JPH04103718A - Production of ultrahigh tensile strength resistance welded tube - Google Patents
Production of ultrahigh tensile strength resistance welded tubeInfo
- Publication number
- JPH04103718A JPH04103718A JP21959590A JP21959590A JPH04103718A JP H04103718 A JPH04103718 A JP H04103718A JP 21959590 A JP21959590 A JP 21959590A JP 21959590 A JP21959590 A JP 21959590A JP H04103718 A JPH04103718 A JP H04103718A
- Authority
- JP
- Japan
- Prior art keywords
- less
- pipe
- resistance welded
- tube
- ultra
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 40
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 53
- 239000010959 steel Substances 0.000 claims abstract description 53
- 238000000034 method Methods 0.000 claims abstract description 31
- 238000005096 rolling process Methods 0.000 claims abstract description 15
- 238000010438 heat treatment Methods 0.000 claims abstract description 14
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 8
- 229910052802 copper Inorganic materials 0.000 claims abstract description 6
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 6
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 6
- 229910052796 boron Inorganic materials 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 5
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 17
- 230000009466 transformation Effects 0.000 claims description 8
- 238000004804 winding Methods 0.000 claims description 6
- 238000010622 cold drawing Methods 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 5
- 238000000137 annealing Methods 0.000 abstract description 3
- 238000005098 hot rolling Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 9
- 238000010791 quenching Methods 0.000 description 8
- 230000000171 quenching effect Effects 0.000 description 7
- 238000005496 tempering Methods 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 229910000655 Killed steel Inorganic materials 0.000 description 2
- 229910000797 Ultra-high-strength steel Inorganic materials 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 238000003483 aging Methods 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は自動車等の構造部材に使用される超高張力電縫
鋼管の製造力法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a manufacturing method for ultra-high tensile resistance welded steel pipes used for structural members of automobiles and the like.
自動車等の構造部材については、燃費向上・環境対策の
ために徹底した軽量化が検討されており、安全性との両
立を図る方策の一つとして一部部材では100kgf/
−を超える超高張力鋼管が採用されつつある。Thorough weight reduction is being considered for structural members of automobiles, etc. in order to improve fuel efficiency and protect the environment, and as one measure to achieve both safety and safety, some parts have been reduced in weight by 100 kgf/
Ultra-high tensile strength steel pipes exceeding - are being adopted.
一般に電縫鋼管の強度を上げる方法としては、特開昭5
2−114519号公報等に記載されているような方法
で素材である熱延板の強度を上げる方法と、日新製鋼技
報第48号88頁等の文献に記載されているように電縫
造管移調質、即ち焼入または焼入焼戻をする方法がある
。In general, the method of increasing the strength of ERW steel pipes is
2-114519, etc. to increase the strength of the hot rolled sheet material, and Nisshin Steel Technical Report No. 48, p. 88, etc. There is a method of pipe-making and tempering, that is, quenching or quenching and tempering.
従来の技術としては、従来の技術の項に記載したように
2つのタイプがある。まず、特開昭52−114519
号公報等に記載されているような方法で素材の熱延板の
強度を上げる方法では、(1)熱延板の強度が十分上が
らず、超高張力電縫針管が得られない、(2)熱延板の
強度が十分な場合でも、延靭性が劣るため電縫造管時に
割れを生ずる、等の問題があり、超高張力電縫網管の製
造法として工業的に成立しない。There are two types of conventional techniques as described in the section on conventional techniques. First, JP-A-52-114519
The method of increasing the strength of the hot-rolled sheet material as described in the above publication has two problems: (1) the strength of the hot-rolled sheet cannot be sufficiently increased and an ultra-high-tensile resistance-welded needle tube cannot be obtained; ) Even if the strength of the hot-rolled sheet is sufficient, there are problems such as cracks occurring during ERW pipe manufacturing due to poor ductility, and this method is not industrially viable as a manufacturing method for ultra-high tensile ERW mesh pipes.
次に、電縫造管後焼入または焼入焼戻をする方法がある
。この場合の製造工程を第4図に示す。Next, there is a method of performing quenching or quenching and tempering after forming the ERW pipe. The manufacturing process in this case is shown in FIG.
この方法では、専用の熱処理設備を必要とし、寸法形状
、材質の確保に特別の注意が必要であるばかりでなく、
設備投資・生産性の点で著しくコストの高いものとなら
ざるを得す、超高張力電縫鋼管普及の大きな障害となっ
ている。更により剛性の高い構造部材として注目されて
いる角型鋼管、異形鋼管の製造法としてはまったく不適
当である。This method not only requires dedicated heat treatment equipment and requires special attention to ensure the dimensions, shape, and materials.
This is a major obstacle to the widespread use of ultra-high tensile resistance welded steel pipes, which inevitably leads to extremely high costs in terms of capital investment and productivity. Furthermore, it is completely inappropriate as a manufacturing method for square steel pipes and deformed steel pipes, which are attracting attention as structural members with higher rigidity.
本発明はこのような超高張力電縫鋼管の製造力法におけ
る問題点を解決することを目的とする。The present invention aims to solve the problems in the manufacturing method of ultra-high tensile resistance welded steel pipes.
本発明の要旨とするところは下記のとおりである。 The gist of the present invention is as follows.
(1)重量でC: 0.005〜0.30%、Si:0
.05〜1.5%、Mn : 1.0〜3.0%、P
: 0.02%以下、S : 0.006%以下、^l
: 0.01〜0.08%に加えて、Cu:0.7〜
2.0%、Mo:1.5%以下の1種または2種を含有
し、残部Fe及び不可避的元素からなる管用鋼材を熱間
板厚圧延して950℃以下A r 3変態点以上で仕上
圧延を終了し、引続き300〜500℃にて巻取り、電
縫造管後500〜650℃で熱処理することを特徴とす
る超高張力電縫鋼管の製造力法。(1) C: 0.005-0.30% by weight, Si: 0
.. 05-1.5%, Mn: 1.0-3.0%, P
: 0.02% or less, S: 0.006% or less, ^l
: In addition to 0.01~0.08%, Cu:0.7~
2.0%, Mo: 1.5% or less of one kind or two kinds, the balance consisting of Fe and unavoidable elements is hot rolled to a thickness of 950 ° C. or less A r 3 transformation point or more A method for manufacturing ultra-high tensile resistance welded steel pipes, which comprises finishing finish rolling, then winding at 300 to 500°C, and heat-treating at 500 to 650°C after forming the electric resistance welded pipe.
(2)前項1記載の管用鋼材がさらにNi:1.5%以
下、Cr:2.0%以下、Nb:0.1%以下、V:0
.10%以下の1種または2種以上を含む前項1記載の
超高張力電縫鋼管の製造力法。(2) The pipe steel material described in 1 above further contains Ni: 1.5% or less, Cr: 2.0% or less, Nb: 0.1% or less, and V: 0.
.. The method for manufacturing ultra-high tensile resistance welded steel pipes according to item 1 above, which contains 10% or less of one or more types.
(3)重量テC: 0.005〜0.30%、Si:0
.05〜1.5%、Mn : 1.0〜3.0%、P
: 0.02%以下、S:0.006%以下、AI :
0.01〜0.08%、Ti:o、oi〜0.15%
、B : 0.0003〜0.003%、N: 0.0
05%以下に加えて、Cu:0.7〜2.0%、Mo:
1.5%以下の1種または2種を含有し、残部Fe及び
不可避的元素からなる管用鋼材を熱間板厚圧延して95
0℃以下Ar3変態点以上で仕上圧延を終了し、引続き
300〜500℃にて巻取り、電縫造管後500〜65
0℃で熱処理することを特徴とする超高張力電縫鋼管の
製造力法。(3) Weight Te C: 0.005-0.30%, Si: 0
.. 05-1.5%, Mn: 1.0-3.0%, P
: 0.02% or less, S: 0.006% or less, AI:
0.01~0.08%, Ti:o, oi~0.15%
, B: 0.0003-0.003%, N: 0.0
In addition to 0.05% or less, Cu: 0.7 to 2.0%, Mo:
A pipe steel material containing 1.5% or less of one or two types, with the balance consisting of Fe and unavoidable elements is hot-rolled to a thickness of 95%.
Finish rolling is completed at 0°C or lower and Ar3 transformation point or higher, and then winding is continued at 300-500°C, and after ERW pipe forming, 500-65
A manufacturing method for ultra-high tensile resistance welded steel pipes characterized by heat treatment at 0°C.
(4)前項3記載の管用鋼材がさらにNi:1.5%以
下、Cr:2.0%以下、Nb:0.1%以下、■:0
.10%以下の1種または2種以上を含む前項3記載の
超高張力電縫鋼管の製造力法。(4) The pipe steel material described in 3 above further contains Ni: 1.5% or less, Cr: 2.0% or less, Nb: 0.1% or less, ■: 0
.. The method for manufacturing ultra-high tensile resistance welded steel pipes according to the above item 3, which contains 10% or less of one or more types.
(5)電縫造管後熱処理し、次いで冷間伸管加工を付加
し丸管または角管・異形管とすることを特徴とする前項
1〜4のいずれかに記載の超高張力電縫鋼管の製造力法
。(5) The ultra-high-tensile ERW according to any one of 1 to 4 above, characterized in that the ERW pipe is heat-treated after forming, and then subjected to cold drawing processing to form a round pipe, square pipe, or irregularly shaped pipe. Steel pipe manufacturing method.
(6)冷間伸管加工後の丸管または角管・異形管に焼鈍
を施すことを特徴とする前項5記載の超高張力電縫鋼管
の製造力法。(6) The method for manufacturing ultra-high tensile resistance welded steel pipes according to item 5 above, characterized in that the round tube, square tube, or irregularly shaped tube is annealed after cold drawing.
以下に本発明の詳細な説明する。第1図に請求項1〜4
記載の発明に従った製造工程、第2図に請求項5記載の
発明に従った製造工程、第3図に請求項6記載の発明に
従った製造工程を示す。The present invention will be explained in detail below. Claims 1 to 4 in FIG.
FIG. 2 shows the manufacturing process according to the invention as described in claim 5, and FIG. 3 shows the manufacturing process according to the invention as claimed in claim 6.
従来の工程では前述したように超高張力網管を製造しよ
うとすれば、電縫造管後に焼入または焼入焼戻をする必
要がある。この方法では、専用の熱処理設備を必要とし
、寸法形状、材質の確保に特別の注意が必要であるばか
りでなく、設備投資・生産性の点で著しくコストの高い
ものとならざるを得ない。更により剛性の高い構造部材
として注目されている角型鋼管、異形鋼管の製造法とし
ては、均一な焼入、寸法形状の確保がきわめて困難で工
業的生産手段として成立し得ない。また、たとえ超高張
力鋼板ができたとしても、造管時の成形・溶接ができな
い。In the conventional process, as described above, if an ultra-high tensile mesh pipe is to be manufactured, it is necessary to perform quenching or quenching and tempering after forming the ERW pipe. This method not only requires dedicated heat treatment equipment, requires special attention to ensure dimensions, shape, and material quality, but also requires significantly higher costs in terms of equipment investment and productivity. Furthermore, as a manufacturing method for square steel pipes and deformed steel pipes, which are attracting attention as structural members with higher rigidity, it is extremely difficult to ensure uniform hardening and size and shape, and this cannot be realized as an industrial production method. Furthermore, even if ultra-high-strength steel plates were made, they would not be able to be formed or welded during pipe manufacturing.
そこで本発明では、焼入処理することなく、造管後の非
調質熱処理と必要に応じて付加する冷間伸管加工によっ
て、超高張力型!i!鋼管を製造しようとするものであ
る。Therefore, in the present invention, we have created an ultra-high tensile type pipe without quenching, using non-temperature heat treatment after pipe making and additional cold drawing processing as needed. i! The aim is to manufacture steel pipes.
最初に本発明に使用する造管用鋼材の成分について限定
理由を説明する。First, the reasons for limiting the components of the steel material for pipe making used in the present invention will be explained.
C量は少なければ延性が良好であり、加工性に優れるが
、所要の強度が得られないことから下限を0.005%
とした。また、0.30%を超えると造管時の成形性等
の冷間加工性及び靭性が低下する傾向にあり、また、電
縫鋼管の造管溶接時に熱影響部が硬化し、加工性が低下
することから、上限を0.30%とした。The lower the amount of C, the better the ductility and the better workability, but since the required strength cannot be obtained, the lower limit is set at 0.005%.
And so. In addition, if it exceeds 0.30%, cold workability such as formability during pipe making and toughness tend to decrease, and the heat affected zone hardens during pipe forming welding of ERW steel pipes, resulting in poor workability. Therefore, the upper limit was set at 0.30%.
Siはキルド鋼の場合、0.05%未満におさえること
は製鋼技術上難しく、また、1.5%を超えるとスケー
ル生成による表面性状の劣化が著しくなるため、1.5
%を上限とした。In the case of killed steel, it is difficult to suppress Si to less than 0.05% due to steel manufacturing technology, and if it exceeds 1.5%, the surface quality deteriorates significantly due to scale formation, so the Si content is 1.5%.
The upper limit was %.
Mnについては、1.0%未満では強度不足となり、ま
た、3.0%を超えると造管時の成形加工等の加工時に
延靭性の不足から亀裂が発生することがあることから、
下限を1.0%、上限を3.0%とした。Regarding Mn, if it is less than 1.0%, strength will be insufficient, and if it exceeds 3.0%, cracks may occur due to lack of ductility during processing such as forming during pipe manufacturing.
The lower limit was 1.0% and the upper limit was 3.0%.
Pは製鋼時不可避的に混入する元素であるが、0.02
%を超えると特に超高張力鋼管の電縫溶接時に溶接部割
れを発生しやすいため、上限を0.02%とした。P is an element that is unavoidably mixed during steelmaking, but 0.02
If it exceeds 0.02%, weld cracks are likely to occur particularly during electric resistance welding of ultra-high tensile steel pipes, so the upper limit was set at 0.02%.
SもP同様製調時不可避的に混入する元素であり、0.
006%を超えると電縫溶接時に溶接部割れを発生しや
すいため、上限を0.006%とした。Sによる電縫溶
接時の割れを更に抑制するには、MnSを形態制御する
元素であるCaを添加してもよい。Like P, S is an element that is unavoidably mixed during manufacturing, and 0.
If it exceeds 0.006%, weld cracks are likely to occur during electric resistance welding, so the upper limit was set at 0.006%. In order to further suppress cracking caused by S during electric resistance welding, Ca, which is an element that controls the morphology of MnS, may be added.
AIはキルド鋼の場合、0.01%未満におさえること
は製鋼技術上難しく、また、0.08%を超えると鋳片
の割れ、酸化物系巨大介在物形成による内質欠陥等を惹
き起こしやすいため0.08%を上限とした。In the case of killed steel, it is difficult to keep AI below 0.01% due to steel manufacturing technology, and if it exceeds 0.08%, it can cause cracks in the slab and internal defects due to the formation of giant oxide inclusions. The upper limit was set at 0.08% because it is easy to use.
Cuは溶体化後の時効処理によって析出する特徴を有し
、造管前の強度にほとんど影響を与えずに、造管後の熱
処理により強度を上げるのに有効である。この場合、0
.7%未満では効果に乏しく、2.0%を超えて添加し
ても効果の向上のないことから、下限を0.7%、上限
を2.0%とした。次にNiは強度・延靭性に有効であ
るが、効果が生じる1、5%を限度として添加する。し
かし、強度・延靭性が十分な時は添加する必要はない。Cu has the characteristic of being precipitated by aging treatment after solution treatment, and is effective in increasing the strength by heat treatment after pipe making, with almost no effect on the strength before pipe making. In this case, 0
.. If it is less than 7%, the effect is poor, and if it is added in excess of 2.0%, there is no improvement in the effect, so the lower limit was set to 0.7% and the upper limit was set to 2.0%. Next, although Ni is effective for improving strength and ductility, it is added at a limit of 1.5% to produce the effect. However, when the strength and ductility are sufficient, there is no need to add it.
MOも溶体化後の時効処理によって析出する特徴を有し
、造管前の強度にほとんど影響を与えずに、造管後の熱
処理により強度を上げるのに有効である。この場合、1
,5%を超えて添加しても効果の向上のないことから、
上限を1.5%とした。MO also has the characteristic of being precipitated by aging treatment after solution treatment, and is effective in increasing the strength by heat treatment after pipe forming, without having almost any effect on the strength before pipe forming. In this case, 1
, since there is no improvement in the effect even if added in excess of 5%,
The upper limit was set at 1.5%.
次に、Ni、Cr、、Nb、Vについては、いずれも鋼
材の強度を上昇させる元素であり、延靭性を過度に害さ
ない範囲での添加は超高張力電縫鋼管の製造に有効であ
る。よって、延靭性を過度に害さないために、Ni、C
r、Nb、Vの上限をそれぞれ1.5%、2.0%、0
.10%、0.10%とした。Next, regarding Ni, Cr, Nb, and V, all of them are elements that increase the strength of steel materials, and their addition within a range that does not excessively impair ductility is effective in manufacturing ultra-high tensile resistance welded steel pipes. . Therefore, in order not to excessively impair ductility, Ni, C
The upper limits of r, Nb, and V are set to 1.5%, 2.0%, and 0, respectively.
.. 10% and 0.10%.
次に請求項3の発明の特徴をなすものは、Ti、B、N
である。Next, the feature of the invention of claim 3 is that Ti, B, N
It is.
Tiは強度を制御するための重要な元素であるが、0.
01%未満では強度不足となり、0.15%を超えて添
加しても効果の向上のないことから、下限を0.01%
、上限を0.15%とした。Ti is an important element for controlling strength, but 0.
If it is less than 0.01%, the strength will be insufficient, and if it is added in excess of 0.15%, the effect will not improve, so the lower limit is set at 0.01%.
, the upper limit was set at 0.15%.
Bは冷却過程においてフェライト変態を遅らせて高強度
変態組織を得るために必須の元素であるが、本発明の造
管用鋼材の成分組成においても0.0003%未満では
強度不足となり、0.003%を超えるとBoron
Con5tituentが生成して延靭性が著しく低下
するため、下限を0.0003%、上限を0.003%
とした。B is an essential element in order to delay ferrite transformation in the cooling process and obtain a high-strength transformed structure, but if it is less than 0.0003% in the composition of the steel material for pipe making of the present invention, the strength will be insufficient; Boron exceeds
The lower limit is set to 0.0003% and the upper limit is set to 0.003%, as con5tituent is generated and the ductility is significantly reduced.
And so.
Nは製鋼時不可避的に混入する元素であるが、0.00
5%を超えるとTi、Bの強度上昇効果を阻害して強度
不足を惹き起こすため、上限を0.005%とした。N is an element that is unavoidably mixed during steel manufacturing, but 0.00
If it exceeds 5%, the strength-increasing effects of Ti and B will be inhibited, resulting in insufficient strength, so the upper limit was set at 0.005%.
次に製造工程について説明する。製造条件は請求項1〜
4とも同一である。Next, the manufacturing process will be explained. The manufacturing conditions are as per claims 1-
4 are the same.
本発明に従い、上記成分の綱を熱間板厚圧延時に950
’C以下A r 3変態点以上で仕上圧延を終了する
。これは適切な低温圧延を行うことによって強度・延靭
性バランスを適正化するためであり、仕上圧延終了温度
が950℃超では未再結晶域での圧延が存在しないため
強度・延靭性が劣化し、A r 3変態点未満では2相
域圧延によって強度は上昇するが延靭性が著しく低下す
る。よって上記成分の鋼を熱間板厚圧延時に950℃以
下A r 3変態点以上で仕上圧延を終了し、引続き本
発明の条件で巻取ることによって、強度・延靭性バラン
スの優れた材質とすることができる。According to the present invention, a steel having the above components is heated to 950% during hot plate thickness rolling.
'C or below A r Finish rolling is completed at 3 transformation points or above. This is to optimize the balance of strength and ductility by performing appropriate low-temperature rolling, and if the finish rolling end temperature exceeds 950°C, there will be no rolling in the non-recrystallized region, resulting in deterioration of strength and ductility. , A r Below the 3 transformation point, the strength increases by rolling in the two-phase region, but the ductility significantly decreases. Therefore, by finishing the finish rolling of the steel having the above composition at a temperature of 950°C or below and above the A r 3 transformation point during hot plate thickness rolling, and then winding it under the conditions of the present invention, a material with an excellent balance of strength and ductility can be obtained. be able to.
巻取温度は300〜500℃であって、下限はマルテン
サイト生成による延靭性低下が生ゼず、上限は造管前の
Cu及びMOの析出を抑制し、板を軟らかくし、造管を
容易かつ割れを生成しないようにするために限定した。The coiling temperature is 300 to 500°C, and the lower limit prevents deterioration of ductility due to martensite formation, and the upper limit suppresses precipitation of Cu and MO before pipe forming, softens the plate, and facilitates pipe forming. Also, it was limited in order to prevent cracks from forming.
電縫造管後に500〜650℃の熱処理を加え、Cu、
Moを析出させて時効硬化による強度上昇をはかる。熱
処理温度が500 ”C未満ではCu・Mo析出が不十
分であり、650℃超では過時効析出となり、いずれも
Cu−M oの析出硬化を十分に利用するには適当でな
い。After making the ERW pipe, heat treatment is applied at 500 to 650°C to produce Cu,
Mo is precipitated to increase strength through age hardening. If the heat treatment temperature is less than 500"C, Cu/Mo precipitation will be insufficient, and if it exceeds 650"C, over-aging precipitation will occur, both of which are not suitable for fully utilizing the precipitation hardening of Cu-Mo.
以上のように本発明は熱延板では延靭性を考慮しながら
、高温巻取りにより強度を低く造管しやすくし、そして
造管後の熱処理により所定の強度を得ることを特徴とし
ている。As described above, the present invention is characterized in that, while taking into account ductility and toughness, hot-rolled sheets have low strength by high-temperature winding to make them easier to form into pipes, and a predetermined strength is obtained by heat treatment after forming the pipes.
以上請求項1〜4記載の方法について説明したが、請求
項5および6記載の方法でもよい。第2図は請求項5記
載の方法、第3図は請求項6記載の方法に従った工程を
示すものであるが、請求項5記載の方法に従って冷間伸
管加工を付加することにより、更に超高張力化を図ると
共に角型鋼管、異形鋼管の製造が可能である。より延性
の高い鋼管を得たい場合には請求項6記載の方法に従っ
て焼鈍を付加することもできる。Although the methods according to claims 1 to 4 have been described above, methods according to claims 5 and 6 may also be used. FIG. 2 shows the process according to the method according to claim 5, and FIG. 3 shows the process according to the method according to claim 6, but by adding cold pipe drawing according to the method according to claim 5, Furthermore, it is possible to achieve ultra-high tensile strength and to manufacture square steel pipes and deformed steel pipes. If it is desired to obtain a steel pipe with higher ductility, annealing may be added according to the method described in claim 6.
サイズ φ34.0Xt2.1の電縫鋼管を本発明法と
比較例として従来法により造管した結果を第1表に示し
た。Table 1 shows the results of making electric resistance welded steel pipes of size φ34.0×t2.1 by the method of the present invention and by the conventional method as a comparative example.
第1表に示す通り、本発明によれば、化学成分、熱間板
厚圧延における仕上圧延温度および巻取温度を適正に制
御することにより強度・延靭性バランスの優れた素材鋼
板を製造して造管を可能ならしめ、更に造管後熱処理を
加えることによって母材部・溶接部ともに強度・延靭性
バランスの優れた超高張力電縫鋼管を得ることができる
。熱処理後に更に冷間伸管加工を付加することにより、
更に超高張力化を図ることもできる。As shown in Table 1, according to the present invention, a material steel plate with an excellent balance of strength and ductility can be manufactured by appropriately controlling the chemical composition, finish rolling temperature during hot plate thickness rolling, and coiling temperature. By making pipe making possible and further adding heat treatment after pipe making, it is possible to obtain ultra-high tensile resistance welded steel pipes with an excellent balance of strength and ductility in both the base metal and welded parts. By adding cold pipe drawing processing after heat treatment,
Furthermore, it is also possible to achieve ultra-high tensile strength.
従来の工程で超高張力鋼管を製造しようとすれば、電縫
造管後に焼入または焼入焼戻をする必要があり、専用の
熱処理設備を必要とし、寸法形状、材質の確保に特別の
注意が必要であるばかりでなく、設備投資・生産性の面
で著しくコストの高いものとならざるを得なかった。更
により剛性の高い構造部材として注目されている角型鋼
管、異形鋼管の製造法としては、均一な焼入、寸法形状
の確保がきわめて困難で工業的生産手段としては成立し
得ない状態にあった。本発明によれば、かかる工業生産
性、経済性上の問題なしに超高張力電縫鋼管を製造する
ことが可能になるので、産業上貢献するところが極めて
大である。If you try to manufacture ultra-high-strength steel pipes using conventional processes, it is necessary to quench or quench-temperate them after making the ERW pipes, which requires dedicated heat treatment equipment and requires special measures to ensure the dimensions, shape, and materials. Not only did this require careful attention, but it also resulted in extremely high costs in terms of capital investment and productivity. Furthermore, the method of manufacturing square steel pipes and deformed steel pipes, which are attracting attention as structural members with higher rigidity, is extremely difficult to harden uniformly and ensure the same dimensions and shape, making it unfeasible as an industrial production method. Ta. According to the present invention, it is possible to manufacture ultra-high-strength electric resistance welded steel pipes without such problems in industrial productivity and economy, and therefore the present invention makes an extremely large contribution to industry.
第1図は請求項1〜4記載の方法の製造工程を示す図、
第2図は請求項5記載の方法の製造工程を示す図、第3
図は請求項6記載の方法の製造工程を示す図、第4図は
従来の製造工程を示す図である。
(木取)
300〜5αXC
遍四F心−ゼ「Iコ団−七可一嘔トI
(tt&yL管)
第3図
jヅ言層朴−七口了[I丁−世ヨー+不引七石司(電(
創if)
ヱ亜F心−ポF1[「正−加団」叩コ
(を鵜j漠)FIG. 1 is a diagram showing the manufacturing steps of the method according to claims 1 to 4,
FIG. 2 is a diagram showing the manufacturing process of the method according to claim 5, and FIG.
The figure shows the manufacturing process of the method according to claim 6, and FIG. 4 shows the conventional manufacturing process. (Kitori) 300 ~ 5α Ishiji (den)
Creation) Ea F Shin-Po F1 [“Sho-Kadan” hit
Claims (6)
05〜1.5%、Mn:1.0〜3.0%、P:0.0
2%以下、S:0.006%以下、Al:0.01〜0
.08%に加えて、Cu:0.7〜2.0%、Mo:1
.5%以下の1種または2種を含有し、残部Fe及び不
可避的元素からなる管用鋼材を熱間板厚圧延して950
℃以下Ar_3変態点以上で仕上圧延を終了し、引続き
300〜500℃にて巻取り、電縫造管後500〜65
0℃で熱処理することを特徴とする超高張力電縫鋼管の
製造力法。(1) C: 0.005-0.30% by weight, Si: 0.
05-1.5%, Mn: 1.0-3.0%, P: 0.0
2% or less, S: 0.006% or less, Al: 0.01-0
.. In addition to 0.08%, Cu: 0.7-2.0%, Mo: 1
.. A pipe steel material containing 5% or less of one or two types, with the balance consisting of Fe and other unavoidable elements is hot-rolled to a thickness of 950.
Finish rolling is completed at Ar_3 transformation point or higher below ℃, then winding is continued at 300 to 500℃, and after ERW pipe forming, 500 to 65
A manufacturing method for ultra-high tensile resistance welded steel pipes characterized by heat treatment at 0°C.
以下、Cr:2.0%以下、Nb:0.1%以下、V:
0.10%以下の1種または2種以上を含む請求項1記
載の超高張力電縫鋼管の製造方法。(2) The pipe steel material according to claim 1 further contains 1.5% Ni.
Below, Cr: 2.0% or less, Nb: 0.1% or less, V:
The method for producing an ultra-high-strength electric resistance welded steel pipe according to claim 1, which contains one or more kinds in an amount of 0.10% or less.
05〜1.5%、Mn:1.0〜3.0%、P:0.0
2%以下、S:0.006%以下、Al:0.01〜0
.08%、Ti:0.01〜0.15%、B:0.00
03〜0.003%、N:0.005%以下に加えて、
Cu:0.7〜2.0%、Mo:1.5%以下の1種ま
たは2種を含有し、残部Fe及び不可避的元素からなる
管用鋼材を熱間板厚圧延して950℃以下Ar_3変態
点以上で仕上圧延を終了し、引続き300〜500℃に
て巻取り、電縫造管後500〜650℃で熱処理するこ
とを特徴とする超高張力電縫鋼管の製造方法。(3) C: 0.005-0.30% by weight, Si: 0.
05-1.5%, Mn: 1.0-3.0%, P: 0.0
2% or less, S: 0.006% or less, Al: 0.01-0
.. 08%, Ti: 0.01-0.15%, B: 0.00
In addition to 03 to 0.003%, N: 0.005% or less,
A pipe steel material containing Cu: 0.7 to 2.0%, Mo: 1.5% or less, and the balance consisting of Fe and unavoidable elements is hot rolled to a thickness of 950°C or less Ar_3 A method for manufacturing an ultra-high-strength electric resistance welded steel pipe, which comprises completing finish rolling at a temperature above the transformation point, then winding at 300 to 500°C, and heat-treating at 500 to 650°C after forming the electric resistance welded pipe.
以下、Cr:2.0%以下、Nb:0.1%以下、V:
0.10%以下の1種または2種以上を含む請求項3記
載の超高張力電縫鋼管の製造方法。(4) The pipe steel material according to claim 3 further contains 1.5% Ni.
Below, Cr: 2.0% or less, Nb: 0.1% or less, V:
4. The method for producing an ultra-high-strength electric resistance welded steel pipe according to claim 3, which contains one or more kinds in an amount of 0.10% or less.
し丸管または角管・異形管とすることを特徴とする請求
項1〜4のいずれかに記載の超高張力電縫鋼管の製造方
法。(5) The ultra-high tensile electric wire according to any one of claims 1 to 4, characterized in that the electric resistance welded pipe is heat-treated after forming, and then cold drawing processing is added to form a round pipe, square pipe, or irregularly shaped pipe. Manufacturing method of sewn steel pipe.
を施すことを特徴とする請求項5記載の超高張力電縫鋼
管の製造方法。(6) The method for manufacturing an ultra-high tensile resistance welded steel pipe according to claim 5, characterized in that the round tube, square tube, or irregularly shaped tube is annealed after cold drawing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21959590A JP2840978B2 (en) | 1990-08-21 | 1990-08-21 | Manufacturing method of ultra-high tensile ERW steel pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21959590A JP2840978B2 (en) | 1990-08-21 | 1990-08-21 | Manufacturing method of ultra-high tensile ERW steel pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04103718A true JPH04103718A (en) | 1992-04-06 |
JP2840978B2 JP2840978B2 (en) | 1998-12-24 |
Family
ID=16737997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21959590A Expired - Fee Related JP2840978B2 (en) | 1990-08-21 | 1990-08-21 | Manufacturing method of ultra-high tensile ERW steel pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2840978B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07173541A (en) * | 1993-12-17 | 1995-07-11 | Sumitomo Metal Ind Ltd | Production of high strength electric resistance welded pipe for machine structural use |
JP2008095156A (en) * | 2006-10-13 | 2008-04-24 | Nisshin Steel Co Ltd | Method for manufacturing hollow stabilizer with excellent delayed fracture resistance |
CN113046643A (en) * | 2021-03-13 | 2021-06-29 | 张家港市银坤泰金属制品有限公司 | Corrosion-resistant spiral welded pipe and manufacturing method thereof |
-
1990
- 1990-08-21 JP JP21959590A patent/JP2840978B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07173541A (en) * | 1993-12-17 | 1995-07-11 | Sumitomo Metal Ind Ltd | Production of high strength electric resistance welded pipe for machine structural use |
JP2008095156A (en) * | 2006-10-13 | 2008-04-24 | Nisshin Steel Co Ltd | Method for manufacturing hollow stabilizer with excellent delayed fracture resistance |
CN113046643A (en) * | 2021-03-13 | 2021-06-29 | 张家港市银坤泰金属制品有限公司 | Corrosion-resistant spiral welded pipe and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2840978B2 (en) | 1998-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04103718A (en) | Production of ultrahigh tensile strength resistance welded tube | |
JP3103268B2 (en) | Method for producing steel sheet for containers with excellent fluting resistance | |
JP2588648B2 (en) | Manufacturing method of ultra-high tensile ERW steel pipe | |
JPH04103719A (en) | Production of ultrahigh strength resistance welded tube | |
JPH05287439A (en) | Mo-v type ultrahigh tensile strength resistance welded steel tube excellent in ductility | |
JP2618563B2 (en) | High strength electric resistance welded steel pipe which is hardly softened in welding heat affected zone and method of manufacturing the same | |
JPS6369923A (en) | Production of cold rolled steel sheet for deep drawing having excellent baking hardenability | |
JP3117529B2 (en) | Mo-based ultra-high tensile ERW steel pipe with excellent ductility | |
JPH06179945A (en) | Cr-mo series ultrahigh tensile strength electric resistance welded steel tube excellent in ductility | |
JPH0665685A (en) | Cold rolled sheet of ultrahigh tensile strength steel and its production | |
JPH06184693A (en) | Mo type ultrahigh tensile electric resistance welded tube and its production | |
JPH05247588A (en) | Cr-based ultrahigh tensile strength resistance welded steel tube excellent in ductility | |
JPH06184634A (en) | Mo-v series ultra-high tensile strength electric resistance welded steel tube and its production | |
JPH06179913A (en) | Resistance welded tube of cu, mo type ultrahigh tensile strength steel and its production | |
JPH05247534A (en) | Manufacture of cr-series ultra high tensile strength resistance welded steel tube excellent in ductility | |
JPS61281814A (en) | Production of high-strength hot rolled steel sheet having low sensitivity to bauschinger effect | |
JPH06184633A (en) | Cr-mo series ultra-high tensil strength electric resistance welded steel tube and its production | |
JPH07216505A (en) | Electric resistance welded tube excellent in toughness and having 680-1300mpa strength and its production | |
JPH06179912A (en) | Resistance welded tube of cr type ultrahigh tensile strength steel and its production | |
JPH07216504A (en) | Electric resistance welded tube excellent in ductility and toughness and having 680-1070mpa tensile strength and its production | |
JPH05247590A (en) | Cr-mo base ultrahigh tensile strength resistance welded tube excellent in ductility | |
JPH04198422A (en) | Manufacture of hot rolled steel sheet for working | |
JPH06256854A (en) | Production of ultra high tensile electroresistance-welded tube having less bends | |
JPH06179944A (en) | Cr series ultrahigh tensile strength electric resistance welded steel tube excellent in ductility | |
JPH05247535A (en) | Manufacture of mo-series ultrahigh tensile strength resistance welded steel tube excellent in ductility |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071023 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081023 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |