JP2014181394A - High strength cast steel material for structure - Google Patents

High strength cast steel material for structure Download PDF

Info

Publication number
JP2014181394A
JP2014181394A JP2013057740A JP2013057740A JP2014181394A JP 2014181394 A JP2014181394 A JP 2014181394A JP 2013057740 A JP2013057740 A JP 2013057740A JP 2013057740 A JP2013057740 A JP 2013057740A JP 2014181394 A JP2014181394 A JP 2014181394A
Authority
JP
Japan
Prior art keywords
cast steel
strength
less
mass
strength cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013057740A
Other languages
Japanese (ja)
Other versions
JP6153747B2 (en
Inventor
Takuo Handa
卓雄 半田
Shimin Ryu
志民 劉
Naotoshi Kurusu
直敏 来栖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chuzo Co Ltd
Original Assignee
Nippon Chuzo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chuzo Co Ltd filed Critical Nippon Chuzo Co Ltd
Priority to JP2013057740A priority Critical patent/JP6153747B2/en
Publication of JP2014181394A publication Critical patent/JP2014181394A/en
Application granted granted Critical
Publication of JP6153747B2 publication Critical patent/JP6153747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength cast steel material for a structure having high strength and extensibility, and excellent in low temperature toughness and heating embrittlement property.SOLUTION: There is provided high strength cast steel material for a structure containing, by mass%, C:0.15 to 0.3%, Si:0.2 to 0.7%, Mn:0.4 to 1.2%, P:0.015% or less, S:0.015% or less, Ni:2 to 3%, Cr:0.1 to 0.5%, Mo:0.3 to 0.5%, V:0.05 to 0.15%, Ca:0.01 to 0.05% and the balance Fe with inevitable impurities and having contents of Ca and S, by mass%, satisfying a relationship of S×2≤Ca≤S×4 and contents C and V, by mass%, satisfying a relationship of C×0.3≤V≤C×0.6.

Description

本発明は、土木・建設用機械部品(以下、土建機械部品と記す)や土木・建築部材を始めとする各種構造部品・部材に適した強度、延性、靱性のいずれにも優れ、かつ加熱脆化の小さい構造用高強度鋳鋼材に関する。   The present invention is excellent in strength, ductility, and toughness suitable for various structural parts and members including civil engineering / construction machine parts (hereinafter referred to as earthworking machine parts) and civil engineering / architectural parts, and is heat brittle. The present invention relates to a structural high-strength cast steel having a small size.

土建機械部品(例えば、駆動輪、履帯)や土木・建築部材(例えば、継手、ベース)等の素材には高強度で形状自由度が大きいことが求められる。このような要求の背景には、大型化に伴う総重量の増加を抑制したいというニーズが存在するためである。これらの素材となる鉄鋼材料としては一般に圧延鋼材や鍛鋼材、および鋳鋼材が適用されるが、通常、低温で脆化する傾向があり、土建機械部品においてはそれが原因で折損事故が発生し、また土木・建築部材においては地震時の被害を大きくする問題がある。そのため、いずれも低温において十分な靱性をもっていることが必要となる。   Materials such as earthen machinery parts (for example, driving wheels and crawler belts) and civil engineering / building members (for example, joints and bases) are required to have high strength and a high degree of freedom in shape. This is because there is a need to suppress the increase in the total weight accompanying the increase in size in the background of such a request. Rolled steel, forged steel, and cast steel are generally used as the steel materials that are used as these materials, but they usually tend to become brittle at low temperatures. In addition, civil engineering and building materials have a problem of increasing damage during an earthquake. Therefore, it is necessary that both have sufficient toughness at low temperatures.

これらの部品は現地で溶接施工されることが多く、応力除去熱処理が不可能な場合があり、出荷段階では高靱性であっても溶接時の加熱によって脆化し、前記の問題を起こすことがある。また、土建機械部品のうち耐摩耗性が要求されるものでは、高硬度を得るために完全焼き戻し温度以下の脆化温度域で焼き戻しを行う必要があり、このときの脆化が大きいと折損のおそれがある。   These parts are often welded on-site, and stress-relieving heat treatment may not be possible, and even at high levels of toughness, they may become brittle by heating during welding and cause the above-mentioned problems. . In addition, in the construction machinery parts that require wear resistance, in order to obtain high hardness, it is necessary to perform tempering in an embrittlement temperature range below the complete tempering temperature. There is a risk of breakage.

これら鉄鋼材料のうち鋳鋼材は形状の自由度において圧倒的に圧延鋼材や鍛鋼材より優れるが、同一強度の圧延鋼材や鍛鋼材と比べて延性と靱性が低い。一方、圧延鋼材や鍛鋼材は低温靭性以外の材料特性に大きな問題はないが製品形状の自由度に制限があるため、設計者が求める複雑形状化や薄肉化要求に十分対応できないという問題がある。   Among these steel materials, cast steel materials are overwhelmingly superior to rolled steel materials and forged steel materials in the degree of freedom of shape, but have lower ductility and toughness than rolled steel materials and forged steel materials having the same strength. On the other hand, rolled steel and forged steel have no major problems in material properties other than low-temperature toughness, but there is a problem in that they cannot sufficiently meet the complex shape and thinning requirements required by designers because of the limited freedom of product shape. .

