JP2009007653A - Frame for truck, and method for producing the same - Google Patents

Frame for truck, and method for producing the same Download PDF

Info

Publication number
JP2009007653A
JP2009007653A JP2007171906A JP2007171906A JP2009007653A JP 2009007653 A JP2009007653 A JP 2009007653A JP 2007171906 A JP2007171906 A JP 2007171906A JP 2007171906 A JP2007171906 A JP 2007171906A JP 2009007653 A JP2009007653 A JP 2009007653A
Authority
JP
Japan
Prior art keywords
frame
quenching
truck
less
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007171906A
Other languages
Japanese (ja)
Other versions
JP5142606B2 (en
Inventor
Hiroshi Kanamaru
弘志 金丸
Takayuki Kobayashi
孝幸 小林
Nobuyuki Nakamura
展之 中村
Kazuhiro Seto
一洋 瀬戸
Satoo Kobayashi
聡雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Hino Motors Ltd
Original Assignee
JFE Steel Corp
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Hino Motors Ltd filed Critical JFE Steel Corp
Priority to JP2007171906A priority Critical patent/JP5142606B2/en
Publication of JP2009007653A publication Critical patent/JP2009007653A/en
Application granted granted Critical
Publication of JP5142606B2 publication Critical patent/JP5142606B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

<P>PROBLEM TO BE SOLVED: To provide a frame for a truck in which a prescribed region has a high strength of a class of 540 to 1,200 MPa if necessary, and to provide a method for producing the same. <P>SOLUTION: The method for producing a frame for a truck includes: a forming stage where a thick hot rolled steel plate having a composition containing 0.10 to 0.20% C and proper amounts of Si, Mn, P, S, Al and N, and further 0.01 to 0.15% Ti and 0.0005 to 0.0050% B and a structure composed of a bainitic ferrite phase in ≥95% by area ratio is formed into a frame with a prescribed shape; and a heat treatment stage where the prescribed region in the frame is subjected to quenching treatment by a high frequency induction heating means and tempering treatment by a high frequency induction heating means in succession. Thus, the frame for the truck having a desired high strength of a class of 540 to 1,200 MPa, and a uniform hardness distribution in the sheet thickness direction can be easily produced with high production efficiency, and industrially drastic effect can be exhibited. Accordingly, there is no need of providing a reinforcing member such as an inner, contribution to reduction in weight of the frame for the truck is attained, and an increase in payload is made possible. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動車用部材に係り、とくにトラック用フレームの高強度化に関する。   The present invention relates to a member for an automobile, and more particularly to increasing the strength of a truck frame.

近年、地球環境の保全という観点から、自動車の排気ガス規制が強化され、燃費向上のために自動車車体の軽量化が推進されている。このため、自動車用部材の軽量化も強く要求されている。しかし、自動車用部材のうち、例えばトラック用フレームのように、板厚が7.0mm以上、長さが10mにも及ぶ、厚肉大型の部材では、部材重量の軽減のために、使用する鋼板を高強度化すると、加工の難度が急激に増加するという問題がある。また、軽量化のためにあけられる穴部や不可避的に存在する溶接部などの応力集中部で疲労強度が向上しないという問題がある。このため、他の自動車部材とは異なり、トラック用フレームのような厚肉大型の部材では、使用する鋼板を高強度化しても高々、引張強さ:540MPa程度までの高強度化であった。   In recent years, from the viewpoint of protecting the global environment, automobile exhaust gas regulations have been strengthened, and the weight reduction of automobile bodies has been promoted in order to improve fuel efficiency. For this reason, the weight reduction of the member for motor vehicles is also requested | required strongly. However, among automotive parts, for example, for truck frames, the plate thickness is over 7.0mm and the length is as large as 10m. When the strength is increased, there is a problem that the processing difficulty increases rapidly. In addition, there is a problem that the fatigue strength is not improved at a stress concentration portion such as a hole portion formed for weight reduction or a welded portion unavoidably present. For this reason, unlike other automobile members, a thick and large member such as a truck frame has a high tensile strength of up to about 540 MPa even when the strength of the steel sheet used is increased.

そのため、より高い強度が必要とされる部分には、インナーと称する補強材を設置して強度の向上を図っていた。しかし、インナーを設置することは、部材重量が増加することになり、部材の軽量化という指針には相反することになる。
最近、自動車用部材への軽量化の要求はさらに強くなり、トラック用フレームのような厚肉大型の部材においても、更なる高強度化が熱望されている。このような要望に対し、例えば、欧米においては、素材である鋼板をプレス加工等で所定形状としたのち、バッチ式に焼入れ焼戻処理を施して、所望の高強度を有するトラック用フレームを製造していた。
Therefore, a reinforcing material called an inner is installed in a portion where higher strength is required to improve the strength. However, installing the inner increases the weight of the member, which is contrary to the guideline for reducing the weight of the member.
Recently, the demand for weight reduction of automobile members has been further increased, and even for thick and large-sized members such as truck frames, there is a strong demand for further enhancement of strength. In response to such demands, for example, in Europe and the United States, a steel sheet as a raw material is made into a predetermined shape by press processing, etc., and then subjected to batch-type quenching and tempering to produce a truck frame having a desired high strength. Was.

バッチ式熱処理では、トラック用フレーム一体ごと、熱処理炉に装入して熱処理を施す必要があり、製造工程が煩雑となるうえ、製造工期が長くなるという問題がある。また、トラック用フレームのような大型部材では熱処理設備も大型化する必要があり、製造コストの高騰を招くという問題もある。また、曲がり等の形状不良が増加する傾向となるという問題もあった。   In batch-type heat treatment, it is necessary to insert the heat treatment furnace into the heat treatment furnace for the entire truck frame, and there are problems that the production process becomes complicated and the production period is long. In addition, a large-sized member such as a truck frame needs to increase the size of the heat treatment equipment, which causes a problem that the manufacturing cost increases. There is also a problem that shape defects such as bending tend to increase.

これに対し、例えば特許文献1には、ウェブと少なくとも1つのフランジを有する炭素鋼製構造部材を、誘導加熱を利用して焼入れ焼戻して製造する技術が記載されている。特許文献1に記載された技術では、炭素鋼製構造部材に、予備誘導加熱と、それに続き、オーステナイト域温度まで加熱する誘導加熱と、ついで、構造部材を拘束しながら行う液体焼入れと、誘導加熱による焼戻と、その後の曲がり等の形状不良発生防止のための各種ロールによる拘束と、を順次施す。これにより、均一マルテンサイト組織を有し、急速焼入れによる曲がり等の形状不良を最小限として、熱処理後の降伏強さが好ましくは110ksi(758MPa)以上、引張強さ:125ksi(861MPa)以上の強度特性を有する構造部材を製造できるとしている。   On the other hand, for example, Patent Document 1 describes a technique for manufacturing a carbon steel structural member having a web and at least one flange by quenching and tempering using induction heating. In the technique described in Patent Literature 1, carbon steel structural member is subjected to preliminary induction heating, followed by induction heating to heat to austenite temperature, liquid quenching performed while restraining the structural member, and induction heating. Tempering and subsequent restraints by various rolls to prevent the occurrence of shape defects such as bending. As a result, it has a uniform martensite structure, minimizes shape defects such as bending due to rapid quenching, and yield strength after heat treatment is preferably 110 ksi (758 MPa) or more, and tensile strength: 125 ksi (861 MPa) or more. It is said that a structural member having characteristics can be manufactured.

また、特許文献2には、トラックサイドレール用炭素鋼製構造部材を誘導加熱−拘束焼入れ処理で製造する製造装置が記載されている。特許文献2に記載された技術では、誘導加熱−拘束焼入れ処理後に残留する曲がり等の形状不良を除去するための矯正手段として、複数のローラーとそれらの位置取りの調整手段とを有し、それらローラー間に焼入れ処理後の構造部材を通過させることにより形状不良を矯正するローラーストレートナーをインラインに備えることに特徴があり、これにより、形状不良を除去でき、インラインで調和した速度でチャンネル形状のトラックサイドレール用炭素鋼製構造部材を製造できるとしている。
米国特許第4,394,194号公報 米国特許第5,885,522号公報
Patent Document 2 describes a manufacturing apparatus for manufacturing a carbon steel structural member for a track side rail by induction heating-restraint quenching. The technique described in Patent Document 2 has a plurality of rollers and adjusting means for positioning them as correction means for removing shape defects such as bending remaining after induction heating-restraint quenching, It is characterized by having in-line roller straighteners that correct shape defects by passing structural members after quenching between the rollers, thereby eliminating shape defects and channel shape at a speed that matches in-line. Carbon steel structural members for truck side rails can be manufactured.
U.S. Pat.No. 4,394,194 US Patent No. 5,885,522

しかしながら、特許文献1、特許文献2に記載された技術はいずれも、誘導加熱−拘束焼入れ処理後のトラック用構造部材における形状不良を可能な限り低減することを主目的としている。特許文献1、特許文献2に記載された技術によれば、従来のバッチ式熱処理に比べて、形状不良の発生を低減することができるとしている。しかし、特許文献1、特許文献2には、更なる高強度化について何の言及もなく、特許文献1、特許文献2に記載された技術では、厚肉大型のトラック用構造部材に対する最近の更なる高強度化要求を満足させるまでに至っていないという問題があった。またさらに、特許文献1、特許文献2に記載された技術で製造されたトラック用構造部材は、不必要な個所まで高強度化されており、後工程での加工に支障をきたすという問題もある。   However, each of the techniques described in Patent Document 1 and Patent Document 2 mainly aims to reduce the shape defects in the structural members for trucks after induction heating-restraint quenching as much as possible. According to the techniques described in Patent Document 1 and Patent Document 2, the occurrence of shape defects can be reduced as compared with conventional batch heat treatment. However, Patent Document 1 and Patent Document 2 do not mention anything about further strengthening, and the techniques described in Patent Document 1 and Patent Document 2 have recently added to the structural members for thick and large trucks. There has been a problem that it has not yet been achieved to satisfy the demand for higher strength. Furthermore, the structural members for trucks manufactured by the techniques described in Patent Document 1 and Patent Document 2 are increased in strength up to unnecessary portions, and there is a problem that the processing in the subsequent process is hindered. .

本発明は、上記した従来技術の問題を解決し、フレームの所定の領域が必要に応じて540〜1200MPaの範囲に高強度化されたトラック用フレームおよびその製造方法を提供することを目的とする。   An object of the present invention is to solve the above-described problems of the prior art, and to provide a track frame in which a predetermined area of the frame is increased in the range of 540 to 1200 MPa as necessary, and a method for manufacturing the same. .

本発明者らは、上記した目的を達成するために、トラック用フレームを高強度化する方法について鋭意研究した。その結果、所定の靭性を確保しつつ、引張強さ:1200MPaまでの高強度を確保するためには、適正範囲の組成、さらには適正な組織に調整した鋼板を所定形状に成形後、焼入れ焼戻処理を施すことがよいこと、さらに、所定の領域が高強度化されたトラック用フレームを生産性高く製造するためには、成形と熱処理とを連動させ、さらに熱処理を高周波加熱装置を利用したインラインの焼入れ焼戻設備で行うことがよいこと、に想到した。このような高周波加熱を適用したインラインの設備を利用可能とするためには、使用する鋼板は、C:0.10〜0.20質量%とし、適正量のTi、Bとを複合含有し、N:0.005質量%以下と低く調整した適正範囲の組成と、さらに全板厚にわたって均一なベイニティックフェライトの単相組織とを有する鋼板とすることが、よいことを知見した。また、本発明者らは、上記した組成、組織を有する鋼板に焼入れ処理を施したのち、焼戻温度を調整することにより、所定の靭性を確保しつつ、540〜1200MPaの範囲の高強度を自由に付与することが可能であることを知見した。   In order to achieve the above-described object, the present inventors diligently studied a method for increasing the strength of a truck frame. As a result, in order to ensure high toughness up to 1200MPa while ensuring the required toughness, the steel sheet adjusted to the proper range of composition and the proper structure is formed into a predetermined shape, and then quenched and hardened. In order to produce a truck frame with high strength in a predetermined region with high productivity, it is desirable to link the molding and heat treatment, and use a high-frequency heating device for heat treatment. I came up with the idea of using an in-line quenching and tempering facility. In order to be able to use such in-line equipment to which high-frequency heating is applied, the steel sheet to be used is C: 0.10 to 0.20 mass%, contains a proper amount of Ti and B, N: 0.005 mass It has been found that a steel sheet having a composition in an appropriate range adjusted to be as low as% or less and a single-phase structure of bainitic ferrite that is uniform over the entire thickness is good. In addition, the present inventors performed quenching treatment on the steel sheet having the above-described composition and structure, and then adjusted the tempering temperature to ensure high toughness in the range of 540 to 1200 MPa while ensuring a predetermined toughness. It was found that it can be freely given.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は、つぎのとおりである。
(1)厚肉熱延鋼板を所定の形状に加工し、ついで所定の領域に熱処理を施してなるトラック用フレームであって、前記厚肉熱延鋼板が、質量%で、C:0.10〜0.20%、Si:0.01〜1.0%、Mn:0.5〜2.0%、P:0.03%以下、S:0.01%以下、Al:0.01〜0.10%、N:0.005%以下、Ti:0.01〜0.15%、B:0.0010〜0.0050%を含み、残部Feおよび不可避的不純物からなる組成を有し、前記所定の領域が焼戻マルテンサイト相からなる組織を有し、引張強さで540〜1200MPaの高強度を有することを特徴とするトラック用フレーム。
(2)厚肉熱延鋼板を所定形状のフレームに成形する成形工程と、該成形されたフレームの所定の領域に焼入れ焼戻処理を施す熱処理工程とを順次施し、トラック用フレームとするに当たり、前記厚肉熱延鋼板が、質量%で、C:0.10〜0.20%、Si:0.01〜1.0%、Mn:0.5〜2.0%、P:0.03%以下、S:0.01%以下、Al:0.01〜0.10%、N:0.005%以下、Ti:0.01〜0.15%、B:0.0010〜0.0050%を含み、残部Feおよび不可避的不純物からなる組成と、面積率で95%以上のベイニティックフェライト相からなる組織とを有する鋼板であり、前記焼入れ焼戻処理が、高周波誘導加熱手段により所定の焼入れ温度に加熱した後、冷却手段により所定の焼入れ冷却速度で焼入する焼入れ処理と、高周波誘導加熱手段により所定の焼戻温度に加熱する焼戻処理とからなり、前記トラックフレームの所定の領域が、焼戻マルテンサイト相からなる組織と、引張強さで540〜1200MPaの高強度を有することを特徴とするトラック用フレームの製造方法。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) A truck frame obtained by processing a thick hot-rolled steel sheet into a predetermined shape and then heat-treating a predetermined region, wherein the thick hot-rolled steel sheet is in mass%, C: 0.10 to 0.20 %, Si: 0.01 to 1.0%, Mn: 0.5 to 2.0%, P: 0.03% or less, S: 0.01% or less, Al: 0.01 to 0.10%, N: 0.005% or less, Ti: 0.01 to 0.15%, B: It contains 0.0010 to 0.0050%, has a composition composed of the remaining Fe and inevitable impurities, the predetermined region has a structure composed of a tempered martensite phase, and has a high strength of 540 to 1200 MPa in tensile strength. Track frame characterized by
(2) In order to form a truck frame by sequentially performing a forming step of forming a thick hot-rolled steel sheet into a frame of a predetermined shape and a heat treatment step of quenching and tempering a predetermined region of the formed frame, The thick hot-rolled steel sheet is, in mass%, C: 0.10 to 0.20%, Si: 0.01 to 1.0%, Mn: 0.5 to 2.0%, P: 0.03% or less, S: 0.01% or less, Al: 0.01 to 0.10. %, N: 0.005% or less, Ti: 0.01 to 0.15%, B: 0.0010 to 0.0050%, the composition consisting of the balance Fe and inevitable impurities, and the structure consisting of a bainitic ferrite phase with an area ratio of 95% or more The quenching and tempering process is performed by heating at a predetermined quenching temperature by a high-frequency induction heating unit and then quenching at a predetermined quenching cooling rate by a cooling unit, and by a high-frequency induction heating unit. Tempering treatment to be heated to a tempering temperature of A predetermined area of the rack frame, the structure consisting tempered martensite phase, the production method of the truck frame and having a high strength 540~1200MPa in tensile strength.

本発明によれば、引張強さが540〜1200MPaの範囲の所望の高強度を有するトラック用フレームを、容易にしかも高い生産能率で製造でき、産業上格段の効果を奏する。また、本発明によれば、従来のトラック用フレームの強度に比べ高強度を有し、インナー等の補強部材を設ける必要もなく、トラック用フレームの軽量化、さらにはトラック車体の軽量化に大きく寄与でき、積載量の増大が可能になるという効果もある。   According to the present invention, a truck frame having a desired high strength with a tensile strength in the range of 540 to 1200 MPa can be easily manufactured with a high production efficiency, and a remarkable industrial effect can be achieved. In addition, according to the present invention, the strength is higher than that of a conventional truck frame, and there is no need to provide a reinforcing member such as an inner member. This greatly reduces the weight of the truck frame and further reduces the weight of the truck body. This also contributes to the effect that the load capacity can be increased.

トラック用フレームは、通常、所定寸法の鋼板をプレス、ロール等により、所定形状、例えばコ字形状、に加工し、必要に応じて熱処理を施されて、製品とされる。
本発明のトラック用フレームは、特定な組成および組織を有する厚肉熱延鋼板を所定の形状に成形し、ついで所定の領域に焼入れ焼戻処理を施し、該所定の領域を焼戻マルテンサイト相からなる組織とし、引張強さで540〜1200MPaの高強度化を達成した、トラック用フレームである。
The track frame is usually made into a product by processing a steel plate having a predetermined size into a predetermined shape, for example, a U shape, by a press, a roll, or the like, and performing heat treatment as necessary.
The track frame of the present invention is a thick hot-rolled steel sheet having a specific composition and structure, formed into a predetermined shape, and then subjected to quenching and tempering treatment in a predetermined region, and the predetermined region is tempered martensite phase. This is a truck frame that achieves a high strength of 540 to 1200 MPa in tensile strength.

本発明のトラック用フレーム(製品)は、好ましくはインラインで、厚肉熱延鋼板を所定形状のフレームに成形する成形工程と、該成形されたフレームの所定の領域に焼入れ焼戻処理を施す熱処理工程とを順次施して製造される。本発明で使用する厚肉熱延鋼板は、質量%で、C:0.10〜0.20%、Si:0.01〜1.0%、Mn:0.5〜2.0%、P:0.03%以下、S:0.01%以下、Al:0.01〜0.10%、N:0.005%以下、Ti:0.01〜0.15%、B:0.0010〜0.0050%を含み、残部Feおよび不可避的不純物からなる組成と、面積率で95%以上のベイニティックフェライト相からなる組織とを有する熱延鋼板とする。なお、ここでいう「厚肉熱延鋼板」とは、板厚が7mm以上の熱延鋼板をいう。   The track frame (product) of the present invention is preferably in-line, a forming step for forming a thick hot-rolled steel sheet into a frame having a predetermined shape, and a heat treatment for performing a quenching and tempering process on a predetermined region of the formed frame. The process is sequentially performed. The thick hot-rolled steel sheet used in the present invention is in mass%, C: 0.10 to 0.20%, Si: 0.01 to 1.0%, Mn: 0.5 to 2.0%, P: 0.03% or less, S: 0.01% or less, Al : 0.01 to 0.10%, N: 0.005% or less, Ti: 0.01 to 0.15%, B: 0.0010 to 0.0050%, the composition comprising the balance Fe and inevitable impurities, and bainitic ferrite with an area ratio of 95% or more A hot-rolled steel sheet having a structure composed of phases is used. Here, the “thick hot rolled steel sheet” refers to a hot rolled steel sheet having a thickness of 7 mm or more.

まず、使用する厚肉熱延鋼板の組成限定理由について説明する。なお、以下、組成における質量%は、単に%で記す。
C:0.10〜0.20%
Cは、鋼中では炭化物を形成し、鋼板の強度増加に有効に作用するとともに、焼入れ処理時には、マルテンサイト変態を促進させマルテンサイト相による組織強化に有効に作用する元素であり、本発明では0.10%以上の含有を必要とする。C含有量が0.10%未満では、所望の鋼板強度を確保することが難しく、また所望の熱処理後強度を確保することが難しくなる。一方、0.20%を超える多量の含有は、鋼板強度および熱処理後の強度が高くなりすぎて、加工性や靭性が低下するとともに、溶接性が低下する。このため、Cは0.10〜0.20%の範囲に限定した。
First, the reasons for limiting the composition of the thick hot-rolled steel sheet to be used will be described. Hereinafter, the mass% in the composition is simply expressed as%.
C: 0.10 to 0.20%
C is an element that forms carbides in steel and effectively acts to increase the strength of the steel sheet, and at the time of quenching treatment, promotes martensitic transformation and effectively acts on the strengthening of the structure by the martensite phase. It needs to contain 0.10% or more. If the C content is less than 0.10%, it is difficult to ensure the desired steel sheet strength, and it is difficult to ensure the desired post-heat treatment strength. On the other hand, if the content exceeds 0.20%, the strength of the steel sheet and the strength after heat treatment become too high, and the workability and toughness are lowered, and the weldability is also lowered. For this reason, C was limited to the range of 0.10 to 0.20%.

Si:0.01〜1.0%
Siは、固溶強化により鋼の強度を有効に増加させる作用を有する元素であり、このような効果を得るためには、0.01%以上の含有を必要とする。一方、1.0%を超える多量の含有は、表面に赤スケールと呼ばれる凹凸を生じ表面性状を低下させるとともに、疲労強度を低下させる。このため、Siは0.01〜1.0%の範囲に限定した。なお、好ましくは0.35%以下である。
Si: 0.01-1.0%
Si is an element having an action of effectively increasing the strength of steel by solid solution strengthening, and in order to obtain such an effect, the content of 0.01% or more is required. On the other hand, a large content exceeding 1.0% causes unevenness called a red scale on the surface to lower the surface properties and reduce the fatigue strength. For this reason, Si was limited to the range of 0.01 to 1.0%. In addition, Preferably it is 0.35% or less.

Mn:0.5〜2.0%
Mnは、固溶強化により有効に鋼の強度を増加させるとともに、焼入れ性の向上を介し鋼の強度を増加させる作用を有する元素であり、このような効果を得るためには、0.5%以上の含有を必要とする。一方、2.0%を超える含有は、偏析が顕著となり、鋼板特性および熱処理後の材質の均一性が低下する。このため、Mnは0.5〜2.0%の範囲に限定した。なお、好ましくは1.0〜2.0%である。
Mn: 0.5-2.0%
Mn is an element that effectively increases the strength of the steel by solid solution strengthening and has the effect of increasing the strength of the steel through the improvement of hardenability. In order to obtain such an effect, 0.5% or more Containing is required. On the other hand, if the content exceeds 2.0%, segregation becomes prominent, and the steel sheet properties and the uniformity of the material after heat treatment are reduced. For this reason, Mn was limited to the range of 0.5 to 2.0%. In addition, Preferably it is 1.0 to 2.0%.

P:0.03%以下
Pは、固溶強化により鋼の強度を増加させるが、偏析を生じ材質の均一性を低下させるとともに、熱処理後の靭性を著しく低下させる。このため、本発明ではできるだけ低減することが好ましいが、過度の低減は材料コストを高騰させる。また、0.03%を超えて過剰に含有すると、偏析が顕著となる。このため、Pは0.03%以下に限定した。なお、好ましくは0.02%以下である。
P: 0.03% or less P increases the strength of the steel by solid solution strengthening, but causes segregation and decreases the uniformity of the material, and significantly decreases the toughness after heat treatment. For this reason, although it is preferable to reduce as much as possible in this invention, excessive reduction raises material cost. Moreover, when it contains exceeding 0.03% excessively, segregation will become remarkable. For this reason, P was limited to 0.03% or less. In addition, Preferably it is 0.02% or less.

S:0.01%以下
Sは、鋼中では硫化物として存在し、延性を低下させ、曲げ加工性等を低下させるため、できるだけ低減することが好ましいが、過度の低減は材料コストを高騰させる。0.01%を超える含有は、熱処理後の靭性を顕著に低下させる。このため、本発明では、Sは0.01%以下に限定した。なお、好ましくは0.005%以下である。
S: 0.01% or less S is present as a sulfide in steel and is preferably reduced as much as possible because it lowers ductility and lowers bending workability, but excessive reduction raises the material cost. If it exceeds 0.01%, the toughness after heat treatment is significantly reduced. For this reason, in the present invention, S is limited to 0.01% or less. In addition, Preferably it is 0.005% or less.

Al:0.01〜0.10%
Alは、脱酸剤として作用する元素であり、このような効果は0.01%以上の含有で顕著となるが、0.1%を超える含有は、加工性を低下させるとともに、焼入性を低下させる。このため、Alは0.01〜0.1%の範囲に限定した。なお、好ましくは0.05%以下である。
N:0.005%以下
Nは、鋼中ではTiN、AlN等の窒化物を形成し加工性を低下させるとともに、焼入れ時にBNを形成し焼入れ性向上に有効な固溶B量を低減させる。このようなNの悪影響はN含有量が0.005%以下であれば許容できる。このため、本発明では、Nは0.005%以下に限定した。
Al: 0.01-0.10%
Al is an element that acts as a deoxidizer, and such an effect becomes significant when the content is 0.01% or more. However, when the content exceeds 0.1%, workability is deteriorated and hardenability is reduced. For this reason, Al was limited to the range of 0.01 to 0.1%. In addition, Preferably it is 0.05% or less.
N: 0.005% or less N forms nitrides such as TiN and AlN in steel to reduce workability, and forms BN during quenching to reduce the amount of solid solution B effective in improving hardenability. Such an adverse effect of N is acceptable if the N content is 0.005% or less. For this reason, in the present invention, N is limited to 0.005% or less.

Ti:0.01〜0.15%
Tiは、熱間圧延後の組織をベイニティックフェライトとするのに有効に作用するとともに、Bよりも優先して窒化物を形成し、熱処理時にBによる焼入性向上効果を発揮させるのに有効に作用する元素である。このような効果は、0.01%以上の含有で認められるが、0.15%を超える含有は、熱間圧延時の変形抵抗を増加させ、圧延荷重を極端に増大させるとともに、熱処理後の靭性を低下させる。このため、Tiは0.01〜0.15%の範囲に限定した。なお、好ましくは0.03〜0.10%である。
Ti: 0.01-0.15%
Ti effectively works to make the structure after hot rolling into bainitic ferrite, forms nitrides in preference to B, and exerts the effect of improving hardenability by B during heat treatment. It is an element that works effectively. Such an effect is recognized with a content of 0.01% or more, but a content exceeding 0.15% increases the deformation resistance during hot rolling, extremely increases the rolling load, and decreases the toughness after heat treatment. . For this reason, Ti was limited to the range of 0.01 to 0.15%. In addition, Preferably it is 0.03-0.10%.

B:0.0010〜0.0050%
Bは、熱間圧延後の冷却中にポリゴナルフェライトやパーライトが生成するのを抑制する作用を有し、さらに熱処理時の焼入性・靭性向上に有効に作用する元素である。板厚7mm以上の場合、このような効果は、0.0010%以上の含有で顕著となる。一方0.0050%を超える含有は、熱間圧延時の変形抵抗を増加させ、圧延荷重を極端に増大させるとともに、熱間圧延後にベイナイトやマルテンサイトを生じさせ、板割れ等の不具合を生じさせる。このため、Bは0.0010〜0.0050%の範囲に限定した。なお、好ましくは0.0015〜0.0040%である。
B: 0.0010-0.0050%
B is an element that has the effect of suppressing the formation of polygonal ferrite and pearlite during cooling after hot rolling, and further effectively improves the hardenability and toughness during heat treatment. In the case where the plate thickness is 7 mm or more, such an effect becomes remarkable when the content is 0.0010% or more. On the other hand, if the content exceeds 0.0050%, deformation resistance during hot rolling is increased, the rolling load is extremely increased, bainite and martensite are generated after hot rolling, and problems such as sheet cracking occur. For this reason, B was limited to the range of 0.0010 to 0.0050%. In addition, Preferably it is 0.0015 to 0.0040%.

上記した成分以外の残部は、Feおよび不可避的不純物からなる。なお、不可避的不純物としては、例えば、Cu:0.3%以下、Cr:0.3%以下が許容できる。
つぎに、使用する厚肉熱延鋼板の組織限定理由について説明する。
本発明で用いる厚肉熱延鋼板は、上記した組成を有し、さらに全厚に亘り、ベイニティックフェライト相からなる単相組織を有する。ここでいう単相組織とは、面積率で95%以上のベイニティックフェライト相からなる組織をいうものとする。ベイニティックフェライト相には、針状フェライト、アシキュラー状フェライトをも含むものとする。なお、ベイニティックフェライト相以外の組織としては、面積率で5%以下のポリゴナルフェライト相、パーライト相、セメンタイト相、ベイナイト相、およびマルテンサイト相などが許容できる。
The balance other than the components described above consists of Fe and inevitable impurities. Inevitable impurities include, for example, Cu: 0.3% or less and Cr: 0.3% or less.
Next, the reason for limiting the structure of the thick hot-rolled steel sheet to be used will be described.
The thick hot-rolled steel sheet used in the present invention has the above-described composition, and further has a single-phase structure composed of a bainitic ferrite phase over the entire thickness. The single-phase structure here refers to a structure composed of a bainitic ferrite phase with an area ratio of 95% or more. The bainitic ferrite phase includes acicular ferrite and acicular ferrite. As a structure other than the bainitic ferrite phase, a polygonal ferrite phase, a pearlite phase, a cementite phase, a bainite phase, a martensite phase, or the like having an area ratio of 5% or less is acceptable.

上記した組成を有し、全厚に亘り、ベイニティックフェライト相からなる単相組織とすることにより、熱延鋼板として、引張強さ:440〜640MPaの所望の高強度と、伸び:20%以上(GL:50mm)の高延性とを有し、曲げ特性等の加工性に優れ、厚肉大型のトラック用フレームに加工することが可能となる。ベイニティックフェライト相が、面積率で95%未満では、所望の高強度と高延性とを兼備させることができなくなる。また、ベイニティックフェライト相の組織分率が95%未満に低下すると、組織の均一性が低下するため、切断にキャンバーなどを生じて寸法精度が低下するとともに曲げ特性等の加工性が低下する。全厚に亘り、ベイニティックフェライト相からなる単相組織とすることにより、上記した強度、延性を有し、板厚方向の硬度差が平均値に対して10%以内の均一な硬さを有する鋼板となる。   By having a single-phase structure consisting of a bainitic ferrite phase over the entire thickness, the desired high strength of tensile strength: 440 to 640 MPa and elongation: 20% It has the above-described high ductility (GL: 50 mm), has excellent workability such as bending characteristics, and can be processed into a thick and large truck frame. If the bainitic ferrite phase is less than 95% by area ratio, the desired high strength and high ductility cannot be combined. In addition, when the structural fraction of the bainitic ferrite phase is reduced to less than 95%, the uniformity of the structure is reduced, so that a camber or the like is generated in the cutting to reduce the dimensional accuracy and the workability such as the bending characteristics is reduced. . By having a single-phase structure consisting of bainitic ferrite phase over the entire thickness, it has the above-mentioned strength and ductility, and a uniform hardness with a hardness difference in the thickness direction within 10% of the average value. It becomes the steel plate which has.

つぎに、本発明で使用する厚肉高張力熱延鋼板の好ましい製造方法について説明する。なお、本発明ではこの製造方法に限定されないことは言うまでもない。
上記した組成の鋼素材に、熱間圧延を施し、板厚7mm以上の厚肉熱延鋼板とする。熱間圧延のための加熱温度は、下記に述べる熱間圧延の仕上圧延終了温度が確保できればよく、とくに限定する必要はないが、1000℃以上とすることが好ましい。加熱温度が1000℃未満では、変形抵抗が増大しすぎて、圧延設備への負荷が増大し、ひいては圧延が困難となるという問題が生じやすい。
Below, the preferable manufacturing method of the thick-wall high tension hot-rolled steel plate used by this invention is demonstrated. Needless to say, the present invention is not limited to this manufacturing method.
The steel material having the above composition is hot-rolled to obtain a thick hot-rolled steel sheet having a thickness of 7 mm or more. The heating temperature for hot rolling is not particularly limited as long as the finish rolling finishing temperature of hot rolling described below can be secured, but is preferably 1000 ° C. or higher. When the heating temperature is less than 1000 ° C., the deformation resistance increases excessively, the load on the rolling equipment increases, and as a result, the problem that rolling becomes difficult tends to occur.

熱間圧延は、仕上圧延の圧延終了温度を820〜880℃とする圧延とする。
仕上圧延の圧延終了温度は、820℃以上とすることにより、その後の冷却過程において、フェライト変態が抑制され、面積率で95%以上のベイニティックフェライト相からなる単相組織とすることができる。仕上圧延の圧延終了温度が820℃未満ではその後の冷却過程でフェライト変態が促進され、ベイニティックフェライト単相組織とすることが難しくなる。一方、仕上圧延の圧延終了温度が880℃を超えて高温となると、フェライト変態のみならずベイニティックフェライトヘの変態も抑制され、ベイニティックフェライト単相組織とすることが難しくなり、その結果、ベイナイト相やマルテンサイト相を生じやすくなる。
Hot rolling is rolling with a finish rolling temperature of 820 to 880 ° C.
When the finishing temperature of finish rolling is 820 ° C. or higher, ferrite transformation is suppressed in the subsequent cooling process, and a single-phase structure consisting of a bainitic ferrite phase with an area ratio of 95% or more can be obtained. . If the finishing temperature of finish rolling is less than 820 ° C., ferrite transformation is promoted in the subsequent cooling process, and it becomes difficult to obtain a bainitic ferrite single phase structure. On the other hand, when the finishing temperature of finish rolling exceeds 880 ° C and becomes high, not only ferrite transformation but also transformation to bainitic ferrite is suppressed, and it becomes difficult to obtain a bainitic ferrite single phase structure. , Bainite phase and martensite phase are likely to occur.

圧延終了後、熱延鋼板に、鋼板表面の冷却速度で15〜50℃/sとなる冷却を、表面温度が550〜650℃となる温度域まで施す。
表面の冷却速度で15℃/s未満では、板厚中央部等でポリゴナルフェライト相が析出しやすくなり、板厚方向で均一なベイニティックフェライト単相組織とすることが困難となる。一方、表面の冷却速度で50℃/sを超えて急冷されると、表層部にマルテンサイトが生成し、板厚方向で均一なベイニティックフェライト単相組織とすることができなくなる。なお、表面の冷却速度は、表面温度を測定し、仕上圧延終了温度と冷却停止温度との間で平均した値を用いるものとする。
After rolling, the hot-rolled steel sheet is cooled to a temperature range in which the surface temperature is 550 to 650 ° C. at a cooling rate of 15 to 50 ° C./s on the steel sheet surface.
When the surface cooling rate is less than 15 ° C./s, the polygonal ferrite phase tends to precipitate at the center of the plate thickness and the like, and it becomes difficult to obtain a uniform bainitic ferrite single phase structure in the plate thickness direction. On the other hand, when the surface is rapidly cooled at a cooling rate exceeding 50 ° C./s, martensite is generated in the surface layer portion, and a uniform bainitic ferrite single phase structure cannot be obtained in the thickness direction. In addition, the surface cooling rate shall measure the surface temperature, and shall use the value averaged between finish rolling completion temperature and cooling stop temperature.

上記した冷却の停止温度は、鋼板の表面温度が550〜650℃となる温度域の温度とする。冷却の停止温度が表面温度で、550℃未満では、ベイナイト相やマルテンサイト相が生成しベイニティックフェライト単相組織とすることができなくなる。一方、冷却の停止温度が650℃を超えて高温となると、ポリゴナルフェライト相やパーライト相が生成しベイニティックフェライト単相組織とすることができなくなる。   The cooling stop temperature described above is a temperature in a temperature range where the surface temperature of the steel sheet is 550 to 650 ° C. If the cooling stop temperature is less than 550 ° C. at the surface temperature, a bainite phase or a martensite phase is generated, and a bainitic ferrite single phase structure cannot be obtained. On the other hand, when the cooling stop temperature exceeds 650 ° C. and becomes a high temperature, a polygonal ferrite phase or a pearlite phase is generated and a bainitic ferrite single phase structure cannot be obtained.

冷却を停止したのち、熱延鋼板は、該温度域でコイル状に巻き取られる。コイル巻取り温度が、550℃未満ではベイナイト相やマルテンサイト相が生成し、ベイニティックフェライト単相組織とすることができなくなる。一方、650℃を超えて高温となると、ポリゴナルフェライト相やパーライト相が生成し、ベイニティックフェライト単相組織とすることができなくなり、所望の鋼板強度を確保できなくなるとともに、板厚方向の均一性が低下する。   After the cooling is stopped, the hot-rolled steel sheet is wound in a coil shape in the temperature range. If the coil winding temperature is less than 550 ° C., a bainite phase or a martensite phase is generated, and a bainitic ferrite single phase structure cannot be obtained. On the other hand, when the temperature is higher than 650 ° C., a polygonal ferrite phase and a pearlite phase are generated, and it becomes impossible to obtain a bainitic ferrite single phase structure, and it becomes impossible to secure a desired steel sheet strength, and in the thickness direction. Uniformity decreases.

本発明では、上記した組成と組織を有する鋼板に、図1に示すように、所定形状のフレームに成形する成形工程と、熱処理工程を施す。本発明では、成形工程で使用する成形手段については特に限定する必要はなく、通常のプレス、ロール等の成形手段がいずれも好適である。
成形工程で所定形状に成形されたフレームは、ついで、該フレームの所定の領域に焼入れ焼戻処理を施す熱処理工程を施される。なお、ここでいう「所定の領域」とは、フレーム全域、あるいはフレームの一部領域をいう。本発明では、焼入れ焼戻処理は、好ましくはインラインに設けられた、高周波誘導加熱手段、冷却手段等を用いて行う。図2に、本発明の熱処理工程で使用する高周波誘導加熱手段2(21,22)、冷却手段3の配列の一例を模式的に示す。なお、1は所定形状のフレームである。
In the present invention, a steel plate having the above composition and structure is subjected to a forming step for forming into a frame having a predetermined shape and a heat treatment step as shown in FIG. In the present invention, the forming means used in the forming step is not particularly limited, and any forming means such as a normal press or roll is suitable.
The frame formed into a predetermined shape in the forming step is then subjected to a heat treatment step in which a predetermined region of the frame is quenched and tempered. The “predetermined area” here refers to the entire frame or a partial area of the frame. In the present invention, the quenching and tempering treatment is preferably performed using a high-frequency induction heating means, a cooling means, etc. provided in-line. FIG. 2 schematically shows an example of the arrangement of the high-frequency induction heating means 2 (21, 22) and the cooling means 3 used in the heat treatment step of the present invention. Reference numeral 1 denotes a frame having a predetermined shape.

また、本発明における焼入れ焼戻処理では、所望の高強度を確保できるような所定の焼入れ加熱温度、焼入れ冷却速度、焼戻温度を選択すればよい。
本発明における焼入れ処理の焼入れ加熱温度は、Ac変態点以上930℃以下とすることが好ましい。これにより、スケール生成を少なくし、板厚方向の強度等の特性の均一化が可能となる。加熱温度がAc変態点未満では、焼入れ加熱時に完全にオーステナイト化できず、焼入れ後の組織を完全なマルテンサイト組織とすることができないため、所望の強度を確保することができない。一方、930℃を超えて高温となると、加熱時にスケール生成が著しくなり、表面品質が低下するとともに、組織が粗大化し、靭性の低下が著しくなる。
Moreover, what is necessary is just to select the predetermined quenching heating temperature, quenching cooling rate, and tempering temperature which can ensure desired high intensity | strength in the quenching tempering process in this invention.
The quenching heating temperature of the quenching treatment in the present invention is preferably set to Ac 3 transformation point or more and 930 ° C. or less. Thereby, scale generation can be reduced and characteristics such as strength in the thickness direction can be made uniform. When the heating temperature is less than the Ac 3 transformation point, it is not possible to completely austenite at the time of quenching and heating, and the structure after quenching cannot be made into a complete martensite structure, so that a desired strength cannot be ensured. On the other hand, when the temperature is higher than 930 ° C., scale formation becomes remarkable at the time of heating, the surface quality is deteriorated, the structure is coarsened, and the toughness is significantly reduced.

本発明では、焼入れ加熱後の冷却速度(所定の焼入れ冷却速度)は、板厚中央部での冷却速度で30℃/s以上とすることが好ましい。なお、焼入れ冷却速度が30℃/s未満では、板厚中心部まで完全なマルテンサイト組織とすることが困難となり、板厚方向の特性分布が不均一となりやすい。なお、冷却手段は、水冷、油冷、空冷等、特に限定されない。
また、本発明における焼戻処理は、焼戻温度をAc変態点以下の温度とし、所望の強度に応じて決定された温度とすることが好ましい。焼戻温度がAc1変態点超えの温度では、焼入れ処理で生じたマルテンサイト相がオーステナイト化し冷却中にパーライト変態して軟質化しやすい。このため、焼戻温度をAc1変態点以下の温度とすることが好ましい。焼入れ処理で肉厚中央部まで完全なマルテンサイト組織とすることができれば、所望の強度に応じた焼戻温度を変化させることにより、所望の特性を確保することが容易となる。
In the present invention, the cooling rate after quenching heating (predetermined quenching cooling rate) is preferably 30 ° C./s or more as the cooling rate at the central portion of the plate thickness. If the quenching cooling rate is less than 30 ° C./s, it is difficult to obtain a complete martensite structure up to the center of the plate thickness, and the characteristic distribution in the plate thickness direction tends to be non-uniform. In addition, a cooling means is not specifically limited, such as water cooling, oil cooling, and air cooling.
In the tempering treatment in the present invention, the tempering temperature is preferably set to a temperature not higher than the Ac 1 transformation point, and a temperature determined according to a desired strength. When the tempering temperature is higher than the Ac 1 transformation point, the martensite phase generated by the quenching process is austenitized and is pearlite transformed during cooling, and tends to soften. For this reason, it is preferable to set the tempering temperature to a temperature below the Ac 1 transformation point. If a complete martensite structure can be obtained up to the thickness center part by quenching, it becomes easy to secure desired characteristics by changing the tempering temperature according to the desired strength.

本発明では、上記した焼入れ焼戻処理を、フレームの所望の領域に施す。所望の領域はフレームの全領域、あるいはフレームの一部領域とする。フレームの一部領域に焼入れ焼戻処理を施すことにより、当該領域の強度増加が可能となり、例えば従来、インナー等で補強していた部分の強度を、インナーを使用することなく増加でき、部材の軽量化に寄与できる。フレームの所望の領域に焼入れ焼戻処理を施すことは、高周波誘導加熱手段を使用することにより極めて容易となる。フレームの所望の領域に対応して、高周波誘導加熱手段の稼動を調整すればよい。   In the present invention, the quenching and tempering treatment described above is performed on a desired region of the frame. The desired area is the entire area of the frame or a partial area of the frame. By applying quenching and tempering treatment to a partial area of the frame, it becomes possible to increase the strength of the area. For example, the strength of a portion that has been reinforced with an inner part can be increased without using an inner part. Can contribute to weight reduction. Applying a quenching and tempering treatment to a desired region of the frame is extremely easy by using high-frequency induction heating means. The operation of the high-frequency induction heating means may be adjusted corresponding to the desired region of the frame.

表1に示す組成と、表2に示す組織、特性および板厚を有する厚肉熱延鋼板に、断面コ字状のトラック用フレームに成形する成形工程と、該フレームの全領域に、図2に示す焼入れ処理用高周波誘導加熱装置21を用いて、各厚肉熱延鋼板のAc3変態点以上の温度である表3に示す加熱温度に加熱し、冷却装置3で30℃/s以上の冷却速度である、水冷で冷却する焼入れ処理と、焼戻処理用高周波誘導加熱装置22を用いて、各厚肉熱延鋼板のAc1変態点以下の温度である表3に示す焼戻温度に加熱する焼戻処理とを施す熱処理工程と、を順次施した。なお、焼戻処理の焼戻温度からの冷却は水冷とした。 A forming process for forming a U-shaped track frame into a thick hot-rolled steel sheet having the composition shown in Table 1 and the structure, characteristics, and plate thickness shown in Table 2, and the entire region of the frame, FIG. Is heated to the heating temperature shown in Table 3, which is a temperature equal to or higher than the Ac 3 transformation point of each thick-walled hot-rolled steel sheet, and is cooled to 30 ° C./s or higher by the cooling device 3. Using a quenching treatment that is cooled by water cooling, which is a cooling rate, and a high-frequency induction heating apparatus 22 for tempering treatment, the tempering temperatures shown in Table 3 that are temperatures below the Ac 1 transformation point of each thick hot-rolled steel sheet A heat treatment step for performing a tempering treatment for heating was sequentially performed. The cooling from the tempering temperature in the tempering process was water cooling.

なお、用いた厚肉熱延鋼板についての組織、特性の試験方法は次のとおりとした。
(a)組織観察
得られた熱延鋼板から、組織観察用試験片を採取し、試験片の圧延方向に平行な板厚断面を研磨し、ナイタール腐食したのち、表面から0.1mmの位置、板厚1/4の位置、板厚中央部位置について、走査型電子顕微鏡(SEM)(倍率:3000倍)で金属組織を観察(視野数:各10個所)し撮像して、組織の種類および、画像解析装置を利用して各相の組織分率(面積率)を測定し、ベイニティックフェライト相の面積率について、観察した10視野での測定値を平均して求めた。なお、表面から0.1mmの位置、板厚1/4の位置、板厚中央部位置で求めたベイニティックフェライト相の面積率(10視野での測定値の平均)が全て95%以上である場合を、全厚にわたり面積率で95%以上のベイニティックフェライト相からなる組織(ベイニティックフェライト単相組織)になっていると判断した。
In addition, the test method of the structure and characteristics of the thick hot-rolled steel sheet used was as follows.
(A) Microstructure observation From the obtained hot-rolled steel sheet, a microscopic specimen was collected, the thickness cross section parallel to the rolling direction of the specimen was polished and subjected to nital corrosion. About the position of 1/4 thickness and the central part of the plate thickness, the metal structure was observed with a scanning electron microscope (SEM) (magnification: 3000 times) (number of fields of view: 10 each) and imaged. Using an image analyzer, the tissue fraction (area ratio) of each phase was measured, and the area ratio of the bainitic ferrite phase was obtained by averaging the measured values in 10 observed visual fields. In addition, the area ratio of bainitic ferrite phase (average of measured values in 10 fields of view) obtained at a position of 0.1 mm from the surface, a position of a thickness of 1/4, and a position of the center of the thickness is 95% or more. The case was judged to have a structure composed of a bainitic ferrite phase with an area ratio of 95% or more over the entire thickness (bainitic ferrite single phase structure).

(b)引張試験
得られた熱延鋼板(または試験板)から、引張方向が圧延方向と直角方向となるように、JIS 5号試験片(GL:50mm)を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、引張特性(降伏強さYS、引張強さTS、伸びEl)を求め、強度、延性を評価した。
(c)硬さ試験
得られた熱延鋼板から、硬さ測定用試験片を採取し、試験片の圧延方向に平行な板厚断面を研磨し、表面から板厚方向に全厚に亘り、0.2mmピッチでビッカース硬さHV (荷重:9.8N)を測定した。なお、硬さの測定は表面から0.2mm位置を硬さの測定の開始点とした。つぎに、測定すべき箇所が、もう一方の表面から0.2mm以内となった場合にその箇所については測定せず硬さ測定を終了した。各厚肉熱延鋼板について、得られた板厚方向硬さを算術平均して、平均硬さ(平均値)HVmeanを求めた。また、最高硬さ(表層硬さ)と最低硬さ(板厚中央硬さ)の差、ΔHVを算出し、[ΔHV/HVmean]×100(%)を求め、板厚方向の均一性を評価した。
(B) Tensile test JIS No. 5 test piece (GL: 50mm) was sampled from the obtained hot-rolled steel plate (or test plate) so that the tensile direction was perpendicular to the rolling direction. A tensile test was performed in accordance with the above, tensile properties (yield strength YS, tensile strength TS, elongation El) were determined, and strength and ductility were evaluated.
(C) Hardness test From the obtained hot-rolled steel plate, a test piece for hardness measurement was collected, the cross section of the thickness parallel to the rolling direction of the test piece was polished, and the entire thickness from the surface to the thickness direction, Vickers hardness HV (load: 9.8 N) was measured at a pitch of 0.2 mm. The hardness was measured at a position 0.2 mm from the surface as the starting point of hardness measurement. Next, when the location to be measured was within 0.2 mm from the other surface, the location was not measured and the hardness measurement was terminated. For each thick hot-rolled steel sheet, the obtained sheet thickness direction hardness was arithmetically averaged to obtain an average hardness (average value) HVmean. Also, the difference between the maximum hardness (surface hardness) and the minimum hardness (plate thickness center hardness), ΔHV, is calculated, and [ΔHV / HVmean] × 100 (%) is obtained to evaluate the uniformity in the plate thickness direction. did.

また、得られたトラック用フレームから、試験片を採取し、組織観察、引張試験を実施した。また、焼入れ処理後の試験材について硬さ試験を実施した。試験方法は次のとおりとした。
(1)組織観察
試験材の長手方向断面が観察面となるように試験片を研磨、腐食(ナイタール)して、走査型電子顕微鏡(倍率:500倍)で、表面、板厚方向の1/4t、および1/2t位置について組織を観察し、各位置での組織分率を特定した。
Moreover, a test piece was collected from the obtained truck frame, and a structure observation and a tensile test were performed. Moreover, the hardness test was implemented about the test material after hardening processing. The test method was as follows.
(1) Microstructure observation The test specimen is polished and corroded (nitral) so that the longitudinal section of the test material becomes the observation surface. The tissue was observed at 4t and 1 / 2t positions, and the tissue fraction at each position was specified.

(2)引張試験
得られた試験材から、試験材の長手方向が引張方向となるように、JIS5号試験片を採取し、JIS Z 2241の規定に準拠して、引張試験を実施し、降伏強さYS、引張強さTS、伸びELを求め、強度、延性を評価した。
(3)硬さ試験
焼入れ処理後の試験材から硬さ試験片を採取し、試験材の長手方向断面が観察面となるように研磨し、表面下0.3mm、および板厚中央部についてビッカース硬さHV(荷重:5kgf(49N))を測定した。なお、測定は各位置5点とし、その平均値を求めた。
(2) Tensile test JIS No. 5 test piece was collected from the obtained test material so that the longitudinal direction of the test material was the tensile direction, and the tensile test was conducted in accordance with the provisions of JIS Z 2241. Strength YS, tensile strength TS, and elongation EL were determined, and strength and ductility were evaluated.
(3) Hardness test A hardness test piece is taken from the test material after quenching, polished so that the longitudinal section of the test material becomes the observation surface, 0.3 mm below the surface, and Vickers hardness at the center of the plate thickness. HV (load: 5 kgf (49 N)) was measured. The measurement was performed at 5 points in each position, and the average value was obtained.

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 2009007653
Figure 2009007653

Figure 2009007653
Figure 2009007653

Figure 2009007653
Figure 2009007653

本発明例は、いずれも組織が焼戻マルテンサイト相からなり板厚方向での組織不均一もなく、さらに引張強さ:540〜1200MPaの範囲の高強度を有するトラック用フレームとなっている。しかも、このような特性をフレームの所望の領域に任意に付与することができ、インナーの配設を必要としない高強度トラック用フレームとすることができる。一方、本発明の範囲を外れる比較例は、強度が低いか、表面と板厚中央部との硬さバラツキが大きいトラック用フレームとなっている。   In all of the examples of the present invention, the structure is a tempered martensite phase, the structure is not uneven in the thickness direction, and the frame for a track has a high strength in the range of tensile strength: 540 to 1200 MPa. In addition, such a characteristic can be arbitrarily given to a desired region of the frame, and a high-strength track frame that does not require an inner arrangement can be obtained. On the other hand, a comparative example outside the scope of the present invention is a truck frame that has low strength or large hardness variation between the surface and the plate thickness center.

本発明における工程の概要を模式的に示す説明図である。It is explanatory drawing which shows the outline | summary of the process in this invention typically. 本発明の熱処理工程に使用して好適な設備の配列の一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the arrangement | sequence of a suitable facility used for the heat processing process of this invention.

符号の説明Explanation of symbols

1 フレーム
2 高周波誘導加熱手段
21 焼入れ処理用高周波誘導加熱装置
22 焼戻処理用高周波誘導加熱装置
3 冷却装置(冷却手段)
1 Frame 2 High frequency induction heating means
21 High frequency induction heating equipment for quenching treatment
22 High-frequency induction heating equipment for tempering 3 Cooling equipment (cooling means)

Claims (2)

厚肉熱延鋼板を所定の形状に加工し、ついで所定の領域に熱処理を施してなるトラック用フレームであって、
前記厚肉熱延鋼板が、質量%で、
C:0.10〜0.20%、 Si:0.01〜1.0%、
Mn:0.5〜2.0%、 P:0.03%以下、
S:0.01%以下、 Al:0.01〜0.10%、
N:0.005%以下、 Ti:0.01〜0.15%、
B:0.0010〜0.0050%
を含み、残部Feおよび不可避的不純物からなる組成を有し、前記所定の領域が焼戻マルテンサイト相からなる組織を有し、引張強さで540〜1200MPaの高強度を有することを特徴とするトラック用フレーム。
A truck frame formed by processing a thick hot-rolled steel sheet into a predetermined shape and then heat-treating the predetermined area,
The thick hot-rolled steel sheet is in mass%,
C: 0.10 to 0.20%, Si: 0.01 to 1.0%,
Mn: 0.5 to 2.0%, P: 0.03% or less,
S: 0.01% or less, Al: 0.01-0.10%,
N: 0.005% or less, Ti: 0.01 to 0.15%,
B: 0.0010-0.0050%
The predetermined region has a structure composed of a tempered martensite phase, and has a tensile strength of 540 to 1200 MPa. Truck frame.
厚肉熱延鋼板を所定形状のフレームに成形する成形工程と、該成形されたフレームの所定の領域に焼入れ焼戻処理を施す熱処理工程とを順次施し、トラック用フレームとするに当たり、前記厚肉熱延鋼板が、質量%で、
C:0.10〜0.20%、 Si:0.01〜1.0%、
Mn:0.5〜2.0%、 P:0.03%以下、
S:0.01%以下、 Al:0.01〜0.10%、
N:0.005%以下、 Ti:0.01〜0.15%、
B:0.0010〜0.0050%
を含み、残部Feおよび不可避的不純物からなる組成と、面積率で95%以上のベイニティックフェライト相からなる組織とを有する鋼板であり、
前記焼入れ焼戻処理が、高周波誘導加熱手段により所定の焼入れ温度に加熱した後、冷却手段により所定の焼入れ冷却速度で焼入する焼入れ処理と、高周波誘導加熱手段により所定の焼戻温度に加熱する焼戻処理とからなり、前記トラック用フレームの所定の領域が、焼戻マルテンサイト相からなる組織と、引張強さで540〜1200MPaの高強度を有することを特徴とするトラック用フレームの製造方法。
The thick-walled hot-rolled steel sheet is formed into a frame having a predetermined shape, and a heat treatment step for quenching and tempering a predetermined region of the formed frame is sequentially performed to obtain a frame for the truck. Hot-rolled steel sheet is mass%,
C: 0.10 to 0.20%, Si: 0.01 to 1.0%,
Mn: 0.5 to 2.0%, P: 0.03% or less,
S: 0.01% or less, Al: 0.01-0.10%,
N: 0.005% or less, Ti: 0.01 to 0.15%,
B: 0.0010-0.0050%
A steel plate having a composition composed of the balance Fe and inevitable impurities, and a structure composed of a bainitic ferrite phase with an area ratio of 95% or more,
In the quenching and tempering process, after heating to a predetermined quenching temperature by high-frequency induction heating means, quenching treatment is performed by a cooling means at a predetermined quenching cooling rate, and heating is performed to a predetermined tempering temperature by high-frequency induction heating means. A method for manufacturing a truck frame, comprising: a tempering process, wherein the predetermined region of the truck frame has a structure composed of a tempered martensite phase and a tensile strength of 540 to 1200 MPa. .
JP2007171906A 2007-06-29 2007-06-29 Truck frame and manufacturing method thereof Expired - Fee Related JP5142606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007171906A JP5142606B2 (en) 2007-06-29 2007-06-29 Truck frame and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007171906A JP5142606B2 (en) 2007-06-29 2007-06-29 Truck frame and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009007653A true JP2009007653A (en) 2009-01-15
JP5142606B2 JP5142606B2 (en) 2013-02-13

Family

ID=40323023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007171906A Expired - Fee Related JP5142606B2 (en) 2007-06-29 2007-06-29 Truck frame and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5142606B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2493636A (en) * 2011-08-10 2013-02-13 Kobe Steel Ltd Single phase martensitic steel sheet with excellent seam weldability
JP2013122076A (en) * 2011-12-12 2013-06-20 Nippon Steel & Sumitomo Metal Corp Hot stamping molding excellent in balance of strength and toughness, method for manufacturing the same, and method for manufacturing steel plate for hot stamping molding
EP2617852A4 (en) * 2010-09-17 2015-09-16 Jfe Steel Corp High-strength hot-rolled steel sheet having excellent bending workability and method for producing same
JP2018524475A (en) * 2015-10-16 2018-08-30 サンワスチール株式会社 High strength steel plate and manufacturing method thereof
US10822034B2 (en) 2017-11-07 2020-11-03 Cnh Industrial America Llc Plate steel constructed frame for self propelled sprayers
CN112059539A (en) * 2020-08-11 2020-12-11 辽宁衡业高科新材股份有限公司 Continuous production process of 1100Mpa automobile chassis longitudinal beam
US11401576B2 (en) 2017-11-06 2022-08-02 Metalsa S.A. De C.V. Induction heat treating apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH101740A (en) * 1996-06-12 1998-01-06 Kobe Steel Ltd Ultrahigh strength steel sheet excellent in delayed fracture resistance, and its production
JP2002115024A (en) * 2000-10-06 2002-04-19 Nkk Corp Wear resistant steel having excellent toughness and delayed-fracture resistance and its production method
JP2004300474A (en) * 2003-03-28 2004-10-28 Jfe Steel Kk Abrasion resistant steel and manufacturing method therefor
JP2005206920A (en) * 2004-01-26 2005-08-04 Jfe Steel Kk High-tensile-strength hot-dip galvanized hot-rolled steel sheet with low yield ratio and composite structure superior in extension flange, and manufacturing method therefor
JP2006183141A (en) * 2004-11-30 2006-07-13 Jfe Steel Kk High-strength hot rolled steel sheet and its production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH101740A (en) * 1996-06-12 1998-01-06 Kobe Steel Ltd Ultrahigh strength steel sheet excellent in delayed fracture resistance, and its production
JP2002115024A (en) * 2000-10-06 2002-04-19 Nkk Corp Wear resistant steel having excellent toughness and delayed-fracture resistance and its production method
JP2004300474A (en) * 2003-03-28 2004-10-28 Jfe Steel Kk Abrasion resistant steel and manufacturing method therefor
JP2005206920A (en) * 2004-01-26 2005-08-04 Jfe Steel Kk High-tensile-strength hot-dip galvanized hot-rolled steel sheet with low yield ratio and composite structure superior in extension flange, and manufacturing method therefor
JP2006183141A (en) * 2004-11-30 2006-07-13 Jfe Steel Kk High-strength hot rolled steel sheet and its production method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2617852A4 (en) * 2010-09-17 2015-09-16 Jfe Steel Corp High-strength hot-rolled steel sheet having excellent bending workability and method for producing same
US9200344B2 (en) 2010-09-17 2015-12-01 Jfe Steel Corporation High strength hot rolled steel sheet having excellent bendability and method for manufacturing the same
GB2493636A (en) * 2011-08-10 2013-02-13 Kobe Steel Ltd Single phase martensitic steel sheet with excellent seam weldability
GB2493636B (en) * 2011-08-10 2014-06-18 Kobe Steel Ltd High strength steel sheet excellent in seam weldability
US10030291B2 (en) 2011-08-10 2018-07-24 Kobe Steel, Ltd. High-strength steel sheet excellent in seam weldability
JP2013122076A (en) * 2011-12-12 2013-06-20 Nippon Steel & Sumitomo Metal Corp Hot stamping molding excellent in balance of strength and toughness, method for manufacturing the same, and method for manufacturing steel plate for hot stamping molding
JP2018524475A (en) * 2015-10-16 2018-08-30 サンワスチール株式会社 High strength steel plate and manufacturing method thereof
US11401576B2 (en) 2017-11-06 2022-08-02 Metalsa S.A. De C.V. Induction heat treating apparatus
US10822034B2 (en) 2017-11-07 2020-11-03 Cnh Industrial America Llc Plate steel constructed frame for self propelled sprayers
CN112059539A (en) * 2020-08-11 2020-12-11 辽宁衡业高科新材股份有限公司 Continuous production process of 1100Mpa automobile chassis longitudinal beam

Also Published As

Publication number Publication date
JP5142606B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
US10584396B2 (en) Heat treatable steel, product formed thereof having ultra high strength and excellent durability, and method for manufacturing same
JP5040197B2 (en) Hot-rolled thin steel sheet with excellent workability and excellent strength and toughness after heat treatment and method for producing the same
JP6893560B2 (en) Tempered martensitic steel with low yield ratio and excellent uniform elongation and its manufacturing method
JP4947176B2 (en) Manufacturing method of ultra-high strength cold-rolled steel sheet
JP5040475B2 (en) Thick-walled hot-rolled steel sheet with excellent workability and excellent strength and toughness after heat treatment and method for producing the same
CN113840934B (en) High-strength member, method for producing high-strength member, and method for producing steel sheet for high-strength member
KR102031460B1 (en) Hot rolled steel with excellent impact toughness, steel tube, steel member, and method for manufacturing thereof
JP5142606B2 (en) Truck frame and manufacturing method thereof
EP2551366B1 (en) High-strength electrical-resistance-welded steel pipe and manufacturing method therefor
JP5640931B2 (en) Medium carbon cold-rolled steel sheet excellent in workability and hardenability and its manufacturing method
WO2013180180A1 (en) High strength cold-rolled steel plate and manufacturing method therefor
JP7031795B1 (en) Steel sheets, members and their manufacturing methods
JP4665302B2 (en) High-tensile cold-rolled steel sheet having high r value, excellent strain age hardening characteristics and non-aging at room temperature, and method for producing the same
JP6796472B2 (en) Hollow member and its manufacturing method
JP2008095156A (en) Method for manufacturing hollow stabilizer with excellent delayed fracture resistance
CN112969808B (en) Steel for bolt and method for producing same
JP2009235499A (en) Method for manufacturing hollow stabilizer
CA3048358C (en) Hot-rolled steel sheet for coiled tubing
JP4519373B2 (en) High-tensile cold-rolled steel sheet excellent in formability, strain age hardening characteristics and room temperature aging resistance, and method for producing the same
JP2006022390A (en) High strength cold rolled steel sheet and production method therefor
JP7186229B2 (en) Ultra-high-strength hot-rolled steel sheet, steel pipe, member, and manufacturing method thereof
JP4392324B2 (en) Method for producing case-hardened steel for cold forging
KR20040057777A (en) Method for Manufacturing Ultra High Strength Cold-rolled Steel Sheets for Automotive Bumper Reinforcements
CN115461482B (en) Steel sheet, component, and method for manufacturing same
JP7392904B1 (en) High strength steel plate and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5142606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees