JP2014181371A - 高耐食性金属部材およびその製造方法 - Google Patents

高耐食性金属部材およびその製造方法 Download PDF

Info

Publication number
JP2014181371A
JP2014181371A JP2013055857A JP2013055857A JP2014181371A JP 2014181371 A JP2014181371 A JP 2014181371A JP 2013055857 A JP2013055857 A JP 2013055857A JP 2013055857 A JP2013055857 A JP 2013055857A JP 2014181371 A JP2014181371 A JP 2014181371A
Authority
JP
Japan
Prior art keywords
nitrogen
stainless steel
corrosion
resistant metal
metal member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013055857A
Other languages
English (en)
Other versions
JP5924297B2 (ja
Inventor
Hiroyuki Ishikawa
裕幸 石川
Hiroyuki Yamada
洋行 山田
Hiroyuki Mori
広行 森
Masaki Kajino
正樹 梶野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2013055857A priority Critical patent/JP5924297B2/ja
Publication of JP2014181371A publication Critical patent/JP2014181371A/ja
Application granted granted Critical
Publication of JP5924297B2 publication Critical patent/JP5924297B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

【課題】従来にない高耐食性の新たな改質部を備えた高耐食性金属部材を提供する。
【解決手段】本発明の高耐食性金属部材は母材金属からなる基部と、この基部の少なくとも一部に形成された改質部とを備える金属部材であって、改質部は全体を100質量%(以下「%」という。)としたときに0.05〜5%の窒素(N)を含み、平均結晶粒径が10μm以下である窒素固溶微細組織からなることを特徴とする。このような改質部は、ステンレス鋼等の表面部へ、高エネルギービームを相対移動させつつ照射することにより得られる。この高エネルギービームは、例えば、近紫外域の短い波長をもち、パルス幅が10ps〜100nsである近紫外ナノ秒パルスレーザである。この改質処理により、母材金属が汎用のオーステナイト系ステンレス鋼もしくはフェライト系のステンレス鋼であっても、従来のスーパーステンレス鋼と同等の高耐食性を発揮し得る。
【選択図】図11

Description

本発明は、窒素固溶微細組織からなる改質部を有する高耐食性金属部材およびその製造方法に関する。
長期的に安定した耐食性が要求される部材には、表面に不動態皮膜(酸化クロム皮膜)を形成するステンレス鋼が用いられることが多い。ステンレス鋼も多種多様であるが、加工性や強度等にも優れるオーステナイト系ステンレス鋼が一般的には多用されている。
ところが、このような汎用的な(または低級な)ステンレス鋼(例えば、SUS304等)は、例えば、塩素イオンが存在するような環境下で腐食し、特に孔食、隙間腐食、粒界腐食、応力腐食割れ等の局部腐食を発生し易い。そこで、特定の元素(オーステナイト相安定化元素等)を添加したり、それらの含有量を増加させて、耐食性を改善したステンレス鋼もある。例えば、Niを増量したオーステナイト系ステンレス鋼(例えば、SUS316)やNiおよびCrを増量すると共にMoなどを添加したスーパーステンレス鋼などである。しかし、NiやMo等の高価な元素の増量や添加は、当然に材料コスト高を招く。
そこで、そのような高価な元素の含有量を抑制し、強力なオーステナイト相安定化元素の一つであるNを高濃度に固溶させることにより耐食性を高めた高窒素オーステナイト系ステンレス鋼が提案されている。これに関する記載が下記の特許文献等にある。
特開2008−174789号公報
上記の特許文献では、10気圧程度の加圧窒素雰囲気下で鋳造したステンレス鋼塊に、1200℃×4hrの溶体化熱処理を施して高窒素オーステナイト系ステンレス鋼を得ている。しかし、このような方法では、加圧溶解炉等の設備が必要となり、ステンレス鋼の製造コストが高くなる。また、加圧溶解法等によって鋼材へ高濃度に窒素を導入すると、窒素分圧と導入窒素量とのバランス次第でブローホールが生成したり、遷移金属窒化物が生成し易くなり、却って耐食性が低下するおそれがある。しかも、特許文献1のような方法を採用したとしても、オーステナイト相の安定化や窒素固溶限の増大のために、結局は0.5〜4質量%程度のMoを必要としている。従って、特許文献1で提案されているようなステンレス鋼では、結局、製造コスト低減と耐食性向との両立を図ることは難しい。
本発明はこのような事情に鑑みて為されたものであり、従来の金属部材と異なり非常に優れた耐食性を発揮する高耐食性金属部材と、この高耐食性金属部材を比較的低コストで得ることができる製造方法を提供することを目的とする。
本発明者は、上記の課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、窒素含有雰囲気中で近紫外ナノ秒パルスレーザを母材金属からなる被処理部へ照射することにより、窒素を固溶した微細な結晶組織からなる改質部が著しく高い耐食性を発揮することを新たに見出した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。
《高耐食性金属部材》
(1)本発明の高耐食性金属部材は、母材金属からなる基部と、該基部の少なくとも一部に形成された改質部と、を備える金属部材であって、前記改質部は、該改質部全体を100質量%(以下「%」という。)としたときに0.05〜5%の窒素(N)を含み、平均結晶粒径が10μm以下である窒素固溶微細組織からなることを特徴とする。
(2)本発明の高耐食性金属部材は、母材金属(基材)からなる基部とその少なくとも一部に形成された改質部とからなる。この改質部は、従来の窒化層のように不均一で強く傾斜した窒化物からなる組織とは異なり、高濃度な窒素がほぼ均一的に固溶した微細な組織(窒素固溶微細組織)からなる。しかも、この窒素固溶微細組織は、改質部の最表面近傍の浅い部分(浅層部)からその内部の深い部分(深層部)まで、ほぼ安定的に存在し得る。
このような窒素固溶微細組織からなる改質部を有することにより、本発明の金属部材は著しく高い耐食性を安定して発揮するようになったと考えられる。もっとも、そのような窒素固溶微細組織が高耐食性を発現するメカニズムについては、現状、必ずしも明らかではない。ただ、本発明者の研究に依れば、単なる組織の微細化のみでは、所望するような耐食性の向上が図れないことが明らかとなっており、窒素が固溶状態で存在していることが耐食性の向上に大きく寄与していることは確かである。
特に母材金属が鉄系金属である場合、基部がフェライト相(bcc)であっても、高耐食性を発現する改質部はオーステナイト相(fcc)となることがわかっている。つまり、改質部が多くの窒素を固溶してオーステナイト化することにより、優れた耐食性を発揮するようになったと考えられる。
さらに、母材金属がステンレス鋼である場合、表面に生成されたMnS等の析出物または介在物が、孔食起点になるといわれている。具体的には、そのような析出物がステンレス鋼表面で溶解して、その表面に隙間を形成したり、その表面を覆う不働態膜に欠陥を生じさせたりする結果、マイクロピットが生じてステンレス鋼の耐食性が低下するといわれている。ちなみに、通常の製鋼法による限り、そのような析出物等の原因となる不純物(S等)の混在は不可避であり、結果的に孔食起点となり得る析出物等の生成も不可避であると考えられていた。
しかし、本発明に係る改質部は、不純物(S等)量の深さ方向の分布がその改質前(基部)と殆ど変化していないにも関わらず、高耐食性を発揮している。このことから本発明に係る改質部では、改質により孔食起点となるような析出物等が生じなくなったか、または改質による組織の微細化により析出物等も孔食起点とならない程度にまで微細化されたことが考えられる。このように母材金属がステンレス鋼である場合なら、上述したオーステナイト化や組織微細化によって、改質部が高耐食性を発現するようになったと考えられる。そして、このような事情に基づけば、母材金属がオーステナイト系ステンレス鋼等である場合に限らず、より安価なフェライト系ステンレス鋼等である場合でも、本発明に係る改質部により高耐食化が図られ得ることがわかる。
なお、本発明に係る改質部は、上述のような微細な窒素固溶体からなるため、単に耐食性に優れるのみならず、適宜、高硬度、高強度等の特性も併せて発揮し得る。このため本発明の高耐食性金属部材は、優れた摺動部材や構造部材等ともなり得る。
(3)ところで、本発明に係る改質部または窒素固溶微細組織を具体的に表現することは容易ではない。敢えて表現すれば、上述したように、窒素の含有量を指標する窒素濃度と組織の微細度を指標する結晶粒サイズ(平均結晶粒径)とにより、窒素固溶微細組織ひいては改質部を特定することになる。ちなみに本発明に係る改質部(窒素固溶微細組織)は、薄くても(厚さが小さくても)、少なくとも耐食性は十分に発揮され得るため、その厚さは限定しない。
ここで窒素固溶微細組織の窒素濃度(質量%)は、電子線マイクロアナライザー(EPMA)の解析結果に基づき特定される。この窒素濃度は0.05〜5%、0.1〜4%、0.5〜3%さらには0.7〜2%であると好ましい。窒素濃度が過小では耐食性の向上を十分には図れない。また、固溶する窒素濃度には自ずと限界があり、窒素濃度が過大になると、窒化物の生成や母材金属に対する組成変化を生じるようになり好ましくない。なお、ここでいう窒素濃度は、改質部内の測定対象域全体を100%としたときに、その組織内に含まれるNの総量である。もっとも、本発明に係る改質部では、その窒素のほとんどが固溶状態となっている。改質部における全窒素濃度(Nt)に対する固溶窒素濃度(Ns)の割合(100×Ns/Nt)は、一概には限定できないが、あえていうと、60%以上、70%以上、80%以上さらには90%以上であると好ましい。逆にいえば、窒素の固溶相以外に、耐食性を損なわない範囲内で改質部内に窒化物相が存在してもよい。
窒素固溶微細組織の平均結晶粒径は次のように特定される。先ず、改質部の断面組織を電子顕微鏡(TEM)で観察し、認められる粒子の断面形状を楕円と仮定して、その長軸と短軸の平均値を一つの結晶粒径とする。次に、観察している組織断面中から無作為に抽出した5点について算出した結晶粒径の単純平均(相加平均)を本明細書でいう平均結晶粒径とする。この平均結晶粒径は、10μm以下、5μm以下、1μm以下さらには0.7μm(700nm)以下であると好ましい。この平均結晶粒径の下限値は問わないが、敢えていうと、例えば、50nm以上または100nm以上とできる。
なお、窒素固溶微細組織が存在する範囲(改質部の厚さ)は、電子顕微鏡で観察した断面組織に基づき、上述した条件を満たす窒素固溶微細組織が検出される最大範囲を、改質部の最表面から内部側へ測定した距離(深さ)により特定される。この改質部の厚さは、1μm以上、5μm以上さらには10μm以上あれば、十分に安定した耐食性が発揮され得る。その深さの上限値は問わないが、敢えていうと、500μm、200μm以下さらには100μm以下とできる。ちなみに、改質部の最表面から内部まで固溶窒素濃度がほぼ均一的であると好ましいが、本発明では必ずしも固溶窒素濃度の分布を問わない。
《高耐食性金属部材の製造方法》
(1)本発明は上述した高耐食性金属部材のみならず、その製造方法としても把握できる。すなわち本発明は、母材金属からなり窒素含有雰囲気下にある被処理部へ高エネルギービームを相対移動させつつ照射することにより、該被処理部でアブレーションを生じさせると共に該被処理部の近傍に活性窒素を生成させる照射工程を備え、上述した改質部が得られることを特徴とする高耐食性金属部材の製造方法でもよい。
(2)本発明の製造方法により上述した改質部(特に窒素固溶微細組織)が得られる理由は必ずしも定かではないが、現状では次のように考えられる。高エネルギービームが母材金属からなる被処理部へ適切に照射されると、その被処理部ではアブレーションが生じ得る。このアブレーションにより、被処理部を構成する原子等が、気化、蒸発、蒸散、飛散等して放出される。こうして放出された粒子(適宜「放出粒子」という。)は、原子、分子、イオン、電子、光子、ラジカル、クラスター等の様々な形態をとり得る。このような放出粒子が被処理部の近傍にある雰囲気ガス(窒素)に何らかの影響を与える。そして放出粒子と活性な窒素(単に「活性窒素」という。)の混合状態からなる反応場が、アブレーションを生じた被処理部(適宜「アブレーション部」という。)またはその近傍に生成され得る。
高エネルギービームの照射域が被処理部上を移動することにより、上記の現象が次々とほぼ連続的に生じ、被処理部およびその近傍は、反応場を生成する放出粒子および活性窒素が多数存在した状態となる。
活性窒素は、アブレーション部またはその近傍へ浸入して窒素固溶体を形成するか、または放出粒子とともにアブレーション部へ充填等されていく。このような現象が繰り返されることにより、内部深くまで窒素が十分に導入され、微細な窒素固溶体からなる組織つまり窒素固溶微細組織が形成されたと考えられる。
本発明の製造方法では、従来の窒化方法等とは異なり、改質部の形成にアブレーションを利用しているため、母材金属からなる基部自体や改質部の周囲に殆ど熱的影響を及ばない。従って本発明の製造方法によれば、基部や非処理部の組成や組織などをほとんど変化させず、それらが本来有する特性(例えば、加工性、強度等)を活かしつつ、上述した改質部を形成できる。
また本発明の製造方法では、上述したようなアブレーションを利用するため、幅広い母材金属に対して短時間内に微細な窒素固溶相を形成し得る。例えば、SUS304(Cr:18〜20%)のような汎用オーステナイト系ステンレス鋼やSUS430(Cr:16〜18%)のようなフェライト系ステンレス鋼に対して本発明に係る照射工程(改質処理)を行えば、材料コストや処理コストを抑制しつつ、SUS836L(Cr:19〜24%)のような高耐食オーステナイト系ステンレス鋼と同等以上の耐食性を得ることが可能となる。
形成される改質部の形態は、高エネルギービームの照射域の軌跡により定まり、その可動域に制限はない。このため本発明の製造方法によれば、広狭を問わず所望する形態の改質部を自由に形成し得る。従って本発明に係る被処理部は、平面に限らず種々の曲面でもよいし、曲線状(直線状を含む)でも点状(斑点状等の多数点状を含む)でもよい。さらに、高エネルギービームが到達する限り、被処理部は、窪んだ領域でも、奥まった領域でも、アンダーカット的な領域でもよい。
さらに本発明の製造方法では、高エネルギー(収束)ビームを用いているため、従来の窒化方法等と異なり、局所的な改質も容易である。例えば、局部腐食(孔食、隙間腐食、応力腐食割れ等)を生じ得る部位(例えば、角部または隅部)や特定の狭領域にだけ、mm単位幅またはμm単位幅の改質部を、スポット的に形成することも容易である。このように局所改質を行えば、高耐食性金属部材を全面改質する場合よりも効率的に生産することが可能となる。
加えて、本発明に係る改質部は、高エネルギービームの照射域の軌跡上に形成されるため、その改質部とそれ以外の非改質部とを並存させた表面テクスチャを、基部の表面側に形成することも容易である。表面テクスチャは、例えば、改質部と非改質部が交互に配置されたストライプ状、格子状さらにはディンプル状等にもできる。なお、表面テクスチャの形態(改質部と非改質部の間隔、面積割合等)は、高耐食性金属部材に要求される耐食性等に応じて適宜選択、調整される。
また、改質部を有する高耐食性金属部材の表面部は、二次元的に変化した形態に留まらず、三次元的に変化した形態でもよい。高エネルギービームの出力密度、ビーム径、焦点、窒素含有雰囲気等を調整することにより、改質部の幅のみならず、その深さ等も形成位置に応じて変化させ得る。
(3)本発明に係る「被処理部」(改質部)は、高エネルギービームの照射が可能な部分である限り、外表面側に限らず、内表面側でもよい。また「高エネルギービーム」は、光線または電子線であって、母材金属をアブレーションするのに十分なエネルギーと、照射部周辺をプラズマ化させる強電界とを併せもつビームである。具体的には、レーザ、電子ビーム等である。
「窒素含有雰囲気」は、窒素が分子レベルまたは原子レベルで存在し、アブレーションにより活性窒素が発生し得る雰囲気である。具体的には、窒素ガスのみからなる窒素ガス雰囲気、窒素ガスと不活性ガス等からなる混合ガス雰囲気(大気雰囲気も含む)、窒素の化合物を含む化合物ガス雰囲気等である。本発明に係る改質処理は窒素を含む大気中等でも可能であるが、酸化物等の生成を回避するために、窒素ガス雰囲気または窒素ガスを不活性ガスで希釈した雰囲気が好ましい。本発明に係る改質処理では、窒素含有雰囲気の圧力(ガス圧)も問わない。敢えて高圧にする必要はなく常圧でも十分である。
(4)本発明は、上述した製造方法により得られる高耐食性金属部材としても把握できる。この際、製造方法に関する方法的要素のみならず、本明細書で説明する改質部や窒素固溶微細組織等に関する物的要素も当然、製法限定された高耐食性金属部材の構成要素となり得る。
《その他》
特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を、新たな下限値または上限値として「a〜b」のような範囲を新設し得る。
窒素固溶微細組織を有する試料11(S304−N)に係るSEM像である。 試料11に係るEPMA像(Nマッピング像)である。 試料11に係るTEM像である。 試料11に係るXRDプロファイル像である。 試料31に係るXRDプロファイル像の一部拡大図である。 試料11に係る深さ方向のS分布を示す分析(GD−OES)図である。 試料10の表面におけるS分布を示すEPMA像(Sマッピング像)である。 試料11の表面におけるS分布を示すEPMA像(Sマッピング像)である。 組成の異なる各試料に係るアノード分極プロファイル像である。 窒素濃度の異なる各試料に係るアノード分極プロファイル像である。 各試料に係るアノード分極後の試験表面を示す光学顕微鏡写真である。 各試料に係る孔食指数と孔食電位の関係を示す図である。
本明細書で説明する内容は、本発明の高耐食性金属部材のみならず、その製造方法にも該当し得る。上述した本発明の構成要素に、本明細書中から任意に選択した一以上の構成要素を付加し得る。この際、製造方法に関する構成要素は、プロダクトバイプロセスとして理解すれば物に関する構成要素ともなり得る。なお、いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。
《母材金属》
本発明に係る母材金属は、窒素の導入により固溶相を形成して耐食性が改善され得るものであれば、純金属でも合金でもよく、その種類や成分組成を問わない。もっとも、本発明に係る母材金属は、元々耐食性に優れ、この耐食性が窒素の固溶により一層向上するものであると好ましい。具体的にいうと、このような母材金属として、緻密で耐食性に優れる酸化皮膜(不動態皮膜)を形成するステンレス鋼が好ましく、特に加工性等にも優れるオーステナイト系ステンレス鋼、フェライト系ステンレス鋼、オーステナイト・フェライト二相系ステンレス鋼が好ましい。さらには、高価な元素であるCr、Ni、Mo等の含有量が比較的少ない安価で汎用的なステンレス鋼(例えば、SUS304、SUS430等)が本発明に係る母材金属として好適である。
但し、本発明に係る改質処理を行えば、従来のステンレス鋼よりもCrやNiなどがより少ない鉄合金であっても、さらにいえばフェライト相からなるステンレス鋼でも、その耐食性の向上を図り得る。そこで本発明に係る母材金属は、上述した従来のステンレス鋼には限らず、母材金属全体を100%としたときにCrを10〜30%、より好ましくは10〜24%含む鉄合金(またはステンレス鋼)であると好ましい。また本発明に係る母材金属は、Niを0.1〜66%さらには0.1〜26%含むオーステナイト系ステンレス鋼またはフェライト系ステンレス鋼(オーステナイト・フェライト二相系を含む。)であると好ましい。特に、本発明に係る改質処理により、Niを実質的に含まないNiレス(フリー)ステンレス鋼の耐食性も向上させ得る。なお、一般的なオーステナイト系ステンレス鋼を対象にする場合ならNiを5〜16%とするとよい。なお、窒素固溶相が形成される本発明に係る改質処理を、本明細書では適宜、単に「窒化」ともいう。
《製造方法》
(1)高エネルギービーム
高エネルギービームは、母材金属の被処理部でアブレーションを生じさせ、アブレーション部の周囲にある雰囲気ガスから活性窒素が生成される限り、その種類を問わない。高エネルギービームは、例えば、パルスレーザ、電子ビーム等である。
アブレーションを発生させるには、母材金属の被処理部へ、高いエネルギーを瞬時に付与する必要がある。つまり、アブレーションの閾値を超える高いエネルギー密度(フルエンス)をもつ高エネルギービームを、母材金属の被処理部へ照射する必要がある。このような高エネルギービームとして、短パルス幅のパルスレーザが好適である。
