電極パターン塗布終了位置と電極パターン塗布開始位置の間に介在することを特徴とする燃料電池の膜・電極の製造方法を提供する。 In the present invention, there is provided a method for manufacturing membranes and electrodes for fuel cells, characterized in that a second masking substrate is interposed between an electrode pattern application end position and an electrode pattern application start position perpendicular to the moving direction of the electrolyte membrane. offer.

本発明では少なくとも第一のマスキング基材の電解質膜に積層する側に粘着剤が施与されていることを特徴とする燃料電池の膜・電極アッセンブリーの製造方法を提供する。 The present invention provides a method for manufacturing a membrane-electrode assembly for a fuel cell, characterized in that an adhesive is applied to at least the side of the first masking substrate which is to be laminated to the electrolyte membrane.

本発明では電解質膜上の少なくとも第一のマスキング基材はあらかじめ電解質膜と粘着剤を介して積層されて巻き取られていることを特徴とする燃料電池の膜・電極のアッセンブリーの製造方法を提供する。 The present invention provides a method for producing a membrane-electrode assembly for a fuel cell, wherein at least the first masking substrate on the electrolyte membrane is preliminarily laminated with the electrolyte membrane via an adhesive and wound up. do.

本発明では第一のマスキング基材の粘着剤は微粘着剤を含み、電極インクの溶媒と接触しない位置に施与され、ポーラス状または複数で間隔をあけたストライプ状に施与され前記粘着剤の施与面積はマスキング基材面積の1/2以下であることを特徴とする燃料電池の膜・電極アッセンブリーの製造方法を提供する。 In the present invention, the adhesive of the first masking substrate contains a slight adhesive, is applied to a position that does not come into contact with the solvent of the electrode ink, and is applied in a porous form or in a plurality of spaced stripes. is less than half the area of the masking base material.

本発明では電解質膜の移動方向と直交に配置される第二のマスキング基材は巻き出し及び巻き取り装置と一緒に移動可能とし、電解質膜の移動方向の電極インク塗布終了時と塗布開始時に、それらの位置に自動的に移動してマスクをすることを特徴とする燃料電池の膜・電極アッセンブリーの製造方法を提供する。 In the present invention, the second masking substrate arranged perpendicular to the moving direction of the electrolyte membrane is movable together with the unwinding and winding device, and when the electrode ink application in the moving direction of the electrolyte membrane is finished and when the coating is started, To provide a method for manufacturing a membrane-electrode assembly for a fuel cell characterized by automatically moving to those positions and masking them.

本発明はロール・ツー・ロール(Roll to Roll)で移動する燃料電池用電解質膜の片側にアノード極を、アノード極の反対側にカソード極の電極を形成した膜・電極アッセンブリー(MEA)を用いてなる燃料電池の製造を最終目的とする。そのため本発明ではバックシートが積層されている状態の電解質膜に第一の電極インクを直接塗布し、乾燥させて第一の電極を形成し、電極形成面にサポート基材などの通気性シートを積層する。また電極形成した電解質膜と積層した通気性シートがずれないように通気性シートの両サイドであって前記電解質膜上の電極に干渉しない箇所(周縁などの縁部)に剥離可能な接着剤や粘着剤を施与した通気性基材を積層して複合シートとする。複合シートとすると同時にあるいはその後、バックシートは剥離してよい。その一例として、加熱吸着ロールまたは加熱吸着ベルトに前記複合シートの通気性基材側を吸着する工程と、前記バックシートを剥離する工程と、前記電解質膜を前記通気性基材を介して加熱吸引しながら前記第一の電極の反対面の電解質膜上に第二の電極インクを塗布する工程と、前記第二の電極インクを乾燥させて第二の電極を形成する工程とからなる燃料電池の膜・電極アッセンブリーの製造方法を提供できる。更に本発明では製造したMEAにGDL(ガス拡散層)を積層することもできるし、更にガスケットやセパレーターをセットしてセルを作成し、セルを数百セット組み合わせて燃料電池にすることが出来る。 The present invention uses a membrane-electrode assembly (MEA) in which an anode electrode is formed on one side of a fuel cell electrolyte membrane that moves by roll to roll, and a cathode electrode is formed on the opposite side of the anode electrode. The ultimate goal is to manufacture a fuel cell that Therefore, in the present invention, the first electrode ink is directly applied to the electrolyte membrane on which the back sheet is laminated, dried to form the first electrode, and a breathable sheet such as a support base material is placed on the electrode forming surface. Laminate. In addition, an adhesive that can be peeled off and placed on both sides of the air-permeable sheet at places (edges such as the periphery) that do not interfere with the electrodes on the electrolyte membrane so that the electrolyte membrane on which the electrodes are formed and the laminated air-permeable sheet do not shift. A composite sheet is formed by laminating air-permeable substrates to which an adhesive has been applied. The backsheet may be peeled off at the same time as or after forming the composite sheet. As an example, the step of adsorbing the breathable substrate side of the composite sheet to a heating adsorption roll or a heating adsorption belt; a step of applying a second electrode ink on the electrolyte membrane on the opposite side of the first electrode, and a step of drying the second electrode ink to form a second electrode. A method for manufacturing a membrane-electrode assembly can be provided. Furthermore, in the present invention, a GDL (gas diffusion layer) can be laminated on the manufactured MEA, a gasket or a separator can be set to create a cell, and several hundred sets of cells can be combined to form a fuel cell.

本発明では前記電極を形成するに当たり電解質膜に自動的にマスキング基材を長手方向に積層して電解質の流れ方向に電極の未塗布部(縁)を形成できる。マスキング基材の電解質膜と接触する前記縁には粘着剤を施与できる。特に剥離後粘着剤の残渣が残りにくいような微粘着剤や、それらをポーラス状あるいは接着面積を少なくするために間隔をあけて細いストライプ状に塗工することができる。また長手方向の第一のスキング基材と直交するようにその上に、必要な個所に粘着剤を施与した第二のマスキング基材を特に第一のマスキング基材上に粘着積層し、電極形状マスク付電解質膜として塗布と同一ライン上で作成しながら、または別途作成しておき、その上から電極インクを塗布し乾燥することにより周縁のある電極を形成できる。マスキング作業は前記のように電極インク塗布のロール・ツー・ロール(Roll to Roll)ラインで行ってもよく、予め別工程で行ってもよい。 In the present invention, when forming the electrodes, a masking base material can be automatically laminated on the electrolyte membrane in the longitudinal direction to form an uncoated portion (edge) of the electrode in the flow direction of the electrolyte. An adhesive may be applied to said edge of the masking substrate that contacts the electrolyte membrane. In particular, it is possible to apply a weak adhesive that does not easily leave a residue after peeling, or to apply it in a porous form or in the form of thin stripes at intervals in order to reduce the adhesion area. In addition, a second masking base material having an adhesive applied to necessary portions is adhered and laminated on the first masking base material so as to be perpendicular to the first masking base material in the longitudinal direction, and the electrodes are formed. An electrode with a peripheral edge can be formed by forming an electrolyte membrane with a shape mask on the same line as the coating, or by forming it separately, applying an electrode ink on it, and drying it. The masking operation may be performed in the roll-to-roll line for electrode ink application as described above, or may be performed in advance in a separate process.

