JP2008095156A - Method for manufacturing hollow stabilizer with excellent delayed fracture resistance - Google Patents

Method for manufacturing hollow stabilizer with excellent delayed fracture resistance Download PDF

Info

Publication number
JP2008095156A
JP2008095156A JP2006279757A JP2006279757A JP2008095156A JP 2008095156 A JP2008095156 A JP 2008095156A JP 2006279757 A JP2006279757 A JP 2006279757A JP 2006279757 A JP2006279757 A JP 2006279757A JP 2008095156 A JP2008095156 A JP 2008095156A
Authority
JP
Japan
Prior art keywords
mass
less
temperature
delayed fracture
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006279757A
Other languages
Japanese (ja)
Other versions
JP4859618B2 (en
Inventor
Shoichi Kadani
昇一 甲谷
Noriyuki Nakahara
敬之 中原
Tsunetoshi Suzaki
恒年 洲崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2006279757A priority Critical patent/JP4859618B2/en
Publication of JP2008095156A publication Critical patent/JP2008095156A/en
Application granted granted Critical
Publication of JP4859618B2 publication Critical patent/JP4859618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a hollow stabilizer from an electric resistance welded tube having metallic structure mainly of bainite thereby providing high strength. <P>SOLUTION: A steel material containing 0.10-0.30% C, ≤0.5% Si, 0.25-2.50% Mn, ≤0.03% P, ≤0.01% S, 0.5-1.5% Cr, 0.1-0.5% Mo, 0.0005-0.0100% B, 0.01-0.10% Ti, ≤0.01% N, 0.02-0.08% Al, is hot-rolled at a finish-temperature of 800-950°C and a coiling temperature of 400-600°C, consequently the metallic structure thereof is adjusted to ≤20 area% ferrite, ≤20 area% pearlite, ≤5 area% retained austenite and the balance bainite. After hot-rolling, an acid-pickling is applied to the steel material to make it into the electric resistance welded tube, desirably in order to control the maximum hardness difference between an electric resistance welded part and a basic material part to ≤50 HV, a tempering is applied to the electric resistance welded tube at the temperature range of (Ac<SB>1</SB>transforming point) to (Ac<SB>1</SB>transforming point-100°C) after cooling the electric resistance welded tube to a temperature of Ms point or below. The obtained electric resistance welded tube is annealed at 450-710°C for 1hr or shorter, and after cooling, the bending-work into the targeted stabilizer shape is performed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車に装着され、優れた耐遅れ破壊性を呈する中空スタビライザを製造する方法に関する。   The present invention relates to a method of manufacturing a hollow stabilizer that is mounted on an automobile and exhibits excellent delayed fracture resistance.

スタビライザは、自動車のコーナリング時に車体のローリングを緩和し、高速走行時に車体の走行安定性を確保する上で必要な部品であるが、自動車に装着された状態で長時間使用されるため優れた疲労耐久性が要求される。必要な疲労耐久性を満足させるためには900N/mm2以上の強度を有する素材が要求されるが、軽量化を重視してスタビライザの素材に中空鋼管が多用されている。 Stabilizers are necessary parts to alleviate rolling of the car body during cornering of the car and ensure the running stability of the car body at high speeds, but they have excellent fatigue because they are used for a long time while attached to the car. Durability is required. In order to satisfy the required fatigue durability, a material having a strength of 900 N / mm 2 or more is required, but a hollow steel pipe is frequently used as a stabilizer material with an emphasis on weight reduction.

中空スタビライザは、管端加工した電縫鋼管をスタビライザ形状に曲げ加工した後、強度向上のため焼入れ・焼戻しされている。更に、スタビライザ表面の疲労特性を向上させるため、ショットピーニング,塗装等が施されることもある。このような製造工程を経る中空スタビライザに必要強度を付与するため、焼入れ効果の高いC:0.20質量%程度の炭素鋼が素材に使用されている。   The hollow stabilizer is hardened and tempered to improve the strength after bending the ERW steel pipe with the pipe end processed into a stabilizer shape. Furthermore, shot peening, painting, or the like may be applied to improve the fatigue characteristics of the stabilizer surface. In order to give the required strength to the hollow stabilizer that has undergone such a manufacturing process, carbon steel having a high quenching effect of C: about 0.20% by mass is used as the material.

スタビライザの形状にはコ字状が多く、コ字形状のスタビライザは電縫鋼管の複数箇所を曲げ加工することにより製造される。曲げ加工では、曲げ角度:90度の厳しい曲げ加工性が要求され、しかも常温下での曲げ加工である。加工時に導入された応力・歪みは、スタビライザの機能を損なわせる遅れ破壊の原因になる。
しかるに、スタビライザに使用する電縫鋼管が高強度になるほど遅れ破壊感受性が増大する。たとえば、900N/mm2以上の強度は、疲労耐久性を満足させる上で必要であるが、耐遅れ破壊性にとっては問題である。なかでも、焼入れ・焼戻しで金属組織を焼戻しマルテンサイトとし900N/mm2以上の強度を付与した焼戻しマルテンサイト鋼では、遅れ破壊感受性が急増する傾向にある。
The shape of the stabilizer is often U-shaped, and the U-shaped stabilizer is manufactured by bending a plurality of portions of the electric resistance welded steel pipe. In the bending process, a strict bending workability of a bending angle of 90 degrees is required, and the bending process is performed at room temperature. The stress / strain introduced during processing causes delayed fracture that impairs the function of the stabilizer.
However, the delayed fracture susceptibility increases as the strength of the electric resistance welded steel pipe used for the stabilizer increases. For example, a strength of 900 N / mm 2 or more is necessary to satisfy fatigue durability, but it is a problem for delayed fracture resistance. Among them, in the tempered martensitic steel having a metal structure of tempered martensite by quenching and tempering and imparted a strength of 900 N / mm 2 or more, delayed fracture susceptibility tends to increase rapidly.

遅れ破壊の起点は旧オーステナイト粒界にあると考えられている。焼戻しマルテンサイト鋼では、旧オーステナイト粒界に析出した炭化物が遅れ破壊クラックの発生を助長するため、結果として遅れ破壊感受性が急増する。そこで、スタビライザに使用される電縫鋼管の耐遅れ破壊性を改善する種々の方法が提案されている。
たとえば、特許文献1では、Ar3以上の温度域で仕上げ圧延した後、急冷し、巻き取ることにより、900N/mm2以上の強度を有し、耐遅れ破壊性に優れた熱延鋼帯を製造しているものの、耐遅れ破壊性を改善した電縫鋼管の製造を教示・示唆していない。特許文献2では、焼入れせずに造管後に時効処理及び必要に応じて冷間伸管加工、焼鈍を施すことにより超高張力電縫鋼管を製造しているが、熱延鋼帯を250℃以下で巻き取っているので、遅れ破壊の起点となる析出炭化物が多いマルテンサイトになることが欠点である。
特開平7-197184号公報 特開平5-9579号公報
The origin of delayed fracture is thought to be in the former austenite grain boundary. In tempered martensitic steel, carbides precipitated at the prior austenite grain boundaries promote the occurrence of delayed fracture cracks, resulting in a rapid increase in delayed fracture susceptibility. Therefore, various methods for improving the delayed fracture resistance of the electric resistance welded steel pipe used for the stabilizer have been proposed.
For example, in Patent Document 1, a hot-rolled steel strip having a strength of 900 N / mm 2 or more and excellent in delayed fracture resistance is obtained by finishing and rolling in a temperature range of Ar 3 or higher, and then rapidly cooling and winding. Although manufactured, it does not teach or suggest the manufacture of ERW steel pipes with improved delayed fracture resistance. In Patent Document 2, an ultra-high-strength ERW steel pipe is manufactured by performing aging treatment and cold-drawing and annealing as necessary after pipe making without quenching. Since it is wound up in the following, it is a disadvantage that it becomes martensite with a large amount of precipitated carbides as the starting point of delayed fracture.
JP-A-7-197184 Japanese Patent Laid-Open No. 5-9579

焼入れ・焼戻しは高強度化のために有効な熱処理であるが、耐遅れ破壊性にとっては好ましくない焼戻しマルテンサイトの生成が欠点である。そこで、本発明者等は、強度的には焼入れ・焼戻しと変わらず、耐遅れ破壊性に有効な金属組織を得るための熱処理を種々検討した。その結果、ベイナイト主体の金属組織を有する電縫鋼管を焼きなました後、スタビライザ形状に曲げ加工すると、焼入れ・焼戻しを省略でき、耐遅れ破壊性に優れたスタビライザが得られることを解明した。
本発明は、このような知見に基づき、焼きなましても強度が実質的に低下しないベイナイト主体の金属組織を有する電縫鋼管を素材とし、スタビライザ形状に曲げ加工した後に施されていた焼入れ・焼戻し熱処理を省略でき、優れた耐遅れ破壊性を呈する中空スタビライザを低コストで製造することを目的とする。
Quenching / tempering is an effective heat treatment for increasing the strength, but the formation of tempered martensite, which is undesirable for delayed fracture resistance, is a drawback. Therefore, the present inventors examined various heat treatments for obtaining a metal structure effective for delayed fracture resistance, which is not different from quenching and tempering in terms of strength. As a result, it was clarified that, after annealing an ERW steel pipe having a metal structure mainly composed of bainite and bending it into a stabilizer shape, quenching and tempering can be omitted, and a stabilizer having excellent delayed fracture resistance can be obtained.
Based on such knowledge, the present invention is made of an electric-welded steel pipe having a bainite-based metal structure whose strength does not substantially decrease even if annealed, and is quenched and tempered after being bent into a stabilizer shape. The object is to produce a hollow stabilizer exhibiting excellent delayed fracture resistance at low cost.

本発明は、次の工程を経て中空スタビライザ用電縫鋼管を製造する。
C:0.10〜0.30質量%,Si:0.5質量%以下,Mn:0.25〜2.50質量%,P:0.03質量%以下,S:0.01質量%以下,Cr:0.5〜1.5質量%,Mo:0.1〜0.5質量%,B:0.0005〜0.0100質量%,Ti:0.01〜0.10質量%,N:0.01質量%以下,Al:0.02〜0.08質量%を含み、残部がFe及び不純物からなる組成を有する鋼材を熱間圧延する。鋼材は、必要に応じNi:0.1〜1.0質量%,V:0.5質量%以下,Nb:0.01〜0.10質量%の一種又は二種以上を含むことができる。
The present invention manufactures an electric resistance steel pipe for a hollow stabilizer through the following steps.
C: 0.10 to 0.30 mass%, Si: 0.5 mass% or less, Mn: 0.25 to 2.50 mass%, P: 0.03 mass% or less, S: 0.01 mass% or less , Cr: 0.5-1.5 mass%, Mo: 0.1-0.5 mass%, B: 0.0005-0.0100 mass%, Ti: 0.01-0.10 mass%, N : Hot rolled a steel material having a composition containing 0.01% by mass or less, Al: 0.02 to 0.08% by mass, the balance of Fe and impurities. The steel material may contain one or more of Ni: 0.1 to 1.0% by mass, V: 0.5% by mass or less, and Nb: 0.01 to 0.10% by mass as necessary.

熱間圧延工程では、フェライト:20面積%以下,パーライト:20面積%以下,残留オーステナイト:5面積%以下,残部がベイナイトの金属組織が得られるように、仕上げ温度:800〜950℃,巻取り温度:400〜600℃の範囲で選定する。
熱間圧延後、鋼帯を酸洗して造管ラインに送り、電縫鋼管とする。好ましくは、肉厚:2.0〜4.5mm,外径:15〜40mmのサイズをもった電縫鋼管を作製する。
In the hot rolling process, ferrite: 20 area% or less, pearlite: 20 area% or less, retained austenite: 5 area% or less, finishing temperature: 800 to 950 ° C., winding so that a bainite metal structure is obtained. Temperature: Select in the range of 400-600 ° C.
After hot rolling, the steel strip is pickled and sent to a pipe making line to make an electric resistance welded steel pipe. Preferably, an ERW steel pipe having a thickness of 2.0 to 4.5 mm and an outer diameter of 15 to 40 mm is manufactured.

電縫溶接部と母材部との間の最大硬さ差を50HV以下にするため、Ms点以下の温度に冷却した後、連続して(Ac1変態点)〜(Ac1変態点−100℃)の温度域に焼き戻す熱処理を電縫溶接部に施しても良い。
電縫鋼管から中空スタビライザを製造する際には、450〜710℃の温度域で1時間以下焼きなました後、室温まで冷却し、焼きなまされた電縫鋼管を目標とするスタビライザ形状に曲げ加工する。
In order to reduce the maximum hardness difference between the ERW weld and the base metal part to 50 HV or less, after cooling to a temperature below the M s point, (Ac 1 transformation point) to (Ac 1 transformation point − A heat treatment for tempering to a temperature range of 100 ° C. may be applied to the ERW weld.
When manufacturing hollow stabilizers from ERW steel pipes, anneal them for 1 hour or less in a temperature range of 450 to 710 ° C, then cool to room temperature and bend the annealed ERW steel pipes to the target stabilizer shape. To do.

発明の効果及び実施の形態Effects and embodiments of the invention

本発明では、ベイナイト主体の金属組織を有する電縫鋼管をスタビライザの素材とし、且つ焼きなまし条件(熱処理条件)を規制することにより、曲げ加工前の電縫鋼管(素管)に高強度,加工性を付与し、スタビライザ形状に曲げ加工した後の熱処理を不要にしている。この点、従来法では曲げ加工後の焼入れ・焼戻しで強度を付与しているが、焼入れ・焼戻しの際に焼戻しマルテンサイトが生成すると遅れ破壊感受性が増大することは前述の通りである。すなわち、本発明と従来法とでは、曲げ加工と熱処理との順序が次のように異なっている。   In the present invention, an ERW steel pipe having a bainite-based metal structure is used as a stabilizer material, and the annealing conditions (heat treatment conditions) are regulated, so that the ERW steel pipe (element pipe) before bending is high in strength and workability. And heat treatment after bending into a stabilizer shape is not required. In this regard, in the conventional method, strength is imparted by quenching and tempering after bending, but as described above, the delayed fracture susceptibility increases when tempered martensite is generated during quenching and tempering. That is, the order of bending and heat treatment differs between the present invention and the conventional method as follows.

Figure 2008095156
Figure 2008095156

このように、鋼管段階で高強度を発現する成分設計,製造条件を採用することにより、焼入れ・焼戻し工程を省略でき、焼きなましによっても強度低下しがたい成分設計であるので、焼きなましにより延性を改善できる。焼きなましは、曲げ加工の前であれば管端加工の前後何れでも良い。
焼きなましで強度低下を起こすことなく延性が改善されるため、電縫鋼管を冷間で曲げ加工でき、スタビライザに要求される強度レベルが確保される。しかも、耐遅れ破壊性にとって不利な焼戻しマルテンサイトではなくベイナイト主体の金属組織であるため、耐遅れ破壊性,疲労耐久性共に優れた中空スタビライザが得られる。
In this way, by adopting the component design and manufacturing conditions that express high strength in the steel pipe stage, the quenching and tempering process can be omitted, and the strength design is difficult to reduce even by annealing, so the ductility is improved by annealing. it can. The annealing may be performed before or after the pipe end processing before the bending processing.
Since ductility is improved without causing a decrease in strength by annealing, the ERW steel pipe can be cold-worked, and the strength level required for the stabilizer is ensured. Moreover, since it is not a tempered martensite, which is disadvantageous for delayed fracture resistance, but a bainite-based metal structure, a hollow stabilizer excellent in both delayed fracture resistance and fatigue durability can be obtained.

以下、本発明で規定した合金成分,含有量,製造条件等を説明する。
〔成分設計〕
800〜950℃で仕上げ圧延し、400〜600℃で巻き取った熱延鋼帯がベイナイト主体の金属組織を有し、焼入れ・焼戻しを必要とせずに900N/mm2以上の強度が得られるように、各合金成分を次のように定めている。
C:0.10〜0.30質量%
中空スタビライザとして要求される強度を得るために必要な合金元素であり、0.10質量%未満では900N/mm2以上の強度が得られない。しかし、0.30質量%を超えるC含有量では、曲げ加工性,靭性,耐遅れ破壊性が低下する。
Hereinafter, the alloy components, contents, production conditions and the like defined in the present invention will be described.
(Ingredient design)
The hot-rolled steel strip, finish-rolled at 800-950 ° C. and wound at 400-600 ° C., has a bainite-based metal structure so that a strength of 900 N / mm 2 or more can be obtained without requiring quenching and tempering. Further, each alloy component is defined as follows.
C: 0.10 to 0.30% by mass
It is an alloy element necessary for obtaining the strength required as a hollow stabilizer, and if it is less than 0.10% by mass, a strength of 900 N / mm 2 or more cannot be obtained. However, when the C content exceeds 0.30% by mass, bending workability, toughness, and delayed fracture resistance deteriorate.

Si:0.5質量%以下
耐遅れ破壊性を劣化させることなく高強度化に寄与する合金成分であるが、過剰添加はスケール疵の多発,熱延鋼帯の品質劣化,靭性低下の原因となるので上限を0.5質量%とした。
Si: 0.5 mass% or less Although it is an alloy component that contributes to high strength without deteriorating delayed fracture resistance, excessive addition may cause frequent scale defects, quality deterioration of hot-rolled steel strip, and toughness reduction. Therefore, the upper limit was made 0.5 mass%.

Mn:0.25〜2.50質量%
熱延鋼帯の冷却過程でフェライトの生成を抑制する作用があり、遅い冷却速度でも強靭なベイナイト主体の組織にする作用を呈する。Mnの作用は0.25質量%以上でみられるが、過剰添加は粒界偏析を助長させ融解強度を低下させることになるので、2.50質量%を上限とした。
P:0.03質量%以下
延性,靭性,曲げ加工性に有害な元素であり、過剰添加は電縫溶接時に溶接部割れを誘発しやすい。また、粒界に偏析して遅れ破壊感受性を増加させるので、0.03質量%を上限とした。
Mn: 0.25 to 2.50% by mass
It has the effect of suppressing the formation of ferrite during the cooling process of the hot-rolled steel strip, and has the effect of forming a tough bainite-based structure even at a slow cooling rate. The action of Mn is observed at 0.25% by mass or more, but excessive addition promotes grain boundary segregation and lowers the melt strength, so 2.50% by mass was made the upper limit.
P: 0.03 mass% or less An element harmful to ductility, toughness, and bending workability, and excessive addition tends to induce cracks in the weld during ERW welding. Moreover, since it segregates at a grain boundary and increases delayed fracture susceptibility, the upper limit was set to 0.03 mass%.

S:0.01質量%以下
Mnと結合しやすい元素であり、鋼中介在物であるMnSを形成して曲げ加工性を劣化させる。MnSは、応力集中個所となって耐遅れ破壊性劣化の原因にもなる。そのため、S含有量の上限を0.01質量%とした。
Cr:0.5〜1.5質量%
温間での軟化抵抗,再加熱時の焼戻し軟化抵抗を高くする元素であり、高強度化にも寄与する。Crの効果は0.5質量%以上でみられるが、1.5質量%を超える過剰Crは曲げ加工性の低下をもたらす。
S: 0.01% by mass or less An element that easily binds to Mn, and forms MnS, which is an inclusion in steel, to deteriorate bending workability. MnS becomes a stress concentration site and causes delayed fracture resistance deterioration. Therefore, the upper limit of the S content is set to 0.01% by mass.
Cr: 0.5 to 1.5% by mass
It is an element that increases the softening resistance during warming and the tempering softening resistance during reheating, and contributes to higher strength. The effect of Cr is seen at 0.5% by mass or more, but excess Cr exceeding 1.5% by mass brings about a decrease in bending workability.

Mo:0.1〜0.5質量%
強度及び焼入れ性の向上に有効な合金成分であり、遅い冷却速度でも強靭なベイナイト主体の金属組織を生成させる作用がある。軟化抵抗の改善にも有効である。これらの作用は、0.1質量%以上のMoでみられるが、0.5質量%を超える過剰Moを含ませても、強度や焼入れ性の更なる向上が望めず、却って高価なMoを多量に消費することから経済的に不利となる。
Mo: 0.1-0.5% by mass
It is an alloy component that is effective in improving strength and hardenability, and has the effect of generating a tough bainite-based metal structure even at a low cooling rate. It is also effective in improving softening resistance. These effects are observed with 0.1% by mass or more of Mo, but even if excess Mo exceeding 0.5% by mass is included, further improvement in strength and hardenability cannot be expected, and expensive Mo is It is economically disadvantageous because it consumes a large amount.

B:0.0005〜0.0100質量%
強度,靭性の向上に有効な合金成分であり、冷却過程でフェライト変態を遅延させる作用も呈する。また、粒界の歪みエネルギーを低下させ、粒界を強化する作用を呈し、疲労耐久性の向上に寄与する。このような作用は、0.0005質量%以上でみられるが、0.0100質量%で飽和し、過剰添加は却って靭性の劣化を招く。
Ti:0.01〜0.10質量%
固溶Nを窒化物として固定し、粗粒化防止,強度・靭性の向上に寄与し、耐遅れ破壊性の改善にも有効な合金成分である。このような作用は、Ti:0.01質量%以上でみられるが、0.10質量%を超える過剰Tiは粗大な窒化物を生成させ、靭性劣化の原因となる。
B: 0.0005-0.0100 mass%
It is an effective alloy component for improving strength and toughness, and also exhibits the effect of delaying ferrite transformation during the cooling process. Moreover, the strain energy of a grain boundary is reduced, the effect | action which strengthens a grain boundary is exhibited, and it contributes to the improvement of fatigue durability. Such an effect is observed at 0.0005 mass% or more, but is saturated at 0.0100 mass%, and excessive addition causes deterioration of toughness.
Ti: 0.01-0.10 mass%
It is an alloy component that fixes solute N as nitride, contributes to preventing coarsening, improving strength and toughness, and is effective in improving delayed fracture resistance. Such an effect is observed at Ti: 0.01% by mass or more, but excess Ti exceeding 0.10% by mass generates coarse nitrides and causes toughness deterioration.

N:0.01質量%以下
Tiと結合してTiNを生成し、鋼材を高強度化し、結晶粒を微細化させる作用を呈する。結晶粒の微細化は耐遅れ破壊性に有効であるが、0.01質量%を超える過剰Nは靭性を劣化させる。
Al:0.02〜0.08質量%
製鋼段階で脱酸剤として使用される元素であり、0.02質量%以上が必要である。しかし、0.08質量%を超える過剰添加は、鋼の清浄度を低下させ、表面疵の発生を助長する。
N: 0.01% by mass or less Combined with Ti to produce TiN, exhibiting the effect of increasing the strength of the steel material and refining the crystal grains. Although refinement of crystal grains is effective for delayed fracture resistance, excess N exceeding 0.01 mass% degrades toughness.
Al: 0.02 to 0.08 mass%
It is an element used as a deoxidizer in the steelmaking stage, and 0.02% by mass or more is necessary. However, excessive addition exceeding 0.08 mass% reduces the cleanliness of steel and promotes the generation of surface defects.

Ni:0.1〜1.0質量%
必要に応じて添加される合金成分であり、耐食性の向上,靭性の向上,水素侵入の抑制に有効である。Niの添加効果は0.1質量%以上でみられるが、1.0質量%で飽和し、それ以上添加しても鋼材コストの上昇を招く。
V:0.5質量%以下
必要に応じ添加される合金成分であり、高強度化,耐遅れ破壊性の改善に有効であるが、高価な元素であり過剰添加は鋼材コストの上昇を招くので0.5質量%を上限とした。
Nb:0.01〜0.10質量%
必要に応じ添加される合金成分であり、炭窒化物を形成して結晶粒の粗大化を抑制し、靭性を向上させる作用を呈する。これらの効果は、0.01質量%以上のNb添加でみられるが、過剰添加は靭性劣化を招くので0.10質量%を上限とした。
Ni: 0.1-1.0 mass%
It is an alloy component added as necessary, and is effective in improving corrosion resistance, toughness, and suppressing hydrogen intrusion. The addition effect of Ni is seen at 0.1% by mass or more, but is saturated at 1.0% by mass, and adding more than that causes an increase in steel material cost.
V: 0.5% by mass or less V is an alloy component added as necessary, and is effective in increasing strength and improving delayed fracture resistance, but is an expensive element and excessive addition leads to an increase in steel material cost. The upper limit was 0.5% by mass.
Nb: 0.01 to 0.10% by mass
It is an alloy component added as necessary, and forms carbonitrides to suppress coarsening of crystal grains and exhibits an effect of improving toughness. These effects are observed when Nb is added in an amount of 0.01% by mass or more. However, excessive addition causes toughness deterioration, so 0.10% by mass was made the upper limit.

〔熱間圧延〕
熱間圧延では、ベイナイト主体の組織が作り込まれるように仕上げ温度を800〜950℃,巻取り温度を400〜600℃に調整する。
仕上げ温度が800℃を下回ると、変形抵抗が増大し、通板性に支障をきたす。更には、加工フェライトが生成しやすい二相域圧延となる。逆に950℃を超えると熱延組織が粗大化し、加工性の劣化、冷却歪みの増大により鋼帯形状が悪化し、熱延時に水ノリや冷却ムラが発生しやすくなり、機械的性質が損なわれる。
(Hot rolling)
In hot rolling, the finishing temperature is adjusted to 800 to 950 ° C. and the winding temperature is adjusted to 400 to 600 ° C. so that a bainite-based structure is formed.
When the finishing temperature is less than 800 ° C., the deformation resistance increases, which impairs the sheet passing property. Furthermore, the two-phase rolling is easy to produce processed ferrite. Conversely, if it exceeds 950 ° C, the hot-rolled structure becomes coarse, the workability deteriorates, and the steel strip shape deteriorates due to increased cooling strain. It is.

巻取り温度の管理は、ベイナイト主体の金属組織を得る上で重要であり、400〜600℃の範囲に調整される。低すぎる温度で巻き取ると、強度が大幅に上昇し、熱延条件の変動の影響を受けて機械的性質の安定性が損なわれる。熱延条件の変動の影響は、巻取り温度を450℃以上とすることにより抑制できる。逆に600℃を超える高温巻取りでは、熱延条件の変動如何で900N/mm2以上の強度が得られない場合があり、粒界酸化しやすく疲労特性に劣る。 The control of the coiling temperature is important in obtaining a bainite-based metal structure, and is adjusted to a range of 400 to 600 ° C. When it is wound at a temperature that is too low, the strength is significantly increased and the stability of the mechanical properties is impaired due to the influence of fluctuations in hot rolling conditions. The influence of fluctuations in hot rolling conditions can be suppressed by setting the coiling temperature to 450 ° C. or higher. On the other hand, at a high temperature winding exceeding 600 ° C., a strength of 900 N / mm 2 or more may not be obtained depending on fluctuations in hot rolling conditions, and grain boundary oxidation tends to occur, resulting in poor fatigue characteristics.

〔熱延鋼帯の金属組織〕
引張強さ:900N/mm2以上の強度を有する焼戻しマルテンサイト鋼は、ベイナイト鋼に比較して旧オーステナイト粒界に炭化物が析出するため、遅れ破壊感受性が大きく、また遅れ破壊感受性が急増する傾向にある。他方、ベイナイト:55面積%以上の金属組織にすると、900N/mm2以上の引張強さが得られ、耐遅れ破壊性も改善される。
[Metal structure of hot-rolled steel strip]
Tensile strength: A tempered martensitic steel having a strength of 900 N / mm 2 or more is more susceptible to delayed fracture due to precipitation of carbides at the prior austenite grain boundaries than bainitic steel, and also tends to rapidly increase delayed fracture susceptibility. It is in. On the other hand, when the metal structure is bainite: 55 area% or more, a tensile strength of 900 N / mm 2 or more is obtained, and delayed fracture resistance is also improved.

熱延鋼帯の金属組織は、合金設計に加え仕上げ温度,巻取り温度を適正に管理することによりフェライト:20面積%以下,パーライト:20面積%以下,残留オーステナイト:5面積%以下,残部がベイナイトの金属組織に調整する。面積率は、1000倍のSEM像の十視野で各組織を測定し平均値として算出される。ただし、少量の残留オーステナイトを含む金属組織では残留オーステナイトを面積率で定量することが難しいので、X線回折で定量した結果を面積率に換算して表示する。
フェライトは、延性に富み造管性に有利であるが高強度化には少ないほど好ましい。スタビライザ用鋼管に必要な引張強さ:900N/mm2以上を確保する上で、フェライトを20面積%以下に規制する。
The metal structure of the hot-rolled steel strip is controlled by appropriately controlling the finishing temperature and the coiling temperature in addition to the alloy design. Ferrite: 20 area% or less, pearlite: 20 area% or less, retained austenite: 5 area% or less, balance Adjust to the metal structure of bainite. The area ratio is calculated as an average value obtained by measuring each tissue with ten fields of view of a 1000 times SEM image. However, in a metal structure containing a small amount of retained austenite, it is difficult to quantify the retained austenite by the area ratio, so the result quantified by X-ray diffraction is converted into an area ratio and displayed.
Ferrite is rich in ductility and advantageous for pipe forming properties, but it is more preferable as it is less strengthened. In order to secure the tensile strength necessary for the steel pipe for stabilizer: 900 N / mm 2 or more, the ferrite is regulated to 20 area% or less.

パーライトは高強度化に寄与するが造管性に悪影響を及ぼすので、良好な曲げ加工性,靭性を確保するため20面積%以下に規制する。また、パーライトを20面積%以下にすると、曲げ加工時に発生する割れが大幅に減少する。
残留オーステナイトは水素固溶度が大きく、曲げ加工等の際に水素固溶度の低いマルテンサイトに加工誘起変態すると、残留オーステナイトに固溶していた水素が吐き出され、耐遅れ破壊性の引き金として働く水素の供給源になる。耐遅れ破壊性の劣化に及ぼす水素の影響を抑える上で、残留オーステナイトを5面積%以下とする。
Although pearlite contributes to high strength but adversely affects pipe forming properties, it is restricted to 20 area% or less in order to ensure good bending workability and toughness. Moreover, if the pearlite is 20% by area or less, cracks that occur during bending are greatly reduced.
Residual austenite has a high hydrogen solubility, and when it is subjected to processing-induced transformation to martensite, which has a low hydrogen solubility during bending, etc., hydrogen dissolved in the residual austenite is expelled, triggering delayed fracture resistance. Become a source of working hydrogen. In order to suppress the influence of hydrogen on the deterioration of delayed fracture resistance, the retained austenite is made 5 area% or less.

熱延鋼帯は、常法に従って酸洗され、造管ラインに搬送される。造管ラインでは、熱延鋼帯を所定幅に裁断した切板をロールフォーミング,ロールレスフォーミング等でオープンパイプに成形し、電気抵抗溶接(高周波溶接),アーク溶接(TIG溶接等),レーザ溶接等の何れかの溶接法で鋼帯幅方向両端部を溶接することにより造管される。また、所定幅に裁断された鋼帯を長手方向に切断して切板とし、板巻き成形とアーク溶接(MIG溶接,TIG溶接等),レーザ溶接等の何れかの溶接法で幅方向両端部を溶接して所定長さの単管を製造しても良い。通常は高周波溶接で製造された溶接鋼管を電縫鋼管というが、本件明細書ではアーク溶接,レーザ溶接等を包含する意味で用語"電縫溶接"を使用している。   The hot-rolled steel strip is pickled according to a conventional method and conveyed to a pipe making line. In the pipe making line, a hot-rolled steel strip cut into a predetermined width is formed into an open pipe by roll forming, rollless forming, etc., electric resistance welding (high frequency welding), arc welding (TIG welding, etc.), laser welding For example, a pipe is formed by welding both ends of the steel strip in the width direction by any of the welding methods. In addition, the steel strip cut to a predetermined width is cut in the longitudinal direction to form a cut plate, and both end portions in the width direction by any of welding methods such as plate winding, arc welding (MIG welding, TIG welding, etc.), laser welding, etc. A single pipe having a predetermined length may be manufactured by welding. Normally, a welded steel pipe manufactured by high-frequency welding is referred to as an electric resistance welded pipe, but in this specification, the term “electric resistance welding” is used to include arc welding, laser welding, and the like.

〔電縫溶接部の焼き戻し〕
次いで、必要に応じて電縫鋼管の内面ビード,外面ビードを除去し、焼き戻しにより電縫溶接部を調質する。一般に焼入れ状態になっている溶接部は母材部に比較して硬質で伸びが小さいので、電縫鋼管を曲げ加工する際に加工性の良否を支配する個所となる。そこで、焼入れ硬化されている電縫溶接部の硬さを母材部との最大硬さ差が50HV以下となるように焼き戻すと加工性の向上が図られる。
[East-welded welded parts]
Next, the inner surface bead and the outer surface bead of the ERW steel pipe are removed as necessary, and the ERW welded portion is tempered by tempering. In general, a welded portion that is in a hardened state is harder and less stretched than the base metal portion, and therefore, it is a place that governs the quality of workability when bending an ERW steel pipe. Therefore, workability can be improved by tempering the hardened and hardened ERW weld so that the maximum hardness difference from the base metal is 50HV or less.

焼き戻しでは、電縫溶接部をMs点以下まで急冷した後,(Ac1変態点)〜(Ac1変態点−100℃)の温度域に焼き戻す。焼き戻しには、高周波誘導加熱で代表される局部加熱方式が採用される。焼戻し温度がAc1点を超えるとオーステナイト化し、その後の冷却で焼き入れられるので硬さ低下にならない。しかし、(Ac1変態点−100℃)に達しない加熱温度では、軟化に要する時間が長くなり生産性が低下する。焼戻し温度の下限は、好ましくは(Ac1変態点−70℃)とする。 In tempering, the ERW weld is rapidly cooled to below the M s point and then tempered to a temperature range of (Ac 1 transformation point) to (Ac 1 transformation point−100 ° C.). For the tempering, a local heating method represented by high-frequency induction heating is adopted. When the tempering temperature exceeds the Ac 1 point, it becomes austenite, and since it is quenched by subsequent cooling, the hardness does not decrease. However, at a heating temperature that does not reach (Ac 1 transformation point −100 ° C.), the time required for softening becomes longer and the productivity is lowered. The lower limit of the tempering temperature is preferably (Ac 1 transformation point -70 ° C.).

〔曲げ加工前の焼きなまし〕
曲げ角度:90度の曲げ加工では被加工材に導入される歪み量が多く、電縫鋼管に限らず高強度材の加工に適していない。曲げ加工に先立つ焼きなましで歪みを低減し伸びを改善することが考えられるが、一般には焼きなましにより強度が低下しやすい。この点、本成分系では、軟化抵抗を高めるCr,Mo,Ti等を合金成分としているので、焼きなましによる強度低下が抑制される。
[Annealing before bending]
Bending angle: When bending at 90 degrees, a large amount of strain is introduced into the workpiece, and it is not suitable for machining high-strength materials as well as ERW steel pipes. It is conceivable to reduce strain and improve elongation by annealing prior to bending, but generally the strength tends to decrease due to annealing. In this respect, in the present component system, Cr, Mo, Ti, etc., which increase the softening resistance, are used as alloy components, so that a decrease in strength due to annealing is suppressed.

焼きなましでは、電縫鋼管(素管)を450〜710℃に1時間以内加熱し、室温まで冷却する。歪みの除去,伸びの改善には450℃以上の加熱温度が必要であるが、710℃を超える高温では軟化が進み過ぎ、目標強度:900N/mm2以上が得られない。450〜710℃の温度範囲であっても、長期にわたる均熱保持では軟化が進行し強度が低下するので、均熱保持時間を1時間までとする。 In annealing, the ERW steel pipe (base pipe) is heated to 450 to 710 ° C. within 1 hour and cooled to room temperature. A heating temperature of 450 ° C. or higher is necessary for removing strain and improving elongation, but at a high temperature exceeding 710 ° C., the softening proceeds too much, and the target strength: 900 N / mm 2 or higher cannot be obtained. Even in the temperature range of 450 to 710 ° C, softening proceeds and the strength decreases in soaking for a long period of time, so the soaking time is limited to 1 hour.

表1の組成を有する鋼材を溶製し、鋳造後、仕上げ温度:830℃,巻取り温度:350〜650℃で熱間圧延し、板厚:2.0〜4.5mmの熱延鋼帯を製造した。   A steel material having the composition shown in Table 1 is melted and cast, and then hot-rolled at a finishing temperature: 830 ° C., a coiling temperature: 350-650 ° C., and a sheet thickness: 2.0-4.5 mm. Manufactured.

Figure 2008095156
Figure 2008095156

熱延鋼帯にスキンパス圧延,酸洗を施した後、ロール成形法で造管し、更に電縫溶接して外径:19.1〜38.1mmの電縫鋼管を製造した。電縫溶接部は,溶接直後にMs点以下の150℃に水冷し、高周波加熱で600〜700℃に焼き戻した。次いで、電縫鋼管を高周波誘導加熱し、350〜730℃で焼きなました。
本発明例では焼きなまし後の電縫鋼管を各種試験に供し、比較例では造管直後に焼入れ、水冷、焼戻しの工程を経た電縫鋼管を各種試験に供した。
After subjecting the hot-rolled steel strip to skin pass rolling and pickling, pipes were formed by a roll forming method and further subjected to electro-welding to produce ERW steel pipes having an outer diameter of 19.1 to 38.1 mm. The ERW weld was water cooled to 150 ° C. below the M s point immediately after welding and tempered to 600-700 ° C. by high frequency heating. Next, the ERW steel pipe was induction-heated by high frequency induction and annealed at 350-730 ° C.
In the example of the present invention, the electric resistance welded steel pipe after annealing was subjected to various tests, and in the comparative example, the electric resistance welded steel pipe subjected to quenching, water cooling, and tempering immediately after pipe forming was subjected to various tests.

〔金属組織〕
熱延鋼帯のL断面を鏡面研磨し、エッチングすることにより試験片を作製した。試験片を倍率:1000倍でSEM観察し、十視野について各相の面積を測定し、視野ごとの面積を平均化して各相の面積率を算出した。
[Metal structure]
The L section of the hot-rolled steel strip was mirror-polished and etched to prepare a test piece. The specimen was observed by SEM at a magnification of 1000 times, the area of each phase was measured for ten visual fields, the area for each visual field was averaged, and the area ratio of each phase was calculated.

〔曲げ試験〕
電縫鋼管を長さ1mの試験片に切断し、パイプベンダーに装着し、曲げ半径:鋼管直径の二倍,曲げ角度:90度,引き曲げ法で曲げ加工した。曲げ部外側で割れの発生状況を調査し、破断に至らないような亀裂でも割れ発生と評価した。
〔引張試験〕
電縫鋼管を切断して所定長さの引張片とし、内径とほぼ等しい棒状治具を管内に挿入した状態で試験片をチャッキングし、引張り試験した。
[Bending test]
The ERW steel pipe was cut into a 1 m long test piece, mounted on a pipe bender, and bent by a bending radius: twice the diameter of the steel pipe, a bending angle: 90 degrees, and a drawing method. The occurrence of cracks on the outside of the bent part was investigated, and cracks that did not lead to breakage were evaluated as cracks.
[Tensile test]
The ERW steel pipe was cut into a tensile piece having a predetermined length, and the test piece was chucked in a state where a rod-like jig having a diameter substantially equal to the inner diameter was inserted into the pipe, and a tensile test was performed.

〔遅れ破壊試験〕
電縫溶接部に関し180度の位置から電縫鋼管の長手方向に短冊状の試験片を採取し、表面研削で長さ:100mm,幅:8.0mm,板厚:1.0mmの平板状に加工した。平板の長手方向中央位置で幅方向端縁にVノッチ(図1)を付けた試験片1を作製し、腐食液2を満たした腐食槽3(図2)に浸漬した。腐食液2には5%HCl水溶液を用い、重錘4で曲げ応力を試験片1に負荷し、変位計5で試験片1の変形を測定しながら破断に至るまでの時間を計測した。100時間経過した後でも試験片が破断しなかった最も高い曲げ応力を遅れ破壊限度とし、遅れ破壊限度:1300N/mm2以上を"耐遅れ破壊性良好"と評価した。
(Delayed fracture test)
A strip-shaped test piece is taken in the longitudinal direction of the ERW steel pipe from the position of 180 degrees with respect to the ERW welded part, and is subjected to surface grinding to form a flat plate having a length of 100 mm, a width of 8.0 mm, and a thickness of 1.0 mm. processed. A test piece 1 having a V notch (FIG. 1) at the edge in the width direction at the center position in the longitudinal direction of the flat plate was produced and immersed in a corrosion tank 3 (FIG. 2) filled with a corrosion solution 2. A 5% aqueous HCl solution was used as the corrosive solution 2, a bending stress was applied to the test piece 1 with the weight 4, and the time to break was measured while measuring the deformation of the test piece 1 with the displacement meter 5. The highest bending stress at which the specimen did not break even after 100 hours had passed was regarded as the delayed fracture limit, and the delayed fracture limit: 1300 N / mm 2 or more was evaluated as “good delayed fracture resistance”.

表2の調査結果にみられるように、本発明に従った条件で電縫溶接部を焼き戻した例では、電縫溶接部の最大硬さと鋼管母材部の硬さの差が50HV以下に収まっていた。
試験No.1,5,11,15,17,18,20は、引張強さが900N/mm2以上であったが、金属組織の20面積%を超える分率がマルテンサイト,焼戻しマルテンサイト,パーライトで占められていたため、曲げ試験で曲げ部外周に割れが発生した。また、旧オーステナイト粒界に炭化物が析出しており、クラックが頻発し遅れ破壊限度に劣っていた。
As can be seen from the investigation results in Table 2, in the example in which the ERW welded part was tempered under the conditions according to the present invention, the difference between the maximum hardness of the ERW welded part and the hardness of the steel pipe base part was 50 HV or less. It was settled.
Test Nos. 1, 5, 11, 15, 17, 18, and 20 had a tensile strength of 900 N / mm 2 or more, but the fraction exceeding 20 area% of the metal structure was martensite, tempered martensite, Since it was occupied by pearlite, cracks occurred in the outer periphery of the bent part in the bending test. In addition, carbides were precipitated at the prior austenite grain boundaries, cracks occurred frequently, and the delayed fracture limit was inferior.

焼きなまし温度が低い試験No.3では曲げ部外周に割れが発生し、逆に焼きなまし温度が高すぎる試験No.8では引張強さが不足していた。
試験No.14,16は、20面積%以上のフェライトのため軟質であり、曲げ部外周に割れが検出されなかったが、900N/mm2以上の引張強さを得られなかった。試験No.7は曲げ加工性,引張強さを満足するものの、残留オーステナイトがマルテンサイトに加工誘起変態したため耐遅れ破壊性が劣化した。
これに対し、鋼成分,巻取り温度,金属組織の面積率,曲げ加工前の焼きなまし条件が本発明規定の条件を満足する試験No.2,4,6,9,10,12,13は、何れも900N/mm2以上の引張強さを示し、しかも割れなく90度曲げ加工でき、耐遅れ破壊性にも優れていた。
In test No. 3 where the annealing temperature was low, cracks occurred in the outer periphery of the bent portion, and conversely, in test No. 8 where the annealing temperature was too high, the tensile strength was insufficient.
Test Nos. 14 and 16 were soft because of ferrite of 20 area% or more, and no crack was detected on the outer periphery of the bent portion, but a tensile strength of 900 N / mm 2 or more could not be obtained. Test No. 7 satisfied the bending workability and tensile strength, but the delayed austenite resistance deteriorated due to the processing-induced transformation of retained austenite to martensite.
On the other hand, test Nos. 2, 4, 6, 9, 10, 12, and 13 in which the steel components, the coiling temperature, the area ratio of the metal structure, and the annealing conditions before bending satisfy the conditions specified in the present invention are as follows: All of them exhibited a tensile strength of 900 N / mm 2 or more, could be bent 90 degrees without cracking, and were excellent in delayed fracture resistance.

Figure 2008095156
Figure 2008095156

以上に説明したように、特定された成分設計,熱延条件を組み合わせることにより、熱延鋼帯をベイナイト主体の金属組織とし、スタビライザ形状に曲げ加工した後の焼入れ・焼戻しが不要な電縫鋼管を製造している。そのため、焼戻しマルテンサイト鋼のように遅れ破壊感受性を高める炭化物等の析出がなく、引張強さ:900N/mm2以上で耐遅れ破壊性に優れた中空スタビライザが安定して得られる。 As described above, by combining the specified component design and hot rolling conditions, the hot rolled steel strip is made into a bainite-based metal structure and does not require quenching / tempering after bending into a stabilizer shape. Is manufacturing. Therefore, unlike the tempered martensitic steel, there is no precipitation of carbide or the like that increases the delayed fracture susceptibility, and a hollow stabilizer excellent in delayed fracture resistance with a tensile strength of 900 N / mm 2 or more can be stably obtained.

遅れ破壊試験に使用した試験片のサイズを示す図Diagram showing the size of the specimen used for the delayed fracture test 遅れ破壊試験に使用した試験装置を示す図Diagram showing test equipment used for delayed fracture test

符号の説明Explanation of symbols

1:試験片 2:腐食液 3:腐食槽 4:重錘 5:変位計 1: Test piece 2: Corrosion solution 3: Corrosion tank 4: Weight 5: Displacement meter

Claims (3)

C:0.10〜0.30質量%,Si:0.5質量%以下,Mn:0.25〜2.50質量%,P:0.03質量%以下,S:0.01質量%以下,Cr:0.5〜1.5質量%,Mo:0.1〜0.5質量%,B:0.0005〜0.0100質量%,Ti:0.01〜0.10質量%,N:0.01質量%以下,Al:0.02〜0.08質量%を含み、残部がFe及び不純物からなる組成を有する鋼材を熱延工程に送り、
フェライト:20面積%以下,パーライト:20面積%以下,残留オーステナイト:5面積%以下,残部がベイナイトの金属組織が得られるように、仕上げ温度:800〜950℃,巻取り温度:400〜600℃の範囲で選定した条件下で前記鋼材を熱間圧延し、
酸洗を経て電縫鋼管とした後、
450〜710℃の温度域に1時間以下焼きなまし、室温まで冷却し、目標形状に曲げ加工することを特徴とする耐遅れ破壊性に優れた中空スタビライザの製造方法。
C: 0.10 to 0.30 mass%, Si: 0.5 mass% or less, Mn: 0.25 to 2.50 mass%, P: 0.03 mass% or less, S: 0.01 mass% or less , Cr: 0.5-1.5 mass%, Mo: 0.1-0.5 mass%, B: 0.0005-0.0100 mass%, Ti: 0.01-0.10 mass%, N : Steel containing 0.01% by mass or less, Al: 0.02 to 0.08% by mass, the balance being composed of Fe and impurities, is sent to the hot rolling process,
Ferrite: 20 area% or less, pearlite: 20 area% or less, retained austenite: 5 area% or less, finishing temperature: 800 to 950 ° C., winding temperature: 400 to 600 ° C. so that the balance is bainite. The steel material is hot-rolled under the conditions selected in the range of
After pickling and making ERW steel pipe,
A method for producing a hollow stabilizer excellent in delayed fracture resistance, characterized by annealing in a temperature range of 450 to 710 ° C. for 1 hour or less, cooling to room temperature, and bending into a target shape.
更にNi:0.1〜1.0質量%,V:0.5質量%以下,Nb:0.01〜0.10質量%の一種又は二種以上を含む鋼材を使用する請求項1記載の製造方法。   Furthermore, the steel material containing 1 type or 2 types or more of Ni: 0.1-1.0 mass%, V: 0.5 mass% or less, Nb: 0.01-0.10 mass% is used. Production method. s点以下の温度に冷却した後、連続して(Ac1変態点)〜(Ac1変態点−100℃)の温度域に焼き戻す熱処理を電縫溶接部に施し、電縫溶接部と母材部との間の最大硬さ差を50HV以下にする請求項1又は2記載の製造方法。 After cooling to a temperature below the M s point, the ERW weld is heat treated continuously to a temperature range of (Ac 1 transformation point) to (Ac 1 transformation point −100 ° C.). The manufacturing method of Claim 1 or 2 which makes the maximum hardness difference between base material parts 50HV or less.
JP2006279757A 2006-10-13 2006-10-13 Manufacturing method of hollow stabilizer with excellent delayed fracture resistance Active JP4859618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006279757A JP4859618B2 (en) 2006-10-13 2006-10-13 Manufacturing method of hollow stabilizer with excellent delayed fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006279757A JP4859618B2 (en) 2006-10-13 2006-10-13 Manufacturing method of hollow stabilizer with excellent delayed fracture resistance

Publications (2)

Publication Number Publication Date
JP2008095156A true JP2008095156A (en) 2008-04-24
JP4859618B2 JP4859618B2 (en) 2012-01-25

Family

ID=39378319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006279757A Active JP4859618B2 (en) 2006-10-13 2006-10-13 Manufacturing method of hollow stabilizer with excellent delayed fracture resistance

Country Status (1)

Country Link
JP (1) JP4859618B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092992A1 (en) * 2009-02-12 2010-08-19 日本発條株式会社 Steel for high-strength vehicle stabilizer with excellent corrosion resistance and low-temperature toughness, and process for the production of same, and stabilizer
WO2011145234A1 (en) * 2010-05-18 2011-11-24 新日本製鐵株式会社 Automotive underbody part having excellent low cycle fatigue properties, and process for production thereof
RU2451756C2 (en) * 2010-08-16 2012-05-27 Семар Тимофеевич Басюк Method of producing box-like structural element from aluminium alloy with cooling channels
JP2016013191A (en) * 2014-06-30 2016-01-28 ユニ・チャーム株式会社 Absorbent article
CN110225987A (en) * 2017-01-25 2019-09-10 杰富意钢铁株式会社 Connecting pipes electric-resistance-welded steel pipe and its manufacturing method
CN115354237A (en) * 2022-08-29 2022-11-18 东北大学 Hot-rolled ultrahigh-strength steel plate with tensile strength of 1000MPa and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417820A (en) * 1987-07-13 1989-01-20 Kobe Steel Ltd Production of electric resistance welded steel tube for heat treatment
JPH01111848A (en) * 1987-10-26 1989-04-28 Nisshin Steel Co Ltd Tube stock for use in stabilizer
JPH024944A (en) * 1988-06-22 1990-01-09 Kobe Steel Ltd Steel for electric-resistance weld steel tube having excellent fatigue characteristics
JPH04103718A (en) * 1990-08-21 1992-04-06 Nippon Steel Corp Production of ultrahigh tensile strength resistance welded tube
JPH059579A (en) * 1991-07-02 1993-01-19 Nippon Steel Corp Production of ultrahigh tensile strength resistance welded tube
JPH05302119A (en) * 1992-03-27 1993-11-16 Sumitomo Metal Ind Ltd Production of high strength automotive parts
JP2006206999A (en) * 2005-01-31 2006-08-10 Jfe Steel Kk Electric resistance welded tube for high strength hollow stabilizer and method for producing high strength hollow stabilizer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417820A (en) * 1987-07-13 1989-01-20 Kobe Steel Ltd Production of electric resistance welded steel tube for heat treatment
JPH01111848A (en) * 1987-10-26 1989-04-28 Nisshin Steel Co Ltd Tube stock for use in stabilizer
JPH024944A (en) * 1988-06-22 1990-01-09 Kobe Steel Ltd Steel for electric-resistance weld steel tube having excellent fatigue characteristics
JPH04103718A (en) * 1990-08-21 1992-04-06 Nippon Steel Corp Production of ultrahigh tensile strength resistance welded tube
JPH059579A (en) * 1991-07-02 1993-01-19 Nippon Steel Corp Production of ultrahigh tensile strength resistance welded tube
JPH05302119A (en) * 1992-03-27 1993-11-16 Sumitomo Metal Ind Ltd Production of high strength automotive parts
JP2006206999A (en) * 2005-01-31 2006-08-10 Jfe Steel Kk Electric resistance welded tube for high strength hollow stabilizer and method for producing high strength hollow stabilizer

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102317493A (en) * 2009-02-12 2012-01-11 日本发条株式会社 Steel for high-strength vehicle stabilizer with excellent corrosion resistance and low-temperature toughness, and process for the production of same, and stabilizer
JP2010185109A (en) * 2009-02-12 2010-08-26 Jfe Bars & Shapes Corp Steel superior in corrosion resistance and low-temperature toughness for high-strength stabilizer for vehicle, manufacturing method therefor and stabilizer
WO2010092992A1 (en) * 2009-02-12 2010-08-19 日本発條株式会社 Steel for high-strength vehicle stabilizer with excellent corrosion resistance and low-temperature toughness, and process for the production of same, and stabilizer
US8206521B2 (en) 2009-02-12 2012-06-26 Nhk Spring Co., Ltd. High-strength stabilizer steel for vehicles having excellent corrosion resistance and low-temperature toughness, method of producing the same, and stabilizer
US9050646B2 (en) 2010-05-18 2015-06-09 Nippon Steel & Sumitomo Metal Corporation Automobile chassis part excellent in low cycle fatigue characteristics and method of production of same
JP4824145B1 (en) * 2010-05-18 2011-11-30 新日本製鐵株式会社 Automotive undercarriage parts excellent in low cycle fatigue characteristics and manufacturing method thereof
KR101435311B1 (en) 2010-05-18 2014-08-27 신닛테츠스미킨 카부시키카이샤 Automotive underbody part having excellent low cycle fatigue properties, and process for production thereof
WO2011145234A1 (en) * 2010-05-18 2011-11-24 新日本製鐵株式会社 Automotive underbody part having excellent low cycle fatigue properties, and process for production thereof
RU2451756C2 (en) * 2010-08-16 2012-05-27 Семар Тимофеевич Басюк Method of producing box-like structural element from aluminium alloy with cooling channels
JP2016013191A (en) * 2014-06-30 2016-01-28 ユニ・チャーム株式会社 Absorbent article
KR101753552B1 (en) 2014-06-30 2017-07-03 유니챰 가부시키가이샤 Absorbent article
US9901489B2 (en) 2014-06-30 2018-02-27 Unicharm Corporation Absorbent article
CN110225987A (en) * 2017-01-25 2019-09-10 杰富意钢铁株式会社 Connecting pipes electric-resistance-welded steel pipe and its manufacturing method
US11421298B2 (en) 2017-01-25 2022-08-23 Jfe Steel Corporation Electric resistance welded steel tube for coiled tubing and method for manufacturing the same
CN115354237A (en) * 2022-08-29 2022-11-18 东北大学 Hot-rolled ultrahigh-strength steel plate with tensile strength of 1000MPa and preparation method thereof
CN115354237B (en) * 2022-08-29 2023-11-14 东北大学 Hot-rolled ultrahigh-strength steel plate with tensile strength of 1000MPa and preparation method thereof

Also Published As

Publication number Publication date
JP4859618B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
EP3239339B1 (en) Product formed from heat treatable steel having ultra high strength and excellent durability, and method for manufacturing same
JP6465249B2 (en) ERW steel pipe for high-strength thin-walled hollow stabilizer and method for manufacturing the same
WO2017138504A1 (en) High-strength steel sheet and method for manufacturing same
EP3653736A1 (en) Hot-rolled steel strip and manufacturing method
JP2020509208A (en) Tempered martensitic steel with low yield ratio and excellent uniform elongation and method for producing the same
JP5892267B2 (en) ERW steel pipe
JP6747623B1 (en) ERW steel pipe
JP2010242164A (en) Method for manufacturing high strength welded steel tube for automobile structural member
JP2014159610A (en) High strength cold rolled steel sheet excellent in bendability
CN111542638A (en) Hot-rolled steel sheet, steel pipe, and component having excellent impact resistance, and method for producing same
JP4910694B2 (en) High tensile welded steel pipe for automobile structural members and method for manufacturing the same
JP4859618B2 (en) Manufacturing method of hollow stabilizer with excellent delayed fracture resistance
JP6384637B1 (en) ERW steel pipe for coiled tubing and manufacturing method thereof
JP4859240B2 (en) Manufacturing method of ERW steel pipe for hollow stabilizer
JP6796472B2 (en) Hollow member and its manufacturing method
RU2753344C1 (en) Hot-rolled sheet steel for small-diameter flexible tubing and its manufacturing method
JP2009235499A (en) Method for manufacturing hollow stabilizer
JP2009203492A (en) High-tensile welded steel pipe for automobile structural member, and method for producing the same
JP2007107032A (en) Method for producing steel pipe for hollow stabilizer, and producing method for producing hollow stabilizer
CN113631735A (en) Electric welded steel pipe for hollow stabilizer, and method for producing same
KR102492994B1 (en) Steel sheet and steel pipe having uniforme tensile properties and excellent transverse crack resistance onto welded part and method for manufacturing thereof
JP2013234348A (en) Electrical resistance welded steel tube for automotive component with excellent fatigue-resistant characteristics, and method for manufacturing the same
JP4765680B2 (en) Martensitic stainless steel with excellent tempering efficiency and tempering stability
JP5653053B2 (en) Manufacturing method of multi-phase high Cr steel
JP2005206938A (en) STRUCTURAL Fe-Cr BASED STEEL PLATE AND METHOD FOR PRODUCTION THEREOF

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111101

R150 Certificate of patent or registration of utility model

Ref document number: 4859618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350