レーザ発振装置の出力や発振周波数等が一定なら、パルス幅が短いほど、フルエンスの高いレーザ光を被処理部へ照射できる。またパルス幅が短いと、その照射域外への熱拡散が抑制され、アブレーションの促進と共に母材金属への熱的影響の抑制を図れる。具体的にいうと、パルスレーザのパルス幅は、例えば、10ps〜100nsさらには1〜50nsであると好ましい。パルス幅が過大ではアブレーションに必要なフルエンスが得難くなり、パルス幅が過小(例えば多光子吸収が生じる150fs程度)ではレーザ光によるエネルギーの付与形態が変化して、本発明に係る改質処理に必要な反応場が形成されない可能性がある。
パルスレーザの出力密度(フルエンス)でいえば、例えば、0.3MW/cm〜30GW/cmさらには3MW/cm〜3GW/cmであると好ましい。出力密度は改質部深さに影響し、出力密度が過小では十分な深さの改質部が得難くなり、出力密度が過大では母材金属への熱的影響が大きくなり好ましくない。ちなみに、出力密度はレーザ出力をレーザスポット面積で除して求まる。
またパルスレーザは波長が短いほど、母材金属によるレーザ光の吸収率が高くなり、アブレーションの促進と非アブレーション部の変質抑制等が図られる。またパルスレーザの波長を適切に調整することにより、十分な改質部深さをもつ改質部の形成が容易となる。このようなパルスレーザの波長は、赤外域より短く、さらには可視域よりも短い紫外域(近紫外域を含む)内にあると好ましい。具体的にいうと、パルスレーザの波長は、700nm以下、550nm以下さらには380nm以下であると好ましい。またパルスレーザの波長は、190nm以上さらには320nm以上であると好ましい。パルスレーザの波長が過小では、雰囲気ガスによるレーザの吸収が発生して好ましくない。
このようなパルスレーザの具体例として、例えば、F(波長157nm)、ArF(波長193nm)、KrF(波長248nm)、XeCl(波長308nm)、XeF(波長351nm)等のエキシマ(励起二量体)を利用したエキシマレーザ、短波長を発振できるYAGレーザなどがある。
(2)照射工程
照射工程は、所望する改質部の形態に応じて、高エネルギービームを母材金属の表面部へ照射しつつ、その照射域を移動させる工程である。
高エネルギービームとしてパルスレーザを用いる場合、隣接して発振する各パルス光の照射域を部分的に重畳(オーバーラップ)させると、連続した改質部が安定的に形成され易くなる。パルス波の照射域を重畳させる割合(パルスラップ率)は、パルスレーザの発振周波数、被処理部に対する相対移動速度(適宜「走査速度」という。)、被処理部の最表面における照射域の大きさ(またはパルスレーザの焦点位置)等により調整される。パルスレーザの特性にも依るため、パルスラップ率は、例えば10〜100%未満さらには20〜95%であると好ましい。パルスラップ率が過小では連続的な改質部の形成が困難となり除去加工となり易い。パルスラップ率が過大では改質処理の効率化や改質部の均質化を図り難い。
このパルスラップ率は、(r/d)×100(%)(d:ビーム径、r:隣接するパルス波の重なり径)により算出される。ここでビーム径(d)は、レーザ軸に対する直交面上で測定される、ビーム強度がピーク強度値の1/eレベルとなるときの幅(直径)である。また隣接するパルス波の重なり径(r)は、d−R(R:隣接するビーム間の中心間距離)である。
パルスラップ率に基づいて発振周波数、走査速度、焦点位置等は調整されるが、一例をあげると次の通りである。発振周波数は、例えば、1〜500kHzさらには2〜100kHzであると好ましい。発振周波数が過小では走査速度も低くせざるを得ず、処理の効率化を図れない。発振周波数が過大になると、一般的にレーザフルエンスが低下し、均質的な改質部の形成が困難となる。
走査速度は、例えば、0.1〜5000mm/sさらには1〜1000mm/sであると好ましい。走査速度が過小では処理の効率化を図れず、走査速度が過大になると、相関する発振周波数が過大な場合と同様に、均質的な改質部の形成が困難となる。
パルスレーザの焦点位置により、各パルス光の照射範囲が変化する。焦点位置は、母材金属の被処理部の最表面にあっても、その最表面からずれたところにあってもよい。もっとも、焦点位置がパルスレーザの照射部(被処理部の最表面部)から外れるほど、照射部における出力密度は低下し、その照射部近傍における処理の安定性や改質部深さ等に影響する。この傾向は、レーザを集光させて照射部に微細なスポット径を形成している場合ほど顕著である。
(3)雰囲気
照射工程を行う雰囲気は、既述したように、高エネルギービームを照射した際に、アブレーションにより活性窒素が発生し得る窒素含有雰囲気であればよい。このような雰囲気は、高エネルギービームの種類に応じて適宜選択される。
照射工程は、チャンバー等の密閉雰囲気内で行っても良いが、開放雰囲気内で行ってもよい。高エネルギービームとしてレーザを用いれば、開放雰囲気である常温常圧の大気雰囲気中でも可能である。もっとも、不要な化合物の生成等を回避しつつ、固溶窒素量を制御するために、窒素ガス雰囲気または窒素ガスを不活性ガスで希釈した混合ガス雰囲気で照射工程を行うとよい。具体的には被処理部の上方や側方から窒素ガス等を吹き付けるとよい。ガスの吹付方向を調整することにより、アブレーションに伴い生じるデブリの抑制等も図られ得る。例えば、その吹付方向を高エネルギービームの光軸と同軸とすることにより、窒素含有雰囲気の制御性が増し、改質部の均質性が向上し得る。
《用途》
本発明の高耐食性金属部材は、その用途を問わない。また改質部を設ける領域の広狭や表面テクスチャの有無等も問わない。このような高耐食性金属部材として、例えば、配管、タンク、海洋建築物、インジェクタ、タービン、熱交換器、エンジン摺動部品、締結部品、ノズル、シャフト、ケース、生体適合材料等がある。
《試料の製作》
(1)基材(母材金属)
各種ステンレス鋼と炭素鋼からなる市販の板材から複数の基材(15.7×6.5×10.0mm)を切り出した。各板材の組成は表2に参考として示した。
(2)窒化処理(照射工程)
先ず高エネルギービームとして、近紫外線領域の波長をもつパルス幅がナノ秒レベルのパルスレーザ(このレーザを単に「近紫外ナノ秒レーザ」という。)を準備した。このレーザを用いて、各基材の被処理部へ窒素含有ガスを吹き付けつつ照射した。具体的には、波長:355nm、パルス幅:<20ns、出力:1.2W、出力密度:300MW/cm、焦点位置:基材の被処理部の最表面上(焦点はずし距離:0μmつまりジャストフォーカス)とした。また、ガス吹き付けは、近紫外ナノ秒レーザの光軸に沿った上方向から行った。この際、窒素ガス(窒素濃度100体積%)または窒素ガスをアルゴンガス(希釈ガス)で希釈した混合ガスを用いた。なお、これらガス中の窒素濃度を適宜変更することにより基材へ導入する窒素濃度を調整した。
さらにレーザ照射は、前述した方法により算出したパルスラップ率を85%として行い、被処理部の表面上における各レーザ光の照射域の軌跡は3〜7μm間隔の平行な直線状とした。これにより、レーザ照射した被処理部が全面的に改質されるようにした。こうして表1に示す各試料を得た。なお、一部の試料は、比較のために基材のままとして、窒化処理を行わなかった。
《改質部の分析》
上述した窒化処理を行った試料11(S304−N)の表面部分の断面を走査型電子顕微鏡(SEM)で観察した写真を図1に示した。このSEM像により、改質部の厚さが最表面から約75μmの深さまであることが確認された。
試料11の断面を電子線マイクロアナライザー(EPMA)で解析して得た窒素マッピング像を図2に示した。これにより、改質部の表面から50μmの領域において、窒素が0.9質量%含まれていることがわかった。窒化処理した他の試料についても同様にして改質部に含まれる窒素濃度を調べ、その結果を表1に併せて示した。
試料11の断面を透過型電子顕微鏡(TEM)で観察した写真を図3に示した。このTEM像から改質部は、平均結晶粒径が440nm程度の微細組織からなることが明らかとなった。
試料11の改質部(具体的には最表面から10μmの部分)についてX線回折(XRD)による解析を行った。これにより得られた結果を図4に示した。このXRDプロファイルから、改質部中に窒化物の存在が実質的に認められない一方、窒素の固溶によって生じているとみられるピークシフトが認められた。これらの分析結果から、改質部は窒素固溶相を主相とする微細組織(窒素固溶微細組織)からなるといえる。
また試料31の改質部についても同様にXRD解析を行った。得られたXRDプロファイル像を一部拡大したものを図5に示した。図5から明らかなように、上述した窒化処理により、bcc相(フェライト相)からなる基部(SUS430)が、fcc相(オーステナイト相)からなる改質部に変化(変態)していることがわかる。
窒化処理していない試料10と窒化処理した試料11の表面近傍における深さ方向の硫黄(S)の分布をグロー放電発光分光分析(GD−OES:Glow Discharge Optical Emission Spectrometry)した結果を図6に示した。図6から明らかなように、Sの分布は窒化処理前後で殆ど変化しないことがわかる。
また試料10と試料11の表面をEPMAで解析して得た硫黄(S)マッピング像をそれぞれ図7Aと図7Bに示した。窒化処理していない試料10では表面にSが点在していることが確認できるが、窒化処理した試料11ではSを確認できなかった。以上の結果を総合的に考慮すると、試料11の改質部では、改質前(窒化処理前)とほぼ同量なSを含むが、Sを含む析出物または介在物は、EPMAの検出限界(φ1μm程度)以下にまで微細化されたと考えられる。
《耐食試験》
(1)表1に示した各試料を用いて、 「ステンレス鋼の孔食電位測定方法」(JIS G0577)に基く耐食試験を次のように行った。先ず、各試料に係る試験片を耐水研磨紙でJIS#2500まで仕上げ研磨した。その後、5質量%NaCl水溶液中に浸漬した各試験片へ、分極速度:20mV/minで電圧を印加した。なお、参照電極にはAg/AgCl電極を用いた。
こうして得られた各試料に係るアノード分極プロファイルを図8および図9に示した。これらのアノード分極プロファイルに基づき、100μA/cm (10−4A/cm)の電流が流れたときの電位V'c100を孔食電位とした。こうして得られた各試料の孔食電位を表1に併せて示した。なお、試料C1(S45C−N)は、耐食試験前の自然浸漬中に腐食を生じたため、孔食電位の測定は行わなかった。
(2)耐食試験(アノード分極)後の各試料に係る試験表面を光学顕微鏡で観察した写真を図10に示した。
(3)オーステナイト系ステンレス鋼については、耐孔食性の指標として孔食指数が一般に用いられている。この孔食指数(PRE)は、その組成(質量%)に基づき、PRE=%Cr+3.3%Mo+16%Nとして算出される。各試料の孔食指数を表1に併せて示した。また、各試料に係る孔食指数と孔食電位の関係を図11に示した。
《評価》
表1、図8および図9から明らかなように、ステンレス鋼の表面へ固溶窒素を導入することにより、その耐食性が著しく向上することがわかった。但し、試料14(S304−N4)のように固溶窒素が過少(窒素濃度が0.05%未満)であると、耐食性はあまり望めない。一方、試料13(S304−N3)のように窒素濃度が0.2%以上になると、その耐食性は、試料40(S836)のスーパーステンレス鋼と同等に著しく向上した。同様のことは図10に示す写真からもわかる。
また図11から明らかなように、改質処理したオーステナイト系ステンレス鋼は、固溶窒素が過少な場合(試料14)を除き、孔食指数から予想される耐食性よりも遥かに優れた耐食性を発現することがわかった。このように優れた耐食性が得られる理由は、現状必ずしも明らかではないが、耐食性を低下させる窒化物が少なく、窒素が十分に固溶した微細な組織(窒素固溶微細組織)に依ることは確かである。特に孔食起点となり得る析出物や介在物等の微細化が高耐食性に寄与していると考えられる。またフェライト系ステンレス鋼の場合は、窒素固溶によるオーステナイト化によっても耐食性の向上が図られると考えられる。
《その他》
上述した改質処理では、被処理部へのレーザ照射を一回しか行わなかったが、その照射を複数繰り返し行ってもよい。照射工程の回数を増やすことにより、被処理部における窒素濃度を一層高めることが可能となる。

Claims (7)

  1. 母材金属からなる基部と、
    該基部の少なくとも一部に形成された改質部と、
    を備える金属部材であって、
    前記改質部は、該改質部全体を100質量%(以下「%」という。)としたときに0.05〜5%の窒素(N)を含み、平均結晶粒径が10μm以下である窒素固溶微細組織からなることを特徴とする高耐食性金属部材。
  2. 前記母材金属は、全体を100%としたときにクロム(Cr)を10〜30%含む鉄合金からなる請求項1に記載の高耐食性金属部材。
  3. 前記鉄合金は、さらにニッケル(Ni)を0.1〜66%含むオーステナイト系またはフェライト系ステンレス鋼である請求項2に記載の高耐食性金属部材。
  4. 前記改質部は、最表面からの厚さが500μm以下である請求項1〜3のいずれかに記載の高耐食性金属部材。
  5. 前記改質部は、少なくとも局部腐食を生じ得る部位に形成されている請求項1〜4のいずれかに記載の高耐食性金属部材。
  6. 母材金属からなり窒素含有雰囲気下にある被処理部へ高エネルギービームを相対移動させつつ照射することにより、該被処理部でアブレーションを生じさせると共に該被処理部の近傍に活性窒素を生成させる照射工程を備え、
    請求項1〜5のいずれかに記載の改質部が得られることを特徴とする高耐食性金属部材の製造方法。
  7. 請求項6に記載の製造方法により得られたことを特徴とする高耐食性金属部材。
JP2013055857A 2013-03-19 2013-03-19 高耐食性金属部材およびその製造方法 Expired - Fee Related JP5924297B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013055857A JP5924297B2 (ja) 2013-03-19 2013-03-19 高耐食性金属部材およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013055857A JP5924297B2 (ja) 2013-03-19 2013-03-19 高耐食性金属部材およびその製造方法

Publications (2)

Publication Number Publication Date
JP2014181371A true JP2014181371A (ja) 2014-09-29
JP5924297B2 JP5924297B2 (ja) 2016-05-25

Family

ID=51700385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013055857A Expired - Fee Related JP5924297B2 (ja) 2013-03-19 2013-03-19 高耐食性金属部材およびその製造方法

Country Status (1)

Country Link
JP (1) JP5924297B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017022921A (ja) * 2015-07-14 2017-01-26 株式会社豊田中央研究所 回転機およびその製造方法
CN112210756A (zh) * 2020-10-13 2021-01-12 辽宁科技大学 一种铁基合金表面强耐蚀性高铬复合渗氮层的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7244704B1 (ja) 2022-07-11 2023-03-22 日鉄テックスエンジ株式会社 ステンレス鋼の耐食性向上処理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681658A (en) * 1979-12-05 1981-07-03 Nippon Kokan Kk <Nkk> Austenitic alloy pipe with superior hot steam oxidation resistance
JPH0379742A (ja) * 1989-08-22 1991-04-04 Nippon Yakin Kogyo Co Ltd 耐孔食性に優れた2相ステンレス鋼板の製造方法
JPH08337853A (ja) * 1995-06-09 1996-12-24 Hitachi Ltd 高耐食性高強度オーステナイト焼結鋼とその製造方法及びその用途
JPH1088289A (ja) * 1996-09-12 1998-04-07 Hitachi Ltd 高耐食性高強度Cr−Mn系オーステナイト焼結鋼とその製造方法及びその用途
JP2000328183A (ja) * 1999-05-12 2000-11-28 Yamaha Motor Co Ltd 鉄合金部品
JP2007238969A (ja) * 2006-03-06 2007-09-20 Toyota Motor Corp 窒化処理方法
WO2011096592A1 (ja) * 2010-02-04 2011-08-11 小田産業株式会社 高強度・高延性で優れた耐食性・耐熱性を有する高窒素ステンレス鋼管及びそれらの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681658A (en) * 1979-12-05 1981-07-03 Nippon Kokan Kk <Nkk> Austenitic alloy pipe with superior hot steam oxidation resistance
JPH0379742A (ja) * 1989-08-22 1991-04-04 Nippon Yakin Kogyo Co Ltd 耐孔食性に優れた2相ステンレス鋼板の製造方法
JPH08337853A (ja) * 1995-06-09 1996-12-24 Hitachi Ltd 高耐食性高強度オーステナイト焼結鋼とその製造方法及びその用途
JPH1088289A (ja) * 1996-09-12 1998-04-07 Hitachi Ltd 高耐食性高強度Cr−Mn系オーステナイト焼結鋼とその製造方法及びその用途
JP2000328183A (ja) * 1999-05-12 2000-11-28 Yamaha Motor Co Ltd 鉄合金部品
JP2007238969A (ja) * 2006-03-06 2007-09-20 Toyota Motor Corp 窒化処理方法
WO2011096592A1 (ja) * 2010-02-04 2011-08-11 小田産業株式会社 高強度・高延性で優れた耐食性・耐熱性を有する高窒素ステンレス鋼管及びそれらの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017022921A (ja) * 2015-07-14 2017-01-26 株式会社豊田中央研究所 回転機およびその製造方法
CN112210756A (zh) * 2020-10-13 2021-01-12 辽宁科技大学 一种铁基合金表面强耐蚀性高铬复合渗氮层的制备方法

Also Published As

Publication number Publication date
JP5924297B2 (ja) 2016-05-25

Similar Documents

Publication Publication Date Title
Lai et al. Influence of absorbed nitrogen on microstructure and corrosion resistance of 2205 duplex stainless steel joint processed by fiber laser welding
El-Batahgy et al. Effect of laser beam welding parameters on microstructure and properties of duplex stainless steel
RU2572935C1 (ru) Лист текстурированной электротехнической стали и способ его изготовления
Turichin et al. Influence of heat input and preheating on the cooling rate, microstructure and mechanical properties at the hybrid laser-arc welding of API 5L X80 steel
Yilbas et al. Laser gas assisted treatment of AISI H12 tool steel and corrosion properties
JP5924297B2 (ja) 高耐食性金属部材およびその製造方法
JP2006291295A (ja) 耐遅れ破壊特性に優れた高強度ボルトおよびその製造方法
Saha et al. Mechanism of secondary hardening in rapid tempering of dual-phase steel
Ettefagh et al. Laser surface modifications of Fe-14Cr ferritic alloy for improved corrosion performance
Yazdian et al. Hybrid laser/arc welding of 304L stainless steel tubes, part 2–Effect of filler wires on microstructure and corrosion behavior
Obeidi et al. Laser surface processing with controlled nitrogen-argon concentration levels for regulated surface life time
JP5958495B2 (ja) 複合磁性部材およびその製造方法
JP5682534B2 (ja) 窒化金属部材およびその製造方法
KR20190042052A (ko) 페라이트계 내열강 용접 구조체의 제조 방법 및 페라이트계 내열강 용접 구조체
Kim et al. Weld metal impact toughness of electron beam welded 9% Ni steel
JP6036316B2 (ja) 金属部材およびその製造方法
JP7244704B1 (ja) ステンレス鋼の耐食性向上処理方法
JP5948435B2 (ja) 溶接材料及び溶接継手
JP2009197254A (ja) Ni基2重複相金属間化合物合金の表面処理方法,および,表面処理したNi基2重複相金属間化合物合金
JP6269601B2 (ja) 回転機およびその製造方法
Klimpel et al. The influence of the shielding gas on the properties of a laser-melted surface of austenitic stainless steel
JP2011190523A (ja) 溶接熱影響部の耐食性に優れたフェライト単相系ステンレス鋼板
Alhajhamoud et al. Laser Welding of 316L Austenitic Stainless Steel in an Air and a Water Environment. Materials 2022, 15, 2248
Chen et al. Permanent marking on stainless steels for corrosion resistance through control of oxide growth
ZHANG et al. Microstructure and corrosion resistance of UNS S32750 super duplex stainless steel laser welded joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160404

R150 Certificate of patent or registration of utility model

Ref document number: 5924297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees