JP2004300474A - Abrasion resistant steel and manufacturing method therefor - Google Patents

Abrasion resistant steel and manufacturing method therefor Download PDF

Info

Publication number
JP2004300474A
JP2004300474A JP2003092115A JP2003092115A JP2004300474A JP 2004300474 A JP2004300474 A JP 2004300474A JP 2003092115 A JP2003092115 A JP 2003092115A JP 2003092115 A JP2003092115 A JP 2003092115A JP 2004300474 A JP2004300474 A JP 2004300474A
Authority
JP
Japan
Prior art keywords
less
point
steel
toughness
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003092115A
Other languages
Japanese (ja)
Inventor
Teruki Sadasue
照輝 貞末
Yasuhiro Murota
康宏 室田
Kazuhide Takahashi
和秀 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003092115A priority Critical patent/JP2004300474A/en
Publication of JP2004300474A publication Critical patent/JP2004300474A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abrasion resistant steel having superior abrasion resistance combined with toughness, and to provide a manufacturing method therefor. <P>SOLUTION: The steel comprises, by mass%, 0.05-0.40% C, 0.1-0.8% Si, 0.5-2.0% Mn, 0.05% or less P, 0.02% or less S, 0.005-0.5% Ti, 0.0005-0.005% B, one or more elements among Cu, Ni, Cr, Mo, Nb and V, as needed, and the balance Fe with unavoidable impurities; has a surface layer comprising substantially martensitic structure in as quenched state; and has a central part of sheet thickness comprising substantially a tempered martensitic structure, a tempered bainitic structure, or the mixed structure thereof. The manufacturing method comprises rolling the steel having the above composition, cooling it to the Ms point or lower from the Ar<SB>3</SB>point or higher at a cooling rate of 10°C/s or higher, then heating it to the Ac<SB>3</SB>point or higher at a programming rate of 1°C/s or higher, and cooling it to the Ms point or lower from the Ar<SB>3</SB>point or higher at a cooling rate of 10°C/s or higher. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は耐摩耗鋼及びその製造方法に関し、特に鋼板表層から中央部にかけて組織が傾斜的に変化し、靭性に優れる耐摩耗鋼およびその製造方法に関する。
【0002】
【従来の技術】建設、土木および鉱山などでの掘削用途に用いられる産業機械、運搬機器としてパワーシャベル、ブルドーザ、大型ダンプトラックがあり、それらの土砂摩耗部には耐摩耗性に優れる耐摩耗鋼が使用されてきた。
【0003】
耐摩耗鋼は鋼中C量を増大して組織を硬いマルテンサイト組織としたものが一般的であるが、C量の増大により靭性が著しく劣化するため極寒冷地での使用が制限されている。このため、焼入れ性と靭性を両立させるための成分組成が検討されてきた。
【0004】
特許文献1は低温靭性に優れた耐摩耗鋼に関し、特定量のSiとNbを複合添加した鋼を焼入れ後150℃以上450℃以下の低温焼戻しにより、焼戻し脆化と焼戻し軟化を抑制し、HB500以上の高硬度を有し、低温靭性に優れた高硬度耐摩耗鋼が記載されている。
【0005】
一方、耐摩耗鋼の製造方法に関して、省プロセスの観点から直接焼入れー焼戻しの検討もなされてきた。
【0006】
特許文献2は生産性良く鋼材を製造する方法に関し、圧延機および直接焼入れ装置もしくは加速冷却装置と同一の製造ライン上に加熱装置を設置し、圧延、焼入れ、焼戻しを連続的に行う方法が開示されている。冷却によりベイナイトまたはマルテンサイト組織とした後、急速加熱焼戻しを行うことにより、過飽和に固溶された炭素原子が微細なセメンタイトとして析出され、固溶量が減少して靭性が良好となり、強度も低下しないため、従来の焼戻し法に比較して安価な成分組成で強度、靭性の優れた鋼が効率的に得られることが記載されている。
【0007】
【特許文献1】特開平8−41535号公報
【0008】
【特許文献2】特許第3015923号公報
【0009】
【発明が解決しようとする課題】
しかしながら、特許文献1記載の耐摩耗鋼でSiと複合添加されるNbや必須添加されるMoは高価な元素であり、安価な耐摩耗鋼は得られない。
【0010】
特許文献2記載の強靭鋼の製造方法は生産性良く鋼材を製造する方法としては優れたものであるが、この技術で得られる焼戻しベイナイト組織もしくは焼戻しマルテンサイト組織では表面硬度が最大でもブリネル硬度で350程度であり、高硬度化を図ることはできない。
【0011】
そこで本発明は、安価で高靭性の耐摩耗鋼材および生産性に優れた製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明者等は、鋼板表層を焼入れままマルテンサイト組織とし、板厚中央部を焼戻しマルテンサイト組織もしくは焼戻しベイナイト組織、または両者の混合組織とすることで、優れた耐摩耗性と靭性が両立できることを知見した。また、このような板厚方向に傾斜組織を有する鋼材は、ライン上に設置された冷却装置と急速加熱装置を用いて、高効率、低コストで生産できることを知見した。
【0013】
すなわち本発明は、
1.質量%で、C:0.05〜0.40%、Si:0.1〜0.8%、Mn:0.5〜2.0%、P:0.05%以下、S:0.02%以下、Ti:0.005〜0.5%、B:0.0005〜0.005%、残部Feおよび不可避的不純物からなり、表層が実質的に焼入れままマルテンサイト組織、板厚中央部が、実質的に焼戻しマルテンサイト若しくは焼戻しベイナイト組織または両者の混合組織からなることを特徴とする耐摩耗鋼。
【0014】
2.更に、質量%で、Cu:1.0%以下、Ni:2.0%以下、Cr:2.0%以下、Mo:1.0%以下、Nb:0.1%以下、V:0.2%以下の一種または二種以上を含有することを特徴とする1記載の耐摩耗鋼。
3.1または2記載の成分組成を有する鋼を圧延後、Ar3点以上から冷却速度10℃/s以上でMs点以下まで冷却し、その後、昇温速度1℃/s以上でAc3点以上まで加熱し、Ar3点以上から冷却速度10℃/s以上でMs点以下まで冷却することを特徴とする耐摩耗鋼の製造方法。
【0015】
【発明の実施の形態】
本発明に係る耐摩耗鋼は、成分組成、組織を規定する。
〔成分組成〕

Cは鋼材の強度を高め、耐摩耗性を向上させるため0.05%以上添加する。一方、0.40%を超えると溶接性および靭性が低下し、焼き割れと遅れ破壊が発生し易くなるため0.05%以上、0.40%以下とする。好ましくは0.10〜0.35%とする。
【0016】
Si
Siは製鋼の脱酸材として0.1%以上添加する。一方、0.8%を超えて添加すると溶接性および靭性を低下させることがあるため0.1%以上、0.8%以下とする。好ましくは0.20〜0.55%とする。
【0017】
Mn
Mnは安価な元素で製品コストを上げずに焼き入れ性を高め、靭性を向上させるため0.5%以上添加する。一方、2.0%を超えると溶接性を損なう恐れを生じ、遅れ破壊も生じやすくなるため0.5%以上、2.0%以下とする。好ましくは1.0〜1.6%とする。
【0018】
Ti
Tiは鋼中のNをTiNとして固定し、Bの焼き入れ性を確保する。またTiCとして分散析出し耐摩耗性を向上させるため0.005%以上添加する。一方、0.5%を超えると製品コストが上昇するため0.005〜0.5%とする。
【0019】

Bは焼き入れ性を向上させるため0.0005%以上添加する。一方、0.005%を超えると溶接性を損なうため0.0005〜0.005%とする。
【0020】
P,S
本発明ではP、Sは不可避的不純物として扱い、Pは鋼中に含まれると靭性を低下させるため0.05%以下、好ましくは0.03%以下とする。Sは鋼中に含まれると靭性を低下させるため0.02%以下、好ましくは0.01%以下とする。
【0021】
以上が本発明の基本成分で、優れた耐摩耗性と靭性が得られるが更に、強度、靭性や溶接性などを調整したり、耐候性を付与する場合、Cu,Ni,Cr,Mo,Nb,Vの一種または二種以上を添加する。
【0022】
Cu
Cuは焼き入れ性を向上させるが、1.0%を超えると熱間脆性を生じる恐れがあるため、添加する場合は1.0%以下とする。好ましくは、0.5%以下である。
【0023】
Ni
Niは靭性と焼き入れ性を向上させるが、2.0%を超えると製品コストが上昇するため、添加する場合は2.0%以下とする。好ましくは1.0%以下である。
【0024】
Cr
Crは焼き入れ性を向上させるが、2.0%を超えると溶接性および靭性を損なう恐れがあるため、添加する場合は2.0%以下とする。好ましくは、1.5%以下である。
【0025】
Mo
Moは焼き入れ性を向上させ、焼戻し時に炭窒化物として析出して硬度の低下を抑制するが、1.0%を超えると溶接性と靭性を損なう恐れがあるため、添加する場合は1.0%以下とする。好ましくは0.5%以下である。
【0026】
Nb
Nbは圧延時の再結晶を抑制し、結晶粒を微細化して靭性を向上させるとともに、焼き入れ性を向上させる。また焼戻し時に析出して硬度低下を抑制するが0.1%を超えると溶接性を損なう恐れがあるため、添加する場合は0.1%以下とする。好ましくは0.05%以下である。
【0027】

Vは焼戻し時に炭窒化物として析出し硬度の低下を抑制するが、0.2%を超えると溶接性を損なう恐れがあるため、添加する場合は0.2%以下とする。好ましくは、0.1%以下である。
【0028】
〔組織〕
本発明に係る耐摩耗鋼は表層から板厚中心部までが傾斜的に変化した組織を有している。本発明鋼の表層は実質的に焼入れままマルテンサイト組織で、板厚中心部の組織は実質的に、焼戻しマルテンサイト組織若しくは焼戻しベイナイト組織または両者の混合組織とする。
【0029】
表層部を実質的に焼入れままマルテンサイト組織とすることにより、耐摩耗性に必要とされる硬度である300以上、好ましくは360以上の表面ブリネル硬度(HB(10/3000))が得られ、板厚中心部を実質的に、焼戻しマルテンサイト組織若しくは焼戻しベイナイト組織または両者の混合組織とすることにより優れた低温靭性が得られる。
【0030】
本発明で実質的に焼入れままマルテンサイト組織とは、組織が焼入れままマルテンサイト組織のみからなる場合だけでなく、少量の他の組織が含まれる場合も含むものとする。実質的に、焼戻しマルテンサイト組織、焼戻しベイナイト組織の場合も同様の意味とする。
【0031】
また、本発明で表層とは、鋼板上下面のそれぞれにおいて少なくとも表面を含む表面近傍を指し、たとえば表層から表層下5mm程度である。板厚中心部とは少なくとも板厚の1/2を含む板厚中心部近傍とする。板厚方向における表層の深さや、板厚中心部の厚みは所望の耐摩耗性や靭性が得られるように本発明範囲内の熱処理条件を用い調整することができる。
【0032】
なお、これらの組織の分類は、走査型電子顕微鏡、透過型電子顕微鏡により同定することができる。例えば、マルテンサイトに関して焼入れままと焼戻しは、前者が実質的に炭化物の析出が無く、後者が炭化物の析出が認められることにより区別される。
【0033】
本発明鋼の製造条件について説明する。図1は本発明に係る熱処理条件の一例を模式的に示すもので、上述した成分組成の鋼を所望の板厚に圧延後、直接焼入れし、その後急速加熱して再焼入れすることで、鋼板表層を実質的に焼入れままマルテンサイト組織、板厚中央部を実質的に、焼戻しマルテンサイト組織若しくは焼戻しベイナイト組織または両者の混合組織とする。
【0034】
なお、以下で説明する本発明の温度、冷却速度、昇温速度などの規定は特に限定しない限り鋼板表面での値とする。
[加熱、圧延]
本発明ではスラブ加熱温度は特に規定しないが、鋼の結晶粒粗大化を抑制するため上限は1300℃、圧延後の直接焼入れ開始温度Ar3点以上を確保するため下限を1000℃とすることが望ましい。
【0035】
圧延条件は特に規定しないが、オーステナイト粒を微細化させて靭性向上を図るため、Ar3点以上の累積圧下率を50%以上とすることが好ましい。
[焼入れ]
焼入れは、焼入れ後において鋼板表層部を実質的にマルテンサイト組織、板厚中央部を実質的に、マルテンサイト組織若しくはベイナイト組織または両者の混合組織とするためAr3点以上の温度域から冷却速度10℃/s以上でMs点以下まで冷却して行う。
[再加熱・再焼入れ]
鋼板表層部を実質的に焼入れままマルテンサイト組織、板厚中央部を実質的に、焼戻しマルテンサイト組織若しくは焼戻しベイナイト組織または両者の混合組織とするため、Ac3点以上まで昇温速度1℃/s以上で加熱後、Ar3点以上から冷却速度10℃/s以上でMs点以下まで冷却する。
【0036】
昇温速度1℃/sec以上でAc3点以上に急速加熱することにより、表層はオーステナイトに逆変態し粒径が微細化される。一方、板厚中央部は急速加熱のため微細な炭化物が析出した焼戻しマルテンサイト組織若しくは焼戻しベイナイト組織または両者の混合組織となる。
【0037】
再加熱する際は、板厚中央部の最高加熱温度を400℃以上、Ac1点未満とすることが好ましい。400℃以上とすることにより微細な炭化物が析出し、Ac1点未満とすることにより逆変態オーステナイトが生成せず、その後の冷却で靭性を低下させる有害なマルテンサイトの生成が防止される。また、表層と板厚中央部で温度差を設けるため、最高加熱温度における保持は行なわない。
【0038】
再加熱に誘導加熱装置を用いれば、誘導電流により板厚表層が加熱され、板厚内部は表層からの熱伝導により加熱されるため、図1に示すように最高加熱温度に差を設けることができる。板厚や所望の特性に応じて、誘導加熱装置へ供給する電力や周波数を調整することで、板厚方向の到達加熱温度を制御できる。
【0039】
再加熱後、さらにAr3点以上から冷却速度10℃/sec以上でMs点以下まで再焼入れすることで、表層は微細な粒径を保ったまま再びマルテンサイトへ変態する。
【0040】
以上の工程により、鋼板表層部は微細な粒径を有する焼入れままマルテンサイト組織、板厚中央部は微細な炭化物が析出した焼戻しマルテンサイト組織若しくは焼戻しベイナイト組織または両者の混合組織となり、高い表面硬度と優れた靭性を兼ね備えることが可能となる。また、表層部は粒径微細化の効果により高靭性であり、板厚中央部は炭化物の微細析出により高硬度でもある。
【0041】
また、本発明は、ライン上に再加熱装置を設けた設備で行うと、生産性が著しく向上するが、再加熱装置をオフラインとしても適用可能である。
再加熱後の再焼入れは、鋼板を逆方向に搬送して加熱装置前の冷却設備を使うことができるが、加熱装置の後面に別の冷却装置を設けても良い。
【0042】
なお、Ar3点、Ac3点、Ac1点、Ms点は、例えば以下の式により鋼材の成分組成に基づいて導くことができる。
【0043】
Ar3(℃)=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo
Ac3(℃)=854−180C+44Si−14Mn−17.8Ni−1.7Cr
Ac1(℃)=723−14Mn+22Si−14.4Ni+23.3Cr
Ms(℃)=517−300C−33Mn−22Cr−17Ni−11Mo−11Si
但し、元素記号は鋼材中の各元素の質量%での含有量を表す。
【0044】
【実施例】
本発明の有用性を実施例を用いて詳細に説明する。
表1に示す成分組成の鋼を溶解後、表2に示す製造条件を用い、板厚12〜100mmの供試鋼を製造し、ミクロ組織、硬度、靭性を調査した。ミクロ組織は光学顕微鏡、走査および透過型電子顕微鏡により、表層下1mmおよび板厚中央部について同定した。
【0045】
硬度は、表面硬度と板厚方向硬度分布について求め、表面硬度はブリネル硬度(HB(10/3000))試験をJISZ2243に準拠して行い5点の測定点の平均値が300以上となるものを合格とした。
【0046】
板厚方向硬度分布は、ビッカース硬度試験(Hv10kg)により表層下1mmと板厚中央部について求め、板厚中央部の硬度と表層下1mmの硬度の比率(板厚中央部の硬度/表層下1mm硬度、以下硬度比率)が70%を超えるものを本発明範囲内とした。
【0047】
靭性はシャルピー衝撃試験をJISZ2202に準拠して行った。試験片は表層下5mm,板厚の1/4,1/2から圧延方向に3本採取し、試験温度ー40℃での衝撃値の平均値が27Jを超えるものを本発明範囲内とした。なお、板厚20mm以下の鋼板については、採取位置を表層下5mmと板厚の1/2とした。
【0048】
表3にこれらの試験結果を示す(表3中での実施例Noと表2中での実施例Noは同じ鋼板については同一の番号とする)。
【0049】
No.1〜7は本発明例で、いずれの鋼板もミクロ組織は鋼板表層部が微細な焼入れままマルテンサイト組織、板厚中央部が微細な炭化物を有する焼戻しマルテンサイト若しくは焼戻しベイナイト組織または両者の混合組織となっている。
【0050】
また、鋼板表面のブリネル硬度は300以上で、板厚方向硬度分布における硬度比率として70%を超える値が得られた。ー40℃のシャルピー吸収エネルギはどの採取位置においても27J以上で、優れた低温靭性が確認された。
【0051】
一方、No.8〜No.17は比較例で、No.8は直接焼入れの開始温度がAr3点以下で本発明範囲外、No.9は直接焼入れ時の冷却速度が10℃/s以下で本発明範囲外、No.10は直接焼入れ停止温度がMs点を超えていて本発明範囲外となっている。
【0052】
その結果、No.8〜No.10の鋼板は直接焼入れにより十分焼きが入らず、その後再加熱・再焼入れを行っても、板厚中心部はフェライトの混入した組織である。硬度比率は70%未満となり、表層に対し板厚中心部の硬度が低く本発明鋼に対し、劣っている。
【0053】
No.11は再加熱速度が1℃/s未満で遅く本発明範囲外で、表層部でのオーステナイト粒径が粗大化する。また、表層部と板厚中央部での温度差が小さく、板厚中心部もAc1点を超えて加熱され、再焼入れされるため靭性に有害なMAが生成した組織となり、低温靭性が低下する。
【0054】
No.12は再加熱温度がAc3点以下で本発明範囲外であり、表層部が完全にオーステナイト化されないためその後の冷却で十分焼きの入った組織が得られず、耐摩耗性、靭性とも低い。
【0055】
No.13は再焼入れ時、冷却開始温度がAr3点未満で本発明範囲外、No.14は冷却速度が10℃/s未満で本発明範囲外、No.15は冷却停止温度がMs点以上で本発明範囲外であり、いずれも十分焼きの入った組織が得られず表層部にフェライトやベイナイトが生じ、表層のブリネル硬度が300未満と低く、耐摩耗性に劣る。
【0056】
No.16は供試鋼の成分組成においてC量が少なく本発明範囲外、No.17はP,Sが多く本発明範囲外で、それぞれ硬度、靭性が本発明鋼に対して低い。
【0057】
本実施例においてAr3点、Ac3点、Ac1点、Ms点は上述した式を用いて計算を行った。
【0058】
【表1】

Figure 2004300474
【0059】
【表2】
Figure 2004300474
【0060】
【表3】
Figure 2004300474
【0061】
【発明の効果】
本発明によれば、安価な成分組成で耐摩耗性と低温靭性に優れた耐摩耗鋼およびそのような耐摩耗鋼を生産性良く製造する方法が得られ、産業上極めて有用である。
【図面の簡単な説明】
【図1】本発明に係る熱処理条件の一例を模式的に示す図。[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wear-resistant steel and a method for producing the same, and more particularly, to a wear-resistant steel having a structure that changes gradually from the surface layer to the center of the steel sheet and has excellent toughness, and a method for producing the same.
[0002]
2. Description of the Related Art There are power shovels, bulldozers, and large dump trucks as industrial machines and transport equipment used in construction, civil engineering, mining, and other excavating applications. Has been used.
[0003]
Wear-resistant steels generally have a hard martensitic structure by increasing the amount of C in the steel, but their use in extremely cold regions is restricted because the increase in the amount of C significantly deteriorates the toughness. . For this reason, a component composition for achieving both hardenability and toughness has been studied.
[0004]
Patent Document 1 relates to an abrasion-resistant steel having excellent low-temperature toughness, which suppresses temper embrittlement and temper softening by quenching a steel to which a specific amount of Si and Nb are added in combination at a low temperature of 150 ° C to 450 ° C after quenching. A high-hardness wear-resistant steel having the above high hardness and excellent low-temperature toughness is described.
[0005]
On the other hand, regarding the method of producing wear-resistant steel, direct quenching-tempering has also been studied from the viewpoint of process saving.
[0006]
Patent Literature 2 relates to a method for producing steel with high productivity, and discloses a method in which a heating device is installed on the same production line as a rolling mill and a direct quenching device or an accelerated cooling device, and rolling, quenching, and tempering are continuously performed. Have been. After cooling to bainite or martensitic structure, rapid heating and tempering precipitates supersaturated solid solution carbon atoms as fine cementite, reduces the amount of solid solution, improves toughness, and reduces strength. It is described that a steel excellent in strength and toughness can be efficiently obtained with an inexpensive component composition as compared with the conventional tempering method.
[0007]
[Patent Document 1] JP-A-8-41535
[Patent Document 2] Japanese Patent No. 3015923
[Problems to be solved by the invention]
However, in the wear-resistant steel described in Patent Document 1, Nb combined with Si and Mo that is essentially added are expensive elements, and an inexpensive wear-resistant steel cannot be obtained.
[0010]
Although the method for producing a tough steel described in Patent Document 2 is excellent as a method for producing a steel material with high productivity, the surface hardness of the tempered bainite structure or the tempered martensite structure obtained by this technique is at most Brinell hardness. It is about 350, and it is not possible to increase the hardness.
[0011]
Therefore, an object of the present invention is to provide an inexpensive, high-toughness wear-resistant steel material and a manufacturing method excellent in productivity.
[0012]
[Means for Solving the Problems]
The present inventors have made it possible to achieve both excellent wear resistance and toughness by making the surface layer of the steel sheet a martensitic structure while quenching, and making the central part of the sheet thickness a tempered martensite structure or a tempered bainite structure, or a mixed structure of both. Was found. In addition, it has been found that such a steel material having a structure inclined in the thickness direction can be produced at high efficiency and at low cost by using a cooling device and a rapid heating device installed on a line.
[0013]
That is, the present invention
1. In mass%, C: 0.05 to 0.40%, Si: 0.1 to 0.8%, Mn: 0.5 to 2.0%, P: 0.05% or less, S: 0.02 % Or less, Ti: 0.005 to 0.5%, B: 0.0005 to 0.005%, the balance being Fe and inevitable impurities. A wear-resistant steel comprising substantially tempered martensite or tempered bainite structure or a mixed structure of both.
[0014]
2. Further, in mass%, Cu: 1.0% or less, Ni: 2.0% or less, Cr: 2.0% or less, Mo: 1.0% or less, Nb: 0.1% or less, V: 0. 2. The wear-resistant steel according to 1, wherein the steel contains 1% or less of 2% or more.
3.1 After rolling the steel having the component composition described in 1 or 2, after cooling from the Ar 3 point or more to the Ms point or less at a cooling rate of 10 ° C./s or more, then, at a heating rate of 1 ° C./s or more to the Ac 3 point or more A method for producing a wear-resistant steel, comprising heating and cooling from an Ar 3 point or more to a Ms point or less at a cooling rate of 10 ° C./s or more.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The wear-resistant steel according to the present invention defines a component composition and a structure.
(Component composition)
C
C is added in an amount of 0.05% or more to increase the strength of the steel material and improve the wear resistance. On the other hand, when the content exceeds 0.40%, the weldability and toughness are reduced, and quenching cracks and delayed fracture are likely to occur. Therefore, the content is set to 0.05% or more and 0.40% or less. Preferably, it is 0.10 to 0.35%.
[0016]
Si
Si is added at 0.1% or more as a deoxidizing material for steelmaking. On the other hand, if added in excess of 0.8%, the weldability and toughness may be reduced, so the content is set to 0.1% or more and 0.8% or less. Preferably it is 0.20 to 0.55%.
[0017]
Mn
Mn is an inexpensive element and is added in an amount of 0.5% or more to increase hardenability without increasing product cost and to improve toughness. On the other hand, if it exceeds 2.0%, the weldability may be impaired, and delayed fracture is likely to occur. Preferably, it is set to 1.0 to 1.6%.
[0018]
Ti
Ti fixes N in the steel as TiN and secures the hardenability of B. Further, 0.005% or more is added in order to disperse and precipitate as TiC and improve wear resistance. On the other hand, if the content exceeds 0.5%, the product cost increases, so the content is set to 0.005 to 0.5%.
[0019]
B
B is added in an amount of 0.0005% or more to improve hardenability. On the other hand, if it exceeds 0.005%, the weldability is impaired, so the content is made 0.0005 to 0.005%.
[0020]
P, S
In the present invention, P and S are treated as inevitable impurities, and if P is contained in steel, the toughness is reduced, so that P is set to 0.05% or less, preferably 0.03% or less. S is set to 0.02% or less, preferably 0.01% or less, because when it is contained in steel, it lowers toughness.
[0021]
Although the above are the basic components of the present invention, excellent wear resistance and toughness can be obtained. Further, when strength, toughness, weldability, etc. are adjusted or weather resistance is imparted, Cu, Ni, Cr, Mo, Nb , V are added.
[0022]
Cu
Although Cu improves the hardenability, if it exceeds 1.0%, hot brittleness may occur, so when Cu is added, the content is made 1.0% or less. Preferably, it is 0.5% or less.
[0023]
Ni
Ni improves the toughness and hardenability, but if it exceeds 2.0%, the product cost increases. Therefore, when Ni is added, the content is made 2.0% or less. Preferably it is 1.0% or less.
[0024]
Cr
Cr improves the hardenability, but if it exceeds 2.0%, the weldability and toughness may be impaired. Therefore, when Cr is added, the content is made 2.0% or less. Preferably, it is 1.5% or less.
[0025]
Mo
Mo improves the hardenability and precipitates as carbonitride during tempering to suppress the decrease in hardness. However, if it exceeds 1.0%, the weldability and toughness may be impaired. 0% or less. Preferably it is 0.5% or less.
[0026]
Nb
Nb suppresses recrystallization during rolling, refines crystal grains, improves toughness, and improves hardenability. Precipitation occurs during tempering to suppress a decrease in hardness. However, if it exceeds 0.1%, the weldability may be impaired. Preferably it is 0.05% or less.
[0027]
V
V precipitates as a carbonitride during tempering and suppresses a decrease in hardness, but if it exceeds 0.2%, the weldability may be impaired. Preferably, it is 0.1% or less.
[0028]
[Organization]
The wear-resistant steel according to the present invention has a structure in which the surface layer changes from the center to the center of the plate thickness in an inclined manner. The surface layer of the steel of the present invention has a martensite structure substantially as-quenched, and the structure at the center of the plate thickness substantially has a tempered martensite structure or a tempered bainite structure or a mixed structure of both.
[0029]
By making the surface layer substantially martensitic as-quenched, a surface Brinell hardness (HB (10/3000)) of 300 or more, preferably 360 or more, which is the hardness required for wear resistance, is obtained. An excellent low-temperature toughness can be obtained by substantially forming the center of the sheet thickness into a tempered martensite structure, a tempered bainite structure, or a mixed structure of both.
[0030]
In the present invention, the substantially as-quenched martensitic structure includes not only a case where the structure is composed of only as-quenched martensite structure but also a case where a small amount of other structure is included. Substantially the same applies to the case of a tempered martensite structure and a tempered bainite structure.
[0031]
Further, in the present invention, the surface layer means the vicinity of the surface including at least the surface on each of the upper and lower surfaces of the steel sheet, and is, for example, about 5 mm below the surface layer from the surface layer. The thickness center portion is defined as a portion near the thickness center portion including at least half of the thickness. The depth of the surface layer in the thickness direction and the thickness at the center of the thickness can be adjusted using heat treatment conditions within the range of the present invention so as to obtain desired wear resistance and toughness.
[0032]
The classification of these tissues can be identified by a scanning electron microscope or a transmission electron microscope. For example, as-quenched and tempered martensite are distinguished by the former having substantially no carbide precipitation and the latter having carbide precipitation.
[0033]
The production conditions of the steel of the present invention will be described. FIG. 1 schematically shows an example of heat treatment conditions according to the present invention. After rolling a steel having the above-described composition to a desired thickness, directly quenching, and then rapidly heating and re-quenching, The surface layer is substantially martensitic as-quenched, and the central part of the sheet thickness is substantially tempered martensite structure or tempered bainite structure or a mixed structure of both.
[0034]
In addition, the provisions of the temperature, cooling rate, heating rate, and the like of the present invention described below are values on the surface of the steel sheet unless otherwise specified.
[Heating, rolling]
In the present invention, the slab heating temperature is not particularly defined, but the upper limit is preferably 1300 ° C. in order to suppress the coarsening of the crystal grains of the steel, and the lower limit is preferably 1000 ° C. in order to secure the direct quenching start temperature Ar of 3 points or more after rolling. .
[0035]
The rolling conditions are not particularly limited, but the cumulative rolling reduction at three or more Ar points is preferably 50% or more in order to improve the toughness by making the austenite grains fine.
[Quenching]
The quenching is performed after the quenching, since the surface layer of the steel sheet has substantially a martensite structure, and the central part of the sheet thickness has a substantially martensite structure or a bainite structure or a mixed structure of both. The cooling is performed at a temperature not lower than the Ms point at a temperature of not less than C / s.
[Reheating / Requenching]
In order to form a martensite structure while the surface layer portion of the steel sheet is substantially quenched and a center portion of the sheet thickness substantially to have a tempered martensite structure or a tempered bainite structure or a mixed structure of both, the heating rate is 1 ° C./s to the Ac 3 point or more. After heating as described above, cooling is performed from the Ar 3 point or more to the Ms point or less at a cooling rate of 10 ° C./s or more.
[0036]
By rapidly heating to an Ac point of 3 or more at a temperature increase rate of 1 ° C./sec or more, the surface layer is inversely transformed into austenite and the particle size is reduced. On the other hand, the central portion of the sheet thickness has a tempered martensite structure or a tempered bainite structure in which fine carbides are precipitated due to rapid heating, or a mixed structure of both.
[0037]
When reheating, it is preferable that the maximum heating temperature at the central portion of the sheet thickness be 400 ° C. or higher and lower than the Ac1 point. By setting the temperature to 400 ° C. or higher, fine carbides are precipitated, and when the temperature is lower than the Ac1 point, the reverse transformation austenite is not generated, and the generation of harmful martensite which lowers the toughness by subsequent cooling is prevented. Further, since a temperature difference is provided between the surface layer and the central portion of the plate thickness, holding at the maximum heating temperature is not performed.
[0038]
When an induction heating device is used for reheating, the sheet thickness surface layer is heated by the induction current, and the inside of the sheet thickness is heated by heat conduction from the surface layer, so that a difference is provided in the maximum heating temperature as shown in FIG. it can. The ultimate heating temperature in the thickness direction can be controlled by adjusting the power and frequency supplied to the induction heating device according to the thickness and desired characteristics.
[0039]
After reheating, the surface layer is transformed again into martensite while maintaining the fine particle size by re-quenching from the Ar 3 point or more to the Ms point or less at a cooling rate of 10 ° C./sec or more.
[0040]
By the above steps, the surface layer of the steel sheet becomes a martensite structure as-quenched having a fine grain size, and the central part of the sheet thickness becomes a tempered martensite structure or a tempered bainite structure in which fine carbides are precipitated or a mixed structure of both, and has a high surface hardness. And excellent toughness. The surface layer has high toughness due to the effect of reducing the grain size, and the central portion of the sheet thickness has high hardness due to fine precipitation of carbide.
[0041]
Further, when the present invention is carried out in a facility provided with a reheating device on a line, productivity is remarkably improved, but the reheating device can be applied offline.
For re-quenching after reheating, the steel sheet can be conveyed in the reverse direction and the cooling equipment before the heating device can be used, but another cooling device may be provided on the rear surface of the heating device.
[0042]
The Ar3 point, Ac3 point, Ac1 point, and Ms point can be derived based on the composition of the steel material, for example, by the following equation.
[0043]
Ar3 (° C) = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo
Ac3 (° C) = 854-180C + 44Si-14Mn-17.8Ni-1.7Cr
Ac1 (° C) = 723-14Mn + 22Si-14.4Ni + 23.3Cr
Ms (° C.) = 517-300C-33Mn-22Cr-17Ni-11Mo-11Si
Here, the symbol of element represents the content of each element in the steel material in mass%.
[0044]
【Example】
The usefulness of the present invention will be described in detail using examples.
After melting the steel having the component composition shown in Table 1, a test steel having a plate thickness of 12 to 100 mm was manufactured under the manufacturing conditions shown in Table 2, and the microstructure, hardness, and toughness were investigated. The microstructure was identified with an optical microscope, a scanning and transmission electron microscope for 1 mm below the surface and in the center of the plate thickness.
[0045]
The hardness was determined for the surface hardness and the hardness distribution in the thickness direction. The surface hardness was determined by conducting a Brinell hardness (HB (10/3000)) test in accordance with JISZ2243 and obtaining an average value of five measurement points of 300 or more. Passed.
[0046]
The hardness distribution in the thickness direction is obtained by a Vickers hardness test (Hv 10 kg) with respect to the lower part of the surface 1 mm and the center part of the thickness, and the ratio of the hardness at the center part of the thickness to the hardness of 1 mm below the surface (hardness at the center part of the thickness / 1 mm below the surface). Those having a hardness (hereinafter, hardness ratio) of more than 70% are within the scope of the present invention.
[0047]
The toughness was determined by conducting a Charpy impact test according to JISZ2202. Three test pieces were taken in the rolling direction from 5 mm below the surface layer and 1/4, 1/2 of the plate thickness, and those having an average impact value of more than 27 J at a test temperature of -40 ° C were regarded as within the scope of the present invention. . In addition, about the steel plate with a board thickness of 20 mm or less, the sampling position was set to 5 mm below the surface layer and 1/2 of the board thickness.
[0048]
Table 3 shows the test results (Example No. in Table 3 and Example No. in Table 2 have the same number for the same steel plate).
[0049]
No. Examples 1 to 7 are examples of the present invention, and the microstructure of any steel sheet is a martensite structure in which the surface layer portion of the steel sheet is finely quenched, a tempered martensite or a tempered bainite structure in which the central part of the steel sheet has fine carbide, or a mixed structure of both. It has become.
[0050]
Further, the Brinell hardness of the steel sheet surface was 300 or more, and a value exceeding 70% was obtained as the hardness ratio in the hardness distribution in the thickness direction. The Charpy absorbed energy at -40 ° C was 27 J or more at any sampling position, and excellent low-temperature toughness was confirmed.
[0051]
On the other hand, No. 8 to No. No. 17 is a comparative example. No. 8 has an onset temperature of direct quenching of 3 points or less of Ar and is outside the scope of the present invention. No. 9 has a cooling rate at the time of direct quenching of 10 ° C./s or less and is out of the scope of the present invention. Sample No. 10 has a direct quenching stop temperature exceeding the Ms point and is outside the scope of the present invention.
[0052]
As a result, no. 8 to No. The steel sheet No. 10 was not sufficiently quenched by direct quenching, and even after reheating and re-quenching, the central part of the sheet thickness has a structure containing ferrite. The hardness ratio is less than 70%, and the hardness at the center of the plate thickness is lower than the surface layer, which is inferior to the steel of the present invention.
[0053]
No. In No. 11, the reheating rate is slow at less than 1 ° C./s, which is outside the range of the present invention, and the austenite particle size in the surface layer becomes coarse. Further, the temperature difference between the surface layer portion and the central portion of the sheet thickness is small, and the central portion of the sheet thickness is also heated beyond the Ac1 point and re-quenched, resulting in a structure in which MA harmful to toughness is generated and low-temperature toughness is reduced. .
[0054]
No. Sample No. 12 has a reheating temperature of Ac3 or lower and falls outside the range of the present invention. Since the surface layer is not completely austenitized, a sufficiently hardened structure cannot be obtained by subsequent cooling, and the abrasion resistance and toughness are low.
[0055]
No. No. 13 had a cooling start temperature of less than 3 points of Ar at the time of re-quenching and was out of the scope of the present invention. No. 14 has a cooling rate of less than 10 ° C./s and is out of the range of the present invention. No. 15 is out of the range of the present invention when the cooling stop temperature is higher than the Ms point. In any case, a sufficiently hardened structure is not obtained, ferrite and bainite are generated in the surface layer portion, and the Brinell hardness of the surface layer is as low as less than 300, and wear resistance is low. Poor sex.
[0056]
No. No. 16 has a small C content in the composition of the test steel and is out of the scope of the present invention. No. 17 has many P and S outside the range of the present invention, and each has a lower hardness and toughness than the steel of the present invention.
[0057]
In this example, the Ar3 point, Ac3 point, Ac1 point, and Ms point were calculated using the above-described equations.
[0058]
[Table 1]
Figure 2004300474
[0059]
[Table 2]
Figure 2004300474
[0060]
[Table 3]
Figure 2004300474
[0061]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the wear-resistant steel excellent in wear resistance and low-temperature toughness with an inexpensive component composition and the method of manufacturing such wear-resistant steel with high productivity are obtained, and are very useful industrially.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing an example of a heat treatment condition according to the present invention.

Claims (3)

質量%で、C:0.05〜0.40%、Si:0.1〜0.8%、Mn:0.5〜2.0%、P:0.05%以下、S:0.02%以下、Ti:0.005〜0.5%、B:0.0005〜0.005%、残部Feおよび不可避的不純物からなり、表層が実質的に焼入れままマルテンサイト組織、板厚中央部が、実質的に焼戻しマルテンサイト若しくは焼戻しベイナイト組織または両者の混合組織からなることを特徴とする耐摩耗鋼。In mass%, C: 0.05 to 0.40%, Si: 0.1 to 0.8%, Mn: 0.5 to 2.0%, P: 0.05% or less, S: 0.02 % Or less, Ti: 0.005 to 0.5%, B: 0.0005 to 0.005%, the balance being Fe and inevitable impurities. A wear-resistant steel comprising substantially tempered martensite or tempered bainite structure or a mixed structure of both. 更に、質量%で、Cu:1.0%以下、Ni:2.0%以下、Cr:2.0%以下、Mo:1.0%以下、Nb:0.1%以下、V:0.2%以下の一種または二種以上を含有することを特徴とする請求項1記載の耐摩耗鋼。Further, in mass%, Cu: 1.0% or less, Ni: 2.0% or less, Cr: 2.0% or less, Mo: 1.0% or less, Nb: 0.1% or less, V: 0. 2. The wear-resistant steel according to claim 1, comprising one or more of 2% or less. 請求項1または2記載の成分組成を有する鋼を圧延後、Ar3点以上から冷却速度10℃/s以上でMs点以下まで冷却し、その後、昇温速度1℃/s以上でAc3点以上まで加熱し、Ar3点以上から冷却速度10℃/s以上でMs点以下まで冷却することを特徴とする耐摩耗鋼の製造方法。After rolling the steel having the component composition according to claim 1 or 2, after cooling from the Ar 3 point or more to the Ms point or less at a cooling rate of 10 ° C./s or more, and thereafter, the heating rate is 1 ° C./s or more to the Ac 3 point or more. A method for producing a wear-resistant steel, comprising heating and cooling from an Ar 3 point or more to a Ms point or less at a cooling rate of 10 ° C./s or more.
JP2003092115A 2003-03-28 2003-03-28 Abrasion resistant steel and manufacturing method therefor Pending JP2004300474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003092115A JP2004300474A (en) 2003-03-28 2003-03-28 Abrasion resistant steel and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003092115A JP2004300474A (en) 2003-03-28 2003-03-28 Abrasion resistant steel and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2004300474A true JP2004300474A (en) 2004-10-28

Family

ID=33405308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003092115A Pending JP2004300474A (en) 2003-03-28 2003-03-28 Abrasion resistant steel and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2004300474A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016302A (en) * 2005-06-08 2007-01-25 Jfe Steel Kk Method for producing high tensile strength steel sheet having excellent ssc resistance
JP2007177318A (en) * 2005-03-28 2007-07-12 Jfe Steel Kk High-tension steel sheet and method for producing the same
JP2007204771A (en) * 2006-01-31 2007-08-16 Jfe Steel Kk Method for manufacturing high-tensile steel sheet superior in ssc resistance
JP2009007653A (en) * 2007-06-29 2009-01-15 Hino Motors Ltd Frame for truck, and method for producing the same
JP2010229528A (en) * 2009-03-30 2010-10-14 Jfe Steel Corp High tensile strength steel sheet having excellent ductility and method for producing the same
WO2011061812A1 (en) * 2009-11-17 2011-05-26 住友金属工業株式会社 High-toughness abrasion-resistant steel and manufacturing method therefor
CN103484769A (en) * 2013-10-10 2014-01-01 济钢集团有限公司 Method for improving performance of steel plate by adjusting manganese titanium boron content
WO2014020891A1 (en) * 2012-07-30 2014-02-06 Jfeスチール株式会社 Abrasion-resistant steel plate and manufacturing process therefor
CN105274431A (en) * 2014-06-09 2016-01-27 鞍钢股份有限公司 Hot-rolling strip-steel harrow disk suitable for water quenching and manufacture method thereof
JP2016509130A (en) * 2013-01-22 2016-03-24 宝山鋼鉄股▲分▼有限公司 Ultra-high toughness steel sheet having low yield ratio and method for producing the same
JP2016079459A (en) * 2014-10-17 2016-05-16 Jfeスチール株式会社 Abrasion resistant steel sheet and manufacturing method therefor
KR101736621B1 (en) * 2015-12-15 2017-05-30 주식회사 포스코 High hardness anti-abrasion steel having excellent toughness and superior resistance to cracking during thermal cutting
JP2017193740A (en) * 2016-04-19 2017-10-26 Jfeスチール株式会社 Wear-resistant steel plate and manufacturing process therefor
JP2017193739A (en) * 2016-04-19 2017-10-26 Jfeスチール株式会社 Wear-resistant steel plate and manufacturing process therefor
WO2018168248A1 (en) * 2017-03-13 2018-09-20 Jfeスチール株式会社 Abrasion-resistant steel sheet and method for producing abrasion-resistant steel sheet
CN109280852A (en) * 2018-11-12 2019-01-29 南京钢铁股份有限公司 A kind of big thickness NM500 abrasion-resistant stee and production method
WO2020058244A1 (en) * 2018-09-18 2020-03-26 Voestalpine Stahl Gmbh Method of producing ultrahigh-strength steel sheets and steel sheet therefor
KR20200076815A (en) * 2018-12-19 2020-06-30 주식회사 포스코 Steel material for brake disc of motor vehicle having excellent wear resistance and high temperature strength and method of manufacturing the same
WO2021054015A1 (en) * 2019-09-17 2021-03-25 Jfeスチール株式会社 Wear-resistant steel sheet and method for producing same
CN113046648A (en) * 2021-03-11 2021-06-29 中原内配集团股份有限公司 Wear-resistant cast steel and preparation method and application thereof
CN114657462A (en) * 2022-02-25 2022-06-24 山东钢铁集团日照有限公司 Ultrahigh-strength wear-resistant steel plate and manufacturing method thereof

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177318A (en) * 2005-03-28 2007-07-12 Jfe Steel Kk High-tension steel sheet and method for producing the same
JP2007016302A (en) * 2005-06-08 2007-01-25 Jfe Steel Kk Method for producing high tensile strength steel sheet having excellent ssc resistance
JP2007204771A (en) * 2006-01-31 2007-08-16 Jfe Steel Kk Method for manufacturing high-tensile steel sheet superior in ssc resistance
JP2009007653A (en) * 2007-06-29 2009-01-15 Hino Motors Ltd Frame for truck, and method for producing the same
JP2010229528A (en) * 2009-03-30 2010-10-14 Jfe Steel Corp High tensile strength steel sheet having excellent ductility and method for producing the same
AU2009355404B2 (en) * 2009-11-17 2013-04-04 Nippon Steel Corporation High-toughness abrasion-resistant steel and manufacturing method therefor
JP5423806B2 (en) * 2009-11-17 2014-02-19 新日鐵住金株式会社 High toughness wear resistant steel and method for producing the same
WO2011061812A1 (en) * 2009-11-17 2011-05-26 住友金属工業株式会社 High-toughness abrasion-resistant steel and manufacturing method therefor
US9738957B2 (en) 2012-07-30 2017-08-22 Jfe Steel Corporation Wear resistant steel plate and manufacturing process therefor
WO2014020891A1 (en) * 2012-07-30 2014-02-06 Jfeスチール株式会社 Abrasion-resistant steel plate and manufacturing process therefor
CN104508166A (en) * 2012-07-30 2015-04-08 杰富意钢铁株式会社 Abrasion-resistant steel plate and manufacturing process therefor
JP2016509130A (en) * 2013-01-22 2016-03-24 宝山鋼鉄股▲分▼有限公司 Ultra-high toughness steel sheet having low yield ratio and method for producing the same
US10801090B2 (en) 2013-01-22 2020-10-13 Baoshan Iron & Steel Co., Ltd. Ultra high obdurability steel plate having low yield ratio and process of manufacturing same
CN103484769A (en) * 2013-10-10 2014-01-01 济钢集团有限公司 Method for improving performance of steel plate by adjusting manganese titanium boron content
CN105274431A (en) * 2014-06-09 2016-01-27 鞍钢股份有限公司 Hot-rolling strip-steel harrow disk suitable for water quenching and manufacture method thereof
CN105274431B (en) * 2014-06-09 2017-08-11 鞍钢股份有限公司 The hot-strip blade and its manufacture method of a kind of suitable water quenching
JP2016079459A (en) * 2014-10-17 2016-05-16 Jfeスチール株式会社 Abrasion resistant steel sheet and manufacturing method therefor
KR101736621B1 (en) * 2015-12-15 2017-05-30 주식회사 포스코 High hardness anti-abrasion steel having excellent toughness and superior resistance to cracking during thermal cutting
CN108368589A (en) * 2015-12-15 2018-08-03 株式会社Posco High hardness wear-resisting steel and its manufacturing method with excellent toughness and cut resistant cracking behavior
CN108368589B (en) * 2015-12-15 2020-10-20 株式会社Posco High hardness wear resistant steel having excellent toughness and cut crack resistance and method for manufacturing the same
EP3392364A4 (en) * 2015-12-15 2018-10-24 Posco High hardness abrasion resistant steel with excellent toughness and cutting crack resistance, and method for manufacturing same
WO2017104995A1 (en) * 2015-12-15 2017-06-22 주식회사 포스코 High hardness abrasion resistant steel with excellent toughness and cutting crack resistance, and method for manufacturing same
JP2019504192A (en) * 2015-12-15 2019-02-14 ポスコPosco High hardness wear resistant steel with excellent toughness and cut crack resistance, and method for producing the same
JP2017193740A (en) * 2016-04-19 2017-10-26 Jfeスチール株式会社 Wear-resistant steel plate and manufacturing process therefor
JP2017193739A (en) * 2016-04-19 2017-10-26 Jfeスチール株式会社 Wear-resistant steel plate and manufacturing process therefor
JPWO2018168248A1 (en) * 2017-03-13 2019-03-22 Jfeスチール株式会社 Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
JP2019131892A (en) * 2017-03-13 2019-08-08 Jfeスチール株式会社 Abrasion resistant steel sheet, and manufacturing method of abrasion resistant steel sheet
KR20190113872A (en) * 2017-03-13 2019-10-08 제이에프이 스틸 가부시키가이샤 Method of manufacturing wear resistant steel sheet and wear resistant steel sheet
CN110366603A (en) * 2017-03-13 2019-10-22 杰富意钢铁株式会社 The manufacturing method of wear-resistant steel plate and wear-resistant steel plate
AU2018236313B2 (en) * 2017-03-13 2020-09-10 Jfe Steel Corporation Abrasion-Resistant Steel Plate and Method of Manufacturing Same
US11060172B2 (en) 2017-03-13 2021-07-13 Jfe Steel Corporation Abrasion-resistant steel plate and method of manufacturing same
KR102250916B1 (en) * 2017-03-13 2021-05-11 제이에프이 스틸 가부시키가이샤 Abrasion-resistant steel plate and method of manufacturing same
WO2018168248A1 (en) * 2017-03-13 2018-09-20 Jfeスチール株式会社 Abrasion-resistant steel sheet and method for producing abrasion-resistant steel sheet
WO2020058244A1 (en) * 2018-09-18 2020-03-26 Voestalpine Stahl Gmbh Method of producing ultrahigh-strength steel sheets and steel sheet therefor
US11970753B2 (en) 2018-09-18 2024-04-30 Voestalpine Stahl Gmbh Method of producing ultrahigh-strength steel sheets and steel sheets therefor
CN109280852A (en) * 2018-11-12 2019-01-29 南京钢铁股份有限公司 A kind of big thickness NM500 abrasion-resistant stee and production method
KR102164074B1 (en) * 2018-12-19 2020-10-13 주식회사 포스코 Steel material for brake disc of motor vehicle having excellent wear resistance and high temperature strength and method of manufacturing the same
KR20200076815A (en) * 2018-12-19 2020-06-30 주식회사 포스코 Steel material for brake disc of motor vehicle having excellent wear resistance and high temperature strength and method of manufacturing the same
WO2021054015A1 (en) * 2019-09-17 2021-03-25 Jfeスチール株式会社 Wear-resistant steel sheet and method for producing same
TWI742812B (en) * 2019-09-17 2021-10-11 日商杰富意鋼鐵股份有限公司 Wear-resistant steel plate and manufacturing method thereof
JPWO2021054015A1 (en) * 2019-09-17 2021-10-21 Jfeスチール株式会社 Abrasion resistant steel sheet and its manufacturing method
JP2022050705A (en) * 2019-09-17 2022-03-30 Jfeスチール株式会社 Wear resistant steel sheet and method for manufacturing the same
CN114402086A (en) * 2019-09-17 2022-04-26 杰富意钢铁株式会社 Wear-resistant steel sheet and method for producing same
JP7088407B2 (en) 2019-09-17 2022-06-21 Jfeスチール株式会社 Wear-resistant steel sheet and its manufacturing method
JP7226598B2 (en) 2019-09-17 2023-02-21 Jfeスチール株式会社 Abrasion-resistant steel plate and manufacturing method thereof
CN113046648A (en) * 2021-03-11 2021-06-29 中原内配集团股份有限公司 Wear-resistant cast steel and preparation method and application thereof
CN114657462A (en) * 2022-02-25 2022-06-24 山东钢铁集团日照有限公司 Ultrahigh-strength wear-resistant steel plate and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2004300474A (en) Abrasion resistant steel and manufacturing method therefor
RU2151214C1 (en) Two-phase steel and method for making thereof
CN112752861B (en) Wear-resistant steel having excellent hardness and impact toughness and method for manufacturing same
JP4650013B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP3273404B2 (en) Manufacturing method of thick high hardness and high toughness wear resistant steel
WO2014156078A1 (en) Abrasion resistant steel plate having low-temperature toughness and hydrogen embrittlement resistance, and manufacturing method therefor
JP7471417B2 (en) High-hardness wear-resistant steel with excellent low-temperature impact toughness and manufacturing method thereof
CN111479945A (en) Wear-resistant steel having excellent hardness and impact toughness and method for manufacturing same
CN112011725A (en) Steel plate with excellent low-temperature toughness and manufacturing method thereof
CN112877591B (en) High-strength and high-toughness hardware tool and steel for chain and manufacturing method thereof
JP2002020837A (en) Wear resistant steel excellent in toughness and its production method
JP3327635B2 (en) Non-tempered steel for hot forging excellent in fatigue strength and method for producing non-heat-treated hot forged product using the steel
JP2000080439A (en) Thin steel sheet for working
CN116547400A (en) Ultrahigh-strength cold-rolled steel sheet excellent in bendability and method for producing same
JP2004270001A (en) Wear resistant steel having excellent low temperature toughness, and production method therefor
JPH05222450A (en) Production of high tensile steel plate
JP2004107714A (en) High toughness and high yield point steel with excellent weldability and its producing method
JP2004010996A (en) Wear resistant steel having excellent low temperature toughness and method for producing the same
JPH059570A (en) Production of high weldability and high strength steel
CN114058814B (en) Preparation method of high-hardness uniformity NM400 wear-resistant steel
CN113412340B (en) Steel plate
JPH1192860A (en) Steel having ultrafine ferritic structure
JPH08283838A (en) Production of low yield ratio, high ductility steel excellent in strength, toughness and ductility
CN114341386B (en) Steel material excellent in strength and low-temperature impact toughness and method for producing same
KR102498147B1 (en) Armored steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof