JP2019504192A - High hardness wear resistant steel with excellent toughness and cut crack resistance, and method for producing the same - Google Patents

High hardness wear resistant steel with excellent toughness and cut crack resistance, and method for producing the same Download PDF

Info

Publication number
JP2019504192A
JP2019504192A JP2018530497A JP2018530497A JP2019504192A JP 2019504192 A JP2019504192 A JP 2019504192A JP 2018530497 A JP2018530497 A JP 2018530497A JP 2018530497 A JP2018530497 A JP 2018530497A JP 2019504192 A JP2019504192 A JP 2019504192A
Authority
JP
Japan
Prior art keywords
toughness
less
resistant steel
wear
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018530497A
Other languages
Japanese (ja)
Other versions
JP6691967B2 (en
Inventor
イ,イル−チョル
キム,ヨン−ジン
キム,ソン−ギュ
ガン,サン−ドク
イ,ウン−ヘ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2019504192A publication Critical patent/JP2019504192A/en
Application granted granted Critical
Publication of JP6691967B2 publication Critical patent/JP6691967B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本発明は、靭性及び耐切断割れ性に優れた高硬度耐摩耗及びその製造方法に関するものである。
本発明の一側面による高硬度耐摩耗鋼は、重量比で、Mn:2.1〜4.0%、C:0.15〜3に0.2%、Si:0.02〜0.5%、Cr:0.2〜0.7%、残部Fe、及びその他の不可避不純物を含む組成を有し、旧オーステナイト結晶粒度が25μm以下であり、マルテンサイトが主組織である微細構造を有し、Ac3−Ac1が100℃以下であるという条件を満たす。
【選択図】 図1
The present invention relates to high hardness wear resistance excellent in toughness and cut cracking resistance and a method for producing the same.
The high-hardness wear-resistant steel according to one aspect of the present invention is, by weight ratio, Mn: 2.1 to 4.0%, C: 0.15 to 0.2%, Si: 0.02 to 0.5 %, Cr: 0.2 to 0.7%, balance Fe, and other inevitable impurities are included, the prior austenite grain size is 25 μm or less, and the microstructure is martensite as the main structure. , Ac3-Ac1 satisfies the condition that it is 100 ° C. or lower.
[Selection] Figure 1

Description

本発明は、靭性及び耐切断割れ性に優れた高硬度耐摩耗鋼、並びにその製造方法に関するものである。本発明は、大韓民国特許出願第10−2015−0179009号公報を優先権主張の基礎とし、その内容全体を本発明に参考として取り込む。   The present invention relates to a high hardness wear resistant steel excellent in toughness and cut cracking resistance, and a method for producing the same. The present invention uses Korean Patent Application No. 10-2015-0179009 as a basis for claiming priority, and incorporates the entire contents thereof into the present invention as a reference.

鉱山用ダンプトラック、建設用重装備、土建装備などの産業機器を製造する分野では、必ずしもこれに制限されるものではないが、ブリネル硬度450以上の高い硬度を有する耐摩耗鋼に対する需要が高い。   In the field of manufacturing industrial equipment such as mining dump trucks, heavy equipment for construction, and earthen equipment, there is a high demand for wear-resistant steel having a high hardness of Brinell hardness of 450 or more, although not necessarily limited thereto.

耐摩耗鋼は、基本的に表面硬度が高くなければならないが、マルテンサイト系高硬度鋼は、高い硬度だけでなく、高い降伏強度及び引張強度も有しているため、構造材及び輸送/建設機械などの用途として広く用いられている。   Wear resistant steels must basically have high surface hardness, but martensitic high hardness steels not only have high hardness but also high yield strength and tensile strength, so structural materials and transportation / construction Widely used for applications such as machinery.

ところで、一般にマルテンサイト系高硬度鋼を製造するためには、いわゆる焼入れ性(quenchability)を確保するために高炭素であり、合金元素を多量に含む成分系を有しており、且つ製造工程に焼入れ過程が必須に含まれる。   By the way, in general, in order to manufacture martensitic high-hardness steel, it has a high carbon content in order to ensure so-called quenchability, and has a component system containing a large amount of alloy elements, and in the manufacturing process. A quenching process is essential.

しかし、従来のマルテンサイト鋼は、成分に炭素と合金元素とを多量に含んでいるため、溶接性と低温靭性とに悪影響が及ぶだけでなく、鋼材を所望のサイズに切断する際に発生する切断部の割れに対する耐性、即ち、耐切断割れ性が悪くなるという問題がある。   However, since conventional martensitic steel contains a large amount of carbon and alloy elements as components, it not only adversely affects weldability and low-temperature toughness, but also occurs when cutting steel to a desired size. There exists a problem that the tolerance with respect to the crack of a cut part, ie, a cut cracking resistance, worsens.

本発明の一側面は、耐摩耗鋼であって、靭性などに悪影響を及ぼすCなどの合金元素の添加量を相対的に減少させながら、高い靭性及び耐切断割れ性を有する高硬度耐摩耗鋼を提供することにある。   One aspect of the present invention is wear-resistant steel, which is a high-hardness wear-resistant steel having high toughness and cut cracking resistance while relatively reducing the amount of addition of an alloying element such as C that adversely affects toughness. Is to provide.

また、本発明の他の側面は、上述の高硬度耐摩耗鋼を効率的に製造することができる製造方法を提供することにある。   Moreover, the other side surface of this invention is providing the manufacturing method which can manufacture the above-mentioned high-hardness wear-resistant steel efficiently.

本発明の課題は、上述の内容に限定されない。本発明が属する技術分野において通常の知識を有する者であれば、誰でも本明細書の全体的な内容から本発明の更なる課題を理解するのに何の困難もない。   The subject of this invention is not limited to the above-mentioned content. Anyone having ordinary knowledge in the technical field to which the present invention pertains has no difficulty in understanding further problems of the present invention from the overall contents of the present specification.

本発明の一側面による高硬度耐摩耗鋼は、重量比で、Mn:2.1〜4.0%、C:0.15〜0.2%、Si:0.02〜0.5%、Cr:0.2〜0.7%、残部Fe、及びその他の不可避不純物からなる組成を有し、旧オーステナイト結晶粒度が25μm以下であり、マルテンサイトが主組織である微細構造を有し、Ac3−Ac1が100℃以下であるという条件を満たす。   The high-hardness wear-resistant steel according to one aspect of the present invention is, by weight ratio, Mn: 2.1-4.0%, C: 0.15-0.2%, Si: 0.02-0.5%, Cr: 0.2 to 0.7%, balance Fe, and other inevitable impurities, a prior austenite grain size of 25 μm or less, martensite is the main structure, Ac3 -Ac1 satisfies the condition that 100C or less.

本発明の他の側面による高硬度耐摩耗鋼の製造方法は、重量比で、Mn:2.1〜4.0%、C:0.15〜0.2%、Si:0.02〜0.5%、Cr:0.2〜0.7%、残部Fe、及びその他の不可避不純物からなる組成を有するスラブを熱間圧延して鋼板を得る段階と、上記鋼板を3℃/秒以上の冷却速度で200℃以下の温度まで焼入れする段階と、上記急冷した鋼板をオーステナイト温度領域に再加熱する段階と、上記再加熱された鋼板を3℃/秒以上の冷却速度で200℃以下の温度まで2次焼入れする段階と、を含む。   According to another aspect of the present invention, the method for producing a high hardness wear resistant steel is Mn: 2.1-4.0%, C: 0.15-0.2%, Si: 0.02-0 in weight ratio. 0.5%, Cr: 0.2 to 0.7%, the balance Fe, and the stage which hot-rolls the slab which has a composition which consists of other inevitable impurities, and obtains a steel plate, and the said steel plate is 3 degrees C / sec or more. A step of quenching to a temperature of 200 ° C. or less at a cooling rate, a step of reheating the rapidly cooled steel plate to an austenite temperature region, and a temperature of 200 ° C. or less at a cooling rate of 3 ° C./second or more. Secondary quenching.

上述のように、本発明は、鋼中のC含量を適正化する代わりにMnの含量を高め、且つ結晶粒を超微細化することにより、鋼の硬度を450HB級に維持しながら、高い靭性及び耐切断割れ性を有する鋼材を提供することができる。   As described above, the present invention increases the Mn content instead of optimizing the C content in the steel, and by making the crystal grains ultrafine, while maintaining the hardness of the steel at 450 HB class, high toughness And the steel material which has cut | disconnection cracking resistance can be provided.

本発明の効果は上述の内容に限定されず、本発明の更なる効果は、明細書の更なる内容から十分に理解することができる。   The effects of the present invention are not limited to the contents described above, and further effects of the present invention can be fully understood from the further contents of the specification.

ガス切断時に形成される熱影響部に対してEBSD(Electron Back Scatter Diffraction)分析を行った結果を示した図である。It is the figure which showed the result of having performed EBSD (Electron Back Scatter Diffraction) analysis with respect to the heat affected zone formed at the time of gas cutting. 実施例1から得られた発明例1、比較例1、及び比較例2の組織を観察した顕微鏡写真である。2 is a photomicrograph of an observed structure of Invention Example 1, Comparative Example 1, and Comparative Example 2 obtained from Example 1. FIG.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明は、耐摩耗鋼の低温靭性を確保するために、鋼材のC含量を適正範囲に調整し、Mnを多量に添加して焼入れ性を確保する。また、合金成分を適宜制御して耐切断割れ性を確保する。以下、本発明の組成について説明する。   In the present invention, in order to ensure the low temperature toughness of the wear-resistant steel, the C content of the steel material is adjusted to an appropriate range, and a large amount of Mn is added to ensure hardenability. In addition, the alloy components are appropriately controlled to ensure cut cracking resistance. Hereinafter, the composition of the present invention will be described.

本発明の耐摩耗鋼は、重量比で、Mn:2.1〜4.0%、C:0.15〜0.2%、Si:0.02〜0.5%、Cr:0.2〜0.7%、残部Fe、及びその他の不可避不純物を含む組成を有することができる。本発明において、各成分の含量は、特に他の基準であることを表示しない限り、重量を基準として表示したものであることに留意する必要がある。   The wear-resistant steel of the present invention is, by weight ratio, Mn: 2.1 to 4.0%, C: 0.15 to 0.2%, Si: 0.02 to 0.5%, Cr: 0.2 It can have a composition containing ~ 0.7%, the balance Fe, and other inevitable impurities. In the present invention, it should be noted that the content of each component is displayed on the basis of weight unless otherwise indicated.

Mn:2.1〜4.0%
Mn(マンガン)は、マルテンサイトを安定化させ、且つ高い表面硬度を得るために添加される元素である。本発明では、かかる効果を得るために、Mnを2.1%以上添加する。Mnの含量が不足する場合は、フェライトまたはベイナイトが生成し易くなり、表層部の高い硬度を得ることが困難になる。但し、その含量が4.0%を超える場合には、溶接性及び耐切断割れ性が著しく低下するだけではなく、鋼材の製造原価が低下するという問題が発生することがある。従って、本発明では、Mnの含量を2.1〜4.0%の範囲で添加する。
Mn: 2.1-4.0%
Mn (manganese) is an element added to stabilize martensite and to obtain high surface hardness. In this invention, in order to acquire this effect, 2.1% or more of Mn is added. When the Mn content is insufficient, ferrite or bainite is likely to be generated, and it becomes difficult to obtain high hardness of the surface layer portion. However, when the content exceeds 4.0%, not only the weldability and cut cracking resistance are remarkably lowered, but also the problem that the manufacturing cost of the steel material is lowered may occur. Therefore, in the present invention, the Mn content is added in the range of 2.1 to 4.0%.

C:0.15〜0.2%
C(炭素)は、Mnと共に鋼材の表層部の硬度を確保するために必要な元素である。但し、その量が過剰である場合は、靭性及び溶接性を低下させるという問題があるため、適切な範囲内に制御する必要がある。本発明では、表層部の硬度を十分に確保するために、Cを0.15%以上添加するが、過剰に添加した場合には靭性や溶接性などが低下するため、その含量の上限を0.20%に制限する。
C: 0.15-0.2%
C (carbon) is an element necessary for securing the hardness of the surface layer portion of the steel material together with Mn. However, if the amount is excessive, there is a problem that the toughness and weldability are deteriorated, so it is necessary to control within an appropriate range. In the present invention, C is added in an amount of 0.15% or more in order to sufficiently secure the hardness of the surface layer portion. However, if added excessively, the toughness, weldability and the like deteriorate, so the upper limit of the content is 0. Limit to 20%.

Si:0.02〜0.5%
Si(ケイ素)は脱酸剤としての役割を担い、固溶強化により強度を向上させる元素として作用する。また、製造工程上、極少量まで含量を減少させることができないため、Si含量の下限を0.02%と定める。但し、その含量が高すぎる場合には、溶接部はもちろん、母材の靭性も低下させるため、Si含量を0.5%以下に制限する。
Si: 0.02 to 0.5%
Si (silicon) plays a role as a deoxidizer and acts as an element for improving strength by solid solution strengthening. In addition, since the content cannot be reduced to a very small amount in the manufacturing process, the lower limit of the Si content is set to 0.02%. However, if the content is too high, the toughness of the base metal as well as the welded portion is reduced, so the Si content is limited to 0.5% or less.

Cr:0.2〜0.7%
Cr(クロム)は、鋼に含まれると、鋼の硬化能を上昇させる役割をする元素であって、焼入れ(quenching)時にマルテンサイトの確保を容易にする。また、本発明の耐摩耗鋼では、その含量が増加するほど低温衝撃靭性を向上させ、相変態温度であるAc1とAc3との間の間隔を狭めて耐切断割れ性を高める役割をする。かかるCrの有利な効果を得るためには、その含量は0.2%以上含まれることが有利である。但し、その量が過剰である場合には、溶接性を低下させ、且つ製造原価を上昇させる恐れがあるため、Cr含量の上限は0.7%と定めることができる。
Cr: 0.2-0.7%
When contained in steel, Cr (chromium) is an element that plays a role of increasing the hardenability of the steel, and facilitates securing martensite during quenching. In addition, the wear resistant steel of the present invention improves the low temperature impact toughness as the content increases, and plays a role of increasing the resistance to cutting cracks by narrowing the interval between Ac1 and Ac3 which are phase transformation temperatures. In order to obtain the advantageous effect of Cr, the content is advantageously 0.2% or more. However, if the amount is excessive, the weldability may be lowered and the manufacturing cost may be increased, so the upper limit of the Cr content can be set to 0.7%.

また、本発明の耐摩耗鋼は、上述の合金元素の他に、Nb:0.1%以下、B:0.02%以下、Ti:0.1%以下を更に含むこともできる。   Moreover, the wear-resistant steel of the present invention may further contain Nb: 0.1% or less, B: 0.02% or less, and Ti: 0.1% or less in addition to the alloy elements described above.

Nb:0.1%以下
Nb(ニオブ)は固溶、析出硬化効果により鋼材の強度を高め、且つ結晶粒を微細化させて衝撃靭性を向上させる元素であって、必要に応じて添加することができる。但し、その含量が過剰である場合には、粗大な析出物が形成されて硬度と衝撃靭性をむしろ劣化させるため、その含量を1.0%以下に制限することができる。
Nb: 0.1% or less Nb (niobium) is an element that increases the strength of steel by solid solution and precipitation hardening effect, and refines crystal grains to improve impact toughness, and is added as necessary. Can do. However, when the content is excessive, coarse precipitates are formed and the hardness and impact toughness are rather deteriorated. Therefore, the content can be limited to 1.0% or less.

B:0.02%以下
B(ホウ素)は、少量の添加でも材料の焼入れ性を効果的に高める元素であって、結晶粒界の強化により粒界破壊を抑制する効果があるため、必要に応じて添加して使用することができる。但し、その含量が過剰である場合には、粗大な析出物の形成などにより靭性と溶接性が低下するため、その含量は0.02%以下に限定することが好ましい。
B: 0.02% or less B (boron) is an element that effectively enhances the hardenability of the material even when added in a small amount, and is necessary because it has the effect of suppressing grain boundary destruction by strengthening the grain boundaries. It can be added and used accordingly. However, when the content is excessive, the toughness and weldability are lowered due to the formation of coarse precipitates, and therefore the content is preferably limited to 0.02% or less.

Ti:0.1%以下
鋼材に不可避に含まれる不純物元素としてN(窒素)が挙げられるが、NはBと結合してBの効果を減少させるという悪影響を及ぼす。Ti(チタン)は、かかるNによるBの効果減少を抑制してBの添加効果を最大化させる効果がある元素である。即ち、Tiは、鋼中に存在するNと反応してTiNを形成することにより、BNの形成を抑制する作用をする。それだけでなく、TiNは、オーステナイト結晶粒を固定(pinning)させて結晶粒の粗大化を抑制させる効果も有する。従って、本発明では、必要に応じてTiを鋼中に添加することができる。但し、Tiの添加量が過剰である場合には、粗大な析出物が形成されて靭性や溶接性を低下させる恐れがあるため、その含量は0.1%以下に制限することができる。
Ti: 0.1% or less Although N (nitrogen) is mentioned as an impurity element inevitably contained in the steel material, N combines with B to adversely affect the effect of B. Ti (titanium) is an element having an effect of maximizing the effect of addition of B by suppressing the decrease in the effect of B by such N. That is, Ti acts to suppress the formation of BN by reacting with N present in the steel to form TiN. In addition, TiN also has an effect of suppressing a coarsening of crystal grains by pinning austenite crystal grains. Therefore, in this invention, Ti can be added in steel as needed. However, when the addition amount of Ti is excessive, coarse precipitates may be formed and the toughness and weldability may be reduced, so the content can be limited to 0.1% or less.

本発明の残りの成分はFe(鉄)である。但し、通常の鉄鋼製造過程では、原料または周囲の環境から意図しない不純物が不可避に混入することがあるため、本発明の耐摩耗性鋼ではこれを特に排除しない。これらの種類については、通常の技術者であれば誰でも分かるものであるため、本発明ではその種類と含量を特に制限しない。   The remaining component of the present invention is Fe (iron). However, in an ordinary steel manufacturing process, unintended impurities may be inevitably mixed in from the raw material or the surrounding environment, so this is not particularly excluded in the wear resistant steel of the present invention. Since these types can be understood by any ordinary engineer, the type and content thereof are not particularly limited in the present invention.

本発明の耐摩耗鋼は、耐切断割れ性を高めるために、上述の成分系の他にAc3−Ac1の値を100℃以下に制限することができる。
本発明の発明者らが研究した結果によると、ガス切断時に発生する切断割れは、一種の水素誘起割れであって、熱影響部(特に、Inter Critical Heat Affected Zone:ICHAZ)に生じる残留応力が大きいほどよく発生するという特徴がある。つまり、熱影響部の残留応力を低減させることが耐切断割れ性を高める一つの手段となるため、本発明ではAc3−Ac1の値を調節することを提案する。
Ac3は冷却時にオーステナイトで初析フェライトが発生し始める温度を意味し、Ac1は、組織が完全にフェライトに変態する温度を意味する。本発明者らの研究結果によると、Ac3−Ac1の値を調節した場合には、ICHAZの残留応力を著しく低減させることができ、この部分における割れの発生を低減させることができる。その理由は、Ac3−Ac1値が大きいということは、オーステナイト及びフェライトの二つの組織が共存する領域の温度範囲が広いことを意味し、それにより、切断後の冷却時にオーステナイト及びマルテンサイトの二つの組織が存在するICHAZが大きくなり、従って、二つの組織間の体積変化の差により内部に大きな応力が残留するためである。
図1はガス切断時に形成される熱影響部に対してEBSD(Electron Back Scatter Diffraction)分析を行った結果を示したものである。図面の上部には、溶接熱影響部の組織を観察したKernal average Misorientation mapを示し、その下部には残留応力が集中する領域を示した。図面から分かるように、本発明者らはICHAZが最も濃く表示されていることを見出し、それにより残留応力がICHAZに集中していることが分かった。つまり、ICHAZの大きさを減少させる効果があるAc3−Ac1値を100℃以下に制御した場合には、優れた耐切断割れ性が得られる。
The wear-resistant steel of the present invention can limit the value of Ac3-Ac1 to 100 ° C. or less in addition to the above-described component system in order to improve the cut cracking resistance.
According to the results of research conducted by the inventors of the present invention, the cutting crack generated during gas cutting is a kind of hydrogen-induced cracking, and the residual stress generated in the heat affected zone (particularly, Inter Critical Heat Affected Zone: ICHAZ) The larger the size, the more often it occurs. That is, reducing the residual stress in the heat-affected zone is one means for improving the cut cracking resistance. Therefore, in the present invention, it is proposed to adjust the value of Ac3-Ac1.
Ac3 means a temperature at which pro-eutectoid ferrite begins to be generated in austenite during cooling, and Ac1 means a temperature at which the structure completely transforms into ferrite. According to the research results of the present inventors, when the value of Ac3-Ac1 is adjusted, the residual stress of ICHAZ can be remarkably reduced, and the occurrence of cracks in this portion can be reduced. The reason is that the large Ac3-Ac1 value means that the temperature range in the region where the two structures of austenite and ferrite coexist is wide, and therefore, when cooling after cutting, two of austenite and martensite are used. This is because the ICHAZ in which the tissue exists becomes large, and thus a large stress remains inside due to the difference in volume change between the two tissues.
FIG. 1 shows the result of EBSD (Electron Back Scatter Diffraction) analysis performed on the heat-affected zone formed during gas cutting. In the upper part of the drawing, the Kernel average misation map in which the structure of the weld heat affected zone is observed is shown, and in the lower part, the region where the residual stress is concentrated is shown. As can be seen from the drawing, the present inventors have found that ICHAZ is displayed darkest, and it has been found that the residual stress is concentrated on ICHAZ. That is, when the Ac3-Ac1 value, which has the effect of reducing the size of ICHAZ, is controlled to 100 ° C. or less, excellent cut crack resistance can be obtained.

従って、本発明の一実現例では、上記Ac3−Ac1の値を100℃以下に制限することができる。   Therefore, in one implementation example of the present invention, the value of Ac3-Ac1 can be limited to 100 ° C. or less.

また、本発明の他の一側面による耐摩耗鋼は、表面の旧オーステナイト粒度が25μm以下であり、マルテンサイトが主組織として含まれる内部構造を有する。本発明において「主組織」とは、面積分率で占有率が最も高い組織を意味する。一実現例によると、本発明の耐摩耗鋼は、マルテンサイトを面積分率で95%以上含むことができる。即ち、微細な粒度のマルテンサイトは、低温靭性を向上させる効果を有する。また、高い硬度と優れた耐摩耗性を有するためには、マルテンサイトの分率は95%以上であることが好ましい。本発明において旧オーステナイト結晶粒度は、ピクリン酸腐食液で腐食した組織を光学顕微鏡(例えば、倍率200倍のもの)で観察し、JIS G0551の規定に準拠して求めた値を用いることができる。   The wear-resistant steel according to another aspect of the present invention has an internal structure in which the prior austenite grain size of the surface is 25 μm or less and martensite is included as a main structure. In the present invention, the “main structure” means a structure having the highest occupation ratio by area fraction. According to one implementation, the wear resistant steel of the present invention can include 95% or more of martensite in area fraction. That is, martensite having a fine particle size has an effect of improving low temperature toughness. In order to have high hardness and excellent wear resistance, the martensite fraction is preferably 95% or more. In the present invention, the prior austenite grain size can be a value obtained by observing a structure corroded with a picric acid corrosive solution with an optical microscope (for example, having a magnification of 200 times) in accordance with the provisions of JIS G0551.

特に、本発明の耐摩耗鋼は、結晶粒度が微細で優れた靭性を有するものであって、靭性の確保のために追加の焼戻し(tempering)工程を行う必要がない。つまり、本発明の耐摩耗鋼のマルテンサイトには、焼戻しの結果として形成される炭化物系析出物が実質的に存在しない。従って、本発明においてマルテンサイトが炭化物系析出物を含まないことは、「実質的に」含まないことを意味することに留意する必要がある。   In particular, the wear-resistant steel of the present invention has a fine grain size and excellent toughness, and it is not necessary to perform an additional tempering step to ensure toughness. That is, the martensite of the wear resistant steel of the present invention is substantially free of carbide precipitates formed as a result of tempering. Therefore, it should be noted that the fact that martensite does not contain carbide-based precipitates in the present invention means that it does not contain "substantially".

本発明の一実現例において鋼板の厚さは、中心部の硬度を400HBまで確保できる80mm以下の範囲とすることができる。厚さが薄くなるほど冷却が容易となり硬度の確保に有利であるため、厚さの下限は特に定めない。但し、本発明の一実現例によると、耐摩耗鋼が熱間圧延によって製造されるという点を考慮すると、耐摩耗鋼の厚さは3mm以上に定めることができる。   In one example of realization of the present invention, the thickness of the steel sheet can be in the range of 80 mm or less that can ensure the hardness of the central part up to 400 HB. The lower the thickness, the easier the cooling and the more advantageous for ensuring the hardness. However, according to an embodiment of the present invention, the thickness of the wear resistant steel can be set to 3 mm or more in consideration of the fact that the wear resistant steel is manufactured by hot rolling.

かかる条件を満たす本発明の耐摩耗鋼は、ブリネル硬度を基準に420〜480の値を有することができ、−40℃におけるシャルピー衝撃エネルギーが35J以上と、優れた靭性を有することができる。また、本発明の他の一実現例によると、本発明の耐摩耗鋼は、例えば11mmの厚さに製造した鋼板をガス切断時に予熱しない条件及び500mm/minの切断速度の条件で400mm以上切断した後、一週間以上経過した後でも切断割れが発生しないという耐切断割れ性を有することができる。特に、本発明の耐摩耗鋼は、摩耗性を高めるために耐摩耗鋼に通常添加されるMo、Niなどの合金元素を実質的に添加しなくても、高い耐摩耗性を有することができるだけでなく、靭性及び耐切断割れ性に優れるという効果を有する。   The wear resistant steel of the present invention that satisfies such conditions can have a value of 420 to 480 on the basis of Brinell hardness, and can have excellent toughness with a Charpy impact energy at −40 ° C. of 35 J or more. According to another embodiment of the present invention, the wear-resistant steel of the present invention is a steel plate manufactured to a thickness of, for example, 11 mm, and is cut at 400 mm or more under the condition of not preheating at the time of gas cutting and the cutting speed of 500 mm / min. Then, after one week or more has passed, it can have cut cracking resistance such that cut cracks do not occur. In particular, the wear-resistant steel of the present invention can only have high wear resistance without substantially adding alloy elements such as Mo and Ni that are usually added to the wear-resistant steel in order to increase wear resistance. In addition, it has the effect of being excellent in toughness and cut cracking resistance.

必ずしもこれに制限されるものではないが、本発明の耐摩耗鋼を製造するための一つの有利な方法を提案すると、次の通りである。即ち、本発明の耐摩耗鋼の製造方法は、鋼材を熱間圧延した後、直ちに焼入れ(quenching)を行ってマルテンサイトを得て、その後、これをオーステナイト温度領域まで加熱してから再び焼入れする過程によって製造することができる。各過程をより詳細に説明すると、次の通りである。   Although not necessarily limited thereto, one advantageous method for producing the wear resistant steel of the present invention is proposed as follows. That is, in the method for producing wear-resistant steel according to the present invention, after hot rolling a steel material, quenching is immediately performed to obtain martensite, and then this is heated to the austenite temperature range and then quenched again. It can be manufactured by the process. Each process will be described in detail as follows.

熱間圧延過程
熱間圧延過程は、通常の方法により行うことができる。但し、後続の焼入れ工程に適合するように、熱間圧延終了温度は、表面部を基準にAr3〜900℃の範囲に定めることができる。即ち、Ar3未満の温度まで熱間圧延を行うと、鋼材の内部に過剰のフェライトが形成されて、後続の焼入れ工程で意図する組織が得られないという問題が発生することがあるため、熱間圧延終了温度はAr3以上とすることができる。本発明の一実現例では、上記熱間圧延終了温度は800℃以上に定めることもできる。また、熱間圧延終了温度が高すぎる場合には、焼入れ前のオーステナイトの結晶粒サイズが粗大となって、得られるマルテンサイトのパケットサイズが十分に微細化し難くなるため、上記熱間圧延終了温度は900℃以下に定めることができる。
Hot rolling process The hot rolling process can be performed by a usual method. However, the hot rolling end temperature can be set in a range of Ar3 to 900 ° C. based on the surface portion so as to be compatible with the subsequent quenching process. That is, when hot rolling is performed to a temperature lower than Ar3, excessive ferrite is formed inside the steel material, and the problem that the intended structure cannot be obtained in the subsequent quenching process may occur. The rolling end temperature can be Ar3 or higher. In one implementation example of the present invention, the hot rolling end temperature may be set to 800 ° C. or higher. In addition, when the hot rolling end temperature is too high, the austenite crystal grain size before quenching becomes coarse, and the resulting martensite packet size is difficult to be sufficiently refined. Can be set to 900 ° C. or lower.

熱間圧延直後焼入れ(Direct quenching)
本発明では、熱間圧延直後に鋼材を直ちに焼入れする。ここで、「直ちに」とは、鋼材の表面温度がオーステナイト領域以下に低下しない状態で焼入れを開始することを意味する。本発明のように、熱間圧延直後に焼入れを行う場合には、熱間圧延によって結晶粒が微細化した状態でマルテンサイト変態が起こるため、得られるマルテンサイトを微細化することができるという利点がある。本発明において、熱間圧延直後の焼入れは、鋼材の中心温度が200℃以下になるまで(一実現例によると、常温〜200℃の任意の温度まで)3℃/秒以上の冷却速度で行われることができる。冷却速度は、速ければ速いほど有利であるため、冷却速度の上限を特に定める必要はないが、通常の焼入れ過程を考慮すると、冷却速度を50℃/秒以下の範囲に定めることができる。上記の過程によって熱間圧延された鋼材は、その組織がオーステナイトからマルテンサイトに変態する。
Hardening immediately after hot rolling (Direct quenching)
In the present invention, the steel material is immediately quenched immediately after hot rolling. Here, “immediately” means that quenching is started in a state where the surface temperature of the steel material does not fall below the austenite region. When quenching immediately after hot rolling as in the present invention, the martensite transformation occurs in a state where crystal grains are refined by hot rolling, so that the obtained martensite can be refined. There is. In the present invention, the quenching immediately after the hot rolling is performed at a cooling rate of 3 ° C./second or more until the center temperature of the steel material is 200 ° C. or less (according to one realization example, from room temperature to 200 ° C.) Can be The higher the cooling rate, the more advantageous. Therefore, it is not necessary to set the upper limit of the cooling rate in particular. However, considering the normal quenching process, the cooling rate can be set to a range of 50 ° C./second or less. The steel material hot-rolled by the above process has its structure transformed from austenite to martensite.

再加熱
上記熱間圧延されて焼入れされた鋼材は、その後、再加熱過程を経る。マルテンサイトを含む鋼材をオーステナイト温度領域に加熱すると、既に形成されたマルテンサイトの内部パケットの境界がすべてオーステナイトの核生成サイトとして作用するため、多くの位置でオーステナイトの核生成が起こる。従って、その結果得られるオーステナイトの結晶粒は、その大きさが非常に微細になることができる。
Reheating The steel material that has been hot-rolled and quenched is then subjected to a reheating process. When a steel material containing martensite is heated to the austenite temperature region, the boundaries of the already formed martensite internal packets all act as austenite nucleation sites, and austenite nucleation occurs at many positions. Therefore, the resulting austenite crystal grains can be very fine in size.

そのためには、焼入れされた鋼材を、中心部を基準にAc3以上の温度に加熱する必要がある。但し、加熱温度が高すぎる場合には、オーステナイトの粒度が再び大きくなる恐れがあるため、加熱温度の上限を960℃に定めることができる。   For that purpose, it is necessary to heat the quenched steel material to a temperature of Ac3 or higher with reference to the center. However, if the heating temperature is too high, the austenite grain size may increase again, so the upper limit of the heating temperature can be set to 960 ° C.

本発明の一実現例によると、鋼板の中心部がAc3温度に到達した後、120分以下の熱処理時間(熟熱時間とも呼ばれる)を維持することが好ましい。十分な熱処理効果を考慮すると、20分以上の時間を必要とすることもある。但し、上記時間は、鋼板の厚さに応じて少しずつ変更されることもでき、鋼板の厚さが厚い場合には、より長時間維持されることもできる。   According to an embodiment of the present invention, it is preferable to maintain a heat treatment time (also referred to as a maturing heat time) of 120 minutes or less after the central portion of the steel sheet reaches the Ac3 temperature. Considering a sufficient heat treatment effect, a time of 20 minutes or more may be required. However, the said time can also be changed little by little according to the thickness of a steel plate, and when the thickness of a steel plate is thick, it can also be maintained for a longer time.

2次焼入れ
上述の過程によってオーステナイト化した鋼材は、中心部が再び3℃/秒以上の冷却速度で200℃以下の温度(一実現例によると、常温〜200℃の任意の温度)に冷却される。かかる過程により、本発明の耐摩耗鋼には微細な粒度のマルテンサイトが面積分率で95%以上の割合で形成される。本発明の一実現例では、上記2次焼入れ直前のオーステナイトは25μm以下の結晶粒度を有することができる。2次焼入れ直前のオーステナイトの組織を微細にすることにより、得られる最終のマルテンサイトのパケットサイズも非常に微細に制御することができる。本発明において2次焼入れ直前のオーステナイトの大きさは、最終的に得られる鋼材の旧オーステナイト(prior austenite)の結晶粒度を測定することにより確認することができる。
Secondary quenching The steel material austenitized by the above-described process is cooled to a temperature of 200 ° C. or less (according to one realization example, any temperature from room temperature to 200 ° C.) at the central portion again at a cooling rate of 3 ° C./second or more. The Through such a process, martensite having a fine grain size is formed in the wear resistant steel of the present invention at an area fraction of 95% or more. In an embodiment of the present invention, the austenite immediately before the secondary quenching may have a crystal grain size of 25 μm or less. By making the austenite structure just before the secondary quenching fine, the packet size of the final martensite obtained can be controlled very finely. In the present invention, the size of austenite immediately before secondary quenching can be confirmed by measuring the crystal grain size of prior austenite of the steel material finally obtained.

また、上記2次焼入れ過程における冷却速度の上限は特に限定しないが、本発明の一実現例では50℃/秒以下に制限することもできる。   The upper limit of the cooling rate in the secondary quenching process is not particularly limited, but can be limited to 50 ° C./second or less in one implementation example of the present invention.

上述の過程によってブリネル硬度を基準に420〜480の値を有し、−40℃におけるシャルピー衝撃エネルギーが35J以上という、優れた靭性を有する耐摩耗鋼を提供することができる。また、本発明の他の一実現例によると、本発明の製造方法により製造された耐摩耗鋼は、例えば、11.8mmの厚さに製造した鋼板を、ガス切断時に予熱しない条件及び500mm/minの切断速度の条件で400mm以上切断した後、一週間以上経過した後でも切断割れが発生しないという耐切断割れ性を有することができる。   According to the above process, it is possible to provide a wear resistant steel having excellent toughness having a value of 420 to 480 on the basis of Brinell hardness and a Charpy impact energy at −40 ° C. of 35 J or more. Further, according to another embodiment of the present invention, the wear-resistant steel manufactured by the manufacturing method of the present invention is, for example, a steel plate manufactured to a thickness of 11.8 mm under conditions that do not preheat at the time of gas cutting and 500 mm / After cutting for 400 mm or more under the condition of min cutting speed, it can have a cutting crack resistance such that no cracking occurs even after one week or more.

以下、実施例を介して本発明をより具体的に説明する。但し、以下に記す実施例は、本発明を例示して具体化するためのもの過ぎず、本発明の権利範囲を制限するためのものではないという点に留意する必要がある。本発明の権利範囲は、特許請求の範囲とそこから合理的に類推される事案によって定められるものである。   Hereinafter, the present invention will be described more specifically through examples. However, it should be noted that the examples described below are merely intended to illustrate and embody the present invention and are not intended to limit the scope of the present invention. The scope of the right of the present invention is defined by the claims and cases reasonably inferred therefrom.

[実施例1]
(発明例1)
本発明の製造方法の効果を確認するために、重量比で、C:0.19%、Mn:2.6%、Si:0.2%、Cr:0.4%、Nb:0.04%、Ti:0.01%、B:0.002%の組成を有し、Ac3−Ac1が91℃である厚さ70mmのスラブを、Ar3温度以上である800℃で圧延を終了して厚さ11.8mmの鋼板を得た後、直ちに高圧の水で200℃まで焼入れした。この時の冷却速度は20℃/秒を示し、鋼板には面積比で96%のマルテンサイトが形成された。
[Example 1]
(Invention Example 1)
In order to confirm the effect of the production method of the present invention, by weight ratio, C: 0.19%, Mn: 2.6%, Si: 0.2%, Cr: 0.4%, Nb: 0.04 %, Ti: 0.01%, B: 0.002%, and a slab having a thickness of 70 mm with Ac3-Ac1 of 91 ° C. is rolled at 800 ° C., which is equal to or higher than the Ar3 temperature, and thick. After obtaining a 11.8 mm steel plate, it was immediately quenched to 200 ° C. with high-pressure water. The cooling rate at this time was 20 ° C./second, and 96% martensite was formed on the steel sheet in an area ratio.

以後、上記鋼板を、中心部を基準に910℃の温度まで加熱するとともに、中心部がAc3に到達してから60分を維持した後、中心部を基準に20℃/秒の冷却速度で200℃まで2次焼入れして最終製品を得た。   Thereafter, the steel sheet is heated to a temperature of 910 ° C. with respect to the central portion, and after maintaining for 60 minutes after the central portion reaches Ac3, the steel plate is heated at a cooling rate of 20 ° C./second with respect to the central portion. The final product was obtained by second quenching to 0 ° C.

[比較例1]
熱間圧延した後に焼入れを行う過程までは上記発明例1と同様にし、追加の再加熱及び2次焼入れを省略して最終製品を得た。
[Comparative Example 1]
The process up to the process of quenching after hot rolling was carried out in the same manner as in Invention Example 1, and the final product was obtained by omitting additional reheating and secondary quenching.

[比較例2]
熱間圧延した後に急冷せずに常温まで空冷したことを除いては、上記発明例1と同様にして最終製品を得た。
[Comparative Example 2]
A final product was obtained in the same manner as in Invention Example 1 except that it was air-cooled to room temperature without being rapidly cooled after hot rolling.

上記発明例1、比較例1、比較例2の組織を顕微鏡で観察した結果を図2に示した。図2において(a)は発明例1、(b)は比較例1、及び(c)は比較例2を示す。図面から分かるように、発明例1、比較例1、比較例2は、いずれも内部に95%以上のマルテンサイトが形成されているが(具体的には、面積を基準に発明例1は96%、比較例1、2は100%のマルテンサイトが形成されている)、旧オーステナイト結晶粒度(図面において実線で区分される領域の粒度)は、発明例1の場合には20μmと、本発明の条件を満たすが、比較例1と比較例2はそれぞれ、旧オーステナイト結晶粒度が31μmと28μmと、本発明で規定する条件を外れていることが確認できた。   The results of observation of the structures of Invention Example 1, Comparative Example 1, and Comparative Example 2 with a microscope are shown in FIG. In FIG. 2, (a) shows Invention Example 1, (b) shows Comparative Example 1, and (c) shows Comparative Example 2. As can be seen from the drawings, 95% or more of martensite is formed in each of Invention Example 1, Comparative Example 1, and Comparative Example 2 (specifically, Invention Example 1 is 96 based on area). %, Comparative Examples 1 and 2 have 100% martensite formed), and the prior austenite crystal grain size (grain size of the region divided by the solid line in the drawing) is 20 μm in the case of Invention Example 1, However, Comparative Example 1 and Comparative Example 2 confirmed that the prior austenite grain size was 31 μm and 28 μm, respectively, which were outside the conditions defined in the present invention.

その結果、発明例1、比較例1、及び比較例2のブリネル硬度はそれぞれ、460、462、及び455と、十分な硬度値を示した。また、本発明の一実現例によって耐切断割れ性を試験した結果、いずれも良好な結果を示した。但し、発明例1は−40℃におけるシャルピー衝撃エネルギーが42Jと、高い低温靭性を示すのに対し、比較例1と比較例2は、−40℃におけるシャルピー衝撃エネルギーがそれぞれ20Jと22Jに過ぎず、本発明で定める靭性レベルを満たしていないことが確認できた。これにより、本発明の一実現例による製造方法の効果が確認できた。   As a result, the Brinell hardness of Invention Example 1, Comparative Example 1, and Comparative Example 2 were 460, 462, and 455, respectively, indicating sufficient hardness values. Moreover, as a result of testing the cut cracking resistance according to one embodiment of the present invention, all showed good results. However, Invention Example 1 shows high low temperature toughness with Charpy impact energy at −40 ° C. of 42 J, while Comparative Example 1 and Comparative Example 2 have Charpy impact energy at −40 ° C. of only 20 J and 22 J, respectively. It was confirmed that the toughness level defined in the present invention was not satisfied. Thereby, the effect of the manufacturing method by one implementation example of this invention has been confirmed.

[実施例2]
下記表1に記載された組成を有するスラブを、上記実施例1の発明例1と同じ条件で製造して耐摩耗鋼を得て、得られた耐摩耗鋼に対する分析結果を表2に示した。表2の比較例7は、発明例7と同じ組成のスラブを上記実施例1の比較例2と同じ方法で製造した場合の分析結果を示す。特に、切断割れは、ガス切断時に無余熱(予熱なし)の条件で、切断速度が速いほど、且つ鋼板の厚さが厚いほど発生する傾向があるが、これは、切断時に切断部の熱影響部に形成される残留応力が上記条件で増加するためである。また、かかる切断割れは、切断後一週間程度までの時間が経過した後に発生する水素遅れ割れの特徴を有する。従って、耐切断割れ性を評価するために、11.8mmの厚さに製造した鋼板を予熱しない状態でガス切断する際に、500mm/minの切断速度の条件で400mm以上切断した後、一週間以上経過した後でも切断割れが発生するかどうかを判断し、切断割れが発生した場合を「−」、発生していない場合を「O」と表示した。また、表2において衝撃靭性は、−40℃で測定したシャルピー衝撃エネルギーを意味する。
[Example 2]
A slab having the composition described in Table 1 below was produced under the same conditions as in Invention Example 1 of Example 1 to obtain wear-resistant steel, and the analysis results for the obtained wear-resistant steel are shown in Table 2. . Comparative Example 7 in Table 2 shows the analysis results when a slab having the same composition as Invention Example 7 was produced by the same method as Comparative Example 2 of Example 1 above. In particular, cutting cracks tend to occur as the cutting speed increases and the thickness of the steel sheet increases under conditions of no residual heat (no preheating) during gas cutting. This is because the residual stress formed in the portion increases under the above conditions. Such cut cracks are characterized by hydrogen delayed cracks that occur after a period of up to about a week after cutting. Therefore, in order to evaluate the cutting cracking resistance, when cutting a steel plate manufactured to a thickness of 11.8 mm without preheating, after cutting at 400 mm or more under the condition of a cutting speed of 500 mm / min, one week It was determined whether or not a cut crack occurred even after the lapse of the above, and "-" was displayed when the cut crack occurred and "O" was displayed when it did not occur. In Table 2, impact toughness means Charpy impact energy measured at −40 ° C.

Figure 2019504192
Figure 2019504192

Figure 2019504192
Figure 2019504192

表2の分析のために、試験に適当な形態の試験片を製造した。微細組織の分析には、光学顕微鏡及び走査電子顕微鏡(SEM)を用い、表層部の硬度は表面から2mm程度の深さに研削した後、ブリネル硬度計を用いて測定した。   For the analysis in Table 2, specimens of the appropriate form for testing were prepared. The microstructure was analyzed using an optical microscope and a scanning electron microscope (SEM), and the hardness of the surface layer portion was measured using a Brinell hardness meter after grinding to a depth of about 2 mm from the surface.

まず、耐摩耗性と低温靭性との観点から検討すると、C及びMnの含量が本発明で規定する値よりも低い比較例3は、表面部のブリネル硬度が410に過ぎず、本発明で要求する耐摩耗性を有していないと判断された。また、比較例4は、靭性の確保に有利であるだけでなく、Ac1とAc3との間の間隔を狭めて耐切断割れ性を高める役割をするCrを全く添加しなかった例であって、その結果、衝撃靭性が67Jと、非常に低く示された。比較例5は、Cを過剰に添加した例であって、硬度は十分であるが、シャルピー衝撃エネルギーが22Jに過ぎず、低温靭性が非常に不良であった。比較例6は、C含量が0.14%に過ぎない場合であって、ブリネル硬度が408に過ぎず、本発明で求めるレベルを満たさなかった。比較例7は、鋼材の組成は本発明の条件を満たすが、熱間圧延後に空冷した場合であって、旧オーステナイト結晶粒度が38μmと、粗大な結晶粒が形成されて、低温靭性が低下する結果が得られた。   First, considering from the viewpoint of wear resistance and low temperature toughness, Comparative Example 3 in which the contents of C and Mn are lower than the values specified in the present invention has a Brinell hardness of only 410, which is required in the present invention. It was judged not to have wear resistance. Comparative Example 4 is not only advantageous for ensuring toughness, but also is an example in which no Cr was added to reduce the space between Ac1 and Ac3 and increase the resistance to cut cracking. As a result, the impact toughness was 67J, which was very low. Comparative Example 5 was an example in which C was added excessively, and the hardness was sufficient, but the Charpy impact energy was only 22 J, and the low-temperature toughness was very poor. In Comparative Example 6, the C content was only 0.14%, the Brinell hardness was only 408, and the level required by the present invention was not satisfied. In Comparative Example 7, although the composition of the steel material satisfies the conditions of the present invention, it is a case where air cooling is performed after hot rolling, and coarse crystal grains are formed with a prior austenite grain size of 38 μm, resulting in a decrease in low temperature toughness. Results were obtained.

また、耐切断割れ性の観点からも、比較例4と比較例6はAc3−Ac1の値が100℃を上回り、本発明の条件を満たさなかった場合であって、耐切断割れ性の試験結果、与えられた条件で切断した後、一週間が経過した後に切断割れが発生するという結果が得られた。比較例5の場合は、Ac3−Ac1の温度区間が狭いにも関わらず切断割れが発生したが、その理由は、ブリネル硬度が高すぎて、本測定方法で用いた切断条件が硬度に比べて過酷な条件であったためである。   Further, from the viewpoint of cutting crack resistance, Comparative Example 4 and Comparative Example 6 are cases where the value of Ac3-Ac1 exceeds 100 ° C. and does not satisfy the conditions of the present invention. After cutting under the given conditions, a result that a crack occurred after one week passed was obtained. In the case of the comparative example 5, although the temperature interval of Ac3-Ac1 was narrow, the cutting crack occurred, but the reason is that the Brinell hardness is too high, and the cutting conditions used in this measurement method are compared with the hardness. This is because it was a severe condition.

従って、本発明で規定する鋼材の条件を満たさないと、低温靭性と耐摩耗性はもちろん、耐切断割れ性まで満たすことができないことが確認できた。   Therefore, it was confirmed that not satisfying the conditions of the steel material defined in the present invention, not only the low temperature toughness and the wear resistance but also the cutting crack resistance could not be satisfied.

Claims (10)

重量比で、Mn:2.1%乃至4.0%、C:0.15%乃至0.2%、Si:0.02%乃至0.5%、Cr:0.2%乃至0.7%、残部Fe、及びその他の不可避不純物からなる組成を有し、
旧オーステナイト結晶粒度が25μm以下であり、マルテンサイトが主組織である微細構造を有し、
Ac3−Ac1が100℃以下である条件を満たすことを特徴とする靭性及び耐切断割れ性に優れた高硬度耐摩耗鋼。
By weight, Mn: 2.1% to 4.0%, C: 0.15% to 0.2%, Si: 0.02% to 0.5%, Cr: 0.2% to 0.7% %, The balance Fe, and other inevitable impurities,
The prior austenite grain size is 25 μm or less, and has a microstructure in which martensite is the main structure,
A high-hardness wear-resistant steel excellent in toughness and cut cracking resistance, characterized in that Ac3-Ac1 satisfies a condition of 100 ° C. or less.
重量比で、Nb:0.1%以下、B:0.02%以下及びTi:0.1%以下を更に含むことを特徴とする請求項1に記載の靭性及び耐切断割れ性に優れた高硬度耐摩耗鋼。   The toughness and cut crack resistance according to claim 1, further comprising Nb: 0.1% or less, B: 0.02% or less, and Ti: 0.1% or less by weight ratio. High hardness wear resistant steel. 前記マルテンサイトが面積分率で95%以上含まれることを特徴とする請求項1または2に記載の靭性及び耐切断割れ性に優れた耐摩耗鋼。   The wear-resistant steel excellent in toughness and cut crack resistance according to claim 1 or 2, wherein the martensite is contained in an area fraction of 95% or more. ブリネル硬度が420乃至480であり、−40℃におけるシャルピー衝撃エネルギーが35J以上であることを特徴とする請求項1または2に記載の靭性及び耐切断割れ性に優れた高硬度耐摩耗鋼。   The high hardness wear resistant steel excellent in toughness and cut crack resistance according to claim 1 or 2, wherein the Brinell hardness is 420 to 480, and the Charpy impact energy at -40 ° C is 35 J or more. 前記マルテンサイトは、内部に炭化物を含まないことを特徴とする請求項1または2に記載の靭性及び耐切断割れ性に優れた高硬度耐摩耗鋼。   3. The high-hardness wear-resistant steel having excellent toughness and cut cracking resistance according to claim 1, wherein the martensite contains no carbides inside. 3. 重量比で、Mn:2.1%乃至4.0%、C:0.15%乃至0.2%、Si:0.02%乃至0.5%、Cr:0.2%乃至0.7%、残部Fe、及びその他の不可避不純物からなる組成を有するスラブを熱間圧延して鋼板を得る段階と、
前記鋼板を3℃/秒以上の冷却速度で200℃以下の温度まで焼入れする段階と、
急冷した前記鋼板をオーステナイト温度領域に再加熱する段階と、
再加熱された前記鋼板を3℃/秒以上の冷却速度で200℃以下の温度まで2次焼入れする段階と、
を含むことを特徴とする靭性及び耐切断割れ性に優れた高硬度耐摩耗鋼の製造方法。
By weight, Mn: 2.1% to 4.0%, C: 0.15% to 0.2%, Si: 0.02% to 0.5%, Cr: 0.2% to 0.7% %, The balance Fe, and the stage which hot-rolls the slab which has a composition which consists of other inevitable impurities, and obtaining a steel plate,
Quenching the steel sheet to a temperature of 200 ° C. or less at a cooling rate of 3 ° C./second or more;
Reheating the quenched steel sheet to an austenite temperature range;
Secondary quenching the reheated steel sheet at a cooling rate of 3 ° C./second or more to a temperature of 200 ° C. or less;
A method for producing a high-hardness wear-resistant steel excellent in toughness and cut cracking resistance, characterized by comprising:
重量比で、Nb:0.1%以下、B:0.02%以下、及びTi:0.1%以下を更に含むことを特徴とする請求項6に記載の靭性及び耐切断割れ性に優れた高硬度耐摩耗鋼の製造方法。   The toughness and cut crack resistance according to claim 6, further comprising Nb: 0.1% or less, B: 0.02% or less, and Ti: 0.1% or less by weight ratio. A method for producing high hardness wear resistant steel. 前記熱間圧延終了温度は、Ar3以上であることを特徴とする請求項6または7に記載の靭性及び耐切断割れ性に優れた耐摩耗鋼の製造方法。   The method for producing wear-resistant steel having excellent toughness and cut crack resistance according to claim 6 or 7, wherein the hot rolling end temperature is Ar3 or higher. 前記再加熱する段階の加熱温度は、Ar3乃至960℃であることを特徴とする請求項6または7に記載の靭性及び耐切断割れ性に優れた耐摩耗鋼の製造方法。   The method for producing wear-resistant steel with excellent toughness and cut crack resistance according to claim 6 or 7, wherein a heating temperature in the reheating step is Ar3 to 960 ° C. 前記2次焼入れされる鋼板のオーステナイト結晶粒度は、25μm以下であることを特徴とする請求項6または7に記載の靭性及び耐切断割れ性に優れた耐摩耗鋼の製造方法。   The method for producing a wear-resistant steel excellent in toughness and cut crack resistance according to claim 6 or 7, wherein the austenite grain size of the steel sheet to be secondarily quenched is 25 µm or less.
JP2018530497A 2015-12-15 2016-11-22 High hardness and wear resistant steel excellent in toughness and cutting crack resistance, and method for producing the same Active JP6691967B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020150179009A KR101736621B1 (en) 2015-12-15 2015-12-15 High hardness anti-abrasion steel having excellent toughness and superior resistance to cracking during thermal cutting
KR10-2015-0179009 2015-12-15
PCT/KR2016/013491 WO2017104995A1 (en) 2015-12-15 2016-11-22 High hardness abrasion resistant steel with excellent toughness and cutting crack resistance, and method for manufacturing same

Publications (2)

Publication Number Publication Date
JP2019504192A true JP2019504192A (en) 2019-02-14
JP6691967B2 JP6691967B2 (en) 2020-05-13

Family

ID=59052836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018530497A Active JP6691967B2 (en) 2015-12-15 2016-11-22 High hardness and wear resistant steel excellent in toughness and cutting crack resistance, and method for producing the same

Country Status (6)

Country Link
US (1) US20190010571A1 (en)
EP (1) EP3392364B1 (en)
JP (1) JP6691967B2 (en)
KR (1) KR101736621B1 (en)
CN (1) CN108368589B (en)
WO (1) WO2017104995A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018122901A1 (en) 2018-09-18 2020-03-19 Voestalpine Stahl Gmbh Process for the production of ultra high-strength steel sheets and steel sheet therefor
JP7319518B2 (en) * 2019-02-14 2023-08-02 日本製鉄株式会社 Wear-resistant thick steel plate
CN112981066B (en) * 2021-02-07 2022-09-30 松山湖材料实验室 Heat treatment method of high-chromium steel and heat-treated high-chromium steel
WO2024127058A1 (en) * 2022-12-12 2024-06-20 Arcelormittal Hot rolled steel plate with high wear resistance and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609824A (en) * 1983-06-27 1985-01-18 Sumitomo Metal Ind Ltd Production of tough and hard steel
JP2004300474A (en) * 2003-03-28 2004-10-28 Jfe Steel Kk Abrasion resistant steel and manufacturing method therefor
JP2007146237A (en) * 2005-11-28 2007-06-14 Nippon Steel Corp Heat-treatment method for bainite steel rail
KR20130096213A (en) * 2013-08-01 2013-08-29 주식회사 포스코 Wear resistant steel plate having excellent low-temperature toughness and weldability, and method for manufacturing the same
JP2015200015A (en) * 2014-03-31 2015-11-12 Jfeスチール株式会社 Thick steel sheet excellent in wear resistance in high temperature environment

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4682822B2 (en) 2004-11-30 2011-05-11 Jfeスチール株式会社 High strength hot rolled steel sheet
JP5423806B2 (en) * 2009-11-17 2014-02-19 新日鐵住金株式会社 High toughness wear resistant steel and method for producing the same
JP5375916B2 (en) * 2011-09-28 2013-12-25 Jfeスチール株式会社 Manufacturing method of wear-resistant steel plate with excellent flatness
CN102747280B (en) * 2012-07-31 2014-10-01 宝山钢铁股份有限公司 Wear resistant steel plate with high intensity and high toughness and production method thereof
KR20150038590A (en) * 2012-09-19 2015-04-08 제이에프이 스틸 가부시키가이샤 Wear-resistant steel plate having excellent low-temperature toughness and corrosion wear resistance
KR101439629B1 (en) * 2012-10-15 2014-09-11 주식회사 포스코 Wear resistant steel having excellent wear-resistance and method for manufacturing the same
CN103805851B (en) * 2012-11-15 2016-03-30 宝山钢铁股份有限公司 A kind of superstrength low cost hot rolling Q & P steel and production method thereof
KR101439686B1 (en) * 2012-12-26 2014-09-12 주식회사 포스코 Steel for wear sliding resistant having excellent wear-resistance and method for manufacturing the same
JP6007847B2 (en) * 2013-03-28 2016-10-12 Jfeスチール株式会社 Wear-resistant thick steel plate having low temperature toughness and method for producing the same
CN103255341B (en) * 2013-05-17 2015-07-22 宝山钢铁股份有限公司 High-strength and high-toughness hot-rolled wear-resistant steel and preparation method thereof
AU2015212260B2 (en) * 2014-01-28 2017-08-17 Jfe Steel Corporation Abrasion-resistant steel plate and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609824A (en) * 1983-06-27 1985-01-18 Sumitomo Metal Ind Ltd Production of tough and hard steel
JP2004300474A (en) * 2003-03-28 2004-10-28 Jfe Steel Kk Abrasion resistant steel and manufacturing method therefor
JP2007146237A (en) * 2005-11-28 2007-06-14 Nippon Steel Corp Heat-treatment method for bainite steel rail
KR20130096213A (en) * 2013-08-01 2013-08-29 주식회사 포스코 Wear resistant steel plate having excellent low-temperature toughness and weldability, and method for manufacturing the same
JP2015200015A (en) * 2014-03-31 2015-11-12 Jfeスチール株式会社 Thick steel sheet excellent in wear resistance in high temperature environment

Also Published As

Publication number Publication date
EP3392364A1 (en) 2018-10-24
EP3392364A4 (en) 2018-10-24
CN108368589B (en) 2020-10-20
CN108368589A (en) 2018-08-03
JP6691967B2 (en) 2020-05-13
KR101736621B1 (en) 2017-05-30
EP3392364B1 (en) 2020-07-29
US20190010571A1 (en) 2019-01-10
WO2017104995A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
CN110100034B (en) High-hardness wear-resistant steel and method for manufacturing same
JP7018510B2 (en) Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
JP2016534230A (en) High hardness hot rolled steel product and method for producing the same
KR100920536B1 (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
JP7368461B2 (en) Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
JP7471417B2 (en) High-hardness wear-resistant steel with excellent low-temperature impact toughness and manufacturing method thereof
JP2011001620A (en) High strength thick steel plate combining excellent productivity and weldability and having excellent drop weight characteristic after pwht, and method for producing the same
JP2020503450A (en) High hardness wear-resistant steel and method for producing the same
JP6691967B2 (en) High hardness and wear resistant steel excellent in toughness and cutting crack resistance, and method for producing the same
KR20080055702A (en) High-strength steel plate resistant to strength reduction resulting from stress relief annealing and excellent in weldability
RU2749855C1 (en) Steel material for high-strength steel pipe with low ratio of yield to strength, having excellent low temperature impact viscosity, and method for its production
JP2019525994A (en) Microalloy steel and production method of the steel
JP3981615B2 (en) Non-water-cooled thin low yield ratio high-tensile steel and method for producing the same
KR20130096213A (en) Wear resistant steel plate having excellent low-temperature toughness and weldability, and method for manufacturing the same
KR101546154B1 (en) Oil tubular country goods and method of manufacturing the same
CA3108674C (en) Steel for pressure vessel having excellent surface quality and impact toughness, and method for manufacturing same
JP7018509B2 (en) Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
JP5847330B2 (en) Wear-resistant steel with excellent toughness and weldability
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
KR101505279B1 (en) Hot-rolled steel sheet and method of manufacturing the same
CN114341386B (en) Steel material excellent in strength and low-temperature impact toughness and method for producing same
KR101675677B1 (en) Non-heated hot-rolled steel sheet and method of manufacturing the same
KR101400662B1 (en) Steel for pressure vessel and method of manufacturing the same
KR102498150B1 (en) Armored steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof
KR102443927B1 (en) Hot-rolled steel plate having excellent impact toughness of welded zone and method for manufacturing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200413

R150 Certificate of patent or registration of utility model

Ref document number: 6691967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250