このような背景から、近年、高強度で延性と靱性を兼備えた鋳鋼材の開発が行われつつある。例えば特許文献1には、焼入性倍数や溶接性指数により成分組成を限定した鋳鋼材が提案されており、特許文献2には、ベイナイトパラメータや高じん性倍数、炭素当量、溶接割れ感受性により成分組成を限定した鋳鋼材が提案されている。また、本発明の出願人による特許文献3では、熱処理時の冷却速度の影響が小さく、均一なベイナイト組織となる成分組成を見出し、強度のばらつきの少ない高延靭性鋳鋼材を実現している。さらに、低温靱性に優れる鋼材として、特許文献4、5、6などが提案されている。   Against this background, in recent years, cast steel materials having high strength and having both ductility and toughness are being developed. For example, Patent Document 1 proposes a cast steel material whose component composition is limited by a hardenability multiple or weldability index, and Patent Document 2 discloses a bainite parameter, a high toughness multiple, a carbon equivalent, and a weld crack sensitivity. A cast steel material having a limited component composition has been proposed. Moreover, in patent document 3 by the applicant of this invention, the influence of the cooling rate at the time of heat processing is small, the component composition used as a uniform bainite structure is found, and the highly ductile cast steel material with few intensity dispersion | variation is implement | achieved. Further, Patent Documents 4, 5, 6 and the like have been proposed as steel materials having excellent low temperature toughness.

特許第3509634号公報Japanese Patent No. 3509634 特許第3536001号公報Japanese Patent No. 3553601 特許第4790512号公報Japanese Patent No. 4790512 特開平11−323434号公報Japanese Patent Laid-Open No. 11-323434 特開2008−248382号公報JP 2008-248382 A 特開2002−256380号公報JP 2002-256380 A

しかし、特許文献1および特許文献2の材料はいずれも引張強さが700MPa前後で強度が不十分であり、特許文献3は920MPa以上の引張強さと12%以上の伸びを実現しているが、480℃付近で加熱されると靱性が大きく低下し、現地施工が前提となる用途には適用できないという問題がある。   However, the materials of Patent Document 1 and Patent Document 2 both have a tensile strength of around 700 MPa and insufficient strength, and Patent Document 3 realizes a tensile strength of 920 MPa or more and an elongation of 12% or more. When heated at around 480 ° C., the toughness is greatly reduced, and there is a problem that it cannot be applied to applications that require on-site construction.

また、特許文献4および特許文献5の材料は引張強さが600〜800MPa前後で強度が不十分であり、特許文献6は860MPa以上の強度をもっているが、化学組成や結晶粒径の厳密な制御が必須であり、いずれも鋳造のままで用いられる鋳鋼材としては適用が困難である。   Further, the materials of Patent Document 4 and Patent Document 5 have a tensile strength of about 600 to 800 MPa and insufficient strength, and Patent Document 6 has a strength of 860 MPa or more. However, the chemical composition and crystal grain size are strictly controlled. Are indispensable, and any of them is difficult to apply as a cast steel material used as cast.

このように従来技術では、土建機械部品や土木・建築部材等の構造部品・部材に必要な引張強さ、延性、低温靱性および加熱脆化特性を同時に有する、形状自由度の高い素材としての鋳鋼材を得ることは困難である。   As described above, in the prior art, cast steel as a material having a high degree of freedom of shape, which simultaneously has the necessary tensile strength, ductility, low temperature toughness and heat embrittlement characteristics for structural parts and members such as civil engineering machinery parts and civil engineering / building materials. It is difficult to obtain the material.

本発明はかかる事情に鑑みてなされたものであって、高い強度と延性を有し、低温靱性および加熱脆化特性に優れた構造用高強度鋳鋼材を提供することを課題とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a structural high-strength cast steel material having high strength and ductility and excellent in low-temperature toughness and heat embrittlement characteristics.

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、以下の点に着目した。
(i)ベース材の化学成分組成を特定の範囲に規定することにより、高い強度と低温靱性を合わせもつ機械的性質とする。
(ii)Ni量を規定して加熱による脆化を抑制する。
(iii)S量に応じたCaを加え、硫化物をCa硫化物にして延靭性を得る。
(iv)高温焼戻しや溶接等に伴う強度低下をV炭化物の生成によって相殺する。
As a result of intensive studies to solve the above problems, the present inventors have focused on the following points.
(I) By defining the chemical composition of the base material within a specific range, the base material has mechanical properties having both high strength and low temperature toughness.
(Ii) The amount of Ni is specified to suppress embrittlement due to heating.
(Iii) Ca corresponding to the amount of S is added, and the sulfide is changed to Ca sulfide to obtain ductility.
(Iv) The strength reduction caused by high temperature tempering or welding is offset by the formation of V carbide.

本発明は、以上の点に基づいてなされたもので、以下の(1)〜(5)を提供する。   This invention was made | formed based on the above point, and provides the following (1)-(5).

(1) 質量%で、
C:0.15〜0.3%
Si:0.2〜0.7%
Mn:0.4〜1.2%
P :0.015%以下
S :0.015%以下
Ni:2〜3%
Cr:0.1〜0.5%
Mo:0.3〜0.5%
V :0.05〜0.15%
Ca:0.01〜0.05%
を含有し、
かつ
CaおよびSの含有量が質量%で
S×2≦Ca≦S×4
の関係を満足し、
CおよびVの含有量が質量%で
C×0.3≦V≦C×0.6
の関係を満足し、
残部がFeおよび不可避的不純物からなることを特徴とする構造用高強度鋳鋼材。
(1) In mass%,
C: 0.15-0.3%
Si: 0.2-0.7%
Mn: 0.4 to 1.2%
P: 0.015% or less S: 0.015% or less Ni: 2-3%
Cr: 0.1 to 0.5%
Mo: 0.3-0.5%
V: 0.05 to 0.15%
Ca: 0.01 to 0.05%
Containing
And the content of Ca and S is mass% S × 2 ≦ Ca ≦ S × 4
Satisfied with the relationship
The content of C and V is mass%, and C × 0.3 ≦ V ≦ C × 0.6
Satisfied with the relationship
A structural high-strength cast steel characterized in that the balance consists of Fe and inevitable impurities.

(2)上記(1)において、前記CaをNi+Ca合金によって添加することを特徴とする構造用高強度鋳鋼材。   (2) The structural high-strength cast steel material according to (1), wherein the Ca is added by a Ni + Ca alloy.

(3)上記(1)または(2)において、C+Si/24+Mn/6+Ni/40+Mo/4+Cr/5+V/14
で示される炭素当量の値が、質量%で0.6%以下であることを特徴とする構造用高強度鋳鋼材。
(3) In the above (1) or (2), C + Si / 24 + Mn / 6 + Ni / 40 + Mo / 4 + Cr / 5 + V / 14
A high-strength cast steel for structural use, characterized in that the value of carbon equivalent represented by is 0.6% or less by mass%.

(4)上記(1)〜(3)のいずれかにおいて、引張強さ≧920MPa、伸び≧12%、−40℃衝撃吸収エネルギー≧27J(2mmVノッチシャルピー衝撃試験片)を同時に満足することを特徴とする構造用高強度鋳鋼材。   (4) In any one of the above (1) to (3), the tensile strength ≧ 920 MPa, the elongation ≧ 12%, the −40 ° C. impact absorption energy ≧ 27 J (2 mmV notch Charpy impact test piece) is satisfied at the same time. Structural high-strength cast steel.

(5)上記(1)〜(4)のいずれかにおいて、480℃、10時間の脆化処理後の0℃衝撃吸収エネルギーが、600℃焼戻し値の50%以上であることを特徴とする構造用高強度鋳鋼材。   (5) The structure according to any one of the above (1) to (4), wherein the 0 ° C. impact absorption energy after the embrittlement treatment at 480 ° C. for 10 hours is 50% or more of the 600 ° C. tempering value. High strength cast steel material.

本発明によれば、合金組成を適切に規定することにより、高い強度と延性を有し、低温靱性および加熱脆化特性に優れ、溶接性も良好な構造用高強度鋳鋼材を提供することができ、その効果はきわめて顕著である。   According to the present invention, by appropriately defining the alloy composition, it is possible to provide a structural high-strength cast steel material having high strength and ductility, excellent low-temperature toughness and heat embrittlement characteristics, and good weldability. And the effect is very remarkable.

Ni含有量と引張強さおよび加熱脆化率との関係を示す図である。It is a figure which shows the relationship between Ni content, tensile strength, and heating embrittlement rate. 鋳鋼材の機械的性質を評価するための供試材形状を示す図である。It is a figure which shows the test material shape for evaluating the mechanical property of cast steel materials.

以下、本発明の限定理由について詳細に説明する。なお、特に断らない限り成分における%表示は質量%である。   Hereinafter, the reason for limitation of the present invention will be described in detail. In addition, unless otherwise indicated, the% display in a component is the mass%.

[化学成分]
C:0.15〜0.3%
Cは鋳鋼材の強度および焼入れ性向上に有効な元素である。また、Vと結びついて微細炭化物を形成し、焼戻し軟化抵抗性を向上させ、熱処理条件管理が容易になる他、溶接熱影響部の機械的性質の低下を防止する。しかし、その含有量が0.15%未満では920MPa以上の引張強さを得ることができず、また0.3%を超えると延性と靭性が低下し、溶接割れが発生しやすくなる。したがって、C含有量を0.15〜0.3%の範囲とする。
[Chemical composition]
C: 0.15-0.3%
C is an element effective for improving the strength and hardenability of cast steel. Moreover, it combines with V to form fine carbides, improves temper softening resistance, facilitates heat treatment condition management, and prevents deterioration of the mechanical properties of the weld heat affected zone. However, if the content is less than 0.15%, a tensile strength of 920 MPa or more cannot be obtained, and if it exceeds 0.3%, ductility and toughness are lowered, and weld cracking is likely to occur. Therefore, the C content is in the range of 0.15 to 0.3%.

Si:0.2〜0.7%
Siは脱酸および湯流れ性改善を目的として添加する元素である。しかし、その含有量が0.2%未満では溶鋼の湯流れ性が低く、鋳造品質の劣化を招く。一方、Siはフェライト生成元素であり、0.7%を超えると冷却速度が遅い厚肉部にフェライトを析出させ強度が低下する。したがって、Si含有量を0.2〜0.7%の範囲とする。
Si: 0.2-0.7%
Si is an element added for the purpose of deoxidation and improvement of hot water flow. However, if its content is less than 0.2%, the molten steel has low flowability, which leads to deterioration of casting quality. On the other hand, Si is a ferrite-forming element, and when it exceeds 0.7%, ferrite is precipitated in a thick portion where the cooling rate is slow, and the strength is lowered. Therefore, the Si content is in the range of 0.2 to 0.7%.

Mn:0.4〜1.2%
Mnは鋳鋼材の強度および焼入れ性向上に有効な元素であり、脱酸効果も有する。しかし、その含有量が0.4%未満ではその効果が少なく、1.2%を超えると延性と靭性が低下するとともに溶接性を劣化させる。したがって、Mn含有量を0.4〜1.2%の範囲とする。
Mn: 0.4 to 1.2%
Mn is an element effective for improving the strength and hardenability of the cast steel material, and also has a deoxidizing effect. However, if the content is less than 0.4%, the effect is small, and if it exceeds 1.2%, ductility and toughness are lowered and weldability is deteriorated. Therefore, the Mn content is in the range of 0.4 to 1.2%.

Ni:2〜3%
Niは高強度と高延性および高い低温靭性の他、小さな加熱脆化性を同時に得ようとする本発明において最も重要な元素である。Niは鋳鋼材の強度および焼入れ性に有効な元素であるが、同様効果のある他の元素と異なり、延性、靭性および溶接性に及ぼす悪影響が小さい。また、Niはオーステナイト安定化作用の大きい元素であり、フェライト変態域を長時間側へ移動させ、ベイナイト変態域が拡大することにより、冷却速度の遅い厚肉部においてもフェライト析出を抑え、高い強度が得られる。しかし、Niが2%未満では920MPa以上の引張強さが得られず、3%超では加熱脆化率が50%超となって脆化が顕著に表れるようになる。図1はNi以外の元素を固定してNi単独の影響を調べたものであるが、上記結果が明確に示されている。したがって、Ni含有量を2〜3%の範囲とする。
Ni: 2-3%
Ni is the most important element in the present invention for simultaneously obtaining small heat embrittlement in addition to high strength, high ductility and high low temperature toughness. Ni is an element that is effective for the strength and hardenability of cast steel, but unlike other elements that have the same effect, Ni has little adverse effect on ductility, toughness, and weldability. Ni is an element that has a large austenite stabilizing effect, and by moving the ferrite transformation region to a long time side and expanding the bainite transformation region, ferrite precipitation is suppressed even in a thick portion where the cooling rate is slow, and high strength is achieved. Is obtained. However, if Ni is less than 2%, a tensile strength of 920 MPa or more cannot be obtained, and if it exceeds 3%, the heating embrittlement rate exceeds 50%, and embrittlement becomes prominent. FIG. 1 shows the effect of Ni alone while fixing elements other than Ni. The above results are clearly shown. Therefore, the Ni content is in the range of 2-3%.

Cr:0.1〜0.5%
Crは鋳鋼材の強度向上に有効な元素である。しかし、0.1%未満ではその効果が少なく、0.5%を超えるとフェライト変態域を拡大して冷却速度が遅い厚肉部にフェライトを析出させ、強度が低下するとともに炭素当量が増加し溶接性を低下させる。したがって、Cr含有量を0.1〜0.5%の範囲とする。
Cr: 0.1 to 0.5%
Cr is an effective element for improving the strength of cast steel. However, when the content is less than 0.1%, the effect is small. When the content exceeds 0.5%, the ferrite transformation region is expanded, and ferrite is deposited on the thick wall portion where the cooling rate is slow. Reduce weldability. Therefore, the Cr content is in the range of 0.1 to 0.5%.

Mo:0.3〜0.5%
Moは鋳鋼材の焼入れ性を向上させるとともに焼戻し脆化を抑制するために添加する。しかし、0.3%未満ではその効果が少なく、0.5%を超えるとその効果得られなくなり、フェライト変態域を拡大して冷却速度が遅い厚肉部にフェライトを析出させ、却って強度が低下するとともに炭素当量が増加し溶接性を低下させる。したがって、Mo含有量を0.3〜0.5%の範囲とする。
Mo: 0.3-0.5%
Mo is added to improve the hardenability of the cast steel and to suppress temper embrittlement. However, if less than 0.3%, the effect is small, and if it exceeds 0.5%, the effect cannot be obtained. Ferrite is precipitated in the thick part where the ferrite transformation region is expanded and the cooling rate is slow, and the strength is lowered. At the same time, the carbon equivalent increases and weldability decreases. Therefore, the Mo content is set to a range of 0.3 to 0.5%.

V:0.05〜0.15%
VはCと結びついて炭化物を形成し、焼戻し軟化抵抗性を高めることにより、焼戻し熱処理時の強度維持に有効な元素であり、焼戻し熱処理条件管理が容易になる他、溶接熱影響部の機械的性質の低下を防止することができる。0.05%未満ではその効果が不十分で、0.15%超では延性と靭性が低下する。したがって、V含有量を0.05〜0.15%の範囲とする。
V: 0.05-0.15%
V is an element effective in maintaining strength during tempering heat treatment by forming carbides by combining with C and increasing temper softening resistance. It is possible to prevent deterioration of properties. If it is less than 0.05%, the effect is insufficient, and if it exceeds 0.15%, ductility and toughness are lowered. Therefore, the V content is in the range of 0.05 to 0.15%.

P:0.015%以下
S:0.015%以下
PおよびSは母材の靱性に大きな影響を及ぼす元素である。それぞれ0.015%を超えて含有されると母材の靱性を著しく低下させる。したがってPおよびSの含有量を0.015%以下とする。
P: 0.015% or less S: 0.015% or less P and S are elements that greatly affect the toughness of the base material. If each content exceeds 0.015%, the toughness of the base material is significantly reduced. Therefore, the P and S contents are set to 0.015% or less.

Ca:0.01〜0.05%
CaはSと結びついて高融点硫化物を形成し、低融点のFeSやMnSが結晶粒界に生成するのを防止し、延性を向上させる効果がある。Sを0.015%以下含有する場合において、Ca含有量が0.01%未満ではその効果がほとんど得られず、0.05%を超えるとS含有量に対して過剰になり、単に材料費の増大を招くだけである。したがって、Ca含有量を0.01〜0.05%の範囲とする。
Ca: 0.01 to 0.05%
Ca combines with S to form a high melting point sulfide, and has the effect of preventing low melting point FeS and MnS from forming at the grain boundaries and improving ductility. In the case where S is contained in an amount of 0.015% or less, the effect is hardly obtained if the Ca content is less than 0.01%. It will only lead to an increase. Therefore, the Ca content is in the range of 0.01 to 0.05%.

S×2≦Ca≦S×4
さらに、Ca含有量をS量に応じて調整することが好ましい。Ca<S×2ではCaの効果が小さく、Ca>S×4では効果が飽和し材料費の増大を招く。したがって、Ca含有量は、S×2≦Ca≦S×4の範囲とする。
S × 2 ≦ Ca ≦ S × 4
Furthermore, it is preferable to adjust Ca content according to S amount. When Ca <S × 2, the effect of Ca is small, and when Ca> S × 4, the effect is saturated and the material cost increases. Therefore, the Ca content is in the range of S × 2 ≦ Ca ≦ S × 4.

なお、CaはCa含有合金で添加され、Ca−Si等によって添加することもできるが、Caは酸素との反応性が高く、高歩留まりで添加するためには、95%Ni−5%Ca等のNi−Ca合金で添加することが好ましい。   Ca is added as a Ca-containing alloy and can be added by Ca-Si or the like. However, Ca is highly reactive with oxygen, and 95% Ni-5% Ca or the like is used in order to add at a high yield. It is preferable to add the Ni-Ca alloy.

C×0.3≦V≦C×0.6
既述のようにVはCと結びついて炭化物を形成することにより機械的性質を向上させる。しかし、VがC×0.3未満では十分な強度が得られず、C×0.6超では強度向上効果が飽和し材料費の増大を招く。したがって、C×0.3≦V≦C×0.6の範囲とする。
C × 0.3 ≦ V ≦ C × 0.6
As described above, V is combined with C to form a carbide to improve mechanical properties. However, if V is less than C × 0.3, sufficient strength cannot be obtained, and if it exceeds C × 0.6, the strength improvement effect is saturated and the material cost increases. Therefore, C × 0.3 ≦ V ≦ C × 0.6.

C+Si/24+Mn/6+Ni/40+Mo/4+Cr/5+V/14≦0.6%
C+Si/24+Mn/6+Ni/40+Mo/4+Cr/5+V/14で示される炭素当量は溶接性を評価する値である。炭素当量が0.6%を超えると硬化性が大きくなるため、低温割れの発生や溶接部の延性低下などを防止するには特別な熱管理が必要になる。したがって、炭素当量は0.6%以下とすることが好ましい。なお、必要に応じて、本発明組成範囲で溶接構造用鋳鋼品(JIS G5102)鋼種と同等の炭素当量に調整することも可能である。
C + Si / 24 + Mn / 6 + Ni / 40 + Mo / 4 + Cr / 5 + V / 14 ≦ 0.6%
The carbon equivalent represented by C + Si / 24 + Mn / 6 + Ni / 40 + Mo / 4 + Cr / 5 + V / 14 is a value for evaluating weldability. When the carbon equivalent exceeds 0.6%, the curability increases, and special thermal management is required to prevent the occurrence of cold cracking and the deterioration of the ductility of the weld. Therefore, the carbon equivalent is preferably 0.6% or less. In addition, it is also possible to adjust to a carbon equivalent equivalent to the cast steel product for welded structure (JIS G5102) within the composition range of the present invention as necessary.

なお、上記組成を有する合金成分の残部は、Feおよび不可避不純物である。   The balance of the alloy component having the above composition is Fe and inevitable impurities.

[製造条件]
本発明では製造条件は特に限定されず、通常の鋳鋼材で採用される条件で製造することができる。例えば、本発明の成分組成を有する溶鋼を製品形状の鋳型に流し込み、凝固させた後、800〜1000℃程度で加熱後、水冷等の急冷処理を行い、焼戻し処理を行うことにより本発明の鋳鋼材を得る。
[Production conditions]
In the present invention, the production conditions are not particularly limited, and the production can be carried out under the conditions employed for ordinary cast steel materials. For example, after casting molten steel having the component composition of the present invention into a product-shaped mold and solidifying it, heating at about 800 to 1000 ° C., performing rapid cooling treatment such as water cooling, and performing tempering treatment, the cast steel of the present invention Get the material.

[特性]
本発明により、引張強さ≧920MPa、伸び≧12%、−40℃衝撃吸収エネルギー≧27J(2mmVノッチシャルピー衝撃試験片)を同時に満足する特性の構造用高強度鋳鋼材を得ることができる。また、480℃、10時間の脆化処理後の0℃衝撃吸収エネルギーが、600℃焼戻し値の50%以上という、加熱による脆化が少ない鋳鋼材を得ることができる。
[Characteristic]
According to the present invention, it is possible to obtain a structural high-strength cast steel material having characteristics satisfying simultaneously tensile strength ≧ 920 MPa, elongation ≧ 12%, and −40 ° C. impact absorption energy ≧ 27 J (2 mmV notch Charpy impact test piece). Moreover, the cast steel material with few embrittlement by heating that the 0 degree C impact absorption energy after 480 degreeC and the embrittlement process for 10 hours is 50% or more of 600 degreeC tempering value can be obtained.

以下、本発明の実施例について説明する。
表1に示す各化学組成の鋳鋼材を30kg高周波誘導炉で大気溶解し、図2に示すJIS G0307の図1bに準拠した試験体を鋳造した。鋳型にはCOプロセス珪砂型を用いた。表1のNo.1〜10は本発明例であり、No.11〜17は比較例である。
Examples of the present invention will be described below.
Cast steel materials having respective chemical compositions shown in Table 1 were dissolved in the atmosphere in a 30 kg high-frequency induction furnace, and a test body conforming to FIG. 1b of JIS G0307 shown in FIG. 2 was cast. A CO 2 process silica sand mold was used as a mold. No. in Table 1 1 to 10 are examples of the present invention. 11 to 17 are comparative examples.

試験体は920℃で1時間保持した後に水冷し、600℃、2時間の焼戻し処理を行った。一部の試験体は引き続き「475脆化」と呼ばれ、最も脆化が起きやすい480℃で10時間の加熱処理を行った。   The specimen was held at 920 ° C. for 1 hour, then cooled with water, and tempered at 600 ° C. for 2 hours. Some specimens were subsequently referred to as “475 embrittlement” and were subjected to a heat treatment at 480 ° C. for 10 hours where embrittlement is most likely to occur.

これらの試験体から引張試験用としてJIS−Z2241、14A号試験片、シャルピー衝撃試験用としてJIS−Z2242、2mmVノッチ試験片を作成した。引張試験は20℃で、シャルピー衝撃試験は−40℃で実施した。加熱脆化率は0℃のシャルピー衝撃試験の吸収エネルギー値を用いて求めた。また、溶接部の最高硬さ試験は、JIS Z3101 溶接熱影響部の最高硬さ試験方法によった。表2に試験結果を示す。   From these specimens, JIS-Z2241, No. 14A specimens were prepared for tensile tests, and JIS-Z2242, 2 mmV notch specimens were prepared for Charpy impact tests. The tensile test was performed at 20 ° C. and the Charpy impact test was performed at −40 ° C. The heating embrittlement rate was determined using the absorbed energy value of the Charpy impact test at 0 ° C. Moreover, the highest hardness test of the welded part was based on the highest hardness test method of the JIS Z3101 weld heat affected zone. Table 2 shows the test results.

表2に示すように、No.1〜10の本発明例は、いずれも920MPa以上の引張強さと12%以上の伸び、27J以上の−40℃衝撃吸収エネルギー及び50%以下の加熱脆化率を併せ持つ鋳鋼材となっている。   As shown in Table 2, no. Each of Examples 1 to 10 is a cast steel material having both a tensile strength of 920 MPa or more, an elongation of 12% or more, a −40 ° C. impact absorption energy of 27 J or more, and a heating embrittlement ratio of 50% or less.

一方、比較例であるNo.11〜17で示される鋳鋼材は化学成分組成が本発明の範囲外であるため、所望の特性が得られなかった。No.11、13はそれぞれC、Ni含有量が本発明範囲より低かったため強度が不足した。No.12はC含有量が本発明範囲の上限を超えたため所望の延性が得られず、さらに炭素当量が好ましい値である0.6を超えたため、溶接部の最高硬さが一般的な溶接性判定基準(社団法人 日本溶接協会/溶接情報センター「JWES接合・溶接技術Q&A1000、No.Q02・02・08」による)であるビッカ−ス硬さHv350を超えた。No.14は、Niの含有量が本発明範囲の上限を超えたため所望の加熱脆化率が得られなかった。No.15〜17は元素単独では本発明範囲の組成であるが、No.15はV≧C×0.3を満足しなかったため強度が不足し、またNo.16はV≦C×0.6を満足せず、所望の延性及び靭性が得られなかった。No.17はCa≧S×2を満足せず、硫化物の形態制御が不十分だったため延性および靭性が不足した。   On the other hand, No. which is a comparative example. Since the cast steel materials indicated by 11 to 17 have a chemical composition outside the range of the present invention, the desired properties could not be obtained. No. 11 and 13 were insufficient in strength because the C and Ni contents were lower than the range of the present invention, respectively. No. In No. 12, since the C content exceeded the upper limit of the range of the present invention, the desired ductility was not obtained, and the carbon equivalent exceeded 0.6, which is a preferred value. Vickers hardness Hv350, which is the standard (according to Japan Welding Association / Welding Information Center “JWES Joining / Welding Technology Q & A1000, No.Q02 / 02/0208”) was exceeded. No. For No. 14, the Ni content exceeded the upper limit of the range of the present invention, so the desired heating embrittlement rate could not be obtained. No. Nos. 15 to 17 are compositions within the scope of the present invention when the element is used alone. No. 15 did not satisfy V ≧ C × 0.3, so the strength was insufficient. No. 16 did not satisfy V ≦ C × 0.6, and desired ductility and toughness were not obtained. No. No. 17 did not satisfy Ca ≧ S × 2, and the ductility and toughness were insufficient due to insufficient control of the form of sulfide.

Figure 2014181394
Figure 2014181394

Figure 2014181394
Figure 2014181394

Claims (5)

質量%で、
C:0.15〜0.3%
Si:0.2〜0.7%
Mn:0.4〜1.2%
P :0.015%以下
S :0.015%以下
Ni:2〜3%
Cr:0.1〜0.5%
Mo:0.3〜0.5%
V :0.05〜0.15%
Ca:0.01〜0.05%
を含有し、
かつ
CaおよびSの含有量が質量%で
S×2≦Ca≦S×4
の関係を満足し、
CおよびVの含有量が質量%で
C×0.3≦V≦C×0.6
の関係を満足し、
残部がFeおよび不可避的不純物からなることを特徴とする構造用高強度鋳鋼材。
% By mass
C: 0.15-0.3%
Si: 0.2-0.7%
Mn: 0.4 to 1.2%
P: 0.015% or less S: 0.015% or less Ni: 2-3%
Cr: 0.1 to 0.5%
Mo: 0.3-0.5%
V: 0.05 to 0.15%
Ca: 0.01 to 0.05%
Containing
And the content of Ca and S is mass% S × 2 ≦ Ca ≦ S × 4
Satisfied with the relationship
The content of C and V is mass%, and C × 0.3 ≦ V ≦ C × 0.6
Satisfied with the relationship
A structural high-strength cast steel characterized in that the balance consists of Fe and inevitable impurities.
前記CaをNi+Ca合金によって添加することを特徴とする請求項1に記載の構造用高強度鋳鋼材。   2. The structural high strength cast steel according to claim 1, wherein the Ca is added by a Ni + Ca alloy. C+Si/24+Mn/6+Ni/40+Mo/4+Cr/5+V/14
で示される炭素当量の値が、質量%で0.6%以下であることを特徴とする請求項1または請求項2に記載の構造用高強度鋳鋼材。
C + Si / 24 + Mn / 6 + Ni / 40 + Mo / 4 + Cr / 5 + V / 14
The high-strength cast steel for structural use according to claim 1 or 2, wherein a value of carbon equivalent represented by is 0.6% or less by mass%.
引張強さ≧920MPa、伸び≧12%、−40℃衝撃吸収エネルギー≧27J(2mmVノッチシャルピー衝撃試験片)を同時に満足することを特徴とする請求項1から請求項3のいずれか1項に記載の構造用高強度鋳鋼材。   The tensile strength ≧ 920 MPa, the elongation ≧ 12%, and the −40 ° C. impact absorption energy ≧ 27 J (2 mmV notch Charpy impact test piece) are satisfied at the same time. 5. High-strength cast steel for structural use. 480℃、10時間の脆化処理後の0℃衝撃吸収エネルギーが、600℃焼戻し値の50%以上であることを特徴とする請求項1から請求項4のいずれか1項に記載の構造用高強度鋳鋼材。   The structural absorption according to any one of claims 1 to 4, wherein the 0 ° C impact absorption energy after the embrittlement treatment at 480 ° C for 10 hours is 50% or more of the tempering value at 600 ° C. High strength cast steel.
JP2013057740A 2013-03-21 2013-03-21 Structural high-strength cast steel Active JP6153747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013057740A JP6153747B2 (en) 2013-03-21 2013-03-21 Structural high-strength cast steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013057740A JP6153747B2 (en) 2013-03-21 2013-03-21 Structural high-strength cast steel

Publications (2)

Publication Number Publication Date
JP2014181394A true JP2014181394A (en) 2014-09-29
JP6153747B2 JP6153747B2 (en) 2017-06-28

Family

ID=51700405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013057740A Active JP6153747B2 (en) 2013-03-21 2013-03-21 Structural high-strength cast steel

Country Status (1)

Country Link
JP (1) JP6153747B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105274442A (en) * 2015-11-12 2016-01-27 南车长江车辆有限公司 High-strength high-tenacity alloy cast steel material used for draw gears of railway vehicles
CN115233091A (en) * 2022-06-23 2022-10-25 中煤张家口煤矿机械有限责任公司 Novel microalloyed ledge cast steel and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345285A (en) * 1999-06-04 2000-12-12 Kobe Steel Ltd Low alloy cast steel and heat treatment thereof
JP2008007820A (en) * 2006-06-29 2008-01-17 Nippon Chuzo Kk High-strength cast steel for structure
CN102140610A (en) * 2011-03-08 2011-08-03 上海海隆石油管材研究所 Steel suitable for drill rod joint in low-temperature environment and heat treatment process of steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345285A (en) * 1999-06-04 2000-12-12 Kobe Steel Ltd Low alloy cast steel and heat treatment thereof
JP2008007820A (en) * 2006-06-29 2008-01-17 Nippon Chuzo Kk High-strength cast steel for structure
CN102140610A (en) * 2011-03-08 2011-08-03 上海海隆石油管材研究所 Steel suitable for drill rod joint in low-temperature environment and heat treatment process of steel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
中田毅、外5名: "強靱鋳鋼材の機械的性質に及ぼす熱処理の影響", 日本鋳造工学会全国講演大会講演概要集, vol. Vol.131, JPN6016045136, September 1997 (1997-09-01), JP, pages Page.66 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105274442A (en) * 2015-11-12 2016-01-27 南车长江车辆有限公司 High-strength high-tenacity alloy cast steel material used for draw gears of railway vehicles
CN115233091A (en) * 2022-06-23 2022-10-25 中煤张家口煤矿机械有限责任公司 Novel microalloyed ledge cast steel and preparation method thereof

Also Published As

Publication number Publication date
JP6153747B2 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
JP5866820B2 (en) Wear-resistant steel plate with excellent weld toughness and delayed fracture resistance
WO2015088040A1 (en) Steel sheet and method for manufacturing same
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP2009270194A (en) PROCESS FOR PRODUCTION OF 780 MPa-GRADE HIGH-TENSILE-STRENGTH STEEL PLATE EXCELLENT IN LOW-TEMPERATURE TOUGHNESS
JP2010070845A (en) Weldable ultra-high strength steel having excellent low-temperature toughness and method for producing the same
JP2016079459A (en) Abrasion resistant steel sheet and manufacturing method therefor
JP5445723B1 (en) Ultra high strength steel plate for welding
JP6245352B2 (en) High-tensile steel plate and manufacturing method thereof
JP7016345B2 (en) Microalloy steel and its steel production method
JP2015168864A (en) Hot rolled steel sheet for electroseamed steel pipe having board thickness of 15 mm or more
JPWO2016060141A1 (en) Steel material for large heat input welding
JP6153747B2 (en) Structural high-strength cast steel
JP2019504192A (en) High hardness wear resistant steel with excellent toughness and cut crack resistance, and method for producing the same
JP2014198866A (en) Low yield ratio high tensile steel sheet excellent in heat affected zone toughness and method of producing the same
JPWO2019050010A1 (en) Steel sheet and manufacturing method thereof
JP4123597B2 (en) Manufacturing method of steel with excellent strength and toughness
JP7410438B2 (en) steel plate
CN104294154A (en) Thick steel plate with excellent low-temperature toughness and Rm structure of 630MPa grade and production method of thick steel plates
JP6226163B2 (en) High-tensile steel plate with excellent low-temperature toughness in heat affected zone and its manufacturing method
JP2007224404A (en) High tensile strength steel plate having excellent strength and low temperature toughness, and method for producing high tensile strength steel plate
CN113832415A (en) X80-grade high-temperature-resistant pipeline steel and manufacturing method thereof
JP6296797B2 (en) High strength cast steel material and manufacturing method thereof
JP2008007820A (en) High-strength cast steel for structure
JP2006328511A (en) Wear resistant steel with excellent low-temperature toughness, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170531

R150 Certificate of patent or registration of utility model

Ref document number: 6153747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250