本発明では加熱吸着ロールを使用できるので、吸引して電解質膜に塗布された電極インクが電解質膜を濡らした後瞬時に、例えば3秒以内に溶媒量の99パーセント以上を揮発することができるので、膜と電極の密着性を高め、界面抵抗を低くできるので理想的である。またマスキング基材は溶媒がほぼ蒸発した箇所以降で巻き取りなどして除去できる。 In the present invention, since a heating adsorption roll can be used, 99% or more of the solvent amount can be volatilized instantaneously, for example, within 3 seconds after the electrode ink applied to the electrolyte membrane by suction has wetted the electrolyte membrane. , which is ideal because the adhesion between the film and the electrode can be enhanced and the interfacial resistance can be lowered. Also, the masking base material can be removed by winding it after the part where the solvent has almost evaporated.

また本発明ではスプレイ法に属するパルス的スプレイであってスプレイ粒子に更にスピードを付加した工法でありエムテックスマート株式会社の商標登録であるインパクトパルス工法を採用すれば電解質膜への触媒の密着性は更に高まる。 Further, in the present invention, if the impact pulse method, which is a pulsating spray belonging to the spray method and is a method in which speed is added to the spray particles and is a registered trademark of M-Tech Smart Co., Ltd., the adhesion of the catalyst to the electrolyte membrane is improved. further increase.

更に本発明ではスプレイ法、特にインパクトパルス工法により平方センチメートル当たりの1層の電極量を0.001~0.15ミリグラムに調整できるので例えば2~30層の電極インクの薄膜積層ができる。インパクトパルスによるスプレイ法と加熱吸着ドラムなどとの組み合わせで1層当たりの塗布量を少なくできるが、更に1層当たりの塗布量を少なくするには例えば白金触媒担持のカーボンと、電解質溶液と、水とアルコールからなる溶媒の電極インクの不揮発分量を重量比で10%以下にすることができる。さらに加熱吸着ドラム上の電解質膜への熱伝導と加熱吸着ドラムの0.5平方メートルの表面積に対して1.5乃至4kW・時の熱量を加えるので、50乃至80℃に加熱した電解質膜の溶媒の蒸発による気化熱での冷却も極めて少なくできるので不揮発分を5%以下更には1%以下にすることさえできる。 Furthermore, in the present invention, the amount of electrode ink per square centimeter can be adjusted to 0.001 to 0.15 milligrams by a spray method, particularly an impact pulse method. The amount of coating per layer can be reduced by a combination of a spray method using impact pulses and a heated adsorption drum. and alcohol as a solvent, the non-volatile content of the electrode ink can be reduced to 10% or less by weight. In addition, the solvent of the electrolyte membrane heated to 50 to 80 ° C. is added to the heat conduction to the electrolyte membrane on the heating adsorption drum and the heat amount of 1.5 to 4 kW h for the surface area of 0.5 square meters of the heating adsorption drum. Since the cooling by the heat of vaporization due to the evaporation of is also extremely small, the non-volatile content can be reduced to 5% or less, or even 1% or less.

固形分濃度を上記のようにするメリットはより薄膜にして積層すればするほど均一な触媒層が形成できる。また薄膜で積層できるので、電解質膜への負荷が少なく燃料電池の性能アップにつながる。 The advantage of setting the solid content concentration as described above is that the more the layers are made thinner, the more uniform the catalyst layer can be formed. In addition, since thin films can be stacked, the load on the electrolyte membrane is reduced, leading to improved performance of the fuel cell.

さらに本発明では加熱吸着ロール上の特に片方の電極が形成された面にサポート基材例えば通気性基材、例えば無塵紙などのマイクロポーラス基材を介して電解質膜を例えば50乃至120℃で加熱し、例えば市販の安価な60~100KPa程度の真空度の真空ポンプで吸引できるので片側に電極形成された電解質膜にダメージを与えないばかりか欠陥のない膜・電極アッセンブリーを製造できる。また前記通気性基材の両サイドに粘着剤を施与する方法は加熱吸着ロールで吸着する前のずれ防止が目的であるがグラビアロールなどを使用して粘着剤を粗に点在させてポーラス状にすることができ、電解質膜は通気性基材を通して均一に吸着される。また粘着剤は後工程で剥離させやすい微粘着剤を使用することができる。 Further, in the present invention, the electrolyte membrane is heated at, for example, 50 to 120° C. on the surface of the heating adsorption roll, on which one of the electrodes is formed, via a support substrate, such as an air-permeable substrate, such as a microporous substrate such as dust-free paper. However, since it can be sucked by, for example, a commercially available inexpensive vacuum pump with a degree of vacuum of about 60 to 100 KPa, it is possible to manufacture a defect-free membrane-electrode assembly without damaging the electrolyte membrane on which electrodes are formed on one side. In addition, the method of applying the adhesive to both sides of the air-permeable substrate is intended to prevent slippage before being adsorbed by the heating adsorption roll. The electrolyte membrane can be uniformly adsorbed through the air-permeable substrate. Also, the adhesive can be a weak adhesive that can be easily peeled off in a post-process.

真空ポンプは市販の比較的安価な例えば2002年ごろから燃料電池業界のCCMアプリケーションで採用されている60~100KPa程度の真空度がだせるオリオン社のKRF、KHA、KHHシリーズなどから選択するとよい。 The vacuum pump should be selected from commercially available relatively inexpensive ones, for example, the KRF, KHA, and KHH series of Orion, which can produce a degree of vacuum of about 60 to 100 KPa, which has been used for CCM applications in the fuel cell industry since around 2002.

本発明では25マイクロメートル更には15マイクロメートル以下で変形しやすく扱いづらい電解質膜に直接電極インクをスプレイ方法やスロットノズル方式等により塗布する方法であっても上記の理由で、薄膜で塗布して品質的に安定した膜・電極アッセンブリーを製造することができる。 In the present invention, even if the electrode ink is applied directly to the electrolyte membrane of 25 micrometers or even 15 micrometers or less, which is easily deformed and difficult to handle, by a spray method, a slot nozzle method, or the like, it is possible to apply a thin film for the above reason. A membrane-electrode assembly with stable quality can be manufactured.

上記のように本発明によればデリケートな電解質に電極インクを直接塗布しても理想的な膜・電極の界面を得ることができ、さらには高品質の電極未塗工の周縁のある膜・電極アッセンブリーを製造でき、ひいてはそのMEAを使用した燃料電池を製造できる。 As described above, according to the present invention, even if the electrode ink is directly applied to the delicate electrolyte, an ideal membrane-electrode interface can be obtained, and a high-quality electrode-uncoated membrane/electrode with a peripheral edge can be obtained. An electrode assembly can be manufactured and, in turn, a fuel cell can be manufactured using the MEA.

本発明の実施の形態に係る加熱吸着ロールで吸着した電解質膜移動方向にその上からマスキング基材を積層した構造の略断面図である。FIG. 4 is a schematic cross-sectional view of a structure in which a masking base material is laminated from above in the movement direction of an electrolyte membrane adsorbed by a heating adsorption roll according to an embodiment of the present invention; 本発明の実施の形態に係る加熱吸着ロールで吸着した電解質膜移動方向にその上からマスキング基材を積層した幅方向に関する略図である。4 is a schematic view of the width direction in which a masking base material is laminated from above in the moving direction of an electrolyte membrane adsorbed by a heating adsorption roll according to an embodiment of the present invention. 本発明の実施の形態に係る電解膜の移動方向に関する電極と未塗工部に関する図である。FIG. 4 is a diagram relating to electrodes and uncoated portions in relation to the moving direction of the electrolytic membrane according to the embodiment of the present invention; 本発明の実施の形態に係る吸着加熱ロールで吸着した電解質膜移動方向と直交方向のマスキング基材の、配置略断面図である。FIG. 4 is a schematic cross-sectional view of the arrangement of the masking substrate in the direction perpendicular to the moving direction of the electrolyte membrane adsorbed by the adsorption heating roll according to the embodiment of the present invention. 本発明の実施の形態に関する吸着加熱ロール上の電解質膜移動方向と直交して設けたマスキング装置の略断面図である。FIG. 4 is a schematic cross-sectional view of a masking device provided orthogonal to the moving direction of the electrolyte membrane on the adsorption heating roll according to the embodiment of the present invention; 図5の応用例の断面図である。FIG. 6 is a cross-sectional view of an application example of FIG. 5; 本発明の実施の形態に係る電解質膜上に電極と周縁を形成した図である。FIG. 4 is a diagram showing electrodes and peripheral edges formed on an electrolyte membrane according to an embodiment of the present invention; 本発明の実施の形態に係るバックシート、電解質膜、電解質膜の移動方向マスキング基材を積層した略断面図である。1 is a schematic cross-sectional view of lamination of a back sheet, an electrolyte membrane, and a masking base material for masking the movement direction of the electrolyte membrane according to an embodiment of the present invention. 本発明の実施の形態に係るサポート基材(通気性シート等)と、片面に電極形成した電解質膜と電解質膜の移動方向に積層したマスキング基材との該略図である。1 is a schematic diagram of a support base material (breathable sheet or the like) according to an embodiment of the present invention, an electrolyte membrane having electrodes formed on one side thereof, and a masking base material laminated in the movement direction of the electrolyte membrane. 本発明の実施の形態に係る電解質膜に両極の電極を未塗工部(周縁)分を残して形成した概略断面図である。FIG. 2 is a schematic cross-sectional view showing electrodes of both electrodes formed on an electrolyte membrane according to an embodiment of the present invention, leaving an uncoated portion (periphery). 本発明の実施の形態に係る3ヘッドの配置図である。FIG. 4 is a layout diagram of three heads according to the embodiment of the present invention; 本発明の実地の形態に係る3ヘッド直下のスプレイパターンの図である。FIG. 4 is a diagram of a spray pattern directly under three heads according to the embodiment of the invention; 本発明の実施の形態に係る3ヘッドの制御スプレイ塗布パターンの図である。FIG. 4 is a diagram of a three-head controlled spray application pattern according to an embodiment of the present invention; 本発明の実施の形態に係る3ヘッドの制御スプレイ塗布パターンによる往移動のパルス的スプレイ塗布パターンである。Fig. 3 is a pulsating spray coating pattern of forward movement by a controlled spray coating pattern of three heads according to an embodiment of the present invention; 本発明の実施の形態に係る3ヘッドの制御スプレイ塗布パターンによる復移動のパルス的スプレイ塗布パターンである。FIG. 4 is a back-moving pulsating spray coating pattern with a three-head controlled spray coating pattern according to an embodiment of the present invention; FIG. 本発明の実施の形態に係る3ヘッドの制御スプレイ塗布パターンでの往復移動によるパルス的スプレイ塗布パターンである。FIG. 10 is a pulsatile spray coating pattern with reciprocating movement in a controlled spray coating pattern of three heads according to an embodiment of the present invention; FIG. 本発明の実施の形態に係る3ヘッドの制御スプレイ塗布パターンでの往復移動による連続スプレイ塗布パターンである。FIG. 10 is a continuous spray coating pattern with reciprocating movement in a controlled spray coating pattern of three heads according to an embodiment of the present invention; FIG.

以下、図面を参照して本発明の好適な実施形態について説明する。なお、以下の実施形態は発明の理解を容易にするための一例にすぎず本発明の技術的思想を逸脱しない範囲において当業者により実施可能な付加、置換、変形等を施すことを排除するものではない。 Preferred embodiments of the present invention will be described below with reference to the drawings. It should be noted that the following embodiments are merely examples for facilitating understanding of the invention, and do not include additions, substitutions, modifications, etc. that can be implemented by those skilled in the art within the scope that does not deviate from the technical idea of the invention. isn't it.

図面は本発明の好適な実施の形態を概略的に示している。 The drawings schematically show preferred embodiments of the invention.

図1において電解質膜2を巻き出し装置8から巻き出し、加熱吸着ロール1で吸着し移動させる。加熱吸着ロールの移動は連続的に移動しても間欠的に移動しても良い。塗布装置5の手前でマスキング基材3をロール7でガイドしながら電解質膜に積層し、加熱吸着ロール上の電解質膜と一緒に移動し、塗布装置5で電極インクを電解質膜に塗布する。塗布装置はスロットノズルにすると電極インクを液膜で塗布できるのでマスキング基材にほとんど付着させずに塗布でき、塗布開始、終了も直線的な電極パターンにできることでも効果的だが、薄膜で積層するためには超音波や2流体のスプレイヘッドにすることが好ましい。所望するスプレイ流6でスプレイし塗布を行う。スプレイパターン幅は例えば5mm乃至30mmの円パターンやドーナツパターン、楕円パターンを電解質膜と直交(略直交も含むものとする)して複数例えば10乃至25個を横一列または二列に並べて空中でパターンが干渉しないようにパルス的に塗布しながら積層出来る。また同時にスプレイした時パターンが干渉しないように配置し2.5乃至15mmショートトラバースしてスプレイパターンをラップさせることができる。
スプレイヘッドは1個または数個にして電解質膜と直交してトラバースしながら連続的にまたはパルス的にスプレイ塗布することが出来る。特に少数のスプレイヘッドのそれぞれのスプレイ流が干渉しないように配置し、トラバース(往復移動)してスプレイ塗布する間は加熱吸着ロールの移動(回転)は停止する。往移動してスプレイ後、電解質膜の移動方向に所望する長さ往でスプレイした電解質膜上の電極スプレイパターンと復でスプレイするスプレイパターンがラップするように加熱吸着ロールを移動(回転)して停止させ、復移動させながらスプレイ塗布しこれを繰り返す。少数ヘッドでトラバースして塗布する方法で電解質膜を連続的に移動させて塗布したい場合、片方移動で塗布し逆移動は塗布しない方法でそれを繰り返すと均一塗布が可能である。例えば3ヘッドのトータル有効パターンが45mmの場合は往でスプレイし、復はスプレイせず、往復の所要時間で45mm進むようにすればよい。また塗着効率の観点からスプレイ時の往のスピードは100mm/秒以下が良く、復のスピードは2倍の200mm/秒以上にすると生産性の面で好適である。
マスキング基材を積層する場所は巻き出し装置8の巻き出し部から塗布位置までの間のいずれの場所でもよい。また塗布装置や手段は前記したようにスロットノズルなどでもよくスプレイに限定するものでない。
塗布が終了したら所望する位置でマスキング基材を巻き取るなどの除去を行えばよい。マスキング基材の除去は塗布終了位置から巻き取り装置9までの間のいずれの箇所でも良い。またマスキング基材3には電解質膜と接する面に接着剤や粘着剤を施与してもよい。加熱や溶媒雰囲気に耐え、剥離した時電解質膜上に残渣の残らないものであれば尚良い。またマスキング基材の粘着剤は電解質膜から剥離しやすいようにポーラス状にまたは間隔をあけた細いストライプ上にしてマスキング基材の面積の2/3以下好ましくは1/3以下にするとよい。更に粘着剤はズレ防止で良いので移動方向に間隔を10乃至100mmあけてスポット的に施与して粘着面積は1/100以下にしても良い。
In FIG. 1, the electrolyte membrane 2 is unwound from the unwinding device 8, adsorbed by the heating adsorption roll 1, and moved. The movement of the heating adsorption roll may be continuous or intermittent. Before the coating device 5, the masking substrate 3 is guided by the roll 7 to be laminated on the electrolyte membrane, moved together with the electrolyte film on the heating adsorption roll, and the electrode ink is coated on the electrolyte membrane by the coating device 5. - 特許庁If the coating device uses a slot nozzle, the electrode ink can be applied as a liquid film, so it can be applied with almost no adhesion to the masking substrate, and it is also effective in that the electrode pattern can be formed linearly at the start and end of coating, but it is effective because it is laminated with a thin film. An ultrasonic or two-fluid spray head is preferred for this purpose. Application is carried out by spraying with the desired spray stream 6 . The spray pattern width is, for example, a circular pattern, a donut pattern, or an elliptical pattern having a width of 5 mm to 30 mm. It can be layered while applying in pulses so that it does not occur. Also, when sprayed at the same time, the patterns can be arranged so that they do not interfere, and the spray patterns can be overlapped by short traversing of 2.5 to 15 mm.
One or several spray heads can be used to apply a continuous or pulsating spray while traversing the electrolyte membrane perpendicularly. In particular, a small number of spray heads are arranged so that the spray streams do not interfere with each other, and the movement (rotation) of the heating adsorption roll is stopped while traversing (reciprocating) and spray coating. After moving forward and spraying, the heating adsorption roll is moved (rotated) so that the electrode spray pattern on the electrolyte membrane that is sprayed forward and the spray pattern that is sprayed backward over a desired length in the movement direction of the electrolyte membrane overlap. Stop and repeat the spray coating while moving back. When it is desired to apply by moving the electrolyte membrane continuously by the method of applying by traversing with a small number of heads, uniform application is possible by repeating the method of applying by one side movement and not applying by reverse movement. For example, if the total effective pattern of the three heads is 45 mm, it is possible to spray in the forward direction and not to spray in the reverse direction, and advance 45 mm in the time required for the round trip. From the viewpoint of coating efficiency, the forward speed during spraying should be 100 mm/sec or less, and the reverse speed should be doubled to 200 mm/sec or more, which is preferable in terms of productivity.
The place where the masking base material is laminated may be any place between the unwinding section of the unwinding device 8 and the coating position. Also, the coating device and means may be a slot nozzle or the like as described above, and is not limited to spraying.
After the coating is completed, the masking base material may be removed at a desired position by, for example, winding it up. The removal of the masking base material may be performed anywhere from the coating end position to the winding device 9 . Also, the masking base material 3 may be applied with an adhesive or a pressure-sensitive adhesive on the surface thereof in contact with the electrolyte membrane. Anything that can withstand heating and a solvent atmosphere and that leaves no residue on the electrolyte membrane when peeled off is even better. Also, the adhesive of the masking base material should be formed in a porous form or in the form of thin stripes at intervals so as to be easily peeled off from the electrolyte membrane, and the area of the masking base material should be 2/3 or less, preferably 1/3 or less. Furthermore, since the adhesive is sufficient to prevent displacement, it may be applied spotwise at intervals of 10 to 100 mm in the direction of movement to reduce the adhesive area to 1/100 or less.

図2は図1の構成の詳細であって加熱吸着ロール1で吸着された電解質膜2にマスキング基材3をガイドロール7で電解質膜2に押し付けながら積層できる。マスキング基材はテープで予め粘着剤が施与されていてもよい。3列のマスキング基材3で真ん中のマスキング基材3’の幅は両端のマスキング基材幅の2倍にして電極の移動方向の未塗工部を形成でき、2列の未塗工部幅が同じ周縁の片面の電極や両極を形成したMEAを製造できる。
3列の電極形成を所望する場合、マスキング部材3は4列必要になる。また両サイドのマスキング基材幅より中央寄りのマスキング基材幅はMEAの所望する未塗工部にするため広く例えば2倍にしたらよい。
塗布装置5は電解質膜の進行方向と直交してトラバース装置でトラバースしながら連続的にまたはパルス的にスプレイ塗布できる。トラバースして塗布する間、加熱吸着ロールは回転を停止することが出来る。1個の塗布装置5によるスプレイパターン6または複数の塗布装置による複合パターンで塗布できる。電解質膜を連続的に移動する場合はトラバース装置による往復移動の片方移動のみ、つまり往路のみ、または復路のみスプレイ塗布を行うと塗布分布を均一にできる。その場合、塗布移動する例えば往路のスピードを遅く例えば100mm/秒以下にして塗着効率を高め、塗布しない復路のスピードを2倍以上の200mm/秒以上にすると生産性を高めることが出来る。電解質膜2の外側で図示していない基材に電極インクをパルス的に塗布して、塗布ブース外に移動して塗布重量測定室のシャッターを閉にして塗布重量を計測できる。塗布重量は目標の塗布重量でない場合はパルス数、吐出時間、トラバーススピード、液圧等を微調整できるがパルスの吐出時間を0.01乃至0.1mm/秒刻みで調整するとより微調整が可能で都度計量できるので容易である。
FIG. 2 shows the details of the configuration of FIG. The masking substrate may be pre-adhered with tape. The width of the middle masking base material 3' in the three rows of masking base materials 3 is double the width of the masking base materials at both ends to form an uncoated part in the moving direction of the electrodes, and the width of the two uncoated parts is It is possible to manufacture an MEA in which one-sided electrodes or both electrodes are formed on the same periphery.
If it is desired to form three rows of electrodes, four rows of masking members 3 are required. Also, the width of the masking base material near the center may be made wider than the width of the masking base material on both sides, for example, twice in order to make the desired uncoated portion of the MEA.
The coating device 5 can perform continuous or pulsed spray coating while traversing the electrolyte membrane perpendicularly to the advancing direction of the electrolyte membrane. The heated suction roll can stop rotating while traversing and coating. It can be applied in a spray pattern 6 by a single applicator 5 or in a composite pattern by a plurality of applicators. When the electrolyte membrane is continuously moved, the coating distribution can be made uniform by spraying only one side of the reciprocating movement by the traverse device, that is, only the outward movement or only the return movement. In this case, for example, the forward speed of the coating movement is slowed down to, for example, 100 mm/sec or less to increase the coating efficiency, and the return speed of the non-coated pass is doubled to 200 mm/sec or more to increase productivity. Electrode ink is pulse-applied to a substrate (not shown) outside the electrolyte membrane 2, and the coating weight can be measured by moving out of the coating booth and closing the shutter of the coating weight measurement chamber. If the coating weight is not the target coating weight, the number of pulses, ejection time, traverse speed, liquid pressure, etc. can be finely adjusted, but finer adjustment is possible by adjusting the pulse ejection time in increments of 0.01 to 0.1 mm/second. It is easy because it can be weighed each time.

図3は電解質膜に電極インクを塗布しマスキング部材を外した電極10と電極インク未塗工部11(電解質膜)である。 FIG. 3 shows the electrode 10 and the electrode ink uncoated portion 11 (electrolyte membrane) after applying the electrode ink to the electrolyte membrane and removing the masking member.

図4は図1で移動する電解質膜に直交して配置する第二のマスキング基材12を付加している。第二のマスキング基材12は電解質膜への未塗工部を設けるタイミングで塗布装置6の下に移動する。電解質移動方向の第一のマスキング基材の上に配置して電極インクをスプレイして四角形のパターンを製造してよく、また第二のマスキング基材のみを使用してスロットノズルで電極インクを電解質膜の進行方向はシャープに塗布して、低圧で電極インクの塗布開始時に流量が多くパターンがハンマーのように広がるハンマーヘッドパターン部のみを第二のマスキング基材部への塗布で電解質膜への影響を解消し、または塗布終了も同じように第二のマスキング基材上で終了することにより電極インクを均一に塗布し電極形成ができる。 FIG. 4 adds a second masking substrate 12 positioned orthogonal to the moving electrolyte membrane in FIG. The second masking base material 12 moves under the coating device 6 at the timing of providing an uncoated portion of the electrolyte membrane. The electrode ink may be sprayed onto a first masking substrate in the direction of electrolyte migration to produce a square pattern, and only the second masking substrate may be used to apply the electrode ink to the electrolyte with slot nozzles. The film is applied in a sharp direction, and when the electrode ink starts to be applied at low pressure, the flow rate is high and the pattern spreads like a hammer. By eliminating the influence or similarly finishing the coating on the second masking base material, the electrode ink can be uniformly coated and the electrodes can be formed.

図5は第二のマスキング基材12を所望するタイミングで移動させる。塗布装置5で第二のマスキング基材上に塗布された電極インクは所望する塗布回数または時間ごとに第二のマスキング基材12の巻き出し装置15で巻き出され、自動的に巻き取り装置16で電極インクが、ある厚みに付着した第二のマスキング基材を巻き取ることができる。 In FIG. 5, the second masking substrate 12 is moved at desired timing. The electrode ink applied on the second masking base material by the coating device 5 is unwound by the unwinding device 15 of the second masking base material 12 for each desired number of coatings or time, and is automatically wound by the winding device 16. , the electrode ink can be rolled up to a certain thickness on the second masking substrate.

図6は図5の応用タイプで第2のマスキング基材の巻き出し装置15と巻き取り装置16は片側にあって図示されないブラケット等でつながっているフリーロール30とガイドロール31経由で巻き取ることが出来る。 FIG. 6 shows an application type of FIG. 5 in which the unwinding device 15 and the winding device 16 for the second masking base material are on one side and are wound via a free roll 30 and a guide roll 31 connected by a bracket or the like (not shown). can be done.

図7は電解質膜2上の第一のマスキング基材と第二のマスキング基材の複合で形成された電極10と未塗工部11とからなり、未塗工部が裁断されて周縁11が形成される。 FIG. 7 shows an electrode 10 formed by a composite of a first masking base material and a second masking base material on an electrolyte membrane 2, and an uncoated part 11. The uncoated part is cut to form a peripheral edge 11. It is formed.

図8はバックシート17に積層された電解質膜2上にマスキングフィルムが積層された構成であって、この構成で加熱吸着ロールにより吸着され第一の電極インクが塗布される。 FIG. 8 shows a configuration in which a masking film is laminated on the electrolyte membrane 2 laminated on the back sheet 17. In this configuration, the first electrode ink is applied by being adsorbed by the heating adsorption roll.

図9は第一の電極が形成された電解質膜にマスキング基材3が積層され第一の電極側にサポート基材18が積層してある。サポート基材18の両サイドには粘着剤19が施与されており、粘着剤19と電解質膜が接触している。サポート基材は多孔性フィルムや無塵紙などの通気性基材が電解質膜の未塗工部や電極を吸着できるので第二の電極インクを塗布する際、電解質膜の変形を防止できるので望ましい。通気性フィルムや無塵紙は電極の白金などが担持されたカーボンに粒子が移行しない通気のサイズや構造であることが望ましい。通気性フィルムや市販の無塵紙を使用することで加熱吸着ドラムの吸着孔径は0.1mm乃至0.6mmでよく、ピッチも千鳥パターンで0.7mm乃至2mmで真空度60乃至100KPaの真空ポンプを使用することで十分な吸着効果が得られ、電極インクを50乃至120℃程度の内50乃至80℃程度に加熱した電解質膜に塗布することで電解質膜を変形することはない。 In FIG. 9, the masking base material 3 is laminated on the electrolyte membrane on which the first electrode is formed, and the support base material 18 is laminated on the first electrode side. An adhesive 19 is applied to both sides of the support base material 18, and the adhesive 19 and the electrolyte membrane are in contact with each other. The support substrate is preferably a breathable substrate such as a porous film or dust-free paper because it can adsorb the uncoated portions of the electrolyte membrane and the electrodes, thereby preventing deformation of the electrolyte membrane when the second electrode ink is applied. It is desirable that the air-permeable film and dust-free paper have a size and structure that allow air to pass through so that particles do not migrate to carbon on which platinum or the like of the electrode is supported. By using a breathable film or a commercially available dust-free paper, the suction hole diameter of the heating suction drum can be 0.1 mm to 0.6 mm, the pitch is 0.7 mm to 2 mm in a staggered pattern, and a vacuum pump with a degree of vacuum of 60 to 100 KPa is used. A sufficient adsorption effect is obtained by using the electrode ink, and the electrolyte membrane is not deformed by applying the electrode ink to the electrolyte membrane heated to about 50 to 80.degree.

図10は本発明により電解質膜2の両面に第一の電極10と第二の電極10’と未塗工部を形成し、未塗工部を裁断してMEA20を製造する図である。 FIG. 10 is a view showing the manufacturing of MEA 20 by forming a first electrode 10, a second electrode 10', and uncoated portions on both sides of an electrolyte membrane 2 according to the present invention, and cutting the uncoated portions.

図11は電解質膜の進行方向と直交して移動しスプレイする3つのヘッド5-a,5-b,5-cの配置である。塗布ヘッドは1個でも良く5個でもそれ以上でも良い。スプレイパターンを一定の大きさにした時ヘッド数を増やすことにより生産スピードを上げることができる。複数ヘッドにする時それぞれのスプレイ流が干渉しないように配置することが均一な塗布を行う上で重要である。 FIG. 11 shows the arrangement of three heads 5-a, 5-b, and 5-c that move and spray perpendicularly to the advancing direction of the electrolyte membrane. The number of coating heads may be one, or five or more. Production speed can be increased by increasing the number of heads for a given spray pattern size. When multiple heads are used, it is important to arrange them so that the spray streams do not interfere with each other in order to achieve uniform coating.

図12は3つのヘッドの直下のスプレイ塗布パターン41,42,43である。それぞれパターンは干渉しないように配置されている。 FIG. 12 shows spray coating patterns 41, 42 and 43 directly under the three heads. The patterns are arranged so as not to interfere with each other.

図13は3つのヘッドが電解質膜の移動方向と直交して往復移動してスプレイを行う際、塗布パターンが電解質膜の移動方向に一列に並ぶように塗布タイミングを制御している。塗布パターン41,42,43は少しラップするようにそれぞれのヘッドを配置したほうが重ね塗りの観点から良い。 In FIG. 13, when the three heads reciprocate perpendicularly to the moving direction of the electrolyte membrane to perform spraying, the coating timing is controlled so that the coating patterns are aligned in the moving direction of the electrolyte membrane. From the viewpoint of overcoating, it is better to arrange the respective heads so that the coating patterns 41, 42, and 43 are slightly overlapped.

図14はスプレイヘッドの往移動でそれぞれのヘッドからパルス的にスプレイされヘッドの移動方向のパルス的パターン41,42,43は十分重ね塗りを行っている。往移動の間、電解質膜及び図示しない加熱吸着ロールは停止している。 In FIG. 14, the pulsating patterns 41, 42 and 43 in the moving direction of the head are sprayed from each head in the forward movement of the spray head, and the pulsating patterns 41, 42 and 43 are sufficiently overlapped. During forward movement, the electrolyte membrane and the heating adsorption roll (not shown) are stopped.

図15は復移動するにあたりパターン41,42,43を十分ラップさせるために加熱吸着ロールと一緒に電解質膜をオフセット移動させる。それぞれのパターン幅が例えば20mmの時は10mmオフセット移動し、例えば30mmの時は15mmオフセット移動させると良い。
次の往移動のスプレイ開始は各パターンが例えば20mmの時は3ヘッドの制御パターンの合計60mmより半分のパターン10mmを差し引いた50mmだけ加熱吸着ロールと一緒に電解質膜を移動させて行うと均一な電極の形成ができる。
FIG. 15 shows offset movement of the electrolyte membrane together with the heated adsorption rolls to sufficiently wrap the patterns 41, 42, 43 in the backward movement. For example, when the width of each pattern is 20 mm, the offset is moved by 10 mm, and when the width is 30 mm, the offset is moved by 15 mm.
When each pattern is 20 mm, for example, when the spraying of the next forward movement is started, the electrolyte film is moved by 50 mm, which is the total of 60 mm of the control pattern of the three heads minus the half pattern of 10 mm, and the electrolyte membrane is moved together with the heating adsorption roll to achieve uniformity. Electrodes can be formed.

図16は電解質膜2の両サイドにマスキング基材3が積層されている。電極インクはパルス的にスプレイされる。周縁近くの電極インクの塗布量も均一にするにはスプレイパターンの半分以上がマスキング基材に付着する構成にするとよい。マスキング基材にほとんどパターンが付着しないようにして周縁付近の塗布量を少なめにすることもできる。 In FIG. 16, the masking base material 3 is laminated on both sides of the electrolyte membrane 2 . The electrode ink is sprayed in pulses. In order to make the coating amount of the electrode ink near the periphery uniform, it is preferable that more than half of the spray pattern adheres to the masking base material. It is also possible to reduce the coating amount in the vicinity of the periphery so that the pattern hardly adheres to the masking substrate.

図17は図16のパルス的スプレイを連続的にスプレイできる構成にしている。連続スプレイのメリットはパルス的スプレイの50~100mm/秒の往復移動スピードを例えば1.5~10倍にできるので電極形成の処理量を多くできる。しかしスピードが速ければ早いほどスプレイ流が移動風に煽られ塗着効率は激減する。 FIG. 17 shows a configuration in which the pulsating spray of FIG. 16 can be continuously sprayed. The merit of the continuous spray is that the reciprocating speed of 50 to 100 mm/sec of the pulse spray can be increased by, for example, 1.5 to 10 times, so that the throughput of electrode formation can be increased. However, the faster the speed, the more the spray flow is swayed by the moving wind, and the coating efficiency is drastically reduced.

本発明によれば周縁のあるPEFC燃料電池用膜・電極アッセンブリー(MEA)を製造でき、電解膜に直接電極インクを塗布して乾燥して電極形成するCCM方式で行うので高品質をもって製造できる。 According to the present invention, a membrane-electrode assembly (MEA) for a PEFC fuel cell with a peripheral edge can be manufactured, and it can be manufactured with high quality because it is performed by the CCM method in which electrode ink is directly applied to the electrolytic membrane and dried to form an electrode.

1 加熱吸着ロール
2 電解質膜
3 第一のマスキング基材
4 電極付き電解質膜
5 塗布装置
6 スプレイ流
7 ガイドロール
8 電解質膜巻き出し装置
9 電解質膜巻き取り装置
10 第一の電極
10’ 第二の電極
11 電極インク未塗工部(周縁部)
12 第二の(直交)マスキング基材
15 第二のマスキング基材巻き出し装置
16 第二のマスキング部材巻き取り装置
17 バックシート
18 サポート基材(通気性基材)
19 粘着剤
20 膜・電極アッセンブリー(MEA)
30 フリーロール
31 ガイドロール
41、42、43 スプレイパターン
Reference Signs List 1 heating adsorption roll 2 electrolyte membrane 3 first masking substrate 4 electrolyte membrane with electrodes 5 coating device
6 Spray flow 7 Guide roll 8 Electrolyte membrane unwinding device 9 Electrolyte membrane winding device
10 first electrode 10' second electrode 11 electrode ink uncoated portion (periphery)
12 second (perpendicular) masking substrate 15 second masking substrate unwinding device 16 second masking member winding device 17 backsheet 18 support substrate (breathable substrate)
19 adhesive 20 membrane electrode assembly (MEA)
30 free roll 31 guide roll 41, 42, 43 spray pattern

Claims (7)

電解質膜の片面に電極インクを塗布装置で直接塗布し乾燥して電極を形成し、前記電解質膜の反対面に反対極を形成した膜電極アッセンブリーからなる燃料電池の製造方法であって、前記電解質膜の移動方向と直交して移動する複数のスプレイ塗布装置を配置する工程と、該スプレイ塗布装置の移動方向に前後して複数の塗布装置を複数列配置しスプレイする工程と、片方の列のスプレイパターンの軌跡間に他列のスプレイパターンが塗布されるように設置する工程と、前記電解質膜の移動方向と直交するスプレイ塗布装置の移動はオフセットしながら移動し、連続スプレイまたはパルス的スプレイでスプレイし前記スプレイパターンは複数回積層し電解質膜の少なくとも片方の電極はマスクにより電極と未塗工部からなる周縁を形成してなる膜電極アッセンブリーを用いてなることを特徴とする燃料電池の製造方法。 A method for manufacturing a fuel cell comprising a membrane electrode assembly in which an electrode ink is directly applied to one side of an electrolyte membrane by a coating device and dried to form an electrode, and an opposite electrode is formed on the opposite side of the electrolyte membrane, wherein the electrolyte is A step of arranging a plurality of spray coating devices that move perpendicular to the moving direction of the film, a step of arranging a plurality of rows of coating devices in front and behind the moving direction of the spray coating devices and spraying, and a step of spraying in one row. The step of installing the spray pattern so that it is applied in another row between the trajectories of the spray pattern, and the movement of the spray coating device perpendicular to the moving direction of the electrolyte membrane are offset while moving, and continuous spray or pulsed spray is performed. Manufacture of a fuel cell characterized by using a membrane electrode assembly in which the spray pattern is laminated a plurality of times, and at least one electrode of the electrolyte membrane forms a peripheral edge consisting of the electrode and the uncoated portion with a mask. Method. 電解質膜の両面に電極形成してなる膜電極アッセンブリーからなる燃料電池であって、電解質膜を加熱吸着する工程と、少なくとも電解質膜の片面に電極インクを直接、連続スプレイ塗布またはパルス的スプレイ塗布する工程と、塗布後の前記電極インクの溶媒を瞬時に揮発させても電極に少なくともメソポアを形成する工程とからなることを特徴とする請求項1の燃料電池の製造方法。 A fuel cell comprising a membrane electrode assembly in which electrodes are formed on both sides of an electrolyte membrane, wherein the electrolyte membrane is heated and adsorbed, and the electrode ink is applied directly to at least one side of the electrolyte membrane by continuous spray coating or pulsed spray coating. and forming at least mesopores in the electrode even if the solvent of the applied electrode ink is instantly volatilized. 長尺の電解質膜の移動方向と直交して横一列又は二列に10乃至25個の塗布ヘッドを配置し、該塗布ヘッドをショートトラバースしてパルス的にスプレイパターンをラップさせて膜電極アッセンブリーを用いてなることを特徴とする燃料電池の製造方法。 10 to 25 application heads are arranged in one or two horizontal rows perpendicular to the movement direction of the long electrolyte membrane, and the application heads are short traversed to wrap the spray pattern in a pulsed manner to form the membrane electrode assembly. A method for manufacturing a fuel cell, characterized by using: 電解質膜の両面に電極形成してなる膜電極アッセンブリーの製造方法であって、電解質膜を加熱吸着する工程と、連続スプレイ塗布法またはインパクトパルス的スプレイ法でスプレイ粒子にスピードを持って電解質膜に塗布する工程と、塗布後の前記電極インクの溶媒を瞬時に揮発させて前記スプレイ塗布をオフセットして複数層積層して電極に少なくともメソポアを形成する工程とからなることを特徴とする膜電極アッセンブリーの製造方法。 A method for manufacturing a membrane electrode assembly in which electrodes are formed on both sides of an electrolyte membrane, comprising a step of heating and adsorbing the electrolyte membrane, and a continuous spray coating method or an impact pulse spray method to spray particles onto the electrolyte membrane with speed. and forming at least mesopores in the electrode by laminating a plurality of layers by instantly volatilizing the solvent of the electrode ink after coating to offset the spray coating. manufacturing method. 電解質膜の両面に電極形成してなる膜電極アッセンブリーであって、電解質膜を加熱吸着して移動し、少なくとも電解質膜の片面に電極インクを複数列の複数のスプレイ塗布装置で前記電解質膜の移動方向と直交して移動し連続スプレイ法またはインパクトパルス的スプレイ法でスプレイ粒子にスピードを持って電解質膜に塗布し塗布後の前記電極インクの溶媒を瞬時に揮発させ乾燥し、積層を繰り返して複数層積層することで電極に少なくともメソポアを形成してなることを特徴とする膜電極アッセンブリー。 A membrane electrode assembly in which electrodes are formed on both sides of an electrolyte membrane, the electrolyte membrane is heated and adsorbed to move, and the electrode ink is applied to at least one side of the electrolyte membrane by a plurality of rows of a plurality of spray coating devices to move the electrolyte membrane. It moves perpendicular to the direction and is applied to the electrolyte membrane with speed by a continuous spray method or an impact pulse spray method. A membrane electrode assembly characterized by forming at least mesopores in an electrode by laminating layers. 長尺の電解質膜の両面に電極が形成され、少なくとも片面にはマスクにより複数の電極と電極の外に未塗工部が形成され、該電解質膜未塗工部は通気性基材に施与された剥離可能な粘着剤または接着剤が積層されてなる膜電極アッセンブリーと通気性基材の複合体。 Electrodes are formed on both sides of a long electrolyte membrane, and at least one side is formed with a plurality of electrodes and an uncoated portion outside the electrodes by a mask, and the electrolyte membrane uncoated portion is applied to the air-permeable substrate. A composite of a membrane electrode assembly and an air-permeable substrate, in which a peelable pressure-sensitive adhesive or adhesive is laminated. 電解質膜の両面に電極形成してなる膜電極アッセンブリーからなる燃料電池であって、電解質膜を加熱吸着し移動し、少なくとも電解質膜の片面に電極インクを複数列の複数のスプレイ塗布装置を前記電解質膜の移動方向と直交して移動し連続スプレイ塗布法またはインパクトパルス的スプレイ法でスプレイ粒子にスピードを持って電解質膜に塗布し前記電極インクの溶媒を瞬時に揮発させ乾燥し、積層を繰り返して複数層積層することで電極にマイクロポア及びメソポアを形成してなる膜電極アッセンブリーを用いてなることを特徴とする燃料電池。 A fuel cell comprising a membrane electrode assembly in which electrodes are formed on both sides of an electrolyte membrane, wherein the electrolyte membrane is heated and adsorbed and moved, and electrode ink is applied to at least one side of the electrolyte membrane by a plurality of rows of spray coating devices. The electrode ink is applied to the electrolyte membrane with speed by a continuous spray coating method or an impact pulse spray method, moving perpendicular to the moving direction of the membrane, and instantaneously volatilizing the solvent of the electrode ink, drying, and repeating lamination. 1. A fuel cell comprising a membrane electrode assembly in which micropores and mesopores are formed in an electrode by laminating a plurality of layers.
JP2021186987A 2021-11-17 2021-11-17 Manufacturing method of fuel battery, manufacturing method of membrane electrode assembly, membrane electrode assembly, composite of membrane electrode assembly and air-permeability base material, and fuel battery Pending JP2023074174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021186987A JP2023074174A (en) 2021-11-17 2021-11-17 Manufacturing method of fuel battery, manufacturing method of membrane electrode assembly, membrane electrode assembly, composite of membrane electrode assembly and air-permeability base material, and fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021186987A JP2023074174A (en) 2021-11-17 2021-11-17 Manufacturing method of fuel battery, manufacturing method of membrane electrode assembly, membrane electrode assembly, composite of membrane electrode assembly and air-permeability base material, and fuel battery

Publications (1)

Publication Number Publication Date
JP2023074174A true JP2023074174A (en) 2023-05-29

Family

ID=86537782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021186987A Pending JP2023074174A (en) 2021-11-17 2021-11-17 Manufacturing method of fuel battery, manufacturing method of membrane electrode assembly, membrane electrode assembly, composite of membrane electrode assembly and air-permeability base material, and fuel battery

Country Status (1)

Country Link
JP (1) JP2023074174A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070863A (en) * 1999-07-02 2001-03-21 Toyota Motor Corp Liquid applying device, rotary member used for the same and its production
JP2005063780A (en) * 2003-08-11 2005-03-10 Nordson Corp Electrolyte membrane. electrolyte membrane complex, manufacturing method of electrolyte membrane complex, electrolyte membrane/electrode assembly for fuel cell, manufacturing method of electrolyte membrane/electrode assembly for fuel cell, and fuel cell
US20050208354A1 (en) * 2002-05-29 2005-09-22 Robert Hahn Proton-conducting polymer membrane and method for the production thereof
US20070031717A1 (en) * 2002-11-04 2007-02-08 Mcdonald Robert C Composite proton exchange membrane and method of manufacturing the same
JP2007095464A (en) * 2005-09-28 2007-04-12 Honda Motor Co Ltd Method of manufacturing electrolyte structure
JP2010129247A (en) * 2008-11-26 2010-06-10 Nissan Motor Co Ltd Method for manufacturing electrode stack of fuel cell
JP2013161557A (en) * 2012-02-02 2013-08-19 Panasonic Corp Manufacturing method of film-catalyst layer junction and manufacturing apparatus of film-catalyst layer junction
JP2018125247A (en) * 2017-02-03 2018-08-09 エムテックスマート株式会社 Method of manufacturing membrane/electrode assembly of pefc type fuel cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070863A (en) * 1999-07-02 2001-03-21 Toyota Motor Corp Liquid applying device, rotary member used for the same and its production
US20050208354A1 (en) * 2002-05-29 2005-09-22 Robert Hahn Proton-conducting polymer membrane and method for the production thereof
US20070031717A1 (en) * 2002-11-04 2007-02-08 Mcdonald Robert C Composite proton exchange membrane and method of manufacturing the same
JP2005063780A (en) * 2003-08-11 2005-03-10 Nordson Corp Electrolyte membrane. electrolyte membrane complex, manufacturing method of electrolyte membrane complex, electrolyte membrane/electrode assembly for fuel cell, manufacturing method of electrolyte membrane/electrode assembly for fuel cell, and fuel cell
JP2007095464A (en) * 2005-09-28 2007-04-12 Honda Motor Co Ltd Method of manufacturing electrolyte structure
JP2010129247A (en) * 2008-11-26 2010-06-10 Nissan Motor Co Ltd Method for manufacturing electrode stack of fuel cell
JP2013161557A (en) * 2012-02-02 2013-08-19 Panasonic Corp Manufacturing method of film-catalyst layer junction and manufacturing apparatus of film-catalyst layer junction
JP2018125247A (en) * 2017-02-03 2018-08-09 エムテックスマート株式会社 Method of manufacturing membrane/electrode assembly of pefc type fuel cell

Similar Documents

Publication Publication Date Title
WO2018143179A1 (en) Method for manufacturing membrane/electrode assembly of pefc-type fuel cell
CN113054227B (en) Method for manufacturing fuel cell and fuel cell
WO2020162284A1 (en) Method for manufacturing all-solid-state battery
CN110100341B (en) Method for forming electrode of PEFC type fuel cell and fuel cell
CN111033849B (en) Method for manufacturing fuel cell and fuel cell
WO2020145214A1 (en) Method for manufacturing all-solid-state battery
WO2007086531A1 (en) Method of applying and drying liquid
JP2023175697A (en) Coating method and coating device
JP2023074174A (en) Manufacturing method of fuel battery, manufacturing method of membrane electrode assembly, membrane electrode assembly, composite of membrane electrode assembly and air-permeability base material, and fuel battery
JP2022178501A (en) Method for manufacturing membrane/electrode assembly, method for manufacturing laminate of membrane/electrode assembly and air-permeable substrate, laminate of membrane/electrode assembly and air-permeable substrate, method for manufacturing fuel cell, and fuel cell
JP2021034227A5 (en)
WO2023042765A1 (en) Battery electrode forming method, production method for membrane electrode assembly, membrane electrode assembly, and fuel cell or water electrolysis hydrogen generator
CN109807009B (en) Roll-to-roll coating equipment for base material
JP4993915B2 (en) Liquid application and drying method
JP2022172677A (en) Method for manufacturing laminate of membrane electrode assembly and gas-permeable substrate, laminate of membrane electrode assembly and gas-permeable substrate, and method for manufacturing fuel cell
JP2022031474A (en) Fuel cell manufacturing method and fuel cell
JP2021082597A (en) Manufacturing method of fuel battery, and fuel battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230620